VisualStudio Code server images based on https://github.com/cdr/code-server
- Hosted on GitHub Container Registry (ghcr.io) to avoid DockerHub pull limitations, and easily deploy on clusters (such as Kubernetes).
- Additionally installed on the CPU image: Python3, NodeJS (npm, yarn), Java JDK 17s, PHP, Fortran
The image on ghcr.io is automatically updated every week (Monday at 3:00 GMT+1) by a GitHub Actions workflow to match the latest tag of codercom/code-server
This image extends the Dockerfile defined at https://github.com/cdr/code-server
docker run --rm -it -p 8080:8080 -e PASSWORD=password -v $(pwd):/home/coder/project ghcr.io/maastrichtu-ids/code-server:latestIn the container:
- User, with
sudoprivileges:coder - Workspace path:
/home/coder
You can also provide the URL of a git repository to be cloned at start, if a requirements.txt, yarn.lock or package-lock.json are present, they will be automatically installed
docker run --rm -it -p 8080:8080 -e PASSWORD=password -e GIT_URL=https://github.com/MaastrichtU-IDS/play-fair ghcr.io/maastrichtu-ids/code-server:latestTo build the image:
docker build -t ghcr.io/maastrichtu-ids/code-server:latest .docker push ghcr.io/maastrichtu-ids/code-server:latestImages hosted on the GitHub Container Registry: https://github.com/orgs/MaastrichtU-IDS/packages/container/package/code-server-gpu
Based on Docker images provided by Nvidia:
- Tensorflow: https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow
- PyTorch: https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
The best way to update the images is to update the version of the environment variables TENSORFLOW_IMAGE and PYTORCH_IMAGE in the publish-docker-gpu.yml workflow, and push the changes to the main branch, the new images version will be built and published by GitHub Actions
You can also build the images locally.
Build Tensorflow:
docker build --build-arg NVIDIA_IMAGE=nvcr.io/nvidia/tensorflow:21.05-tf2-py3 -t ghcr.io/maastrichtu-ids/code-server-gpu:tensorflow-21.05-tf2-py3 -f Dockerfile.gpu .Build PyTorch:
docker build --build-arg NVIDIA_IMAGE=nvcr.io/nvidia/pytorch:21.05-py3 -t ghcr.io/maastrichtu-ids/code-server-gpu:pytorch-21.05-py3 -f Dockerfile.gpu .Test to run it locally:
docker run -it --rm -p 8081:8081 -e PASSWORD=password ghcr.io/maastrichtu-ids/code-server-gpu:tensorflow-21.05-tf2-py3Push:
docker push ghcr.io/maastrichtu-ids/code-server-gpu:tensorflow-21.05-tf2-py3