Skip to content

MGAMZ/ITKIT

Repository files navigation

LOGO

ITKIT: Feasible Medical Image Operation based on SimpleITK API

Python >= 3.10 SimpleITK >= 2.5.0 License: MIT CI Status

📘Documentation | 💾PyPI

ITKIT is a comprehensive toolkit for medical image preprocessing and analysis, providing command-line tools, a GUI application, and deep learning framework integrations for CT and MRI image processing.

✨ Core Features

  • 🔧 Preprocessing Tools: Check, resample, orient, patch, augment, and convert medical images
  • 🖥️ GUI Application: User-friendly PyQt6 interface for all operations
  • 🧠 Neural Networks: 16+ state-of-the-art segmentation models (SegFormer, MedNeXt, VMamba, etc.)
  • 🔌 Framework Support: Integration with OpenMMLab, MONAI, TorchIO, and PyTorch Lightning
  • 📊 Dataset Conversion: Scripts for 12+ popular medical imaging datasets
  • ⚡ High Performance: Multiprocessing support for faster batch processing

🚀 Quick Start

Installation

pip install itkit
# Optional: Install GUI support
pip install "itkit[gui]"

Note

ITKIT experiences BC in v4. The previous version is v3.6.0rc0.

Basic Usage

# Check dataset integrity
itk_check check /path/to/dataset --min-spacing 0.5 0.5 0.5

# Resample images to uniform spacing
itk_resample dataset /path/to/source /path/to/output --spacing 1.0 1.0 1.0 --mp

# Launch GUI application
itkit-app

📚 Documentation

Full documentation is available at docs

You can also find the docs on readthedocs.

Quick Links

🛠️ Command-Line Tools

ITKIT provides several preprocessing commands:

Command Description
itk_check Validate dataset integrity (spacing, size, pairing)
itk_resample Resample images to target spacing or size
itk_orient Orient images to standard directions (LPI, RAS, etc.)
itk_patch Extract patches for training
itk_aug Data augmentation with random rotations
itk_extract Extract specific classes from segmentation maps
itk_convert Convert between formats (MHA, NIfTI, NRRD) and frameworks (MONAI, TorchIO)
itkit-app Launch graphical user interface
mmrun Run OpenMMLab experiments

Use --help with any command for detailed usage information.

🖼️ GUI Application

ITKIT GUI

Install GUI support and launch:

pip install "itkit[gui]"
itkit-app

# Adjust DPI if needed
QT_SCALE_FACTOR=2 itkit-app

📦 Optional Features

ITKIT provides optional dependency groups:

pip install "itkit[gui]"        # GUI application (PyQt6)
pip install "itkit[advanced]"   # Deep learning frameworks (OpenMMLab)
pip install "itkit[dev]"        # Development tools (pytest, black, mypy)
pip install "itkit[pathology]"  # Pathology image processing
pip install "itkit[onnx]"       # Model deployment (ONNX, TensorRT)

📖 Citation

If you use ITKIT in your research, please cite:

@misc{ITKIT,
    author = {Yiqin Zhang},
    title = {ITKIT: Feasible Medical Image Operation based on SimpleITK API},
    year = {2025},
    url = {https://github.com/MGAMZ/ITKIT}
}

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for:

  • Development setup
  • Code style guidelines
  • Testing requirements
  • Pull request process

📄 License

ITKIT is released under the MIT License.

📧 Contact

For questions or suggestions, reach out at: [email protected]

🌟 Acknowledgments

ITKIT builds upon:


⭐ Star us on GitHub if you find ITKIT useful!

About

ITKIT: Feasible Medical Image Operation based on SimpleITK API

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Contributors 3

  •  
  •  
  •  

Languages