@@ -66,9 +66,8 @@ x_test, y_test = load_data_and_labels(test_path)
6666After reading the data, prepare preprocessor and pre-trained word embeddings:
6767``` python
6868p = prepare_preprocessor(x_train, y_train)
69- p.save(os.path.join(SAVE_ROOT , ' preprocessor.pkl' ))
70-
7169embeddings = load_word_embeddings(p.vocab_word, embedding_path, model_config.word_embedding_size)
70+ model_config.vocab_size = len (p.vocab_word)
7271model_config.char_vocab_size = len (p.vocab_char)
7372```
7473
@@ -108,10 +107,6 @@ Evaluator performs evaluation.
108107Prepare an instance of Evaluator class and give test data to eval method:
109108
110109```
111- p = WordPreprocessor.load(os.path.join(SAVE_ROOT, 'preprocessor.pkl'))
112- model_config.vocab_size = len(p.vocab_word)
113- model_config.char_vocab_size = len(p.vocab_char)
114-
115110weights = os.path.join(SAVE_ROOT, 'model_weights.h5')
116111
117112evaluator = anago.Evaluator(model_config, weights, save_path=SAVE_ROOT, preprocessor=p)
@@ -127,12 +122,7 @@ After evaluation, F1 value is output:
127122To tag any text, we can use *** Tagger*** .
128123Prepare an instance of Tagger class and give text to tag method:
129124```
130- p = WordPreprocessor.load(os.path.join(SAVE_ROOT, 'preprocessor.pkl'))
131- model_config.vocab_size = len(p.vocab_word)
132- model_config.char_vocab_size = len(p.vocab_char)
133-
134125weights = os.path.join(SAVE_ROOT, 'model_weights.h5')
135-
136126tagger = anago.Tagger(model_config, weights, save_path=SAVE_ROOT, preprocessor=p)
137127```
138128
0 commit comments