Skip to content

Commit 25b450d

Browse files
committed
update README
1 parent 0f48a03 commit 25b450d

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

README.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
# anaGo
2-
anaGo is a state-of-the-art library for sequence labeling using Keras.
2+
***anaGo*** is a state-of-the-art library for sequence labeling using Keras.
33

44
anaGo can performs named-entity recognition (NER), part-of-speech tagging (POS tagging), semantic role labeling (SRL) and so on.
55

@@ -76,7 +76,7 @@ Now we are ready for training :)
7676

7777

7878
### Training a model
79-
Let's train a model. For training a model, we can use *Trainer*.
79+
Let's train a model. For training a model, we can use ***Trainer***.
8080
Trainer manages everything about training.
8181
Prepare an instance of Trainer class and give train data and valid data to train method:
8282
```
@@ -103,7 +103,7 @@ Epoch 5/15
103103

104104

105105
### Evaluation for a model
106-
To evaluate the trained model, we can use *Evaluator*.
106+
To evaluate the trained model, we can use ***Evaluator***.
107107
Evaluator performs evaluation.
108108
Prepare an instance of Evaluator class and give test data to eval method:
109109

@@ -112,7 +112,7 @@ p = WordPreprocessor.load(os.path.join(SAVE_ROOT, 'preprocessor.pkl'))
112112
model_config.vocab_size = len(p.vocab_word)
113113
model_config.char_vocab_size = len(p.vocab_char)
114114
115-
weights = os.path.join(SAVE_ROOT, '../logs/model_weights_00_0.85.h5')
115+
weights = os.path.join(SAVE_ROOT, 'model_weights.h5')
116116
117117
evaluator = anago.Evaluator(model_config, weights, save_path=SAVE_ROOT, preprocessor=p)
118118
evaluator.eval(x_test, y_test)
@@ -124,14 +124,14 @@ After evaluation, F1 value is output:
124124
```
125125

126126
### Tagging a sentence
127-
To tag any text, we can use *Tagger*.
127+
To tag any text, we can use ***Tagger***.
128128
Prepare an instance of Tagger class and give text to tag method:
129129
```
130130
p = WordPreprocessor.load(os.path.join(SAVE_ROOT, 'preprocessor.pkl'))
131131
model_config.vocab_size = len(p.vocab_word)
132132
model_config.char_vocab_size = len(p.vocab_char)
133133
134-
weights = os.path.join(SAVE_ROOT, '../logs/model_weights_00_0.85.h5')
134+
weights = os.path.join(SAVE_ROOT, 'model_weights.h5')
135135
136136
tagger = anago.Tagger(model_config, weights, save_path=SAVE_ROOT, preprocessor=p)
137137
```

0 commit comments

Comments
 (0)