Jambo is a Python package that automatically converts JSON Schema definitions into Pydantic models. It's designed to streamline schema validation and enforce type safety using Pydantic's validation features.
Created to simplify the process of dynamically generating Pydantic models for AI frameworks like LangChain, CrewAI, and others.
- β Convert JSON Schema into Pydantic models dynamically;
- π Supports validation for:
- strings
- integers
- floats
- booleans
- arrays
- nested objects
- allOf
- anyOf
- oneOf
- ref
- enum
- const
- βοΈ Enforces constraints like
minLength,maxLength,pattern,minimum,maximum,uniqueItems, and more; - π¦ Zero config β just pass your schema and get a model.
pip install jamboThere are two ways to build models with Jambo:
- The original static API:
SchemaConverter.build(schema)doesn't persist any reference cache between calls and doesn't require any configuration. - The new instance API: use a
SchemaConverter()instance and callbuild_with_cache, which exposes and persists a reference cache and helper methods.
The instance API is useful when you want to reuse generated subtypes, inspect cached models, or share caches between converters; all leveraging namespaces via the $id property in JSON Schema. See the docs for full details: https://jambo.readthedocs.io/en/latest/usage.ref_cache.html
from jambo import SchemaConverter
schema = {
"title": "Person",
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"},
},
"required": ["name"],
}
# Old-style convenience API (kept for compatibility)
Person = SchemaConverter.build(schema)
obj = Person(name="Alice", age=30)
print(obj)from jambo import SchemaConverter
converter = SchemaConverter()
schema = {
"title": "Person",
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"},
"address": {"type": "object", "properties": {"street": {"type": "string"}}},
},
"required": ["name"],
}
# build_with_cache populates the converter's instance-level ref cache
Person = converter.build_with_cache(schema)
# you can retrieve cached subtypes by name/path
cached_person = converter.get_cached_ref("Person")
# clear the instance cache when needed
converter.clear_ref_cache()Following are some examples of how to use Jambo to create Pydantic models with various JSON Schema features, but for more information, please refer to the documentation.
from jambo import SchemaConverter
schema = {
"title": "EmailExample",
"type": "object",
"properties": {
"email": {
"type": "string",
"minLength": 5,
"maxLength": 50,
"pattern": r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$",
},
},
"required": ["email"],
}
Model = SchemaConverter.build(schema)
obj = Model(email="[email protected]")
print(obj)from jambo import SchemaConverter
schema = {
"title": "AgeExample",
"type": "object",
"properties": {
"age": {"type": "integer", "minimum": 0, "maximum": 120}
},
"required": ["age"],
}
Model = SchemaConverter.build(schema)
obj = Model(age=25)
print(obj)from jambo import SchemaConverter
schema = {
"title": "NestedObjectExample",
"type": "object",
"properties": {
"address": {
"type": "object",
"properties": {
"street": {"type": "string"},
"city": {"type": "string"},
},
"required": ["street", "city"],
}
},
"required": ["address"],
}
Model = SchemaConverter.build(schema)
obj = Model(address={"street": "Main St", "city": "Gotham"})
print(obj)from jambo import SchemaConverter
schema = {
"title": "person",
"$ref": "#/$defs/person",
"$defs": {
"person": {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"},
"emergency_contact": {
"$ref": "#/$defs/person",
},
},
}
},
}
model = SchemaConverter.build(schema)
obj = model(
name="John",
age=30,
emergency_contact=model(
name="Jane",
age=28,
),
)To run the test suite:
poe testsOr manually:
python -m unittest discover -s tests -vTo set up the project locally:
- Clone the repository
- Install uv (if not already installed)
- Install dependencies:
uv sync- Set up git hooks:
poe create-hooks- Better error reporting for unsupported schema types
PRs are welcome! This project uses MIT for licensing, so feel free to fork and modify as you see fit.
MIT License.