CareMind is a clinical decision support system (CDSS) prototype built with Streamlit.
It integrates retrieval-augmented generation (RAG), guideline databases, and drug knowledge bases to provide evidence-backed, explainable, and bilingual (中/EN) answers to clinical questions.
-
Clinical Q&A
Ask questions like:“Can β-blockers be used in hypertensive patients with bronchial asthma?”
The system retrieves guideline evidence and generates structured suggestions. -
Evidence Retrieval (RAG)
Uses ChromaDB vector store for guideline chunks and SQLite for structured drug data. -
Structured Outputs
- 📚 Evidence snippets
- 💊 Drug interactions / adverse effects (from DB)
- 🧭 Draft clinical recommendations with compliance disclaimer
-
UI
- Streamlit frontend
- Download buttons for recommendation reports and evidence exports (Markdown format)
- Compact bilingual interface (English / 中文)
caremind-streamlit/
├── app.py # Streamlit frontend
├── rag/
│ ├── retriever.py # Guideline & drug database retriever
│ ├── pipeline.py # RAG pipeline & LLM integration
│ └── prompt.py # Structured prompt templates
├── ingest/
│ └── create_db.py # Ingest guideline files into ChromaDB
├── data/
│ ├── guidelines/ # Raw guideline PDFs
│ ├── guidelines.parsed.jsonl # Parsed guideline text
│ └── drug_db.sqlite # Drug structured database (optional)
├── chroma_store/ # Vector DB persistence (local / demo branch)
├── requirements.txt # Python dependencies
└── .streamlit/config.toml # Streamlit UI configuration
-
Clone the repository git clone https://github.com//caremind-streamlit.git cd caremind-streamlit
-
Create environment conda create -n caremind python=3.10 -y conda activate caremind pip install -r requirements.txt
-
Set environment variables export CHROMA_PERSIST_DIR=./chroma_store export CHROMA_COLLECTION=guideline_chunks_1024_v2 export EMBEDDING_MODEL=BAAI/bge-large-zh-v1.5
-
Build the vector DB python ingest/create_db.py
--in data/guidelines.parsed.jsonl
--collection $CHROMA_COLLECTION -
Run Streamlit streamlit run app.py The app will be available at http://localhost:8501.
Local:
Works on Windows/WSL + GPU (RTX 4070 SUPER tested)
Streamlit Cloud:
main branch: minimal demo (no full dataset)
demo-data branch: full dataset (≈ 18MB SQLite + 17MB Chroma index)
This tool is for research and demonstration purposes only. It does not replace professional medical judgment. All outputs include compliance disclaimers.
Improve evidence ranking with rerankers
Enhance prompt templates for structured outputs
Support larger LLMs (H100/A100 inference-ready)
Multi-user demo via Docker or Cloud Run
Paper publication on clinical RAG systems
Pull requests are welcome. For major changes, please open an issue first to discuss.
MIT License © 2025 Samuel Huang
- Docs index: docs/00_README.md
- Streamlit Cloud deployment: docs/guides/deployment_cloud.md
- Testing & validation: docs/guides/testing_validation.md