A collaborative data analysis project by @kaganmart9 & @ahakanortacbayram
This project explores airline passenger satisfaction using data-driven methods. The objective is to understand how demographic and service-related factors impact customer satisfaction in commercial air travel.
Using structured and clean code practices in Python, we preprocess, analyze, and visualize data from a real-world airline passenger dataset.
- How does age affect passenger satisfaction?
- Is there a difference in satisfaction between genders?
- Does flight distance impact satisfaction levels?
- Which services (e.g., cleanliness, baggage, online booking) are most correlated with satisfaction?
## 🗂️ Project Structure
AIRLINE-PASSENGER-SATISFACTION-DATA-ANALYSIS/
├── data/
│ ├── raw/ # Raw dataset (e.g., raw-data.csv)
│ └── processed/ # Cleaned dataset (e.g., processed.csv)
│
├── docs/
│ └── project-plan.pdf # Project planning and documentation
│
├── notebooks/ # Jupyter notebooks for EDA & prototyping
│ ├── 03-analysis-b-age-satisfaction.ipynb
│ ├── 04-analysis-b-gender-satisfaction.ipynb
│ └── flight-distance-satisfaction-scatter-analysis.ipynb
│
├── reports/
│ ├── figures/ # All generated visualizations (PNG)
│ │ ├── age_group_satisfaction_bar.png
│ │ ├── gender_satisfaction_pies_clean.png
│ │ └── ...
│ └── tables/ # Output statistics (CSV)
│ ├── flight_distance_satisfaction_stats.csv
│ └── gender_satisfaction_percent.csv
│
├── src/ # Modular & reproducible Python scripts
│ ├── config.py # Path config
│ ├── cleaning.py # Data cleaning pipeline
│ ├── age_satisfaction_prc.py # Age-based satisfaction analysis
│ ├── gender_satisfaction.py # Gender-based satisfaction analysis
│ ├── distance_satisfaction.py # Flight distance analysis
│ └── service_correlation.py # Service factor correlations
│
├── requirements.txt # Python dependencies
└── README.md # Project documentation (this file)
🐍 Python version: 3.11.x
- Clone the repository:
git clone https://github.com/kaganmart9/airline-passenger-satisfaction-data-analysis.git
cd airline-passenger-satisfaction-data-analysis- (Optional) Create a virtual environment:
python -m venv venv
source venv/bin/activate # or venv\Scripts\activate on Windows- Install dependencies:
pip install -r requirements.txtEach script is modular and reproducible. You can run them independently.
python src/cleaning.pypython src/age_satisfaction_prc.pypython src/gender_satisfaction.py --show --timestamppython src/distance_satisfaction.pypython src/service_correlation.pyflight_distance_satisfaction_stats.csvgender_satisfaction_percent.csv
All are saved under: reports/tables/
| Name | GitHub Handle |
|---|---|
| Ali Kağan Mart | @kaganmart9 |
| Ahmet Hakan Ortaçbayram | @ahakanortacbayram |
-
Both contributors collaborated equally on all parts of the project, including:
-
Data preprocessing & cleaning
-
Exploratory data analysis (EDA)
-
Modular Python scripting
-
Visualization and reporting
-
Workflow design and documentation
This project is licensed under the MIT License. See the LICENSE file for details.
Special thanks to the open data contributors that provided the airline passenger satisfaction dataset.



