Skip to content

ATLAS is a modular, deployable system for multi-domain time-series intelligence that evaluates data stability, performs conditional forecasting, detects anomalous behavior, and supports uncertainty-aware scenario analysis.

Notifications You must be signed in to change notification settings

Chracker24/ATLAS-TS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ATLAS 🚀

Adaptive Time Series Intelligence & Forecasting System

ATLAS is a multi-domain time-series decision intelligence framework designed to understand data before predicting it.

Forecasting should never come before understanding.

ATLAS separates judgement from prediction to ensure forecasts are trustworthy, explainable, and context-aware.


🧠 System Architecture

ATLAS is built around two sibling engines:

🔍 ATLAS-IE — Intelligence Engine

Evaluates the behavioural state of a time series before forecasting:

  • Detects regimes (Unknown, Unstable, Transitional, Stable)
  • Assigns confidence based on persistence
  • Explicitly permits or blocks forecasting
  • Produces explainable reason codes and summaries

ATLAS-IE is the final authority on data trustworthiness.


📊 ATLAS-F — Forecasting Engine (in progress)

Consumes ATLAS-IE outputs and:

  • Forecasts only when permitted
  • Adapts horizon and strategy to regime state
  • Handles uncertainty and what-if scenarios
  • Degrades or halts forecasts when stability collapses

ATLAS-F never overrides intelligence decisions.


🧾Data Sources

  • Canonical datasets (see Canonical Datasets)
  • Data collected via the FastF1 API for the F1 Domain
  • Custom test scripts and scenarios

🌍 Domain-Agnostic by Design

ATLAS makes no domain assumptions.
All logic is driven by the relative behaviour of the series itself.

Example domains:

  • 🏎️ Motorsports telemetry ✅
  • 📈 Financial markets
  • 🏥 Epidemic/Pandemic Monitoring

Structure of Project

ATLAS/
├── .gitignore
├── README.md
├── requirements.txt
├── __init__.py
├── 01_Data_Handling/
│   ├── Data/
│   │   ├── README.md
│   │   ├── Archive/
│   │   │   ├── season_2020.csv
│   │   │   ├── season_2021.csv
│   │   │   ├── season_2024.csv
│   │   │   └── season_2025.csv
│   │   └── Canonical/
│   │       └── lewisHamilton_AbuDhabi_2021.csv
│   ├── Notebooks/
│   │   ├── Canonical_Notebook/
│   │   │   └── AbuDhabi2021.ipynb
│   │   └── Data_Collection/
│   │       ├── cache/
│   │       │   └── 2021/
│   │       └── Formula1/
│   │           ├── 2021_Races.ipynb
│   │           └── 2020/
│   │               └── 2020_Races.ipynb
│   └── Scripts/
│       ├── cache/
│       │   ├── 2024/
│       │   └── 2025/
│       └── Ground Effect Era (Formula 1)/
│           ├── 2024_Races.py
│           └── 2025_Races.py
├── atlas_f/
│   ├── __init__.py
│   ├── explain.py
│   ├── forecast_engine.py
│   ├── forecasting.py
│   ├── horizon.py
│   ├── models.py
│   └── README.md
├── atlas_ie/
│   ├── __init__.py
│   ├── README.md
│   ├── core/
│   │   ├── __init__.py
│   │   ├── confidence.py
│   │   ├── engine.py
│   │   ├── index.py
│   │   ├── README.md
│   │   └── validation.py
│   ├── explainability/
│   │   ├── __init__.py
│   │   ├── explainability.py
│   │   └── README.md
│   └── regime/
│       ├── __init__.py
│       ├── README.md
│       ├── regime_instantaneous.py
│       └── regime_persistance.py
├── tests/
│   ├── __init__.py
│   ├── README.md
│   ├── testDes.py
│   ├── testEngine.py
│   ├── testFinal.py
│   ├── testForecast.py
│   ├── testForecastBacktest.py
│   ├── testForecastLive.py
│   ├── testForecastScenario.py
│   └── testSes.py

🚦 Quickstart Examples

import pandas as pd
from atlas_ie.core.engine import ATLASIntelligenceEngine as IE
from atlas_f.forecast_engine import ATLASForecastEngine as FE

df = pd.read_csv("01_Data_Handling/Data/Canonical/lewisHamilton_AbuDhabi_2021.csv")
ie_engine = IE(domain="f1")
ie_output = ie_engine.run(df)
f_engine = FE(domain="f1")
result = f_engine.forecast(ie_output, mode="live")
print(result)

Running tests

Run any test script using: python -m tests.test<suffix>

For Example:

python -m tests.testForecastLive
python -m tests.testFinal
python -m tests.testEngine

🎯 Project Focus

ATLAS demonstrates:

  • System-level ML engineering
  • Explicit authority boundaries
  • Explainability over blind prediction
  • Governance-first forecasting design

ATLAS decides when forecasting makes sense — before forecasting ever begins.

About

ATLAS is a modular, deployable system for multi-domain time-series intelligence that evaluates data stability, performs conditional forecasting, detects anomalous behavior, and supports uncertainty-aware scenario analysis.

Topics

Resources

Stars

Watchers

Forks