ATLAS is a multi-domain time-series decision intelligence framework designed to understand data before predicting it.
Forecasting should never come before understanding.
ATLAS separates judgement from prediction to ensure forecasts are trustworthy, explainable, and context-aware.
ATLAS is built around two sibling engines:
Evaluates the behavioural state of a time series before forecasting:
- Detects regimes (Unknown, Unstable, Transitional, Stable)
- Assigns confidence based on persistence
- Explicitly permits or blocks forecasting
- Produces explainable reason codes and summaries
ATLAS-IE is the final authority on data trustworthiness.
Consumes ATLAS-IE outputs and:
- Forecasts only when permitted
- Adapts horizon and strategy to regime state
- Handles uncertainty and what-if scenarios
- Degrades or halts forecasts when stability collapses
ATLAS-F never overrides intelligence decisions.
- Canonical datasets (see Canonical Datasets)
- Data collected via the FastF1 API for the F1 Domain
- Custom test scripts and scenarios
ATLAS makes no domain assumptions.
All logic is driven by the relative behaviour of the series itself.
Example domains:
- 🏎️ Motorsports telemetry ✅
- 📈 Financial markets
- 🏥 Epidemic/Pandemic Monitoring
ATLAS/
├── .gitignore
├── README.md
├── requirements.txt
├── __init__.py
├── 01_Data_Handling/
│ ├── Data/
│ │ ├── README.md
│ │ ├── Archive/
│ │ │ ├── season_2020.csv
│ │ │ ├── season_2021.csv
│ │ │ ├── season_2024.csv
│ │ │ └── season_2025.csv
│ │ └── Canonical/
│ │ └── lewisHamilton_AbuDhabi_2021.csv
│ ├── Notebooks/
│ │ ├── Canonical_Notebook/
│ │ │ └── AbuDhabi2021.ipynb
│ │ └── Data_Collection/
│ │ ├── cache/
│ │ │ └── 2021/
│ │ └── Formula1/
│ │ ├── 2021_Races.ipynb
│ │ └── 2020/
│ │ └── 2020_Races.ipynb
│ └── Scripts/
│ ├── cache/
│ │ ├── 2024/
│ │ └── 2025/
│ └── Ground Effect Era (Formula 1)/
│ ├── 2024_Races.py
│ └── 2025_Races.py
├── atlas_f/
│ ├── __init__.py
│ ├── explain.py
│ ├── forecast_engine.py
│ ├── forecasting.py
│ ├── horizon.py
│ ├── models.py
│ └── README.md
├── atlas_ie/
│ ├── __init__.py
│ ├── README.md
│ ├── core/
│ │ ├── __init__.py
│ │ ├── confidence.py
│ │ ├── engine.py
│ │ ├── index.py
│ │ ├── README.md
│ │ └── validation.py
│ ├── explainability/
│ │ ├── __init__.py
│ │ ├── explainability.py
│ │ └── README.md
│ └── regime/
│ ├── __init__.py
│ ├── README.md
│ ├── regime_instantaneous.py
│ └── regime_persistance.py
├── tests/
│ ├── __init__.py
│ ├── README.md
│ ├── testDes.py
│ ├── testEngine.py
│ ├── testFinal.py
│ ├── testForecast.py
│ ├── testForecastBacktest.py
│ ├── testForecastLive.py
│ ├── testForecastScenario.py
│ └── testSes.py
import pandas as pd
from atlas_ie.core.engine import ATLASIntelligenceEngine as IE
from atlas_f.forecast_engine import ATLASForecastEngine as FE
df = pd.read_csv("01_Data_Handling/Data/Canonical/lewisHamilton_AbuDhabi_2021.csv")
ie_engine = IE(domain="f1")
ie_output = ie_engine.run(df)
f_engine = FE(domain="f1")
result = f_engine.forecast(ie_output, mode="live")
print(result)Run any test script using:
python -m tests.test<suffix>
For Example:
python -m tests.testForecastLive
python -m tests.testFinal
python -m tests.testEngine
ATLAS demonstrates:
- System-level ML engineering
- Explicit authority boundaries
- Explainability over blind prediction
- Governance-first forecasting design
ATLAS decides when forecasting makes sense — before forecasting ever begins.