Industry-Oriented Artificial Intelligence Internship Repository
Showcasing applied AI, machine learning workflows, and data-driven problem solving
Internship Type : Artificial Intelligence (AI)
Organization : Codec Technology
Focus Area : Applied Machine Learning & Analytics
Approach : Hands-on | Project-Based | Industry-Oriented
Outcome : Job-Ready AI PortfolioThis repository documents my complete AI internship journey, including:
- Real-world datasets
- End-to-end ML workflows
- Data preprocessing β modeling β evaluation
- Professional documentation & presentation
- Apply AI concepts to real business problems
- Perform data cleaning & preprocessing
- Build predictive ML models
- Evaluate models using statistical metrics
- Interpret outputs for decision-making
- Develop professional documentation skills
| Industry Requirement | Internship Skill |
|---|---|
| Data Understanding | Exploratory Data Analysis |
| Clean Pipelines | Data Cleaning & Feature Engineering |
| Predictive Logic | ML Model Training |
| Accuracy Control | Evaluation Metrics |
| Business Thinking | Insight Interpretation |
| Team Readiness | Structured Code & Docs |
flowchart TB
A[Problem Statement] --> B[Dataset Understanding]
B --> C[Data Cleaning]
C --> D[EDA]
D --> E[Feature Engineering]
E --> F[Model Selection]
F --> G[Model Training]
G --> H[Model Evaluation]
H --> I[Insights & Interpretation]
I --> J[Final Documentation]
classDef phase fill:#020617,color:#ffffff,stroke:#38bdf8,stroke-width:2px
class A,B,C,D,E,F,G,H,I,J phase
flowchart LR
A[Internship Kickoff]:::start --> B[Python Basics]:::basic
B --> C[NumPy & Pandas]:::basic
C --> D[Data Cleaning]:::intermediate
D --> E[EDA & Visualization]:::intermediate
E --> F[Feature Engineering]:::algo
F --> G[ML Algorithms]:::algo
G --> H[Model Evaluation]:::advanced
H --> I[Optimization]:::advanced
I --> J[Insights]:::deploy
J --> K[Project Submission]:::deploy
classDef start fill:#020617,color:#ffffff,stroke:#0ea5e9,stroke-width:2px
classDef basic fill:#ecfeff,color:#020617,stroke:#06b6d4,stroke-width:2px
classDef intermediate fill:#fef3c7,color:#78350f,stroke:#f59e0b,stroke-width:2px
classDef algo fill:#ede9fe,color:#4c1d95,stroke:#8b5cf6,stroke-width:2px
classDef advanced fill:#dcfce7,color:#14532d,stroke:#22c55e,stroke-width:2px
classDef deploy fill:#fee2e2,color:#7f1d1d,stroke:#ef4444,stroke-width:2px
π Project_Name/
β
βββ π problem_statement.md
βββ π dataset.csv
βββ π analysis.ipynb
βββ π§ model_training.ipynb
βββ π evaluation_results.md
βββ π insights.md
βββ π README.mdTechniques Used
- Missing Value Handling
- Outlier Detection
- Encoding Categorical Variables
- Feature Scaling
- Data Type Optimization
df.isnull().sum()
df.fillna(df.mean(), inplace=True)sequenceDiagram
participant Data
participant Model
participant Metrics
Data->>Model: Cleaned Dataset
Model->>Model: Train Model
Model->>Metrics: Predictions
Metrics->>Model: Accuracy & Errors
| Metric | Purpose |
|---|---|
| Accuracy | Overall correctness |
| Precision | False positive control |
| Recall | False negative control |
| F1 Score | Balance metric |
| RMSE | Regression error |
| Tool | Usage |
|---|---|
| Python | Core Programming |
| Pandas | Data Processing |
| NumPy | Numerical Operations |
| Matplotlib | Visualization |
| Seaborn | Pattern Detection |
| Scikit-learn | ML Models |
| GitHub | Version Control |
Ashwin Ananta Panbude AI Intern | Data Analyst | Faculty
AI Internship repository demonstrating real-world application of machine learning concepts including data preprocessing, exploratory data analysis, feature engineering, predictive modeling, model evaluation, and professional documentation. Designed to reflect industry-ready analytical thinking and problem-solving skills.