Skip to content

πŸ” Problem Framing β†’ πŸ—‚οΈ Data Handling β†’ 🧹 Preprocessing β†’ 🧠 ML Modeling β†’ πŸ“Š Evaluation β†’ πŸ“– Insights β†’ πŸ” Optimization

Notifications You must be signed in to change notification settings

Ashwin18-Offcl/Codec_Technology_AI_Internship_Projects

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

9 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Codec Technology AI Internship Banner

πŸ€– Codec Technology – AI Internship Projects

Industry-Oriented Artificial Intelligence Internship Repository
Showcasing applied AI, machine learning workflows, and data-driven problem solving


Repository Overview

Internship Type   : Artificial Intelligence (AI)
Organization      : Codec Technology
Focus Area        : Applied Machine Learning & Analytics
Approach          : Hands-on | Project-Based | Industry-Oriented
Outcome           : Job-Ready AI Portfolio

This repository documents my complete AI internship journey, including:

  • Real-world datasets
  • End-to-end ML workflows
  • Data preprocessing β†’ modeling β†’ evaluation
  • Professional documentation & presentation

πŸ”₯ Repository Metrics


🎯 Internship Objectives (Industry-Aligned)

  • Apply AI concepts to real business problems
  • Perform data cleaning & preprocessing
  • Build predictive ML models
  • Evaluate models using statistical metrics
  • Interpret outputs for decision-making
  • Develop professional documentation skills

🧠 AI Skills Mapped to Industry Expectations

Industry Requirement Internship Skill
Data Understanding Exploratory Data Analysis
Clean Pipelines Data Cleaning & Feature Engineering
Predictive Logic ML Model Training
Accuracy Control Evaluation Metrics
Business Thinking Insight Interpretation
Team Readiness Structured Code & Docs

πŸ“¦ Project Lifecycle (Technical View)

flowchart TB

    A[Problem Statement] --> B[Dataset Understanding]
    B --> C[Data Cleaning]
    C --> D[EDA]
    D --> E[Feature Engineering]
    E --> F[Model Selection]
    F --> G[Model Training]
    G --> H[Model Evaluation]
    H --> I[Insights & Interpretation]
    I --> J[Final Documentation]

    classDef phase fill:#020617,color:#ffffff,stroke:#38bdf8,stroke-width:2px
    class A,B,C,D,E,F,G,H,I,J phase
Loading

🧭 Internship Learning Roadmap

flowchart LR

    A[Internship Kickoff]:::start --> B[Python Basics]:::basic
    B --> C[NumPy & Pandas]:::basic

    C --> D[Data Cleaning]:::intermediate
    D --> E[EDA & Visualization]:::intermediate

    E --> F[Feature Engineering]:::algo
    F --> G[ML Algorithms]:::algo

    G --> H[Model Evaluation]:::advanced
    H --> I[Optimization]:::advanced

    I --> J[Insights]:::deploy
    J --> K[Project Submission]:::deploy

    classDef start fill:#020617,color:#ffffff,stroke:#0ea5e9,stroke-width:2px
    classDef basic fill:#ecfeff,color:#020617,stroke:#06b6d4,stroke-width:2px
    classDef intermediate fill:#fef3c7,color:#78350f,stroke:#f59e0b,stroke-width:2px
    classDef algo fill:#ede9fe,color:#4c1d95,stroke:#8b5cf6,stroke-width:2px
    classDef advanced fill:#dcfce7,color:#14532d,stroke:#22c55e,stroke-width:2px
    classDef deploy fill:#fee2e2,color:#7f1d1d,stroke:#ef4444,stroke-width:2px
Loading

πŸ§ͺ Typical AI Project Structure

πŸ“ Project_Name/
β”‚
β”œβ”€β”€ πŸ“„ problem_statement.md
β”œβ”€β”€ πŸ“Š dataset.csv
β”œβ”€β”€ πŸ““ analysis.ipynb
β”œβ”€β”€ 🧠 model_training.ipynb
β”œβ”€β”€ πŸ“ˆ evaluation_results.md
β”œβ”€β”€ πŸ“‹ insights.md
└── πŸ“‘ README.md

πŸ“Š Data Handling & Preprocessing

Techniques Used

  • Missing Value Handling
  • Outlier Detection
  • Encoding Categorical Variables
  • Feature Scaling
  • Data Type Optimization
df.isnull().sum()
df.fillna(df.mean(), inplace=True)

🧠 Machine Learning Workflow

sequenceDiagram
    participant Data
    participant Model
    participant Metrics

    Data->>Model: Cleaned Dataset
    Model->>Model: Train Model
    Model->>Metrics: Predictions
    Metrics->>Model: Accuracy & Errors
Loading

πŸ“ˆ Evaluation Metrics Used

Metric Purpose
Accuracy Overall correctness
Precision False positive control
Recall False negative control
F1 Score Balance metric
RMSE Regression error

πŸ› οΈ Tools & Technology Stack

Tool Usage
Python Core Programming
Pandas Data Processing
NumPy Numerical Operations
Matplotlib Visualization
Seaborn Pattern Detection
Scikit-learn ML Models
GitHub Version Control

πŸ§‘β€πŸ’» Author

Ashwin Ananta Panbude AI Intern | Data Analyst | Faculty


Summary

AI Internship repository demonstrating real-world application of machine learning concepts including data preprocessing, exploratory data analysis, feature engineering, predictive modeling, model evaluation, and professional documentation. Designed to reflect industry-ready analytical thinking and problem-solving skills.

About

πŸ” Problem Framing β†’ πŸ—‚οΈ Data Handling β†’ 🧹 Preprocessing β†’ 🧠 ML Modeling β†’ πŸ“Š Evaluation β†’ πŸ“– Insights β†’ πŸ” Optimization

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages