Skip to content

Commit 88a205f

Browse files
committed
modify Moharam's derivation part
1 parent b4a755b commit 88a205f

File tree

1 file changed

+13
-13
lines changed

1 file changed

+13
-13
lines changed

notebooks/RCWA/RCWA_derivation.ipynb

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
"source": [
99
"# Note on the derivation of the reflection and transmission coefficents in\n",
1010
"Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings\n",
11-
"M. G. Moharam, Eric B. Grann, Drew A. Pommet, and T. K. Gaylord </br>\n",
11+
"M. G. Moharam, Eric B. Grann, Drew A. Pommet, and T. K. Gaylord <br>\n",
1212
"\n",
1313
"The final step in this paper seems straightforward but is actually non-trivial to work out to get the final working RCWA code"
1414
]
@@ -19,7 +19,7 @@
1919
"source": [
2020
"We start with a system of four equations:\n",
2121
"\n",
22-
"$\\begin{align}\n",
22+
"$\\begin{align*}\n",
2323
"\\begin{bmatrix}\n",
2424
"\\delta_{i0} \\\\ jn_Icos(\\theta)\\delta_{i0}\n",
2525
"\\end{bmatrix} +\n",
@@ -46,17 +46,17 @@
4646
"c^{+} \\\\\n",
4747
"c^{-} \\\\\n",
4848
"\\end{bmatrix}\n",
49-
"\\end{align}$\n",
49+
"\\end{align*}$\n",
5050
"\n",
5151
"This is the original form written in the paper, but it is more transparent to write them out so you see all four equations\n",
5252
"\n",
5353
"$\n",
54-
"\\begin{align}\n",
54+
"\\begin{align*}\n",
5555
"\\delta_{i0} + R &= Wc^{+}+WXc^{-} &(1)\\\\\n",
5656
"jn_{I}cos(\\theta) -jY_IR &= Vc^{+}-VXc^{-} &(2)\\\\\n",
5757
"T &= WXc^{+} + Wc^{-} &(3)\\\\\n",
5858
"jY_{II} &= VXc^{+} - Vc^{-} &(4)\n",
59-
"\\end{align}\n",
59+
"\\end{align*}\n",
6060
"$"
6161
]
6262
},
@@ -78,15 +78,15 @@
7878
"Now we can solve $c^{+}$ using the expression (3) and (4)\n",
7979
"\n",
8080
"$\n",
81-
"\\begin{align}\n",
81+
"\\begin{align*}\n",
8282
"jY_{II}T &= VXC^+ -V(W^{-1}(T-WXC^+)) \\\\\n",
8383
"jY_{II}T &= VXC^+ -VW^{-1}T+VW^{-1}WXC^+ \\\\\n",
8484
"&=(VX+VX)c^+ -VW^{-1}T \\\\\n",
8585
"2VXc^+ &= jY_{II}T + VW^{-1}T \\\\\n",
8686
"c^+ &= 0.5X^{-1}V^{-1}(jY_{II}T + VW^{-1}T) \\\\\n",
8787
"&= 0.5X^{-1}V^{-1}(jY_{II} + VW^{-1})T \\\\\n",
8888
"&= 0.5X^{-1}(W^{-1} + jV^{-1}Y_{II})T \\\\\n",
89-
"\\end{align}\n",
89+
"\\end{align*}\n",
9090
"$"
9191
]
9292
},
@@ -95,14 +95,14 @@
9595
"source": [
9696
"We can substitute this back into the expression for $c^{-}$ <br>\n",
9797
"$\n",
98-
"\\begin{align}\n",
98+
"\\begin{align*}\n",
9999
"c^{-} &= W^{-1}\\bigg[T - WX\\big( 0.5X^{-1}V^{-1}(jY_{II}+VW^{-1})T\\big)\\bigg]\\\\\n",
100100
"&= W^{-1}\\bigg[T - 0.5WV^{-1}(jY_{II}+VW^{-1})T\\bigg] \\\\\n",
101101
"&= W^{-1}T - 0.5V^{-1}(jY_{II}+VW^{-1})T \\\\\n",
102102
"&= W^{-1}T - 0.5(V^{-1}jY_{II}+W^{-1})T \\\\\n",
103103
"&= 0.5W^{-1}T - 0.5V^{-1}jY_{II}T \\\\\n",
104104
"&= 0.5(W^{-1} -jV^{-1}Y_{II})T\n",
105-
"\\end{align}\n",
105+
"\\end{align*}\n",
106106
"$"
107107
],
108108
"metadata": {
@@ -115,21 +115,21 @@
115115
"#### Now we mark the steps that substitutes our expressions above into the reflection equations\n",
116116
"First we rewrite the two reflection equations: <br>\n",
117117
"$\n",
118-
"\\begin{align}\n",
118+
"\\begin{align*}\n",
119119
"\\delta_{i0} + R &= Wc^{+}+WXc^{-} \\\\\n",
120120
"jn_{I}cos(\\theta) -jY_IR &= Vc^{+}-VXc^{-}\n",
121-
"\\end{align}\n",
121+
"\\end{align*}\n",
122122
"$\n",
123123
"\n",
124124
"Now we begin substitution:<br>\n",
125125
"$\n",
126-
"\\begin{align}\n",
126+
"\\begin{align*}\n",
127127
"\\begin{matrix}\n",
128128
"\\delta_{i0} + R = W\\bigg(0.5X^{-1}(W^{-1} +jV^{-1}Y_{II})T \\bigg)+WX\\bigg(0.5(W^{-1} -jV^{-1}Y_{II})T \\bigg) \\\\\n",
129129
"jn_{I}cos(\\theta) -jY_IR = V\\bigg(0.5X^{-1}(W^{-1} +jV^{-1}Y_{II})T \\bigg)-VX\\bigg(0.5(W^{-1} -jV^{-1}Y_{II})T \\bigg) \\\\\n",
130130
"\\vdots\n",
131131
"\\end{matrix}\n",
132-
"\\end{align}\n",
132+
"\\end{align*}\n",
133133
"$"
134134
],
135135
"metadata": {

0 commit comments

Comments
 (0)