|
5 | 5 | ## Table of Contents |
6 | 6 |
|
7 | 7 | * [Introduction](#introduction) |
| 8 | +* [Design](#design) |
8 | 9 | * [Synopsis](#synopsis) |
9 | 10 | * [Usage](#usage) |
10 | 11 | * [Installation](#installation) |
@@ -236,10 +237,222 @@ See `branches` for previous setup, `main` is an complete makeover of previous im |
236 | 237 | Similar approach has been made for ***C++20***, an implementation in [uvco](https://github.com/dermesser/uvco). |
237 | 238 | The *[tests](https://github.com/dermesser/uvco/tree/master/test)* presented there currently being reimplemented for *C89* here, this project will be considered stable when *completed*. And another approach in [libasync](https://github.com/btrask/libasync) mixing [libco](https://github.com/higan-emu/libco) with **libuv**. Both approaches are **Linux** only. |
238 | 239 |
|
| 240 | +## Design |
| 241 | +
|
| 242 | +The *intergration* pattern for all **libuv** functions taking *callback* is as [queue-work.c](https://github.com/zelang-dev/uv_coroutine/tree/main/examples/queue-work.c) example: |
| 243 | +
|
| 244 | +```c |
| 245 | +#define USE_CORO |
| 246 | +#include "raii.h" |
| 247 | +
|
| 248 | +#define FIB_UNTIL 25 |
| 249 | +
|
| 250 | +long fib_(long t) { |
| 251 | + if (t == 0 || t == 1) |
| 252 | + return 1; |
| 253 | + else |
| 254 | + return fib_(t-1) + fib_(t-2); |
| 255 | +} |
| 256 | +
|
| 257 | +void_t fib(params_t req) { |
| 258 | + int n = req->integer; |
| 259 | + if (random() % 2) |
| 260 | + sleepfor(1); |
| 261 | + else |
| 262 | + sleepfor(3); |
| 263 | +
|
| 264 | + long fib = fib_(n); |
| 265 | + fprintf(stderr, "%dth fibonacci is %lu in thrd: #%d\033[0K\n", n, fib, coro_thrd_id()); |
| 266 | +
|
| 267 | + return casting(fib); |
| 268 | +} |
| 269 | +
|
| 270 | +void after_fib(int status, rid_t id) { |
| 271 | + fprintf(stderr, "Done calculating %dth fibonacci, result: %d\n", status, result_for(id).integer); |
| 272 | +} |
| 273 | +
|
| 274 | +int main(int argc, char **argv) { |
| 275 | + rid_t data[FIB_UNTIL]; |
| 276 | + int i; |
| 277 | +
|
| 278 | + waitgroup_t wg = waitgroup_ex(FIB_UNTIL); |
| 279 | + for (i = 0; i < FIB_UNTIL; i++) { |
| 280 | + data[i] = go(fib, 1, casting(i)); |
| 281 | + } |
| 282 | + waitresult_t wgr = waitfor(wg); |
| 283 | +
|
| 284 | + if ($size(wgr) == FIB_UNTIL) |
| 285 | + for (i = 0; i < FIB_UNTIL; i++) { |
| 286 | + after_fib(i, data[i]); |
| 287 | + } |
| 288 | +
|
| 289 | + return 0; |
| 290 | +} |
| 291 | +``` |
| 292 | + |
| 293 | +Every system **thread** has a **run queue** assigned, a ~tempararay~ *FIFO queue*, |
| 294 | +it holds **coroutine** *tasks*. This assignment is based on *system cpu cores* available, |
| 295 | +and set at startup, a coroutine **thread pool** set before `uv_main` is called. |
| 296 | + |
| 297 | +When a **go/coroutine** is created, it's given a *index* `result id` from *global* **array** like struct, |
| 298 | +a `coroutine id`, and `thread id`. Then placed into a *global* **run queue**, a *hashtable*, |
| 299 | +the *key* being `result id`, for schedularing. The `thread id` determines which *thread pool* |
| 300 | +coroutine gets assigned to. |
| 301 | + |
| 302 | +These three *data structures* are atomically accessable by all threads. |
| 303 | + |
| 304 | +The **main thread** determines and move *coroutines* from *global queue* to each *thread queue*. |
| 305 | + |
| 306 | +Each **thread's** *scheduler* manages it's own *local* **run queue** of *coroutines* by ~thread local storage~. |
| 307 | +It takes `coroutine tasks` from it's ~tempararay~ *FIFO queue* to *local storage*. |
| 308 | + |
| 309 | +All **libuv** functions *outlined* is as **example**, but a `waitgroup_ex(1)` of *one*. |
| 310 | +Currently, demonstrating `true` *libuv/Coroutine* **multi threading** is *disabled* by how current *tests* and *examples* startup. |
| 311 | + |
| 312 | +If the number of *coroutines created* before first `yield()` encountered does not equal **cpu core** *count* plus *one*. |
| 313 | +Then **main thread** will move all *coroutines* to itself, set each *coroutine* `thread id` to itself, |
| 314 | +and *mark* whole system feature *disabled*. |
| 315 | + |
239 | 316 | ## Synopsis |
240 | 317 |
|
241 | 318 | ```c |
| 319 | +/* Creates an coroutine of given function with arguments, |
| 320 | +and add to schedular, same behavior as Go. */ |
| 321 | +C_API rid_t go(callable_t, u64, ...); |
| 322 | + |
| 323 | +/* Returns results of an completed coroutine, by `result id`, will panic, |
| 324 | +if called before `waitfor` returns, `coroutine` still running, or no result |
| 325 | +possible function. */ |
| 326 | +C_API value_t result_for(rid_t); |
| 327 | + |
| 328 | +/* Check status of an `result id` */ |
| 329 | +C_API bool result_is_ready(rid_t); |
| 330 | + |
| 331 | +/* Explicitly give up the CPU for at least ms milliseconds. |
| 332 | +Other tasks continue to run during this time. */ |
| 333 | +C_API u32 sleepfor(u32 ms); |
| 334 | + |
| 335 | +/* Creates an coroutine of given function with argument, |
| 336 | +and immediately execute. */ |
| 337 | +C_API void launch(func_t, u64, ...); |
| 338 | + |
| 339 | +/* Yield execution to another coroutine and reschedule current. */ |
| 340 | +C_API void yield(void); |
242 | 341 |
|
| 342 | +/* Suspends the execution of current `Generator/Coroutine`, and passing ~data~. |
| 343 | +WILL PANIC if not an ~Generator~ function called in. |
| 344 | +WILL `yield` until ~data~ is retrived using `yield_for`. */ |
| 345 | +C_API void yielding(void_t); |
| 346 | + |
| 347 | +/* Creates an `Generator/Coroutine` of given function with arguments, |
| 348 | +MUST use `yielding` to pass data, and `yield_for` to get data. */ |
| 349 | +C_API generator_t generator(callable_t, u64, ...); |
| 350 | + |
| 351 | +/* Resume specified ~coroutine/generator~, returning data from `yielding`. */ |
| 352 | +C_API value_t yield_for(generator_t); |
| 353 | + |
| 354 | +/* Return `generator id` in scope for last `yield_for` execution. */ |
| 355 | +C_API rid_t yield_id(void); |
| 356 | + |
| 357 | +/* Defer execution `LIFO` of given function with argument, |
| 358 | +to when current coroutine exits/returns. */ |
| 359 | +C_API void defer(func_t, void_t); |
| 360 | + |
| 361 | +/* Same as `defer` but allows recover from an Error condition throw/panic, |
| 362 | +you must call `catching` inside function to mark Error condition handled. */ |
| 363 | +C_API void defer_recover(func_t, void_t); |
| 364 | + |
| 365 | +/* Compare `err` to current error condition of coroutine, |
| 366 | +will mark exception handled, if `true`. */ |
| 367 | +C_API bool catching(string_t); |
| 368 | + |
| 369 | +/* Get current error condition string. */ |
| 370 | +C_API string_t catch_message(void); |
| 371 | + |
| 372 | +/* Creates/initialize the next series/collection of coroutine's created |
| 373 | +to be part of `wait group`, same behavior of Go's waitGroups. |
| 374 | + |
| 375 | +All coroutines here behaves like regular functions, meaning they return values, |
| 376 | +and indicate a terminated/finish status. |
| 377 | + |
| 378 | +The initialization ends when `waitfor` is called, as such current coroutine will pause, |
| 379 | +and execution will begin and wait for the group of coroutines to finished. */ |
| 380 | +C_API waitgroup_t waitgroup(void); |
| 381 | +C_API waitgroup_t waitgroup_ex(u32 capacity); |
| 382 | + |
| 383 | +/* Pauses current coroutine, and begin execution of coroutines in `wait group` object, |
| 384 | +will wait for all to finish. |
| 385 | + |
| 386 | +Returns `vector/array` of `results id`, accessible using `result_for` function. */ |
| 387 | +C_API waitresult_t waitfor(waitgroup_t); |
| 388 | + |
| 389 | +C_API awaitable_t async(callable_t, u64, ...); |
| 390 | +C_API value_t await(awaitable_t); |
| 391 | + |
| 392 | +/* Calls ~fn~ (with ~number of args~ then ~actaul arguments~) in separate thread, |
| 393 | +returning without waiting for the execution of ~fn~ to complete. |
| 394 | +The value returned by ~fn~ can be accessed |
| 395 | +by calling `thrd_get()`. */ |
| 396 | +C_API future thrd_async(thrd_func_t fn, size_t, ...); |
| 397 | + |
| 398 | +/* Calls ~fn~ (with ~args~ as argument) in separate thread, returning without waiting |
| 399 | +for the execution of ~fn~ to complete. The value returned by ~fn~ can be accessed |
| 400 | +by calling `thrd_get()`. */ |
| 401 | +C_API future thrd_launch(thrd_func_t fn, void_t args); |
| 402 | + |
| 403 | +/* Returns the value of `future` ~promise~, a thread's shared object, If not ready, this |
| 404 | +function blocks the calling thread and waits until it is ready. */ |
| 405 | +C_API values_type thrd_get(future); |
| 406 | + |
| 407 | +/* This function blocks the calling thread and waits until `future` is ready, |
| 408 | +will execute provided `yield` callback function continuously. */ |
| 409 | +C_API void thrd_wait(future, wait_func yield); |
| 410 | + |
| 411 | +/* Same as `thrd_wait`, but `yield` execution to another coroutine and reschedule current, |
| 412 | +until `thread` ~future~ is ready, completed execution. */ |
| 413 | +C_API void thrd_until(future); |
| 414 | + |
| 415 | +/* Check status of `future` object state, if `true` indicates thread execution has ended, |
| 416 | +any call thereafter to `thrd_get` is guaranteed non-blocking. */ |
| 417 | +C_API bool thrd_is_done(future); |
| 418 | +C_API uintptr_t thrd_self(void); |
| 419 | +C_API size_t thrd_cpu_count(void); |
| 420 | + |
| 421 | +/* Return/create an arbitrary `vector/array` set of `values`, |
| 422 | +only available within `thread/future` */ |
| 423 | +C_API vectors_t thrd_data(size_t, ...); |
| 424 | + |
| 425 | +/* Return/create an single `vector/array` ~value~, |
| 426 | +only available within `thread/future` */ |
| 427 | +#define $(val) thrd_data(1, (val)) |
| 428 | + |
| 429 | +/* Return/create an pair `vector/array` ~values~, |
| 430 | +only available within `thread/future` */ |
| 431 | +#define $$(val1, val2) thrd_data(2, (val1), (val2)) |
| 432 | + |
| 433 | +/* Request/return raw memory of given `size`, |
| 434 | +using smart memory pointer's lifetime scope handle. |
| 435 | +DO NOT `free`, will be freed with given `func`, |
| 436 | +when scope smart pointer panics/returns/exits. */ |
| 437 | +C_API void_t malloc_full(memory_t *scope, size_t size, func_t func); |
| 438 | + |
| 439 | +/* Request/return raw memory of given `size`, |
| 440 | +using smart memory pointer's lifetime scope handle. |
| 441 | +DO NOT `free`, will be freed with given `func`, |
| 442 | +when scope smart pointer panics/returns/exits. */ |
| 443 | +C_API void_t calloc_full(memory_t *scope, int count, size_t size, func_t func); |
| 444 | + |
| 445 | +/* Returns protected raw memory pointer of given `size`, |
| 446 | +DO NOT FREE, will `throw/panic` if memory request fails. |
| 447 | +This uses current `context` smart pointer, being in `guard` blocks, |
| 448 | +inside `thread/future`, or active `coroutine` call. */ |
| 449 | +C_API void_t malloc_local(size_t size); |
| 450 | + |
| 451 | +/* Returns protected raw memory pointer of given `size`, |
| 452 | +DO NOT FREE, will `throw/panic` if memory request fails. |
| 453 | +This uses current `context` smart pointer, being in `guard` blocks, |
| 454 | +inside `thread/future`, or active `coroutine` call. */ |
| 455 | +C_API void_t calloc_local(int count, size_t size); |
243 | 456 | ``` |
244 | 457 |
|
245 | 458 | ## Usage |
|
0 commit comments