-
Notifications
You must be signed in to change notification settings - Fork 201
Open
Description
Problem
When I try to run CIFAR datasets with Swin-Tiny Backbone, it return the error:
"AssertionError: Input image height (32) doesn't match model (224)."
Reproducibility
I'm using the following configuration file:
defaults:
- _self_
- augmentations: asymmetric.yaml
- wandb: private.yaml
- override hydra/hydra_logging: disabled
- override hydra/job_logging: disabled
hydra:
output_subdir: null
run:
dir: .
name: "nnclr-cifar100" # change here for cifar100
method: "nnclr"
backbone:
name: "swin_tiny"
method_kwargs:
temperature: 0.2
proj_hidden_dim: 2048
pred_hidden_dim: 4096
proj_output_dim: 256
queue_size: 98304
data:
dataset: cifar100 # change here for cifar100
train_path: "./datasets"
val_path: "./datasets"
format: "image_folder"
num_workers: 4
optimizer:
name: "lars"
batch_size: 256
lr: 0.4
classifier_lr: 0.1
weight_decay: 1e-5
kwargs:
clip_lr: True
eta: 0.02
exclude_bias_n_norm: True
scheduler:
name: "warmup_cosine"
checkpoint:
enabled: True
dir: "trained_models"
frequency: 1
auto_resume:
enabled: False
# overwrite PL stuff
max_epochs: 1000
devices: [0]
sync_batchnorm: True
accelerator: "gpu"
strategy: "ddp"
precision: 16
Version used
I'm running the 92ec35f54a507fb5d4edc1dc5723abc022b39eb3 version of the library and this is my environment:
aiohttp==3.8.3
aiosignal==1.3.1
antlr4-python3-runtime==4.9.3
appdirs==1.4.4
astunparse==1.6.3
async-timeout==4.0.2
attrs==22.2.0
certifi @ file:///croot/certifi_1671487769961/work/certifi
charset-normalizer==2.1.1
click==8.1.3
contourpy==1.0.7
cycler==0.11.0
docker-pycreds==0.4.0
einops==0.6.0
filelock==3.9.0
fonttools==4.38.0
frozenlist==1.3.3
fsspec==2023.1.0
gast==0.4.0
gitdb==4.0.10
GitPython==3.1.30
h5py==3.8.0
huggingface-hub==0.12.0
hydra-core==1.3.1
idna==3.4
joblib==1.2.0
kiwisolver==1.4.4
lightning-bolts==0.6.0.post1
lightning-utilities==0.6.0.post0
llvmlite==0.39.1
matplotlib==3.6.3
multidict==6.0.4
numba==0.56.4
numpy==1.23.5
nvidia-cublas-cu11==11.10.3.66
nvidia-cuda-nvrtc-cu11==11.7.99
nvidia-cuda-runtime-cu11==11.7.99
nvidia-cudnn-cu11==8.5.0.96
nvidia-dali-cuda110==1.22.0
omegaconf==2.3.0
packaging==23.0
pandas==1.5.3
pathtools==0.1.2
Pillow==9.4.0
positional-encodings==6.0.1
protobuf==3.20.1
psutil==5.9.4
pynndescent==0.5.8
pyparsing==3.0.9
python-dateutil==2.8.2
pytorch-lightning==1.8.6
pytz==2022.7.1
PyYAML==6.0
requests==2.28.2
scikit-learn==1.2.1
scipy==1.10.0
seaborn==0.12.2
sentry-sdk==1.14.0
setproctitle==1.3.2
six==1.16.0
smmap==5.0.0
-e git+ssh://[email protected]/ImaGonEs/MyNewSolo.git@68e680143284db1992518146f075206e64e451ae#egg=solo_learn
tensorboardX==2.5.1
threadpoolctl==3.1.0
timm==0.6.12
torch==1.13.1
torchmetrics==0.11.0
torchvision==0.14.1
tqdm==4.64.1
typing_extensions==4.4.0
umap-learn==0.5.3
urllib3==1.26.14
wandb==0.13.9
yarl==1.8.2`
Additional comments
I think that on older versions of the library (before the omegaconf update) I could run the Swin Backbone without problems. Also, I believe that, at first, there was a line that changed the window size from 7 to 4 in the case of CIFAR dataset but I can't find it anymore.
Metadata
Metadata
Assignees
Labels
No labels