@@ -105,37 +105,18 @@ def main():
105105
106106 # If the command was train, train the model
107107 if parser .parse_args ().command == "train" :
108- train (args )
109-
110-
111- def train (args ):
112- # Read the files
113- df_de = scape .io .load_slogpvals (args .slogpval )
114- print (f"DE shape: { df_de .shape } " )
115- df_lfc = scape .io .load_lfc (args .lfc )
116- print (f"LFC shape: { df_lfc .shape } " )
117- val_cells = [args .cv_cell ] if args .cv_cell else None
118- val_drugs = [args .cv_drug ] if args .cv_drug else None
119- print (f"Training model with { args .n_genes } genes" )
120- print (f"Validation cell(s): { val_cells } " )
121- print (f"Validation drug(s): { val_drugs } " )
122- # Create a default model
123- model = scape .model .create_default_model (args .n_genes , df_de , df_lfc )
124- top_genes = top_genes = scape .util .select_top_variable ([df_de ], k = args .n_genes )
125- model .train (
126- val_cells = val_cells ,
127- val_drugs = val_drugs ,
128- output_data = "slogpval" ,
129- callbacks = "default" ,
130- input_columns = top_genes ,
131- optimizer = None ,
132- epochs = args .epochs ,
133- batch_size = args .batch_size ,
134- output_folder = args .output_dir ,
135- config_file_name = f"{ args .config_name } .pkl" ,
136- model_file_name = f"{ args .model_name } .keras" ,
137- baselines = ["zero" , "slogpval_drug" ]
138- )
108+ scape .api .train (
109+ de_file = args .slogpval ,
110+ lfc_file = args .lfc ,
111+ n_genes = args .n_genes ,
112+ output_dir = args .output_dir ,
113+ cv_cell = args .cv_cell ,
114+ cv_drug = args .cv_drug ,
115+ epochs = args .epochs ,
116+ batch_size = args .batch_size ,
117+ config_name = args .config_name ,
118+ model_name = args .model_name
119+ )
139120
140121
141122if __name__ == "__main__" :
0 commit comments