Skip to content

Commit da5a4ed

Browse files
committed
Change ASCM to SCM, silent to verbose
1 parent b935801 commit da5a4ed

File tree

13 files changed

+4188
-2476
lines changed

13 files changed

+4188
-2476
lines changed

README.rst

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ It provides tools for:
66

77
- **Normalisation / deweathering** of pollutant concentrations.
88
- **Counterfactual modelling** using AutoML backends (FLAML, H2O).
9-
- **Synthetic control methods** (ASCM, ML-ASCM).
9+
- **Synthetic control methods** (SCM, ML-SCM).
1010
- **Uncertainty quantification** via bootstrapping and placebo tests.
1111
- **Evaluation metrics** tailored for environmental data.
1212

@@ -144,11 +144,11 @@ MET decomposition (meteorology-driven component):
144144
145145
---
146146

147-
Run augmented synthetic control (ASCM):
147+
Run synthetic control (SCM):
148148

149149
.. code-block:: python
150150
151-
from normet.scm import _run_syn
151+
from normet.causal import _run_syn
152152
153153
syn = _run_syn(
154154
df=df_panel,
@@ -158,7 +158,7 @@ Run augmented synthetic control (ASCM):
158158
treated_unit="Beijing",
159159
cutoff_date="2017-01-01",
160160
donors=["Shanghai", "Guangzhou", "Chengdu"],
161-
ascm_backend="ascm",
161+
scm_backend="scm",
162162
)
163163
164164
print(syn.head()) # observed, synthetic, effect
@@ -167,7 +167,7 @@ Placebo-in-space test:
167167

168168
.. code-block:: python
169169
170-
from normet.scm import placebo_in_space, effect_bands_space
170+
from normet.causal import placebo_in_space, effect_bands_space
171171
172172
out = placebo_in_space(
173173
df=df_panel,
@@ -185,7 +185,7 @@ Placebo-in-time test:
185185

186186
.. code-block:: python
187187
188-
from normet.scm import placebo_in_time
188+
from normet.causal import placebo_in_time
189189
190190
out_time = placebo_in_time(
191191
df=df_panel,
@@ -194,7 +194,7 @@ Placebo-in-time test:
194194
outcome_col="pm25",
195195
treated_unit="Beijing",
196196
cutoff_date="2017-01-01",
197-
ascm_backend="ascm", #'ascm' or 'mlascm'
197+
scm_backend="scm", #'scm' or 'mlscm'
198198
n_rep=50, # number of pseudo cutoffs to test
199199
)
200200
@@ -209,7 +209,7 @@ Uncertainty bands can be constructed using either **bootstrap** or **jackknife**
209209

210210
.. code-block:: python
211211
212-
from normet.scm import uncertainty_bands, plot_uncertainty_bands
212+
from normet.causal import uncertainty_bands, plot_uncertainty_bands
213213
214214
# Bootstrap version
215215
boot = uncertainty_bands(
@@ -219,7 +219,7 @@ Uncertainty bands can be constructed using either **bootstrap** or **jackknife**
219219
outcome_col="pm25",
220220
treated_unit="Beijing",
221221
cutoff_date="2017-01-01",
222-
ascm_backend="ascm",
222+
scm_backend="scm",
223223
method="bootstrap", # donor/time resampling
224224
B=200,
225225
)
@@ -234,7 +234,7 @@ Uncertainty bands can be constructed using either **bootstrap** or **jackknife**
234234
outcome_col="pm25",
235235
treated_unit="Beijing",
236236
cutoff_date="2017-01-01",
237-
ascm_backend="ascm",
237+
scm_backend="scm",
238238
method="jackknife", # leave-one-donor-out
239239
ci_level=0.95,
240240
)

0 commit comments

Comments
 (0)