@@ -6,7 +6,7 @@ It provides tools for:
66
77- **Normalisation / deweathering ** of pollutant concentrations.
88- **Counterfactual modelling ** using AutoML backends (FLAML, H2O).
9- - **Synthetic control methods ** (ASCM , ML-ASCM ).
9+ - **Synthetic control methods ** (SCM , ML-SCM ).
1010- **Uncertainty quantification ** via bootstrapping and placebo tests.
1111- **Evaluation metrics ** tailored for environmental data.
1212
@@ -144,11 +144,11 @@ MET decomposition (meteorology-driven component):
144144
145145---
146146
147- Run augmented synthetic control (ASCM ):
147+ Run synthetic control (SCM ):
148148
149149.. code-block :: python
150150
151- from normet.scm import _run_syn
151+ from normet.causal import _run_syn
152152
153153 syn = _run_syn(
154154 df = df_panel,
@@ -158,7 +158,7 @@ Run augmented synthetic control (ASCM):
158158 treated_unit = " Beijing" ,
159159 cutoff_date = " 2017-01-01" ,
160160 donors = [" Shanghai" , " Guangzhou" , " Chengdu" ],
161- ascm_backend = " ascm " ,
161+ scm_backend = " scm " ,
162162 )
163163
164164 print (syn.head()) # observed, synthetic, effect
@@ -167,7 +167,7 @@ Placebo-in-space test:
167167
168168.. code-block :: python
169169
170- from normet.scm import placebo_in_space, effect_bands_space
170+ from normet.causal import placebo_in_space, effect_bands_space
171171
172172 out = placebo_in_space(
173173 df = df_panel,
@@ -185,7 +185,7 @@ Placebo-in-time test:
185185
186186.. code-block :: python
187187
188- from normet.scm import placebo_in_time
188+ from normet.causal import placebo_in_time
189189
190190 out_time = placebo_in_time(
191191 df = df_panel,
@@ -194,7 +194,7 @@ Placebo-in-time test:
194194 outcome_col = " pm25" ,
195195 treated_unit = " Beijing" ,
196196 cutoff_date = " 2017-01-01" ,
197- ascm_backend = " ascm " , # 'ascm ' or 'mlascm '
197+ scm_backend = " scm " , # 'scm ' or 'mlscm '
198198 n_rep = 50 , # number of pseudo cutoffs to test
199199 )
200200
@@ -209,7 +209,7 @@ Uncertainty bands can be constructed using either **bootstrap** or **jackknife**
209209
210210.. code-block :: python
211211
212- from normet.scm import uncertainty_bands, plot_uncertainty_bands
212+ from normet.causal import uncertainty_bands, plot_uncertainty_bands
213213
214214 # Bootstrap version
215215 boot = uncertainty_bands(
@@ -219,7 +219,7 @@ Uncertainty bands can be constructed using either **bootstrap** or **jackknife**
219219 outcome_col = " pm25" ,
220220 treated_unit = " Beijing" ,
221221 cutoff_date = " 2017-01-01" ,
222- ascm_backend = " ascm " ,
222+ scm_backend = " scm " ,
223223 method = " bootstrap" , # donor/time resampling
224224 B = 200 ,
225225 )
@@ -234,7 +234,7 @@ Uncertainty bands can be constructed using either **bootstrap** or **jackknife**
234234 outcome_col = " pm25" ,
235235 treated_unit = " Beijing" ,
236236 cutoff_date = " 2017-01-01" ,
237- ascm_backend = " ascm " ,
237+ scm_backend = " scm " ,
238238 method = " jackknife" , # leave-one-donor-out
239239 ci_level = 0.95 ,
240240 )
0 commit comments