File tree Expand file tree Collapse file tree 1 file changed +5
-5
lines changed
Expand file tree Collapse file tree 1 file changed +5
-5
lines changed Original file line number Diff line number Diff line change @@ -41,13 +41,13 @@ $\lambda=-1$:
4141\begin{align}
4242\begin{bmatrix} -5 -(-1) & 2 \\ 2 & -2-(-1) \end{bmatrix} \vv{x}= \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \vv{x} =0
4343\\
44- \begin{bmatrix} -4 & 2 & 0 \\ 2 & -1 & 0 \end{bmatrix} \to \begin{bmatrix} -4 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & -1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \to x_1 -\frac{x_2}{2} =0 \\
45- x_2 free
44+ \begin{bmatrix} -4 & 2 & 0 \\ 2 & -1 & 0 \end{bmatrix} \to \begin{bmatrix} -4 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & -1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \to \vv{ x_1} -\frac{\vv{ x_2} }{2} =0 \\
45+ \vv{ x_2} free
4646\end{align}
4747
4848This solution is not unique, which makes sense from the equation. We may then choose $x_1$ or $x_2$ so that the eigenvector has a nice norm or values. e.g.,
4949\begin{align}
50- x_1 =1, x_2 = 2 \to \vv{x}= \begin{bmatrix} 1 \\ 2 \end{bmatrix}
50+ \vv{ x_1} =1, \vv{ x_2} = 2 \to \vv{x}= \begin{bmatrix} 1 \\ 2 \end{bmatrix}
5151\end{align}
5252
5353Repeat for $\lambda = -6$:
@@ -58,12 +58,12 @@ Repeat for $\lambda = -6$:
5858Row 2 is 2x Row 1, so we can just use Row 1!(This will be a pattern for 2x2 matricies).
5959
6060\begin{align}
61- x_1 +2x_2 =0 \to \vv{x}=\begin{bmatrix} 2 \\ -1 \end{bmatrix}
61+ \vv{ x_1} +2\vv{x_2} =0 \to \vv{x}=\begin{bmatrix} 2 \\ -1 \end{bmatrix}
6262\end{align}
6363
6464Hence, the eigenvalues and eigenvectors are:
6565\begin{align}
66- \lambda_1 = -1 , \underline {x_1}= \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \text{and} \quad \lambda_2 = -6, \underline {x_2}= \begin{bmatrix} 2 \\ -1 \end{bmatrix}
66+ \lambda_1 = -1 , \vv {x_1}= \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \text{and} \quad \lambda_2 = -6, \vv {x_2}= \begin{bmatrix} 2 \\ -1 \end{bmatrix}
6767\end{align}
6868
6969
You can’t perform that action at this time.
0 commit comments