Skip to content

Commit 0572d0d

Browse files
committed
adjoint
1 parent 6ed87aa commit 0572d0d

File tree

14 files changed

+655
-444
lines changed

14 files changed

+655
-444
lines changed

index.html

Lines changed: 38 additions & 38 deletions
Large diffs are not rendered by default.

intro/index.html

Lines changed: 25 additions & 25 deletions
Large diffs are not rendered by default.

mathematics/categories/adjoint/index.html

Lines changed: 55 additions & 0 deletions
Large diffs are not rendered by default.
Lines changed: 156 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,156 @@
1+
include ../../../header
2+
3+
block title
4+
title ADJOINT
5+
6+
block content
7+
nav
8+
<a href='https://anders.groupoid.space/'>ANDERS</a>
9+
<a href='https://anders.groupoid.space/lib/'>LIB</a>
10+
<a href='#'>ADJOINT</a>
11+
section
12+
article.main.list
13+
section
14+
h1 ADJOINT
15+
aside
16+
time Published: 16 OCT 2017
17+
18+
+tex.
19+
This article introduces the Adjoint Triple,
20+
a structure in category theory where three functors between three
21+
categories form a chain of two consecutive adjunctions. An adjunction
22+
triple consists of functors $ F: \mathcal{A} \to \mathcal{B} $,
23+
$ G: \mathcal{B} \to \mathcal{C} $, and $ H: \mathcal{C} \to \mathcal{B} $,
24+
where $ F \dashv H $ and $ H \dashv G $. This configuration arises in
25+
settings like monad-comonad interactions, algebraic geometry, and type theory.
26+
+tex.
27+
Key applications include:
28+
1) Modeling reflective and coreflective subcategories in tandem;
29+
2) Constructing monads and comonads via composite adjunctions;
30+
3) Providing a framework for Kan extensions and limits.
31+
This article is a companion to studies of adjoint functors and monad theory, offering both geometric intuition and formal categorical constructions.
32+
33+
section
34+
h1 Intuition
35+
+tex.
36+
Imagine three categories as spaces, with functors as bridges. An adjunction triple is like a triangular pathway where each bridge has a dual, allowing a "round-trip" with specific universal properties. The functor $ H $ plays a pivotal role, acting as both a left and right adjoint, creating a balanced structure.
37+
38+
section
39+
h2 Definitions
40+
41+
+tex.
42+
$\mathbf{Definition}$ (Adjoint). An adjunction between
43+
categories $ \mathcal{A} $ and $ \mathcal{B} $ consists
44+
of functors $ F: \mathcal{A} \to \mathcal{B} $ and
45+
$ G: \mathcal{B} \to \mathcal{A} $, with a natural isomorphism:
46+
47+
+tex(true, false).
48+
$$
49+
\text{Hom}_{\mathcal{B}}(F(A), B) \cong \text{Hom}_{\mathcal{A}}(A, G(B)).
50+
$$
51+
+tex.
52+
We write $ F \dashv G $, with $ F $ the left adjoint and $ G $ the right adjoint.
53+
54+
+tex.
55+
$\mathbf{Definition}$ (Adjoint Triple). An adjunction triple consists of three categories $ \mathcal{A}, \mathcal{B}, \mathcal{C} $, and functors $ F: \mathcal{A} \to \mathcal{B} $, $ H: \mathcal{C} \to \mathcal{B} $, $ G: \mathcal{B} \to \mathcal{C} $, such that:
56+
57+
+tex(true, false).
58+
$$
59+
F \dashv H \quad \text{and} \quad H \dashv G.
60+
$$
61+
62+
+tex.
63+
Equivalently, there are natural isomorphisms:
64+
65+
+tex(true, false).
66+
$$
67+
\begin{array}{c}
68+
\text{Hom}_{\mathcal{B}}(F(A), B) \cong \text{Hom}_{\mathcal{A}}(A, H(C)), \\
69+
\text{Hom}_{\mathcal{C}}(H(B), C) \cong \text{Hom}_{\mathcal{B}}(B, G(C)).
70+
\end{array}
71+
$$
72+
73+
+tex.
74+
The diagram for an adjunction triple can be visualized as:
75+
76+
+tex(true, false).
77+
78+
$$
79+
\begin{array}{ccc}
80+
\mathcal{A} & \xrightarrow{F} & \mathcal{B} \\
81+
& \nwarrow H & \downarrow G \\
82+
& & \mathcal{C}
83+
\end{array}
84+
$$
85+
+tex.
86+
where $ F \dashv H $ and $ H \dashv G $.
87+
88+
section
89+
h1 Properties
90+
p.
91+
Adjoint triples yield rich structures, such as monads and comonads, and preserve certain categorical properties like limits and colimits.
92+
93+
section
94+
h2 Monad and Comonad
95+
+tex.
96+
$\mathbf{Theorem}$ (Monad from Adjoint Triple). Given an adjunction
97+
triple $ F \dashv H \dashv G $, the composite functor $ T = H G: \mathcal{B} \to \mathcal{B} $
98+
forms a monad on $ \mathcal{B} $, with unit and multiplication derived from the
99+
adjunction counits and units.
100+
+code.
101+
monad T: B -> B = H ∘ G
102+
unit: (b: B) -> T b
103+
multiply: (b: B) -> T (T b) -> T b
104+
105+
+tex.
106+
<b>Theorem</b> (Comonad from Adjoint Triple). The composite functor $ S = H F: \mathcal{C} \to \mathcal{C} $ forms a comonad on $ \mathcal{C} $, with counit and comultiplication derived from the adjunction units and counits.
107+
+code.
108+
comonad S: C -> C = H ∘ F
109+
counit: (c: C) -> S c -> c
110+
comultiply: (c: C) -> S c -> S (S c)
111+
112+
h2 Reflective and Coreflective Subcategories
113+
+tex.
114+
<b>Definition</b> (Reflective Subcategory). A subcategory $ \mathcal{B} \subseteq \mathcal{C} $ is reflective if the inclusion functor $ H: \mathcal{B} \to \mathcal{C} $ has a left adjoint $ G: \mathcal{C} \to \mathcal{B} $.
115+
+tex.
116+
<b>Proposition</b>. In an adjunction triple $ F \dashv H \dashv G $, if $ H $ is fully faithful, then $ \mathcal{C} $ is a reflective subcategory of $ \mathcal{B} $, and if $ F $ is fully faithful, $ \mathcal{A} $ is a coreflective subcategory of $ \mathcal{B} $.
117+
118+
section
119+
h1 Examples
120+
section
121+
h2 Free-Forgetful Adjoint Triple
122+
+tex.
123+
Consider the categories $ \mathbf{Set} $ (sets), $ \mathbf{Mon} $ (monoids), and $ \mathbf{Grp} $ (groups). Define:
124+
- $ F: \mathbf{Set} \to \mathbf{Mon} $, the free monoid functor;
125+
- $ H: \mathbf{Grp} \to \mathbf{Mon} $, the inclusion of groups into monoids;
126+
- $ G: \mathbf{Mon} \to \mathbf{Grp} $, the group completion functor.
127+
These form an adjunction triple $ F \dashv H \dashv G $, where $ H $ is the pivot, embedding groups as monoids with inverses.
128+
129+
+tex(true, false).
130+
131+
$$
132+
\begin{array}{ccc}
133+
\mathbf{Set} & \xrightarrow{F} & \mathbf{Mon} \\
134+
& \nwarrow H & \downarrow G \\
135+
& & \mathbf{Grp}
136+
\end{array}
137+
$$
138+
139+
h2 Kleisli Categories
140+
+tex.
141+
Given a monad $ T $ on a category $ \mathcal{B} $, the Kleisli category $ \mathcal{B}_T $ and the Eilenberg-Moore category $ \mathcal{B}^T $ form an adjunction triple with $ \mathcal{B} $. The functors are:
142+
- $ F: \mathcal{B} \to \mathcal{B}_T $, mapping objects to free $ T $-algebras;
143+
- $ H: \mathcal{B}^T \to \mathcal{B}_T $, comparing algebras;
144+
- $ G: \mathcal{B}_T \to \mathcal{B}^T $, mapping Kleisli arrows to algebra homomorphisms.
145+
+code.
146+
kleisli_adj: (B: Cat) (T: Monad B) -> Adjoint B (Kleisli T)
147+
em_adj: (B: Cat) (T: Monad B) -> Adjoint (Kleisli T) (EilenbergMoore T)
148+
149+
section
150+
h1 Literature
151+
section
152+
p
153+
| [1]. Saunders Mac Lane,
154+
a(href='https://www.springer.com/gp/book/9780387984032') Categories for the Working Mathematician
155+
156+
include ../../../footer

0 commit comments

Comments
 (0)