|
| 1 | +include ../../../header |
| 2 | + |
| 3 | +block title |
| 4 | + title ADJOINT |
| 5 | + |
| 6 | +block content |
| 7 | + nav |
| 8 | + <a href='https://anders.groupoid.space/'>ANDERS</a> |
| 9 | + <a href='https://anders.groupoid.space/lib/'>LIB</a> |
| 10 | + <a href='#'>ADJOINT</a> |
| 11 | + section |
| 12 | + article.main.list |
| 13 | + section |
| 14 | + h1 ADJOINT |
| 15 | + aside |
| 16 | + time Published: 16 OCT 2017 |
| 17 | + |
| 18 | + +tex. |
| 19 | + This article introduces the Adjoint Triple, |
| 20 | + a structure in category theory where three functors between three |
| 21 | + categories form a chain of two consecutive adjunctions. An adjunction |
| 22 | + triple consists of functors $ F: \mathcal{A} \to \mathcal{B} $, |
| 23 | + $ G: \mathcal{B} \to \mathcal{C} $, and $ H: \mathcal{C} \to \mathcal{B} $, |
| 24 | + where $ F \dashv H $ and $ H \dashv G $. This configuration arises in |
| 25 | + settings like monad-comonad interactions, algebraic geometry, and type theory. |
| 26 | + +tex. |
| 27 | + Key applications include: |
| 28 | + 1) Modeling reflective and coreflective subcategories in tandem; |
| 29 | + 2) Constructing monads and comonads via composite adjunctions; |
| 30 | + 3) Providing a framework for Kan extensions and limits. |
| 31 | + This article is a companion to studies of adjoint functors and monad theory, offering both geometric intuition and formal categorical constructions. |
| 32 | + |
| 33 | + section |
| 34 | + h1 Intuition |
| 35 | + +tex. |
| 36 | + Imagine three categories as spaces, with functors as bridges. An adjunction triple is like a triangular pathway where each bridge has a dual, allowing a "round-trip" with specific universal properties. The functor $ H $ plays a pivotal role, acting as both a left and right adjoint, creating a balanced structure. |
| 37 | + |
| 38 | + section |
| 39 | + h2 Definitions |
| 40 | + |
| 41 | + +tex. |
| 42 | + $\mathbf{Definition}$ (Adjoint). An adjunction between |
| 43 | + categories $ \mathcal{A} $ and $ \mathcal{B} $ consists |
| 44 | + of functors $ F: \mathcal{A} \to \mathcal{B} $ and |
| 45 | + $ G: \mathcal{B} \to \mathcal{A} $, with a natural isomorphism: |
| 46 | + |
| 47 | + +tex(true, false). |
| 48 | + $$ |
| 49 | + \text{Hom}_{\mathcal{B}}(F(A), B) \cong \text{Hom}_{\mathcal{A}}(A, G(B)). |
| 50 | + $$ |
| 51 | + +tex. |
| 52 | + We write $ F \dashv G $, with $ F $ the left adjoint and $ G $ the right adjoint. |
| 53 | + |
| 54 | + +tex. |
| 55 | + $\mathbf{Definition}$ (Adjoint Triple). An adjunction triple consists of three categories $ \mathcal{A}, \mathcal{B}, \mathcal{C} $, and functors $ F: \mathcal{A} \to \mathcal{B} $, $ H: \mathcal{C} \to \mathcal{B} $, $ G: \mathcal{B} \to \mathcal{C} $, such that: |
| 56 | + |
| 57 | + +tex(true, false). |
| 58 | + $$ |
| 59 | + F \dashv H \quad \text{and} \quad H \dashv G. |
| 60 | + $$ |
| 61 | + |
| 62 | + +tex. |
| 63 | + Equivalently, there are natural isomorphisms: |
| 64 | + |
| 65 | + +tex(true, false). |
| 66 | + $$ |
| 67 | + \begin{array}{c} |
| 68 | + \text{Hom}_{\mathcal{B}}(F(A), B) \cong \text{Hom}_{\mathcal{A}}(A, H(C)), \\ |
| 69 | + \text{Hom}_{\mathcal{C}}(H(B), C) \cong \text{Hom}_{\mathcal{B}}(B, G(C)). |
| 70 | + \end{array} |
| 71 | + $$ |
| 72 | + |
| 73 | + +tex. |
| 74 | + The diagram for an adjunction triple can be visualized as: |
| 75 | + |
| 76 | + +tex(true, false). |
| 77 | + |
| 78 | + $$ |
| 79 | + \begin{array}{ccc} |
| 80 | + \mathcal{A} & \xrightarrow{F} & \mathcal{B} \\ |
| 81 | + & \nwarrow H & \downarrow G \\ |
| 82 | + & & \mathcal{C} |
| 83 | + \end{array} |
| 84 | + $$ |
| 85 | + +tex. |
| 86 | + where $ F \dashv H $ and $ H \dashv G $. |
| 87 | + |
| 88 | + section |
| 89 | + h1 Properties |
| 90 | + p. |
| 91 | + Adjoint triples yield rich structures, such as monads and comonads, and preserve certain categorical properties like limits and colimits. |
| 92 | + |
| 93 | + section |
| 94 | + h2 Monad and Comonad |
| 95 | + +tex. |
| 96 | + $\mathbf{Theorem}$ (Monad from Adjoint Triple). Given an adjunction |
| 97 | + triple $ F \dashv H \dashv G $, the composite functor $ T = H G: \mathcal{B} \to \mathcal{B} $ |
| 98 | + forms a monad on $ \mathcal{B} $, with unit and multiplication derived from the |
| 99 | + adjunction counits and units. |
| 100 | + +code. |
| 101 | + monad T: B -> B = H ∘ G |
| 102 | + unit: (b: B) -> T b |
| 103 | + multiply: (b: B) -> T (T b) -> T b |
| 104 | + |
| 105 | + +tex. |
| 106 | + <b>Theorem</b> (Comonad from Adjoint Triple). The composite functor $ S = H F: \mathcal{C} \to \mathcal{C} $ forms a comonad on $ \mathcal{C} $, with counit and comultiplication derived from the adjunction units and counits. |
| 107 | + +code. |
| 108 | + comonad S: C -> C = H ∘ F |
| 109 | + counit: (c: C) -> S c -> c |
| 110 | + comultiply: (c: C) -> S c -> S (S c) |
| 111 | + |
| 112 | + h2 Reflective and Coreflective Subcategories |
| 113 | + +tex. |
| 114 | + <b>Definition</b> (Reflective Subcategory). A subcategory $ \mathcal{B} \subseteq \mathcal{C} $ is reflective if the inclusion functor $ H: \mathcal{B} \to \mathcal{C} $ has a left adjoint $ G: \mathcal{C} \to \mathcal{B} $. |
| 115 | + +tex. |
| 116 | + <b>Proposition</b>. In an adjunction triple $ F \dashv H \dashv G $, if $ H $ is fully faithful, then $ \mathcal{C} $ is a reflective subcategory of $ \mathcal{B} $, and if $ F $ is fully faithful, $ \mathcal{A} $ is a coreflective subcategory of $ \mathcal{B} $. |
| 117 | + |
| 118 | + section |
| 119 | + h1 Examples |
| 120 | + section |
| 121 | + h2 Free-Forgetful Adjoint Triple |
| 122 | + +tex. |
| 123 | + Consider the categories $ \mathbf{Set} $ (sets), $ \mathbf{Mon} $ (monoids), and $ \mathbf{Grp} $ (groups). Define: |
| 124 | + - $ F: \mathbf{Set} \to \mathbf{Mon} $, the free monoid functor; |
| 125 | + - $ H: \mathbf{Grp} \to \mathbf{Mon} $, the inclusion of groups into monoids; |
| 126 | + - $ G: \mathbf{Mon} \to \mathbf{Grp} $, the group completion functor. |
| 127 | + These form an adjunction triple $ F \dashv H \dashv G $, where $ H $ is the pivot, embedding groups as monoids with inverses. |
| 128 | + |
| 129 | + +tex(true, false). |
| 130 | + |
| 131 | + $$ |
| 132 | + \begin{array}{ccc} |
| 133 | + \mathbf{Set} & \xrightarrow{F} & \mathbf{Mon} \\ |
| 134 | + & \nwarrow H & \downarrow G \\ |
| 135 | + & & \mathbf{Grp} |
| 136 | + \end{array} |
| 137 | + $$ |
| 138 | + |
| 139 | + h2 Kleisli Categories |
| 140 | + +tex. |
| 141 | + Given a monad $ T $ on a category $ \mathcal{B} $, the Kleisli category $ \mathcal{B}_T $ and the Eilenberg-Moore category $ \mathcal{B}^T $ form an adjunction triple with $ \mathcal{B} $. The functors are: |
| 142 | + - $ F: \mathcal{B} \to \mathcal{B}_T $, mapping objects to free $ T $-algebras; |
| 143 | + - $ H: \mathcal{B}^T \to \mathcal{B}_T $, comparing algebras; |
| 144 | + - $ G: \mathcal{B}_T \to \mathcal{B}^T $, mapping Kleisli arrows to algebra homomorphisms. |
| 145 | + +code. |
| 146 | + kleisli_adj: (B: Cat) (T: Monad B) -> Adjoint B (Kleisli T) |
| 147 | + em_adj: (B: Cat) (T: Monad B) -> Adjoint (Kleisli T) (EilenbergMoore T) |
| 148 | + |
| 149 | + section |
| 150 | + h1 Literature |
| 151 | + section |
| 152 | + p |
| 153 | + | [1]. Saunders Mac Lane, |
| 154 | + a(href='https://www.springer.com/gp/book/9780387984032') Categories for the Working Mathematician |
| 155 | + |
| 156 | +include ../../../footer |
0 commit comments