|
5 | 5 | #include "graph/graph.hpp" |
6 | 6 | #include "graph_transformations/graph_transformations.hpp" |
7 | 7 | #include "gtest/gtest.h" |
| 8 | +#include "layers/BatchNormalizationLayer.hpp" |
| 9 | +#include "layers/BinaryOpLayer.hpp" |
8 | 10 | #include "layers/ConcatLayer.hpp" |
| 11 | +#include "layers/ConvLayer.hpp" |
| 12 | +#include "layers/DropOutLayer.hpp" |
9 | 13 | #include "layers/EWLayer.hpp" |
10 | 14 | #include "layers/FCLayer.hpp" |
| 15 | +#include "layers/FlattenLayer.hpp" |
11 | 16 | #include "layers/InputLayer.hpp" |
| 17 | +#include "layers/MatmulLayer.hpp" |
| 18 | +#include "layers/OutputLayer.hpp" |
| 19 | +#include "layers/PoolingLayer.hpp" |
| 20 | +#include "layers/ReduceLayer.hpp" |
| 21 | +#include "layers/ReshapeLayer.hpp" |
| 22 | +#include "layers/SoftmaxLayer.hpp" |
12 | 23 | #include "layers/SplitLayer.hpp" |
| 24 | +#include "layers/Tensor.hpp" |
| 25 | +#include "layers/TransposeLayer.hpp" |
| 26 | +#include "layers_oneDNN/BinaryOpLayer.hpp" |
| 27 | +#include "layers_oneDNN/ConvLayer.hpp" |
| 28 | +#include "layers_oneDNN/EWLayer.hpp" |
| 29 | +#include "layers_oneDNN/PoolingLayer.hpp" |
| 30 | +#include "layers_oneDNN/ReduceLayer.hpp" |
13 | 31 | #include "perf/benchmarking.hpp" |
14 | 32 |
|
15 | 33 | using namespace it_lab_ai; |
16 | 34 |
|
| 35 | +TEST(graph, test_deep_copy) { |
| 36 | + Graph graph; |
| 37 | + Graph graph2; |
| 38 | + Graph graph_c; |
| 39 | + Graph graph2_c; |
| 40 | + Tensor input = make_tensor<float>({1.0F, 2.0F}, {2}); |
| 41 | + Tensor output; |
| 42 | + auto lay1 = std::make_shared<InputLayer>(); |
| 43 | + Shape sh = {2, 2}; |
| 44 | + auto lay2 = std::make_shared<PoolingLayer>(sh, "average"); |
| 45 | + auto lay3 = std::make_shared<EWLayer>(); |
| 46 | + auto lay3_alt = std::make_shared<EwLayerOneDnn>(); |
| 47 | + auto lay4 = std::make_shared<ConvolutionalLayer>(); |
| 48 | + auto lay4_alt = std::make_shared<ConvLayerOneDnn>(); |
| 49 | + auto lay5 = std::make_shared<FCLayer>(); |
| 50 | + auto lay6 = std::make_shared<FlattenLayer>(); |
| 51 | + auto lay7 = std::make_shared<FlattenLayer>(); |
| 52 | + auto lay8 = std::make_shared<DropOutLayer>(); |
| 53 | + auto lay9 = std::make_shared<SplitLayer>(0, 2); |
| 54 | + auto lay10 = std::make_shared<BinaryOpLayer>(); |
| 55 | + auto lay10_alt = std::make_shared<BinaryOpLayerOneDnn>(); |
| 56 | + auto lay11 = std::make_shared<TransposeLayer>(); |
| 57 | + auto lay12 = std::make_shared<MatmulLayer>(); |
| 58 | + auto lay13 = std::make_shared<ReshapeLayer>(); |
| 59 | + auto lay14 = std::make_shared<SoftmaxLayer>(); |
| 60 | + auto lay15 = std::make_shared<ReduceLayer>(); |
| 61 | + auto lay15_alt = std::make_shared<ReduceLayerOneDnn>(); |
| 62 | + Tensor scale = make_tensor<float>({1.0f}, {1}); |
| 63 | + Tensor bias = make_tensor<float>({0.0f}, {1}); |
| 64 | + Tensor mean = make_tensor<float>({0.0f}, {1}); |
| 65 | + Tensor var = make_tensor<float>({1.0f}, {1}); |
| 66 | + auto lay16 = |
| 67 | + std::make_shared<BatchNormalizationLayer>(scale, bias, mean, var); |
| 68 | + auto lay17 = std::make_shared<OutputLayer>(); |
| 69 | + graph.setInput(lay1, input); |
| 70 | + graph2.setInput(lay1, input); |
| 71 | + graph.makeConnection(lay1, lay2); |
| 72 | + graph2.makeConnection(lay1, lay2); |
| 73 | + graph.makeConnection(lay1, lay3); |
| 74 | + graph2.makeConnection(lay1, lay3_alt); |
| 75 | + graph.makeConnection(lay2, lay4); |
| 76 | + graph2.makeConnection(lay2, lay4_alt); |
| 77 | + graph.makeConnection(lay2, lay5); |
| 78 | + graph2.makeConnection(lay2, lay5); |
| 79 | + graph.makeConnection(lay3, lay6); |
| 80 | + graph2.makeConnection(lay3, lay6); |
| 81 | + graph.makeConnection(lay3, lay7); |
| 82 | + graph2.makeConnection(lay3, lay7); |
| 83 | + graph.makeConnection(lay4, lay8); |
| 84 | + graph2.makeConnection(lay4, lay8); |
| 85 | + graph.makeConnection(lay4, lay9); |
| 86 | + graph2.makeConnection(lay4, lay9); |
| 87 | + graph.makeConnection(lay5, lay10); |
| 88 | + graph2.makeConnection(lay5, lay10_alt); |
| 89 | + graph.makeConnection(lay5, lay11); |
| 90 | + graph2.makeConnection(lay5, lay11); |
| 91 | + graph.makeConnection(lay6, lay12); |
| 92 | + graph2.makeConnection(lay6, lay12); |
| 93 | + graph.makeConnection(lay6, lay13); |
| 94 | + graph2.makeConnection(lay6, lay13); |
| 95 | + graph.makeConnection(lay7, lay14); |
| 96 | + graph2.makeConnection(lay7, lay14); |
| 97 | + graph.makeConnection(lay7, lay15); |
| 98 | + graph2.makeConnection(lay7, lay15_alt); |
| 99 | + graph.makeConnection(lay8, lay16); |
| 100 | + graph2.makeConnection(lay8, lay16); |
| 101 | + graph.makeConnection(lay8, lay17); |
| 102 | + graph2.makeConnection(lay8, lay17); |
| 103 | + graph.setOutput(lay16, output); |
| 104 | + graph2.setOutput(lay16, output); |
| 105 | + RuntimeOptions opt; |
| 106 | + opt.backend = Backend::kOneDnn; |
| 107 | + ASSERT_NO_THROW(graph.clone(graph_c, output)); |
| 108 | + ASSERT_NO_THROW(graph.clone(graph2_c, output, opt)); |
| 109 | +} |
| 110 | + |
17 | 111 | TEST(graph, check_connection) { |
18 | 112 | const std::vector<float> vec1 = {2.0F, 1.5F, 0.1F, 1.9F, 0.0F, 5.5F}; |
19 | 113 | Tensor weights = make_tensor<float>(vec1, {3, 2}); |
|
0 commit comments