From 4e9ce212ff2f296461b73f93663118a6830edfcc Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 16 May 2025 02:02:53 -0400 Subject: [PATCH 01/76] Add documentations for the core module --- README.md | 46 ++++++++++- src/BeamTracking.jl | 6 ++ src/kernel.jl | 76 +++++++----------- src/modules/ExactTracking.jl | 44 +++++++++-- src/modules/LinearTracking.jl | 141 ++++++++++++++++++++++++++++++---- src/types.jl | 114 +++++++++++++++++++++++++-- 6 files changed, 349 insertions(+), 78 deletions(-) diff --git a/README.md b/README.md index e521fabd..376b9f3f 100644 --- a/README.md +++ b/README.md @@ -1,11 +1,51 @@ # BeamTracking [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://bmad-sim.github.io/BeamTracking.jl/stable/) -[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://bmad-sim.github.io/BeamTracking.jl/dev/) -[![Build Status](https://github.com/bmad-sim/BeamTracking.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/bmad-sim/BeamTracking.jl/actions/workflows/CI.yml?query=branch%3Amain) +[![Build Status](https://github.com/bmad-sim/BeamTracking.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/bmad-sim/BeamTracking.jl/actions/workflows/CI.yml? +query=branch%3Amain) -This package provides routines for simulating charged particle beams. +A high-performance particle beam tracking package written in Julia, designed for accelerator physics simulations. +## Overview + +BeamTracking is a specialized package for tracking particle beams through accelerator elements. It provides various tracking methods and memory layouts optimized for performance. + +## Key Features + +- Multiple tracking methods +- Two memory layout options for particle data: + - Array of Structures (AoS) + - Structure of Arrays (SoA) +- High-performance tracking with SIMD and multithreading support +- Efficient kernel launching system for parallel processing + +## Core Components + +### Data Structures + +- `Bunch`: The main data structure representing a particle bunch + - Supports both AoS and SoA memory layouts + - Contains species information and reference magnetic rigidity (Brho_ref) + - Stores particle coordinates in a matrix format + +### Tracking Methods + +1. **Linear Tracking** (`LinearTracking.jl`) + - Implements linear beam transport + - Suitable for first-order approximations + +2. **Exact Tracking** (`ExactTracking.jl`) + - Implements exact particle tracking + - More accurate but computationally intensive + +### Performance Features + +- SIMD vectorization support +- Automatic multithreading for large particle numbers +- Optimized memory layouts (AoS/SoA) +- Efficient kernel launching system + +## Developer Setup To develop this package: ```julia diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index f8f76b98..3830ac6b 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -1,3 +1,9 @@ +""" + BeamTracking + +A high-performance particle beam tracking package for accelerator physics simulations. +Provides both linear and exact tracking methods with optimized memory layouts and parallel processing. +""" module BeamTracking using GTPSA, ReferenceFrameRotations, diff --git a/src/kernel.jl b/src/kernel.jl index 47f5b677..b626fb70 100644 --- a/src/kernel.jl +++ b/src/kernel.jl @@ -1,31 +1,20 @@ - +# Get the register size for SIMD operations from VectorizationBase const REGISTER_SIZE = VectorizationBase.register_size() -const XI = 1 -const PXI = 2 -const YI = 3 -const PYI = 4 -const ZI = 5 -const PZI = 6 - - -# Generic function to launch a kernel on the bunch coordinates matrix -# Matrix v should ALWAYS be in SoA whether for real or as a view via tranpose(v) """ - launch!(f!::F, v, v0, work, args...; simd_lane_width, multithread_threshold) + launch!(f!::F, v::A, work, args...; simd_lane_width, multithread_threshold) -General purpose function to launch a kernel `f!`. The syntax for a kernel `f!` must -ALWAYS be the following: +Launch a kernel function on particle coordinates with automatic optimization. -## Arguments -- `i` -- Particle index -- `v` -- Input/output matrix as an SoA or SoA view ALWAYS! (use transpose if AoS) -- `work` -- A Vector of temporary vectors (columns of v) to run the kernel `f!` -- `args...` -- Any further arguments to run the kernel +# Arguments +- `f!`: Kernel function to execute. The kernel function `f!` must be of the form `f!(i, v, work, args...)` +- `v`: Input/output matrix of particle coordinates (always in SoA format) +- `work`: Vector of temporary vectors for kernel execution +- `args...`: Additional arguments for the kernel function -## Keyword Arguments -- `simd_lane_width` -- The number of SIMD lanes to use. Default is `REGISTER_SIZE/sizeof(eltype(A))` -- `multithread_threshold` -- Number of particles at which multithreading is used. Default is `1e6`` +# Keyword Arguments +- `simd_lane_width`: Number of SIMD lanes to use. Default is 0 (autovectorize) +- `multithread_threshold`: Particle count threshold for multithreading (default: 1750 * nthreads) """ @inline function launch!( f!::F, @@ -36,33 +25,44 @@ ALWAYS be the following: multithread_threshold=Threads.nthreads() > 1 ? 1750*Threads.nthreads() : typemax(Int), ) where {F<:Function,A} N_particle = size(v, 1) - if A <: SIMD.FastContiguousArray && eltype(A) <: SIMD.ScalarTypes && simd_lane_width != 0 # do SIMD + + # SIMD path: Use vectorized operations when possible + if A <: SIMD.FastContiguousArray && eltype(A) <: SIMD.ScalarTypes && simd_lane_width != 0 + # Create a vector range for SIMD operations lane = VecRange{simd_lane_width}(0) + # Calculate remainder for non-SIMD processing rmn = rem(N_particle, simd_lane_width) N_SIMD = N_particle - rmn + + # Multithreaded SIMD path if N_particle >= multithread_threshold Threads.@threads for i in 1:simd_lane_width:N_SIMD @assert last(i) <= N_particle "Out of bounds!" # Use last because VecRange SIMD f!(lane+i, v, work, args...) end + # Single-threaded SIMD path else for i in 1:simd_lane_width:N_SIMD @assert last(i) <= N_particle "Out of bounds!" # Use last because VecRange SIMD f!(lane+i, v, work, args...) end end - # Do the remainder + + # Process remaining particles that don't fit in SIMD lanes for i in N_SIMD+1:N_particle @assert last(i) <= N_particle "Out of bounds!" f!(i, v, work, args...) end + # Non-SIMD path: Use standard loops with potential multithreading else if N_particle >= multithread_threshold + # Multithreaded standard path Threads.@threads for i in 1:N_particle @assert last(i) <= N_particle "Out of bounds!" f!(i, v, work, args...) end else + # Single-threaded standard path with @simd hint @simd for i in 1:N_particle @assert last(i) <= N_particle "Out of bounds!" f!(i, v, work, args...) @@ -72,30 +72,10 @@ ALWAYS be the following: return v end -# collective effects -# each threads corresponds to many particles -# go through each element, each thread loops through each -# particle and does stuff with it +# TODO: collective effects -# Call launch! +# Helper functions for kernel execution +# When running kernel on a bunch, no index is provided, launch the kernel with automatic optimization @inline runkernel!(f!::F, i::Nothing, v, work, args...) where {F} = launch!(f!, v, work, args...) - -# Call kernel directly +# When running kernel on a specific particle, execute the kernel directly for particle at that index @inline runkernel!(f!::F, i, v, work, args...) where {F} = f!(i, v, work, args...) - - -#= - -for particle in particles - for ele in ring - - end -end - -for ele in ring - # do a bunch pre pro - for particle in particle - - end -end - =# \ No newline at end of file diff --git a/src/modules/ExactTracking.jl b/src/modules/ExactTracking.jl index d6fd47d4..a65892f7 100644 --- a/src/modules/ExactTracking.jl +++ b/src/modules/ExactTracking.jl @@ -1,12 +1,13 @@ -#= +""" + ExactTracking -Exact tracking methods +Module implementing exact particle tracking through drifts and handling of misalignments. +""" -=# -# Define the Exact tracking method, and number of columns in the work matrix -# (equal to number of temporaries needed for a single particle) +# Define the Exact tracking method struct Exact end +# Number of temporaries needed for a single particle (number of columns in work matrix) MAX_TEMPS(::Exact) = 1 module ExactTracking @@ -27,9 +28,22 @@ const TRACKING_METHOD = Exact end =# -# Misalignments (TO-DO: rotational misalignments) +""" + misalign!(i, v, work, x_offset, y_offset, sgn) + +Apply misalignment offsets to particle coordinates. + +# Arguments +- `i`: Particle index +- `v`: Coordinate matrix +- `work`: Work matrix +- `x_offset`: Horizontal offset +- `y_offset`: Vertical offset +- `sgn`: Sign (-1 for entering, 1 for exiting) +""" +# TODO: handle rotational misalignments @inline function misalign!(i, v, work, x_offset, y_offset, sgn) #x_rot, y_rot, tilt, - @assert sgn == -1 || sgn == 1 "Incorrect value for sgn (use -1 if entering, 1 if exiting)" + #@assert sgn == -1 || sgn == 1 "Incorrect value for sgn (use -1 if entering, 1 if exiting)" @inbounds begin @FastGTPSA! v[i,XI] += sgn*x_offset @FastGTPSA! v[i,YI] += sgn*y_offset @@ -37,8 +51,22 @@ end return v end +""" + exact_drift!(i, v, work, L, tilde_m, gamsqr_0, beta_0) + +Track a particle through a drift space using exact equations of motion. + +# Arguments +- `i`: Particle index +- `v`: Coordinate matrix +- `work`: Work matrix +- `L`: Drift length +- `tilde_m`: Normalized mass +- `gamsqr_0`: Square of reference gamma +- `beta_0`: Reference beta +""" @inline function exact_drift!(i, v, work, L, tilde_m, gamsqr_0, beta_0) - @assert size(work, 2) >= 1 && size(work, 1) == N_particle "Size of work matrix must be at least ($N_particle, 1) for exact_drift!" + #@assert size(work, 2) >= 1 && size(work, 1) == N_particle "Size of work matrix must be at least ($N_particle, 1) for exact_drift!" @inbounds begin @FastGTPSA! begin work[i,1] = sqrt((1.0 + v[i,PZI])^2 - (v[i,PXI]^2 + v[i,PYI]^2)) # P_s v[i,XI] = v[i,XI] + v[i,PXI] * L / work[i,1] diff --git a/src/modules/LinearTracking.jl b/src/modules/LinearTracking.jl index b17ab9f6..fa61e291 100644 --- a/src/modules/LinearTracking.jl +++ b/src/modules/LinearTracking.jl @@ -1,12 +1,16 @@ -#= +""" + LinearTracking -Linear tracking methods expanded around "zero orbit". +Module implementing linear particle tracking methods. -=# -# Define the Linear tracking method, and number of rows in the work matrix -# (equal to number of temporaries needed for a single particle) +This module provides functions for linear particle tracking through elements, +including drifts, quadrupoles, solenoids, and bends, using first-order approximations. +""" + +# Define the Linear tracking method struct Linear end +# Number of temporaries needed for a single particle (number of columns in work matrix) MAX_TEMPS(::Linear) = 5 module LinearTracking @@ -15,8 +19,18 @@ using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI const TRACKING_METHOD = Linear -# Maybe get rid of inline here and put in function-wise launch! ? -# Drift kernel +""" + linear_drift!(i, v, work, L, r56) + +Track a particle through a drift space using linear approximation. + +# Arguments +- `i`: Particle index +- `v`: Coordinate matrix +- `work`: Work matrix +- `L`: Drift length +- `r56`: Longitudinal dispersion +""" @inline function linear_drift!(i, v, work, L, r56) @inbounds begin @FastGTPSA! begin v[i,XI] += v[i,PXI] * L @@ -35,11 +49,26 @@ end [ t[1:2] t[3:4] 1 r56 ] =# +""" + linear_coast_uncoupled!(i, v, work, mx, my, r56, d, t) + +Track a particle through an uncoupled element + +# Arguments +- `i`: Particle index +- `v`: Coordinate matrix +- `work`: Work matrix +- `mx`: 2x2 horizontal transfer matrix +- `my`: 2x2 vertical transfer matrix +- `r56`: Momentum compaction term +- `d`: Dispersion vector (optional) +- `t`: Path length terms (optional) +""" @inline function linear_coast_uncoupled!(i, v, work, mx::AbstractMatrix, my::AbstractMatrix, r56, d::Union{AbstractArray,Nothing}=nothing, t::Union{AbstractArray,Nothing}=nothing) - @assert size(work, 2) >= 1 && size(work, 1) >= size(v, 1) "Size of work matrix must be at least ($(size(v, 1)), 1) for linear_coast_uncoupled!" - @assert size(mx) == (2,2) "Size of matrix mx must be (2,2) for linear_coast_uncoupled!. Received $(size(mx))" - @assert size(my) == (2,2) "Size of matrix my must be (2,2) for linear_coast_uncoupled!. Received $(size(my))" - @assert isnothing(d) || length(d) == 4 "The dispersion vector d must be either `nothing` or of length 4 for linear_coast_uncoupled!. Received $d" + #@assert size(work, 2) >= 1 && size(work, 1) >= size(v, 1) "Size of work matrix must be at least ($(size(v, 1)), 1) for linear_coast_uncoupled!" + #@assert size(mx) == (2,2) "Size of matrix mx must be (2,2) for linear_coast_uncoupled!. Received $(size(mx))" + #@assert size(my) == (2,2) "Size of matrix my must be (2,2) for linear_coast_uncoupled!. Received $(size(my))" + #@assert isnothing(d) || length(d) == 4 "The dispersion vector d must be either `nothing` or of length 4 for linear_coast_uncoupled!. Received $d" if !isnothing(t) @inbounds begin @FastGTPSA! begin v[i,ZI] += t[XI] * v[i,XI] + t[PXI] * v[i,PXI] + t[YI] * v[i,YI] + t[PYI] * v[i,PYI] @@ -65,6 +94,20 @@ end return v end +""" + linear_coast!(i, v, work, mxy, r56, d, t) + +Track a particle through a coupled element + +# Arguments +- `i`: Particle index +- `v`: Coordinate matrix +- `work`: Work matrix +- `mxy`: 4x4 coupled transfer matrix +- `r56`: Momentum compaction term +- `d`: Dispersion vector (optional) +- `t`: Path length terms (optional) +""" @inline function linear_coast!(i, v, work, mxy::AbstractMatrix, r56, d::Union{AbstractArray,Nothing}=nothing, t::Union{AbstractArray,Nothing}=nothing) @assert size(work, 2) >= 3 && size(work, 1) >= size(v, 1) "Size of work matrix must be at least ($(size(v, 1)), 3) for linear_coast!" @assert size(mxy) == (4,4) "Size of matrix mxy must be (4,4) for linear_coast!. Received $(size(mxy))" @@ -95,9 +138,24 @@ end return v end +""" + linear_6D!(i, v, work, m) + +Track a particle using a full 6D transfer matrix. + +# Arguments +- `i`: Particle index +- `v`: Coordinate matrix +- `work`: Work matrix (must be at least size (N_particle, 5)) +- `m`: 6x6 transfer matrix + +# Notes +- Handles full 6D coupled motion +- Uses work matrix for temporary calculations +""" @inline function linear_6D!(i, v, work, m::AbstractMatrix) - @assert size(work, 2) >= 5 && size(work, 1) >= size(v, 1) "Size of work matrix must be at least ($(size(v, 1)), 5) for linear_6D!" - @assert size(m) == (6,6) "Size of matrix m must be (6,6) for linear_6D!. Received $(size(m))" + #@assert size(work, 2) >= 5 && size(work, 1) >= size(v, 1) "Size of work matrix must be at least ($(size(v, 1)), 5) for linear_6D!" + #@assert size(m) == (6,6) "Size of matrix m must be (6,6) for linear_6D!. Received $(size(m))" @inbounds begin @FastGTPSA! begin work[i,1]= v[i,XI] work[i,2]= v[i,PXI] @@ -115,6 +173,18 @@ end end # Utility functions to create a linear matrix +""" + linear_quad_matrices(K1, L) + +Generate transfer matrices for a thick quadrupole. + +# Arguments +- `K1`: Quadrupole strength, focusing and defocusing matrices based on K1 sign +- `L`: Quadrupole length + +# Returns +- `mx, my`: Horizontal and vertical transfer matrices +""" function linear_quad_matrices(K1, L) sqrtk = sqrt(abs(K1)) w = sqrtk*L @@ -132,6 +202,17 @@ function linear_quad_matrices(K1, L) end end +""" + linear_thin_quad_matrices(K1L) + +Generate transfer matrices for a thin quadrupole. + +# Arguments +- `K1L`: Integrated quadrupole strength + +# Returns +- `mx, my`: Horizontal and vertical transfer matrices +""" function linear_thin_quad_matrices(K1L) mx = SA[1 0; -K1L 1] @@ -141,7 +222,21 @@ function linear_thin_quad_matrices(K1L) return mx, my end -# From the Bmad manual "Solenoid Tracking" section, linearized +""" + linear_solenoid_matrix(Ks, L) + +Generate transfer matrix for a solenoid. + +# Arguments +- `Ks`: Solenoid strength +- `L`: Solenoid length + +# Returns +- 4x4 transfer matrix for coupled horizontal and vertical motion + +# Notes +- Based on Bmad manual "Solenoid Tracking" section +""" function linear_solenoid_matrix(Ks, L) s, c = sincos(Ks*L) @@ -152,6 +247,24 @@ function linear_solenoid_matrix(Ks, L) end +""" + linear_bend_matrices(K0, L, gamma_0, e1, e2) + +Generate transfer matrices for a bending magnet. + +# Arguments +- `K0`: Bending strength +- `L`: Bend length +- `gamma_0`: Reference gamma +- `e1`: Entrance edge angle (optional) +- `e2`: Exit edge angle (optional) + +# Returns +- `mx, my`: Horizontal and vertical transfer matrices +- `r56`: Momentum compaction term +- `d`: Dispersion vector +- `t`: Path length terms +""" function linear_bend_matrices(K0, L, gamma_0, e1=nothing, e2=nothing) theta = K0*L s, c = sincos(theta) diff --git a/src/types.jl b/src/types.jl index 74e03f24..20a2cfb6 100644 --- a/src/types.jl +++ b/src/types.jl @@ -1,22 +1,75 @@ +""" + MemoryLayout + +Abstract type for memory layout strategies. Two implementations are provided: +- `AoS`: Array of Structures +- `SoA`: Structure of Arrays +""" abstract type MemoryLayout end struct AoS <: MemoryLayout end struct SoA <: MemoryLayout end +""" + Bunch{A<:MemoryLayout,S,T} + +Structure representing a particle bunch. + +# Fields +- `species::Species`: Particle species (e.g., ELECTRON, PROTON) +- `Brho_ref::S`: Reference magnetic rigidity +- `v::T`: Matrix of particle coordinates + First index is particle, second is coordinate (x, px, y, py, z, pz) + px, py are normalized momenta, pz is momentum deviation +""" mutable struct Bunch{A<:MemoryLayout,S,T} - species::Species # Species - Brho_ref::S # Defines normalization of phase space coordinates - const v::T # Matrix of particle coordinates + species::Species # Species + Brho_ref::S # Reference magnetic rigidity, used fornormalization of phase space coordinates + const v::T # Matrix of particle coordinates function Bunch{A}(species, Brho_ref, v) where {A} return new{A,typeof(Brho_ref),typeof(v)}(species, Brho_ref, v) end end -# Index particle i coordinate x as (i,1) , px as (i,2), etc +# Constants for coordinate indexing +const XI = 1 +const PXI = 2 +const YI = 3 +const PYI = 4 +const ZI = 5 +const PZI = 6 + +""" + soaview(bunch::Bunch{A}) where {A} + +Get a Structure of Arrays view of the particle coordinates. +""" soaview(bunch::Bunch{A}) where {A} = A == AoS ? transpose(bunch.v) : bunch.v + +""" + aosview(bunch::Bunch{A}) where {A} + +Get an Array of Structures view of the particle coordinates. +""" aosview(bunch::Bunch{A}) where {A} = A == AoS ? bunch.v : transpose(bunch.v) + +""" + get_N_particle(bunch::Bunch{A}) where {A} + +Get the number of particles in the bunch. +""" get_N_particle(bunch::Bunch{A}) where {A} = A == AoS ? size(bunch.v, 2) : size(bunch.v, 1) -# Update momenta for change to Brho_ref or change to species +""" + setproperty!(bunch::Bunch{A,S}, key::Symbol, value) where {A,S} + +Update bunch properties, handling special cases for Brho_ref and species changes. +Automatically adjusts particle momenta when Brho_ref or species changes. + +# Arguments +- `bunch`: The particle bunch to modify +- `key`: Property to update (:Brho_ref or :species) +- `value`: New value for the property +""" function setproperty!(bunch::Bunch{A,S}, key::Symbol, value) where {A,S} if key == :Brho_ref if value == bunch.Brho_ref @@ -39,6 +92,20 @@ function setproperty!(bunch::Bunch{A,S}, key::Symbol, value) where {A,S} end end +""" + Bunch(N::Integer; mem=SoA, Brho_ref=NaN, species=ELECTRON) + +Create a new bunch with N particles. + +# Arguments +- `N`: Number of particles +- `mem`: Memory layout (SoA or AoS) +- `Brho_ref`: Reference magnetic rigidity +- `species`: Particle species + +# Returns +A new `Bunch` instance with randomly initialized coordinates +""" function Bunch(N::Integer; mem=SoA, Brho_ref=NaN, species=ELECTRON) if mem == SoA return Bunch{mem}(species, Brho_ref, rand(N,6)) @@ -49,6 +116,20 @@ function Bunch(N::Integer; mem=SoA, Brho_ref=NaN, species=ELECTRON) end end +""" + Bunch(v::AbstractArray; mem=SoA, Brho_ref=NaN, species=ELECTRON) + +Create a new bunch from existing coordinates. + +# Arguments +- `v`: Matrix of particle coordinates +- `mem`: Memory layout (SoA or AoS) +- `Brho_ref`: Reference magnetic rigidity +- `species`: Particle species + +# Returns +A new `Bunch` instance with the provided coordinates +""" function Bunch(v::AbstractArray; mem=SoA, Brho_ref=NaN, species=ELECTRON) if mem == SoA size(v, 2) == 6 || error("For SoA the number of columns must be equal to 6") @@ -60,6 +141,17 @@ function Bunch(v::AbstractArray; mem=SoA, Brho_ref=NaN, species=ELECTRON) return Bunch{mem}(species, Brho_ref, v) end +""" + ParticleView{S,T} + +View into a single particle within a bunch. + +# Fields +- `species::Species`: Particle species +- `Brho_ref::S`: Reference magnetic rigidity +- `index::Int`: Particle index +- `v::T`: View of particle coordinates +""" struct ParticleView{S,T} species::Species Brho_ref::S @@ -67,6 +159,18 @@ struct ParticleView{S,T} v::T end +""" + ParticleView(bunch::Bunch{A}, i=1) where {A} + +Create a view of a single particle in the bunch. + +# Arguments +- `bunch`: The particle bunch +- `i`: Index of the particle to view (default: 1) + +# Returns +A `ParticleView` instance for the specified particle +""" function ParticleView(bunch::Bunch{A}, i=1) where {A} v = aosview(bunch) return ParticleView(bunch.species, bunch.Brho_ref, i, view(v, :, i)) From d6e233ffc012714642f3c4d4531c9534272ab188 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 16 May 2025 02:50:44 -0400 Subject: [PATCH 02/76] refactor launch! to avoid deep nested if-else --- src/kernel.jl | 149 +++++++++++++++++++++++++++++++++----------------- 1 file changed, 100 insertions(+), 49 deletions(-) diff --git a/src/kernel.jl b/src/kernel.jl index e935bba3..c052d78c 100644 --- a/src/kernel.jl +++ b/src/kernel.jl @@ -2,19 +2,20 @@ const REGISTER_SIZE = VectorizationBase.register_size() """ - launch!(f!::F, v::A, work, args...; simd_lane_width, multithread_threshold) + launch!(f!::F, v::A, args...; groupsize, multithread_threshold, use_KA, use_explicit_SIMD) -Launch a kernel function on particle coordinates with automatic optimization. +Launch a kernel function on particle coordinates with automatic optimization for both CPU and GPU backends. # Arguments - `f!`: Kernel function to execute. The kernel function `f!` must be of the form `f!(i, v, work, args...)` - `v`: Input/output matrix of particle coordinates (always in SoA format) -- `work`: Vector of temporary vectors for kernel execution - `args...`: Additional arguments for the kernel function # Keyword Arguments -- `simd_lane_width`: Number of SIMD lanes to use. Default is 0 (autovectorize) -- `multithread_threshold`: Particle count threshold for multithreading (default: 1750 * nthreads) +- `groupsize`: Number of threads per workgroup for GPU execution. If nothing, uses default based on register size for CPU +- `multithread_threshold`: Particle count threshold for enabling multithreading (default: 1750 * nthreads) +- `use_KA`: Whether to use KernelAbstractions.jl for execution (default: true for GPU, false for CPU with no groupsize) +- `use_explicit_SIMD`: Whether to use explicit SIMD vectorization (default: false) """ @inline function launch!( f!::F, @@ -26,72 +27,122 @@ Launch a kernel function on particle coordinates with automatic optimization. use_explicit_SIMD::Bool=false ) where {F<:Function,V} + # Error handling + # Cannot use both KA and explicit SIMD if use_KA && use_explicit_SIMD error("Cannot use both KernelAbstractions (KA) and explicit SIMD") end N_particle = size(v, 1) backend = get_backend(v) - if !use_KA && backend isa GPU - error("For GPU parallelized kernel launching, KernelAbstractions (KA) must be used") + + # GPU execution path + if use_KA + if !(backend isa GPU) + error("For GPU parallelized kernel launching, KernelAbstractions (KA) must be used") + end + + kernel! = isnothing(groupsize) ? f!(backend) : f!(backend, groupsize) + kernel!(v, args...; ndrange=N_particle) + KernelAbstractions.synchronize(backend) + return v end - if !use_KA - if use_explicit_SIMD && V <: SIMD.FastContiguousArray && eltype(V) <: SIMD.ScalarTypes && VectorizationBase.pick_vector_width(eltype(V)) > 1 # do SIMD - simd_lane_width = VectorizationBase.pick_vector_width(eltype(V)) - lane = VecRange{Int(simd_lane_width)}(0) - rmn = rem(N_particle, simd_lane_width) - N_SIMD = N_particle - rmn - if N_particle >= multithread_threshold - Threads.@threads for i in 1:simd_lane_width:N_SIMD - @assert last(i) <= N_particle "Out of bounds!" # Use last because VecRange SIMD - f!(lane+i, v, args...) - end - else - for i in 1:simd_lane_width:N_SIMD - @assert last(i) <= N_particle "Out of bounds!" # Use last because VecRange SIMD - f!(lane+i, v, args...) - end - end - # Do the remainder - for i in N_SIMD+1:N_particle - @assert last(i) <= N_particle "Out of bounds!" - f!(i, v, args...) - end - else - if N_particle >= multithread_threshold - Threads.@threads for i in 1:N_particle - @assert last(i) <= N_particle "Out of bounds!" - f!(i, v, args...) - end - else - @simd for i in 1:N_particle - @assert last(i) <= N_particle "Out of bounds!" - f!(i, v, args...) - end - end + # CPU execution path + if use_explicit_SIMD && V <: SIMD.FastContiguousArray && eltype(V) <: SIMD.ScalarTypes && VectorizationBase.pick_vector_width(eltype(V)) > 1 + execute_simd_cpu!(f!, v, N_particle, multithread_threshold, args...) + else + execute_standard_cpu!(f!, v, N_particle, multithread_threshold, args...) + end + + return v +end + +# Helper functions for CPU execution paths +@inline function execute_simd_cpu!(f!, v, N_particle, multithread_threshold, args...) + # Get the SIMD lane width + simd_lane_width = VectorizationBase.pick_vector_width(eltype(v)) + lane = VecRange{Int(simd_lane_width)}(0) + # Calculate the number of SIMD-aligned particles + rmn = rem(N_particle, simd_lane_width) + N_SIMD = N_particle - rmn + + # Multithreaded SIMD + if N_particle >= multithread_threshold + Threads.@threads for i in 1:simd_lane_width:N_SIMD + @assert last(i) <= N_particle "Out of bounds!" + f!(lane+i, v, args...) end + # Single-threaded SIMD else - if isnothing(groupsize) - kernel! = f!(backend) - else - kernel! = f!(backend, groupsize) + for i in 1:simd_lane_width:N_SIMD + @assert last(i) <= N_particle "Out of bounds!" + f!(lane+i, v, args...) + end + end + + # Process remaining particles + for i in N_SIMD+1:N_particle + @assert last(i) <= N_particle "Out of bounds!" + f!(i, v, args...) + end +end + +@inline function execute_standard_cpu!(f!, v, N_particle, multithread_threshold, args...) + # Multithreaded execution + if N_particle >= multithread_threshold + Threads.@threads for i in 1:N_particle + @assert last(i) <= N_particle "Out of bounds!" + f!(i, v, args...) + end + # Single-threaded execution with automatic vectorization + else + @simd for i in 1:N_particle + @assert last(i) <= N_particle "Out of bounds!" + f!(i, v, args...) end - kernel!(v, args...; ndrange=N_particle) - KernelAbstractions.synchronize(backend) end - return v end # TODO: collective effects +# May need to overload runkernel! for collective effects + +""" + runkernel!(f!::F, i, v, args...; kwargs...) -# Helper functions for kernel execution +Execute a kernel either on a specific particle or a bunch of particles. + +# Arguments +- `f!`: Kernel function to execute +- `i`: Particle index or nothing for a bunch + If i is nothing, launches the kernel for a bunch with automatic optimization + If i is an index, executes the kernel directly for that specific particle +- `v`: Input/output matrix of particle coordinates +- `args...`: Additional arguments for the kernel function +- `kwargs...`: Keyword arguments passed to launch! when executing in batch mode +""" # When running kernel on a bunch, no index is provided, launch the kernel with automatic optimization @inline runkernel!(f!::F, i::Nothing, v, args...; kwargs...) where {F} =launch!(f!, v, args...; kwargs...) # When running kernel on a specific particle, execute the kernel directly for particle at that index @inline runkernel!(f!::F, i, v, args...; kwargs...) where {F} = f!(i, v, args...) +""" + @makekernel fcn + +Macro to create a kernel function that can be executed on both CPU and GPU backends. +Transforms a regular function into a form compatible with KernelAbstractions.jl. + +# Arguments +- `fcn`: Function definition to be transformed into a kernel + +# Implementation Details +- Creates two versions of the function: + 1. A kernel version compatible with KernelAbstractions.jl + 2. The original function for direct CPU execution +- Handles const arguments appropriately for GPU execution +- Supports only positional arguments (no keyword arguments or default values) +""" macro makekernel(fcn) fcn.head == :function || error("@makekernel must wrap a function definition") body = esc(fcn.args[2]) From 3da768df096fdd49eab1e3d24bf7f96b241cd85b Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 16 May 2025 03:00:36 -0400 Subject: [PATCH 03/76] update documentation on GPU support --- README.md | 51 +++++++++++++++++++++------------------------------ src/kernel.jl | 4 ++-- 2 files changed, 23 insertions(+), 32 deletions(-) diff --git a/README.md b/README.md index 376b9f3f..127bfae1 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,7 @@ # BeamTracking [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://bmad-sim.github.io/BeamTracking.jl/stable/) -[![Build Status](https://github.com/bmad-sim/BeamTracking.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/bmad-sim/BeamTracking.jl/actions/workflows/CI.yml? -query=branch%3Amain) +[![Build Status](https://github.com/bmad-sim/BeamTracking.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/bmad-sim/BeamTracking.jl/actions/workflows/CI.yml?query=branch%3Amain) A high-performance particle beam tracking package written in Julia, designed for accelerator physics simulations. @@ -10,14 +9,25 @@ A high-performance particle beam tracking package written in Julia, designed for BeamTracking is a specialized package for tracking particle beams through accelerator elements. It provides various tracking methods and memory layouts optimized for performance. -## Key Features +## Installation -- Multiple tracking methods -- Two memory layout options for particle data: - - Array of Structures (AoS) - - Structure of Arrays (SoA) -- High-performance tracking with SIMD and multithreading support -- Efficient kernel launching system for parallel processing +To install the package: + +```julia +using Pkg +Pkg.add("BeamTracking") +``` + +To develop this package: + +```julia +import Pkg; +Pkg.develop(url="https://github.com/bmad-sim/BeamTracking.jl.git"); # This package! Replace bmad-sim with your username if working on a fork +``` + +In your `~/.julia/dev/` directory, you will now see the directory `BeamTracking`. This is the Github repo where you can do your work and push changes. + +See the [development documentation](https://bmad-sim.github.io/BeamTracking.jl/dev/) for more details. ## Core Components @@ -31,12 +41,7 @@ BeamTracking is a specialized package for tracking particle beams through accele ### Tracking Methods 1. **Linear Tracking** (`LinearTracking.jl`) - - Implements linear beam transport - - Suitable for first-order approximations - 2. **Exact Tracking** (`ExactTracking.jl`) - - Implements exact particle tracking - - More accurate but computationally intensive ### Performance Features @@ -44,19 +49,5 @@ BeamTracking is a specialized package for tracking particle beams through accele - Automatic multithreading for large particle numbers - Optimized memory layouts (AoS/SoA) - Efficient kernel launching system - -## Developer Setup -To develop this package: - -```julia -import Pkg; -Pkg.develop(url="https://github.com/bmad-sim/BeamTracking.jl.git"); # This package! Replace bmad-sim with your username if working on a fork -``` - -If working on your own fork, replace `bmad-sim` in the above `develop` url with your Github username. - -In your `~/.julia/dev/` directory, you will now see the directory `BeamTracking`. This is the Github repo where you can do your work and push changes. - -See the [development documentation](https://bmad-sim.github.io/BeamTracking.jl/dev/) for more details. - - +- GPU acceleration support. Compatible with KernelAbstractions.jl +- Seamless CPU/GPU code sharing through unified kernel interface diff --git a/src/kernel.jl b/src/kernel.jl index c052d78c..3badc67c 100644 --- a/src/kernel.jl +++ b/src/kernel.jl @@ -2,7 +2,7 @@ const REGISTER_SIZE = VectorizationBase.register_size() """ - launch!(f!::F, v::A, args...; groupsize, multithread_threshold, use_KA, use_explicit_SIMD) + launch!(f!::F, v::V, args...; groupsize, multithread_threshold, use_KA, use_explicit_SIMD) Launch a kernel function on particle coordinates with automatic optimization for both CPU and GPU backends. @@ -21,7 +21,7 @@ Launch a kernel function on particle coordinates with automatic optimization for f!::F, v::V, args...; - groupsize::Union{Nothing,Integer}=nothing, #backend isa CPU ? floor(Int,REGISTER_SIZE/sizeof(eltype(v))) : 256 + groupsize::Union{Nothing,Integer}=nothing, multithread_threshold::Integer=Threads.nthreads() > 1 ? 1750*Threads.nthreads() : typemax(Int), use_KA::Bool=!(get_backend(v) isa CPU && isnothing(groupsize)), use_explicit_SIMD::Bool=false From 26c533d2f51107c0ed87f6e2fec784afec882049 Mon Sep 17 00:00:00 2001 From: ndwang Date: Mon, 2 Jun 2025 17:10:40 -0400 Subject: [PATCH 04/76] fieldtracking with arbitrary E field function --- Project.toml | 2 + src/BeamTracking.jl | 3 +- src/modules/FieldTracking.jl | 81 ++++++++++++++++++++++++++++++++++++ test/FieldTracking.jl | 40 ++++++++++++++++++ 4 files changed, 125 insertions(+), 1 deletion(-) create mode 100644 src/modules/FieldTracking.jl create mode 100644 test/FieldTracking.jl diff --git a/Project.toml b/Project.toml index da6fbb81..9314a744 100644 --- a/Project.toml +++ b/Project.toml @@ -4,6 +4,7 @@ authors = ["mattsignorelli and contributors"] version = "0.1.0" [deps] +DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c" ReferenceFrameRotations = "74f56ac7-18b3-5285-802d-d4bd4f104033" @@ -19,6 +20,7 @@ BeamTrackingBeamlinesExt = "Beamlines" [compat] Beamlines = "0.2.1" +DifferentialEquations = "7.16.1" GTPSA = "1.4.2" KernelAbstractions = "0.9.34" ReferenceFrameRotations = "3" diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index 2f9d8fe6..fb3c6418 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -19,6 +19,7 @@ import Base: setproperty! export Bunch, Species, ParticleView, ELECTRON, POSITRON, PROTON, ANTIPROTON, sincu, sinhcu, sincuc export LinearTracking, Linear export ExactTracking, Exact +export FieldTracking, Field export track! include("utils.jl") @@ -28,7 +29,7 @@ include("types.jl") include("modules/ExactTracking.jl") #; TRACKING_METHOD(::ExactTracking) = Exact include("modules/LinearTracking.jl") #; TRACKING_METHOD(::LinearTracking) = Linear - +include("modules/FieldTracking.jl") #; TRACKING_METHOD(::FieldTracking) = Field # Empty tracking method to be imported+implemented by package extensions function track! end diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl new file mode 100644 index 00000000..39182c13 --- /dev/null +++ b/src/modules/FieldTracking.jl @@ -0,0 +1,81 @@ +""" + FieldTracking + +Module implementing particle tracking through arbitrary electromagnetic fields using DifferentialEquations.jl. +""" + +# Define the Field tracking method +struct Field end + +# Number of temporaries needed for a single particle +MAX_TEMPS(::Field) = 0 + +module FieldTracking +using ..GTPSA, ..BeamTracking, ..StaticArrays +using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, @makekernel +using DifferentialEquations +const TRACKING_METHOD = Field + +""" + field_system!(du, u, p, t) + +Define the ODE system for particle motion in an electromagnetic field. + +# Arguments +- `du`: Vector of derivatives +- `u`: State vector [x, px, y, py, z, pz] +- `p`: Parameters tuple containing (field_func, params) +- `t`: Time variable +""" +function field_system!(du, u, p, t) + x, px, y, py, z, pz = u + field_func, params = p + field = field_func(x, y, z, params) + + # Equations of motion + du[1] = px # dx/dt = px + du[2] = field[1] # dpx/dt = Ex + du[3] = py # dy/dt = py + du[4] = field[2] # dpy/dt = Ey + du[5] = pz # dz/dt = pz + du[6] = field[3] # dpz/dt = Ez +end + +""" + field_drift!(i, v, work, L, field_func, params, solver=Tsit5()) + +Track a particle through a drift space with arbitrary field using DifferentialEquations.jl. + +# Arguments +- `i`: Particle index +- `v`: Coordinate matrix +- `work`: Work matrix +- `L`: Drift length +- `field_func`: Function that returns the field at a given position (x, y, z) +- `params`: Additional parameters for the field function +- `solver`: ODE solver to use (default: Tsit5()) +""" +@makekernel function field_drift!(i, v, work, L, field_func, params, solver=Tsit5()) + @inbounds begin + # Initial state vector [x, px, y, py, z, pz] + u0 = [v[i,XI], v[i,PXI], v[i,YI], v[i,PYI], v[i,ZI], v[i,PZI]] + + # Set up and solve the ODE + prob = ODEProblem(field_system!, u0, (0.0, L), (field_func, params)) + sol = solve(prob, solver, reltol=1e-8, abstol=1e-8) + + # Update final coordinates + final_state = sol.u[end] + @FastGTPSA! begin + v[i,XI] = final_state[1] + v[i,PXI] = final_state[2] + v[i,YI] = final_state[3] + v[i,PYI] = final_state[4] + v[i,ZI] = final_state[5] + v[i,PZI] = final_state[6] + end + end + return v +end + +end \ No newline at end of file diff --git a/test/FieldTracking.jl b/test/FieldTracking.jl new file mode 100644 index 00000000..f58bc781 --- /dev/null +++ b/test/FieldTracking.jl @@ -0,0 +1,40 @@ +using Test +using BeamTracking +using StaticArrays + +# Test field_system! with a uniform electric field +@testset "FieldTracking" begin + # Define a simple uniform electric field in x-direction + function uniform_field(x, y, z, params) + return SVector(1.0, 0.0, 0.0) + end + + # Test initial conditions + du = zeros(6) + u = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] # Initial position at x=1, rest at origin + p = (uniform_field, nothing) + t = 0.0 + + # Call field_system! + FieldTracking.field_system!(du, u, p, t) + + # Test derivatives + @test du[1] ≈ 0.0 # dx/dt = px = 0 + @test du[2] ≈ 1.0 # dpx/dt = Ex = 1 + @test du[3] ≈ 0.0 # dy/dt = py = 0 + @test du[4] ≈ 0.0 # dpy/dt = Ey = 0 + @test du[5] ≈ 0.0 # dz/dt = pz = 0 + @test du[6] ≈ 0.0 # dpz/dt = Ez = 0 + + # Test with non-zero initial momentum + u = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0] # Initial momentum px=1 + du = zeros(6) + BeamTracking.field_system!(du, u, p, t) + + @test du[1] ≈ 1.0 # dx/dt = px = 1 + @test du[2] ≈ 1.0 # dpx/dt = Ex = 1 + @test du[3] ≈ 0.0 # dy/dt = py = 0 + @test du[4] ≈ 0.0 # dpy/dt = Ey = 0 + @test du[5] ≈ 0.0 # dz/dt = pz = 0 + @test du[6] ≈ 0.0 # dpz/dt = Ez = 0 +end \ No newline at end of file From 8091b1e297dfc3f82f5f074cdbe07ffbb52288c5 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 13:09:41 -0400 Subject: [PATCH 05/76] remove default solver to work with @makekernel --- src/modules/FieldTracking.jl | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index 39182c13..932aaefe 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -16,6 +16,7 @@ using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, @makekernel using DifferentialEquations const TRACKING_METHOD = Field +# EVOLVE-BLOCK-START """ field_system!(du, u, p, t) @@ -42,7 +43,7 @@ function field_system!(du, u, p, t) end """ - field_drift!(i, v, work, L, field_func, params, solver=Tsit5()) + field_track!(i, v, work, L, field_func, params, solver) Track a particle through a drift space with arbitrary field using DifferentialEquations.jl. @@ -53,9 +54,9 @@ Track a particle through a drift space with arbitrary field using DifferentialEq - `L`: Drift length - `field_func`: Function that returns the field at a given position (x, y, z) - `params`: Additional parameters for the field function -- `solver`: ODE solver to use (default: Tsit5()) +- `solver`: ODE solver to use """ -@makekernel function field_drift!(i, v, work, L, field_func, params, solver=Tsit5()) +@makekernel function field_track!(i, v, work, L, field_func, params, solver) @inbounds begin # Initial state vector [x, px, y, py, z, pz] u0 = [v[i,XI], v[i,PXI], v[i,YI], v[i,PYI], v[i,ZI], v[i,PZI]] @@ -77,5 +78,6 @@ Track a particle through a drift space with arbitrary field using DifferentialEq end return v end +# EVOLVE-BLOCK-END -end \ No newline at end of file +end \ No newline at end of file From 3850735724c7c73e5d12dcb3a841f030231b7941 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 13:10:02 -0400 Subject: [PATCH 06/76] Adding Kernel evaluator --- Project.toml | 2 + test/KernelEvaluation.jl | 81 ++++++++++++++++++++++++++++++++++++++++ 2 files changed, 83 insertions(+) create mode 100644 test/KernelEvaluation.jl diff --git a/Project.toml b/Project.toml index 9314a744..05ccc9b6 100644 --- a/Project.toml +++ b/Project.toml @@ -4,6 +4,7 @@ authors = ["mattsignorelli and contributors"] version = "0.1.0" [deps] +BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c" @@ -20,6 +21,7 @@ BeamTrackingBeamlinesExt = "Beamlines" [compat] Beamlines = "0.2.1" +BenchmarkTools = "1.6.0" DifferentialEquations = "7.16.1" GTPSA = "1.4.2" KernelAbstractions = "0.9.34" diff --git a/test/KernelEvaluation.jl b/test/KernelEvaluation.jl new file mode 100644 index 00000000..c249c2ce --- /dev/null +++ b/test/KernelEvaluation.jl @@ -0,0 +1,81 @@ +using BeamTracking: get_N_particle, runkernel!, MAX_TEMPS, soaview +using BenchmarkTools + +""" + evaluate_kernel_performance(bunch, kernel, args...; n_runs=10, kwargs...) + +Evaluate the performance of any tracking kernel and return a dictionary of metrics. + +# Arguments +- `bunch`: Initial particle bunch +- `kernel`: The kernel function to evaluate +- `args...`: Arguments to pass to the kernel +- `n_runs`: Number of runs for performance evaluation (default: 10) +- `kwargs...`: Additional keyword arguments to pass to runkernel! + +# Returns +A dictionary containing the following metrics: +- `min_time`: Minimum tracking time per particle +- `min_memory`: Minimum memory allocation per particle +- `min_allocs`: Minimum number of allocations per particle +- `success`: Boolean whether the tracking was successful + +""" +function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10, kwargs...) + n_particles = get_N_particle(bunch) + + # Get the tracking method from the kernel's module + tracking_method = parentmodule(kernel).TRACKING_METHOD() + n_temps = MAX_TEMPS(tracking_method) + work = zeros(eltype(bunch.v), n_particles, n_temps) + v = soaview(bunch) + + try + # Benchmark the tracking with specified sample size and time budget + result = @benchmark begin + runkernel!($kernel, nothing, $v, $work, $(args...); $(kwargs...)) + end samples=n_runs seconds=10 + + metrics = Dict( + "min_time" => time(minimum(result)) / n_particles, + "min_memory" => memory(minimum(result)) / n_particles, + "min_allocs" => allocs(minimum(result)) / n_particles, + "success" => true + ) + + return metrics + catch e + @warn "Tracking failed: $e" + return Dict( + "min_time" => NaN, + "min_memory" => NaN, + "min_allocs" => NaN, + "success" => false + ) + end +end + +""" + evaluate_field_track_performance(bunch, L, field_func, params, solver; n_runs=10) + +Evaluate the performance of field-based particle tracking and return detailed metrics. + +# Arguments +- `bunch`: Initial particle bunch to be tracked +- `L`: Drift length for the tracking simulation +- `field_func`: Function that returns the field at a given position (x, y, z) +- `params`: Additional parameters for the field function +- `solver`: ODE solver to use for the integration +- `n_runs`: Number of runs for performance evaluation (default: 10) + +# Returns +A dictionary containing the following metrics: +- `min_time`: Minimum tracking time per particle +- `min_memory`: Minimum memory allocation per particle +- `min_allocs`: Minimum number of allocations per particle +- `success`: Boolean whether the tracking was successful + +""" +function evaluate_field_track_performance(bunch, L, field_func, params, solver; n_runs=10) + return evaluate_kernel_performance(bunch, field_track!, L, field_func, params, solver; n_runs=n_runs) +end \ No newline at end of file From 909df7b055a7e5f5d4d484f8c2c49f409f143a8d Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 13:12:01 -0400 Subject: [PATCH 07/76] remove kwargs since @makekernel doesn't support kwargs --- test/KernelEvaluation.jl | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/test/KernelEvaluation.jl b/test/KernelEvaluation.jl index c249c2ce..08867a86 100644 --- a/test/KernelEvaluation.jl +++ b/test/KernelEvaluation.jl @@ -21,7 +21,7 @@ A dictionary containing the following metrics: - `success`: Boolean whether the tracking was successful """ -function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10, kwargs...) +function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) n_particles = get_N_particle(bunch) # Get the tracking method from the kernel's module @@ -33,7 +33,7 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10, kwargs.. try # Benchmark the tracking with specified sample size and time budget result = @benchmark begin - runkernel!($kernel, nothing, $v, $work, $(args...); $(kwargs...)) + runkernel!($kernel, nothing, $v, $work, $(args...)) end samples=n_runs seconds=10 metrics = Dict( From 3e103dbd88b3f07278f7231e65328217b9eaec02 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 13:30:13 -0400 Subject: [PATCH 08/76] fix scoping issue with @benchmark --- test/KernelEvaluation.jl | 11 +++++------ 1 file changed, 5 insertions(+), 6 deletions(-) diff --git a/test/KernelEvaluation.jl b/test/KernelEvaluation.jl index 08867a86..7866e354 100644 --- a/test/KernelEvaluation.jl +++ b/test/KernelEvaluation.jl @@ -15,8 +15,8 @@ Evaluate the performance of any tracking kernel and return a dictionary of metri # Returns A dictionary containing the following metrics: -- `min_time`: Minimum tracking time per particle -- `min_memory`: Minimum memory allocation per particle +- `min_time`: Minimum tracking time per particle (in nanoseconds) +- `min_memory`: Minimum memory allocation per particle (in bytes) - `min_allocs`: Minimum number of allocations per particle - `success`: Boolean whether the tracking was successful @@ -29,11 +29,10 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) n_temps = MAX_TEMPS(tracking_method) work = zeros(eltype(bunch.v), n_particles, n_temps) v = soaview(bunch) - try # Benchmark the tracking with specified sample size and time budget result = @benchmark begin - runkernel!($kernel, nothing, $v, $work, $(args...)) + runkernel!($kernel, nothing, $v, $work, $args...) end samples=n_runs seconds=10 metrics = Dict( @@ -42,7 +41,7 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) "min_allocs" => allocs(minimum(result)) / n_particles, "success" => true ) - + return metrics catch e @warn "Tracking failed: $e" @@ -52,7 +51,7 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) "min_allocs" => NaN, "success" => false ) - end + end end """ From 431ea40117fcafca962e50b064eeaba6814209d1 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 18:47:19 -0400 Subject: [PATCH 09/76] linear track and field track evaluation shortcuts --- Project.toml | 2 ++ test/KernelEvaluation.jl | 44 +++++++++++++++++----------------------- 2 files changed, 21 insertions(+), 25 deletions(-) diff --git a/Project.toml b/Project.toml index 05ccc9b6..08e07f9c 100644 --- a/Project.toml +++ b/Project.toml @@ -8,6 +8,7 @@ BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c" +Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" ReferenceFrameRotations = "74f56ac7-18b3-5285-802d-d4bd4f104033" SIMD = "fdea26ae-647d-5447-a871-4b548cad5224" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" @@ -25,6 +26,7 @@ BenchmarkTools = "1.6.0" DifferentialEquations = "7.16.1" GTPSA = "1.4.2" KernelAbstractions = "0.9.34" +Plots = "1.40.13" ReferenceFrameRotations = "3" SIMD = "3.7.1" StaticArrays = "1" diff --git a/test/KernelEvaluation.jl b/test/KernelEvaluation.jl index 7866e354..c84de934 100644 --- a/test/KernelEvaluation.jl +++ b/test/KernelEvaluation.jl @@ -1,5 +1,7 @@ +using BeamTracking using BeamTracking: get_N_particle, runkernel!, MAX_TEMPS, soaview using BenchmarkTools +using DifferentialEquations: Tsit5 """ evaluate_kernel_performance(bunch, kernel, args...; n_runs=10, kwargs...) @@ -36,9 +38,9 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) end samples=n_runs seconds=10 metrics = Dict( - "min_time" => time(minimum(result)) / n_particles, - "min_memory" => memory(minimum(result)) / n_particles, - "min_allocs" => allocs(minimum(result)) / n_particles, + "min_time" => time(minimum(result)), + "min_memory" => memory(minimum(result)), + "min_allocs" => allocs(minimum(result)), "success" => true ) @@ -54,27 +56,19 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) end end -""" - evaluate_field_track_performance(bunch, L, field_func, params, solver; n_runs=10) - -Evaluate the performance of field-based particle tracking and return detailed metrics. - -# Arguments -- `bunch`: Initial particle bunch to be tracked -- `L`: Drift length for the tracking simulation -- `field_func`: Function that returns the field at a given position (x, y, z) -- `params`: Additional parameters for the field function -- `solver`: ODE solver to use for the integration -- `n_runs`: Number of runs for performance evaluation (default: 10) -# Returns -A dictionary containing the following metrics: -- `min_time`: Minimum tracking time per particle -- `min_memory`: Minimum memory allocation per particle -- `min_allocs`: Minimum number of allocations per particle -- `success`: Boolean whether the tracking was successful +function evaluate_field_track_performance(; n_runs=10, n_particles=1000, solver=Tsit5()) + bunch = Bunch(n_particles) + L = 1.0 + field_func = (x, y, z, params) -> [0.0, 0.0, 0.0] + params = nothing + return evaluate_kernel_performance(bunch, FieldTracking.field_track!, L, field_func, params, solver; n_runs=n_runs) +end -""" -function evaluate_field_track_performance(bunch, L, field_func, params, solver; n_runs=10) - return evaluate_kernel_performance(bunch, field_track!, L, field_func, params, solver; n_runs=n_runs) -end \ No newline at end of file +function evaluate_linear_track_performance(;n_runs=10, n_particles=1000) + # suggest good default values for bunch, L, r56 + bunch = Bunch(n_particles) + L = 1.0 + r56 = 1.0 + return evaluate_kernel_performance(bunch, LinearTracking.linear_drift!, L, r56; n_runs=n_runs) +end From 3202fa2e161af2edf371a2ea0e5f7ed5403c1a59 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 19:43:12 -0400 Subject: [PATCH 10/76] Explicit RK4 integration kernel --- src/BeamTracking.jl | 2 + src/modules/RungeKuttaTracking.jl | 90 +++++++++++++++++++++++++++++++ 2 files changed, 92 insertions(+) create mode 100644 src/modules/RungeKuttaTracking.jl diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index fb3c6418..d04ef2a7 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -20,6 +20,7 @@ export Bunch, Species, ParticleView, ELECTRON, POSITRON, PROTON, ANTIPROTON, sin export LinearTracking, Linear export ExactTracking, Exact export FieldTracking, Field +export RungeKuttaTracking, RungeKutta export track! include("utils.jl") @@ -30,6 +31,7 @@ include("types.jl") include("modules/ExactTracking.jl") #; TRACKING_METHOD(::ExactTracking) = Exact include("modules/LinearTracking.jl") #; TRACKING_METHOD(::LinearTracking) = Linear include("modules/FieldTracking.jl") #; TRACKING_METHOD(::FieldTracking) = Field +include("modules/RungeKuttaTracking.jl") #; TRACKING_METHOD(::RungeKuttaTracking) = RungeKutta # Empty tracking method to be imported+implemented by package extensions function track! end diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl new file mode 100644 index 00000000..af94cfff --- /dev/null +++ b/src/modules/RungeKuttaTracking.jl @@ -0,0 +1,90 @@ +""" + RungeKuttaFieldTracking + +Module implementing particle tracking through arbitrary electromagnetic fields using a 4th order Runge-Kutta method. +""" + +# Define the RungeKutta tracking method +struct RungeKutta end + +# Number of temporaries needed for a single particle +MAX_TEMPS(::RungeKutta) = 24 # Number of RK4 stages + +module RungeKuttaTracking +using ..BeamTracking +using ..BeamTracking: @makekernel + +const TRACKING_METHOD = RungeKutta + +""" + rk4_step!(u, h, field_func, params, work, i) + +Perform a single 4th order Runge-Kutta step. + +# Arguments +- `i`: Particle index +- `u`: State vector [x, px, y, py, z, pz] +- `work`: Work matrix (n_particles × 24) +- `t`: Current time +- `h`: Step size +- `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. + Return value should be [px, Ex, py, Ey, pz, Ez]. +- `params`: Additional parameters for the field function +""" +function rk4_step!(i, u, work, t, h, field_func, params) + # Get views into work matrix for RK4 stages + k1 = view(work, i, 1:6) # First 6 elements for stage 1 + k2 = view(work, i, 7:12) # Next 6 elements for stage 2 + k3 = view(work, i, 13:18) # Next 6 elements for stage 3 + k4 = view(work, i, 19:24) # Last 6 elements for stage 4 + + # Stage 1 + k1 .= field_func(u, 0.0, params) + + # Stage 2 + k2 .= field_func(u .+ (h/2) .* k1, h/2, params) + + # Stage 3 + k3 .= field_func(u .+ (h/2) .* k2, h/2, params) + + # Stage 4 + k4 .= field_func(u .+ h .* k3, h, params) + + # Final update + u .+= (h/6) .* (k1 .+ 2 .* k2 .+ 2 .* k3 .+ k4) +end + +""" + rk4_track!(i, v, work, L, field_func, params, n_steps) + +Track a particle through a drift space with arbitrary field using 4th order Runge-Kutta. + +# Arguments +- `i`: Particle index +- `v`: Coordinate matrix +- `work`: Work matrix (n_particles × 24) +- `t_span`: Time span [t_start, t_end] +- `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. + Return value should be [px, Ex, py, Ey, pz, Ez]. +- `params`: Additional parameters for the field function +- `n_steps`: Number of integration steps +""" +@makekernel function rk4_track!(i, v, work, t_span, field_func, params, n_steps) + @inbounds begin + # Create a view of the particle coordinates + u = view(v, i, :) + + # Integration step size + h = (t_span[2] - t_span[1]) / n_steps + + t = t_span[1] + # Perform integration steps + for _ in 1:n_steps + rk4_step!(i, u, work, t, h, field_func, params) + t += h + end + end + return v +end + +end \ No newline at end of file From 865ac06c9376eba964431e00dd7a144a316adbb2 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 20:03:33 -0400 Subject: [PATCH 11/76] update FieldTracking test --- test/FieldTracking.jl | 85 +++++++++++++++++++++++++------------------ 1 file changed, 50 insertions(+), 35 deletions(-) diff --git a/test/FieldTracking.jl b/test/FieldTracking.jl index f58bc781..3e59d1a4 100644 --- a/test/FieldTracking.jl +++ b/test/FieldTracking.jl @@ -1,40 +1,55 @@ -using Test -using BeamTracking -using StaticArrays - -# Test field_system! with a uniform electric field @testset "FieldTracking" begin - # Define a simple uniform electric field in x-direction - function uniform_field(x, y, z, params) - return SVector(1.0, 0.0, 0.0) - end - - # Test initial conditions - du = zeros(6) - u = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] # Initial position at x=1, rest at origin - p = (uniform_field, nothing) - t = 0.0 - - # Call field_system! - FieldTracking.field_system!(du, u, p, t) + @testset "FieldSystem!" begin + # Define a simple uniform electric field in x-direction + function uniform_field(x, y, z, params) + return SVector(1.0, 0.0, 0.0) + end - # Test derivatives - @test du[1] ≈ 0.0 # dx/dt = px = 0 - @test du[2] ≈ 1.0 # dpx/dt = Ex = 1 - @test du[3] ≈ 0.0 # dy/dt = py = 0 - @test du[4] ≈ 0.0 # dpy/dt = Ey = 0 - @test du[5] ≈ 0.0 # dz/dt = pz = 0 - @test du[6] ≈ 0.0 # dpz/dt = Ez = 0 + # Test initial conditions + du = zeros(6) + u = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] + p = (uniform_field, nothing) + t = 0.0 - # Test with non-zero initial momentum - u = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0] # Initial momentum px=1 - du = zeros(6) - BeamTracking.field_system!(du, u, p, t) + # Call field_system! + FieldTracking.field_system!(du, u, p, t) + end - @test du[1] ≈ 1.0 # dx/dt = px = 1 - @test du[2] ≈ 1.0 # dpx/dt = Ex = 1 - @test du[3] ≈ 0.0 # dy/dt = py = 0 - @test du[4] ≈ 0.0 # dpy/dt = Ey = 0 - @test du[5] ≈ 0.0 # dz/dt = pz = 0 - @test du[6] ≈ 0.0 # dpz/dt = Ez = 0 + # Test field_track! with uniform field + @testset "Uniform Field Tracking" begin + # Create a single particle + bunch = Bunch(1) + work = zeros(eltype(bunch.v), get_N_particle(bunch), MAX_TEMPS(ele.tracking_method)) + L = 1.0 + solver = Tsit5() + + # Track the particle + FieldTracking.field_track!(1, soaview(bunch), work, L, uniform_field, nothing, solver) + + # Verify final position and momentum + @test isapprox(bunch.v[1,1], 0.5, rtol=1e-5) # x = x0 + 0.5*t^2 + @test isapprox(bunch.v[1,2], 1.0, rtol=1e-5) # px = t + end + + # Test field_track! with multiple particles + @testset "Multiple Particle Tracking" begin + # Create multiple particles + bunch = Bunch(zeros(3,6)) + bunch.v[2,1] = 1.0 + bunch.v[3,2] = 1.0 + work = zeros(eltype(bunch.v), get_N_particle(bunch), MAX_TEMPS(ele.tracking_method)) + L = 1.0 + solver = Tsit5() + + # Track all particles + runkernel!(FieldTracking.field_track!, nothing, soaview(bunch), work, L, uniform_field, nothing, solver) + + # Verify final positions and momenta + @test isapprox(bunch.v[1,1], 0.5, rtol=1e-5) + @test isapprox(bunch.v[2,1], 1.5, rtol=1e-5) + @test isapprox(bunch.v[3,1], 1.5, rtol=1e-5) + @test isapprox(bunch.v[1,2], 1.0, rtol=1e-5) + @test isapprox(bunch.v[2,2], 1.0, rtol=1e-5) + @test isapprox(bunch.v[3,2], 2.0, rtol=1e-5) + end end \ No newline at end of file From 20254d207707adf56ecf307b7ab9d0c460633e95 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 20:23:52 -0400 Subject: [PATCH 12/76] Clean up dependencies in Project.toml --- Project.toml | 10 ++++------ fig/field_single.png | Bin 0 -> 23659 bytes fig/linear.png | Bin 0 -> 26326 bytes fig/linear_single.png | Bin 0 -> 23895 bytes src/modules/FieldTracking.jl | 2 +- 5 files changed, 5 insertions(+), 7 deletions(-) create mode 100644 fig/field_single.png create mode 100644 fig/linear.png create mode 100644 fig/linear_single.png diff --git a/Project.toml b/Project.toml index 08e07f9c..c36f2122 100644 --- a/Project.toml +++ b/Project.toml @@ -4,13 +4,12 @@ authors = ["mattsignorelli and contributors"] version = "0.1.0" [deps] -BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" -DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c" -Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" +OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" ReferenceFrameRotations = "74f56ac7-18b3-5285-802d-d4bd4f104033" SIMD = "fdea26ae-647d-5447-a871-4b548cad5224" +SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" VectorizationBase = "3d5dd08c-fd9d-11e8-17fa-ed2836048c2f" @@ -22,13 +21,12 @@ BeamTrackingBeamlinesExt = "Beamlines" [compat] Beamlines = "0.2.1" -BenchmarkTools = "1.6.0" -DifferentialEquations = "7.16.1" GTPSA = "1.4.2" KernelAbstractions = "0.9.34" -Plots = "1.40.13" +OrdinaryDiffEq = "6.98.0" ReferenceFrameRotations = "3" SIMD = "3.7.1" +SciMLBase = "2.96.0" StaticArrays = "1" VectorizationBase = "0.21.71" julia = "1.9" diff --git a/fig/field_single.png b/fig/field_single.png new file mode 100644 index 0000000000000000000000000000000000000000..a8c788b318c008cee7190efe5c9ccb47490724bd GIT binary patch literal 23659 zcmZs@cRZDE{6Bt>oa{~ZK}c2^*>ud5%n})iviIJUk!%@7c7zn!TgcAdJ0e2%p5NDb zf4-mJ_n)8lwDd_G@SsQLpXB78c01Oh>HS6N;Yfxv!@Kww29vEj;@ zPG~Ru@A9*IO7e&c%zx>1pWY%6EQq`EceLFz!+`$F)ee8h;c%yRgV&8oG{aC!N|)zrroTzU!k-1l%bJIrq;v7uF8H6Eht!0*l=ELVJwp6wA6!p`EpN^ z@Moh2U;Q@CSNZw*Z#mUkfBaZjSU?6fG5a0{tiG20cQd^eA0Pkp>?|T8V)4Rse}BKk ztoLhveyq)l7cWNgAAbHr(A?N~r^+tAv{cB?&ktVUX!i4y3fozq0|O6_Dss0Wq=$z` zrk?lVTnJ%vID=R$X>45FuHN)ay-zaf_Q(^v;hJn^_TrL~&;Q0lDL6-{Q)_?z{5guh zQC6T^5=>fbH(NjIGq*X{ym&Fs`=oqrrtV~WvCGNHDV~a6L1WGE(7XOIkL_SiM6u^( z-e9tfXKWtttqM!;b>E)N6{Yns^4W_&ZO&4Ps^1%V!o{=>guM5yWA2K{4CM5ySob`5*|(nE4J|! zp4<9V)r`?fNw0KQS68yQi{+kR5)3&^Cv1~=yN?#f8x0qck&y{1*^J`Ov|^4QoA9P! zoo;V$i@U8`o0?LRlRI9V`veQ_UKZdpLTZ>(Z&A~)YZf=}`%Gm?2U%&qN@guy9lhe-m*@@fVf$Uaa zm3#N>rYd9N;(q+z!nEbS`84Pt<0bU?@X#Ht43B#TJLk>y4-iiI5{pZj{df->5CWTmcy3IeHn}ruGZg;bYNR+i#!k z4o)mAtib5+-(|;N4EK^fdi3b{n>XU~V0S2ymn4}swtlw}iD8p4 zOKayI>gwsGia9CzCcDjegpfM^`T0Ho2d{V%c?o+z@7+7v@kE?QpC5gRWR@{JcrbpS zhdk7BGW}Q#os={B<;f>?9!6nHZ9~IU>twoKGT5v7(l?*z>IMY`4f{l@H^#6jAyIa< zTfqg39d9`Uqv7v!um;7^j|vUD1%Bpfeah!7fqxU?;<%h^+%{$&ebMW%%lY)l?P&Y? z{`krg671mkZ)Q?b*+FNU{$jHY%JY}~{rzhvAwC)MtVg?pYE&vUgE^{iNw%Y8&RGHr z^vW!^=36A0qNa0NV~)W%j3??>J9o6UDxT+kHKw246tGy}GopP{bJ_efaBDZf>qp6ccQ>yGBMvT$D4_F89i>CL{l?txZi&`c~B`tkE^5uzL-5xc{bgam@xIkTsY^Kgjhn@T?9UWLWK{2r-un+b1^{_Uv1JeJ7 z_JLvP>)Z6ZIGF_l3HGA#ywhucZEI^w%=>V2y2gzeY&EH-gFRnzEx5~T!`FR!ndX4C`5s#S^ z?YXz&vc1p&8`!YHcY1O%xjU#hu_&|;>`YVB{G?q&ox|_eDyJn@Hnu|js-}8L7M5R~ z@nDGcJ&t#;Hw(nX#DMi=jWM6Dc7bjlY|I)}+M`fEnwnUpqzp!Q{~O5}@11V&L14jC z#a-SU-6kt;p8x*+yM)_%fni-z?-DpX&+a5)m_~TnDzAfen7i@*B?t~oeGDt@8@swz z4`%&H2ng;eD_1%$c8+~Bp*lDH*$^82#pBZD%P^*HT?xF=Z;3dnSwcxwrB;~Y4G57wNXn<7>PXeF#?4lEFh0BGD^HuVUV{Sga z1R`^=4Xu%kC*Uce{fgt;>vR;T6UIj)kF~Ygsl#xw@964YoowNaEY)NYGBn474`b0re&fZ@1Ea5N<+R_noh*+a9RORe zOOTATv9X~F7M7Nl4vbFoJ-%CiQ&jX_+ixOzk%Gvx;?U@}-&Gen7w2b~DV>9`@yNSA zCB?wkx87T3ZD~4)fMzUYm|||ZKkEu=yW>^PUotkuqO_Jh##Fzd1mqReFdoHld_scj z+L(rsQA1Htv`t4x$IV-}1_lRfybf$_3S-p*$;ikO5)u>@6^n&*LsmisBqWjW zu(Jn}&d<-Y%6PoX~ypx|KcwP(LuBk+~tjcNJ$`O)p8Mt;1r%d4yR zkXr`_iDgBh_6zMX_!rNtS=airLgZOvgp2J2GSq1)DA=q_FBl-ka%IE|$jk+wM223t z&>EBHy66rye#c*b`0`XD$?O|NW&O!|&4jp&!~CUW-0N>*g&%2aJFg7g<)Y-K43xc0 zGxV9?#N;=4T$j}mmzANsqM}WRc#r49_$4JJKYaM`RliDeqicF zes3~UW&C=|i?pm4!tMn|-=1-ooAbW!a&oZ28OZab{C>UfHA;NgHC+NfVH;X`85>E0MnhCnk6dmV2!SnAqgowo{@?N^P*G%3zbhCS91V7#YaEM?^?yI=ORn zic3HpZHec!`KytrD*79Y-b9(zFbVQRb#(4)k zIepap3yxqFc|Xy(I9zXVboAnMr&k94fmnTWa}%8Z2Wg*U@QfyHk#)Xjo_mAa+xcn+ z#=Q?AC@9`xBPSr6AW<~@hT4Z}FWOjPQJ2+4cRzgo{JD#B zPpnGzl`B`U17zpe(=sxQ!N}N7S5wi@a3)`BY~^XVDpA$?{rl6S?L~a4#KgpV*#pq? z369Vrc~*@F4<6Jx#QH_GrbxJrkvzJ(zgWf?5g2$WPkW-u$?QnY8?7A0Bt=&|=qV;D z%C-9w!kQuQIpFR;q^26`>gJL19=XjwlxrG;)n;#B^y*bJ>`_B2zTneKI#yOz%*<)9 z#4~+P_7`Sfd7K@)xXwh}S5d*wa~1g9;9|AA+|QPj!^p@;RUhE;Z(_K;ol8neN=C+r zhq`OR>V$Q9VS)W3x(++AE>kh%rl6n}#$33AI|dJsmzM`~RJ^}pClGX@yU#4b#`emm zJ@vkegM-Gq-)vD*{$@QNs$Bmic}sXnt{%<~IVcAvH9`o{-@i5OHaiW=2FxoPE31h0 znEIsotA{>+m`<+6}w!7*!Z=<`tPJbXAzFNgE(q}qM! z+1@>|aXsgV!e=2LhwXAqjEyzgu&gWTHatrp+=KN2-;cT~*g7+ls!B-1r;j8ihQNPK z1cLWK(jbp(!f!%DGr000$X!b-n}fa8o)9!nS8%Ge)+p(+5_jq!e2qGcijLmhENy~V zcoNpG;C{iKx@qoHxo>_PL5d=1#r4ZQc*G2wdwUT4@9yuX-g=HNK_S7)IzN=BRcvB7 z$w%pFav`)mdy#KK@+-~nT=(qy(JUDy3z_9RaPfr@WKC5%tgUV4JiWLHMirumg-J+- zR(&(_@+|c9^uP(peNBvRd%zPO8rlH~zjXWqCJ8ncm{Zmmt_Acyf#bB!og(I~vy+3u ze|oalo*lR>w3E3$P{R4Utyb)o&8)}JMJ`l6_z4C z42hI!!)34u!!=>xHuUSgj}EtfQ*hiD_1HFT-Vk_dZLL2Ua?4Ag(4b}{y2%=+;bxJ~ zBbgz>=Awu_LyjSH!e)%=Q&R)OIW;`|aO503Uvd1!Xj7~1LBpre(7Rv-t*x!)>O1`j zd&n%A_VvE67`->5@ybX(4Pilj1aN|tHFKS&xP%@pCuigqg~`msopZIh&-N$ntR{oc zl6WZbYn=b0H7K8~#E?YsPIjif%j@axR%IcTS5ySUUTYg&7$!xx#uF91I#pGo&gFf2 z_zj&Q%FV6vzOlpOaMSqtb40W2s~0Ha37kCvAB`1mrL$?_R;<*essW}mXN#Uv!U%L4z*zO21IPl2 z0=pI0FiP_|KVRkirAtT=&cWXnlHMV_mdoHC_x5jpxyJ zw)ge(o)n3Q8mc%Lz{EtzeIGH}k?;FCfh&QEn zd3G>sRPFp1oJqs!c2{499HdqSpFUMU@W!z}`&p;Z-`^js0ocs1kH0;eEVrTHd@xmH z+zdJ4-4qv2aCDGju(PwnzFC_nyTQ)B06`dxAfzr9HLm|4MO_)o`}AoEjKj~R9f-`O ztjCHBYFrH}?dQPr!q_v4+W&$L@I1{w&3ijEC1o12DsLYjIXO9IaLTU#CcqJe$!7*n zEm%Y746g(ezfOia??1HkPLc6R0;J9A$Hi?ur2Z~?&sBo9nAlZmwlo*+rsdr#p zAN$rkG~^7q4WNW`d#j_r=jZwKD~n7!VlU1%{MIhNg zA>rDBBy?)Mj!YVx4V+Z=+-*?h)ROj<+PR3{u~}e}8Htns4<3 zcaN|c0+~<8&fzdFB^BN#mQ^J`Vel91ehrk{Oag}Td|Ef>xOHxBZkx>_L%kAW64zo( z(y)jDz|xxvO{}eXyq1P4k1u)k!>XHJamN{Qzf*^ul+$qZhd#*hT2$NWbj<-^Q)4z` ztH_4K`LGrK!Yy%hu(9n_WrjU-G3)_u{hiL#ov*%b?EB(P5UO?DW)gRPOMsim3wXcT>i}yl&~MB(@cSJ=dMC^B zxW@I1HBP8}F{C^}9=EXro&x%*qQ5BDwMko`UN{4baQ^piEiJ9C&Q5?D|E{d)`FP%z zAko?%uFuSbvP7eVjEotM)E!s?*Yl9H#eS%g#p8Iu6(?zdG~P;me5U4XGGKbf=H`!o?=}q#3;+NC z1_l-l(bZc&IyXt9t!e)0rR9s}QfB^WsPC_;jpi>tk>OYrvX zLg^G0)|kM+Kz0re{2;WMnHlEwDgN;r)ZshK`~D)96>0?ZF!;*b$x5T$J&NZMgQU~CsxvC7V_Uk$Eu+W;4M z|M~OmvN9Lg#h))`VQzu~0|CmUrKN>_9xV6EX^osLTp~xED#2C)f~I!P{KDdX-XPe0-b;Fmtzb1R~|7JQ9HrCmJQgM)*IFW4#2Ig8%1I zC@BKrOh=AFAeM#L(FjDJMN$m1!fw{krzLGd+vwn`HjYv%1*O6qE7yZxM7>vnjk(@v z+NQym{LYV-AmG1jt8ZvHQ_v`DW4|B_AH2F4975}7 z%-({9_c!IU0_#VMq*Zu;Z1=;OSLAX#?zK4wU0Y&J5IXuDOuGTfv9NOlzQby|x~$lf z@5YT)aKjD`--^W--l%f{TKx=Wu9El?!k?ZHH8MSA^uy>{k6o=LZ>LaZ*NAHYzv}ft}8=-f%1Ti%@<%g2npgR#iH7@Iumhi zL*-e&${`THWbaVvGTvoW$<)~=<)NEJISmCVbUg~O(^aKN^^uq~z;oS$HF#ZOUX%>- zddJrAtAIMgrfCi#SrVZ|Ak-<^Qv1W2b7MqK53jR2;h>S<%FCtCPnh0h0^3DML=<1i z&&Synmypnte0u{tELaA>?I(+jaY7mq2!C;9F4LJxma}7NAIFcIQ5o1G1R|eb+zo_X zi%C*n;u7SjCMTq&@mrbE{zPYG?RPf&SBHbL60N!Q)gRpY*u3BZ7w%o+G7k@3)K$cs)P7sexD@`hX+ za5qNq(w0M9K%tnKEddpPiCV;7Vj&QFH1E*-_}Nmt?)}o4BAqW&-YYVo(YbnJIiNf$(kaWP7OOy5izUtS)f+-{ePjp;eUBPi%4(1S@^o@)p z{QIcb($WHW1JGh{KWspivlLMQ&s}pFnFft4MF&RZvoW?_7fSI@nVD!7(x;m7D|1AJ zJiRLIN@NRn$;SIb!i)0Eeve8iagibqPdzQu@{@VwG_<|FYd?MBJn0)8+yT2ANQ#FS z;%Rhm&{;zxCN-7mq;G7jGSX_(A}PnBI`m4a@jFQV|4r2JiyvbtXrz1)Z;)|1KG|p} zEG(Rjv!$oG(kwvd(2KR-?!*|>lVOq6_Is}VGt{V5CJ!1;)__hbfAa zJXAZ)pFTipTVE-|i8i?Lbu@*0^X>k<#Bd|zaDUuX3cI=8RNr6#rNWlGX_lpJ~1iP!B>e2~&HXm-h{?&A+1z&5C; zsjI81Y{rWfLZ`72xnFi~y%@I<7YZBiR};uddGq4O&>fdVHGtuO8RocoGsfrLyLaYx zc7?@txAlE}&%YYTXdj-RauXB>9>>>vH8(ZG4}HH4kQU&!QgVapRX@2-tI zfvvWyKYB69hKEph(oC|B%AS6pY!j}$W||>xdM9&!6^Q{9Ab|)rc64$gVUiRzX(fEP zUKappOSYY{(u7OloLJVQmtUJ9P^Rm*0q$fSg8BV5-TgWEKk&!#jy1s4N7&zZ_18tu zQzYoztJdDcE+D{v)&G20KU;&IKKacX{BMtcrjB*>^iU%&-FQ^+PST_J%NH9UKOqCF zt*cA6*bwgg%x(~Mk9{x2_zPhV*X=x)8O@-)?!?=I^){S&Zf-P+S58h3SlTOg4{yArMKtg|P(@nGZMw=_L>ABQ3wJ#MJHHv>o!k2Kfw-SpXzS0ik$)dKB>&8zJj7 z)%Bb@Se;e6>Xza%>!Vr0I}EeVPl(Da244hkc(oDt6mF8Rd-57eHTGq)F}wX;6E$s* zR&zt8NSvctH{F6EaO1Wa}O?0&M^dXn=Ap2T9shj0I zyBU>XF-aV`QMWT`Vu$k3OtQDyclFm4sLFCo^}YtO4fZ95hX1d>5n?j zG=~y9xO8tXUAe6>83u#q1QF_aKMeGPY>Al4b zrH(>E+6e$cnTbcp!_SW#7_kw{rBAMg8*x21mOW?UUmMV*m)2RduwfOtc{49J_m?;* zWV#b{?k3D;oO?EUXD1LSaRs@aKZ4*%UP$g-`D04dJ;F;1bCen7FYaWvuwgnNq^c{5 zz8;OlLj0oY*8AUInTvzim>y7-*$y>*PC{ZLB|}~YhlzV*N=}%e_#$<51++LC9M`M> z;a~drdtz(j{!kT6>phU=aeIroXmAvL6 zFkFsl2h)8U*Bh^NY0Att%@bNSviNXi{(pOw z2N8gi(B5x3PX)Jt20K}ZU`x$kRhFVyA@2g8})&hjq-1_?1 zi1eGL1WN9Do0*&hF}U&ny+gNu5L?m}%stg6G?B=zXRc4@Ucc}k;6nHx#~O*UUM5fy zA_<2s4^h_G%hU5P^#8=Xz|aHRYq|kJY}&YOGzi&}hE##k>G_t zqQ+)|A7#rh@qhaL_lu?$mt4-Sm0%GlnIlhQ5Qw-}2BMj5cS9ei{VPO{w2_f`cPW6 zfx}!ga;)Em7x5CFEi0EI5CC&|^KSDz03(x}`BV1D=dQ=R}`0%Wj3 zP5ofS262Wuue5STf6~@QBBY;jaYNbnXr4^!EG2-pr#D4HM_+$!aq&L_K^c&8YwH4l z8Fv)05q-$epr4rn+*#oa3>>t5e};zxumhfc_s4?Z6rxmyV7$%&{Y16h)zL!8&jCP` zbX)&W@GUd*8R%p{I}!Q%^)dt)^75BZ3qT)ZawA}E1)=55>i>z&H$ON#KRKTcMIZ4X zCq7jv2152)@$K7H5$ku}zX9Zdtl0T)tSn1WMTHSyI}qdmKL^a)>UxCnJIJO_Prdgu z>g#<$Adz(45z*%maNSv!Rw_55fEr)#YZZBhx0v>y)1w`LW}o8uL9C78C4mEjL}KON zKcE(8W@d^tOaLRn#=)_gtSl{!Yil08P5i6f30j8``!ys+IQ^IJw$x^8G%b+N5WD>q zxRIm|DfvjmR`Aj#1r3N-DHVk6y>M_|d8*Cl?=si{8~{R_u{2uC* z&Vhqq@YMXlL!1@+rad(Pn;-TyWA;F@Ex^F1O+f@}y+Gs83Yn9xh#|g*I$qbMP}mb= z`)AV_mdYbfJ@mX=m=)w)YM_M!>K+(<5N`qO)dwi}dqFc_5M==2`G4`wCh*2M_tCLbv4nc!2 zCM3Wx#=d#iVyyj)?8w3YsWx<$<>L|gTzd?gm9-tp((sNMjp=hnOHKQ_sZ#OK4s)r1|Hq{jo1oiIx9%dbk>@Vio}b`h6XKT%0@GlgVf8oMk88LiZt6Xkb(9|0&=qi@r7D)!OXeZMXjxn4q@5F?rR<-Q6T32SLx2JGI1;BDz<8*6Ui*NO;#8y+@0{Klczy0k)5vNVS{+~YlEqX`=$@0MjQ6E<|p`wp~N_jNfV1v3i5B#9-<2HBHdWv zpVhT)3(_`_b`C^O(eban(c==L2cMuWksI`qdyerk!tzp?y1EoN9a)2^PH+R)oqQaf zYK!PCGt#-iZ+))|cie73axY)op@K_}?#)<;MDyS^k3c;x`zz4?ub(N_t^9Gf$YbeE zf_k0}p#$iJ+0kz@zZx|#QBv*#@ImAXNiFiWNX-0K^Fh2`y~7!>ZOVvy2Z3Q37OTe`8i{P)KJE+dn7k>b4T= zKW}|BGE|P2a_IYKGGkNI1t5Hmyw7Vk>Ln}&K7wu&8C00c%gY<_`n4#Cd_WWc$g?ZZ z(vYw_kqIEoi)zFmgM7}#uG5M%P$$6M+vFZzTv{sBE%{S-F!Q$8?-l@Q0D&+A6oDZu z0Du@6(1am07cHmuWPN|s`Rd{;8?zYcP}}DZw;dPSgKNM4{AsK_BnZrV&w!upaQ(kaHJgApG}3JB_J>HIKa=Jxcq^s9FQkBQ2#>>mcoz^*xC= zI|2j*01P1k0Wi2Hu&K0Z=n&?`rz*vw;hsDAWkokGT18Fos2jn!2OE!kHLx-_ZbLw$d^f=F1~#E@{oxWVIG{z0JBZL)uCXQL9ZB)e#MfO?9s!A zWN1P{LL{oOu@PWR=psiT$Vfs-V^dSVPQcOyBM#~R(8|MZ%=W>bR@mq=62BCdA{ z9GhF?OI(@LO*w7tp+qC!j^A5IP>G>Hr3APOHwignXtYirHgJAs`}pm^RBC1abPvmV zZ;a;ZAE0BPW-ct;09!fU3R4THC=Crb+Ry243L-xeU+cf&g`^fUp+qL-|B(l@1sfZi zk`D5i$}`wlr%VL+d0`i`n1?1Q1p?klf{(ww zwdDcc)IpOJF{Za%EHR`^?>j{qgA3bF!BRO81{jog)89-&tdj^4%f-u*Fd^J;W8bm` z`P{_6^hHaKm4}Znhbtc#w*08eh#{4{IByEov%_e^euG~dKWSL5ycEeldg*!lb_MwH zd}%s_Iy1P|ir)jD6xdyh&A$;qcfKU`l3}!yAR;OU-9tr%8z2kX3=|0aRR>fFS6pWv zOGpU8aRxR1#MeLa%m4nRyniod(i*;^c9U@MCkhK;278H7+ldu}yFmu|kO3cIe?uV1 zkWz)De7@!IH4jl$g_!E*~Q%LY0a0;CZEzGt8v{Du=*^X zYZhNEQ}44Wd=UZq!5absMKfCdz?WiXA3_>IyvvC02O|7J6L>r5J8pG!WcZh`L2U?- zJn+^>hlizBqYr!~f{j6DMGOuSR>0rYRkalHhl?55{sZjPx5Aoo!*4l0&3&3qMb5HZ zsuNn|cX1Ak&^S=0E5n~8gbtf#FY6R56R}G}TEGCgHkEo`*Dexg;uC2)e(Do85T?7m0!{G+PeW0&Bg!vqoQU@pVOg zyy|xPpW6?|#-hs~k$l0a@`L%~K{ig<4CK#^(!}_9GPHTpqmg=OT~kY|xv2>VfMa0#Z+tUD@VW{|{PoqG z*qRoepPfPJs-0W-xVCKvUi1{|IMLDhE9M)^gNKE96o_wC;If!DhNnuPC&sH zH_Q|jTLI<~GEKb)Ugt+%b`2kgU>aCT1`>oULu)$kS zN8W~sk&OG7m^9`aIQ`ebYU2krVS;_&s=-EEQh$ z3Iwd+B!P2;9ZE$?`s>f1gm>>i#|2dpA-Y)z;p(JT9{eov_puTbLH{Bg0$BWGhd*GT z9gxxkBk#G`8Na*h{Oz%%^Ku{T$POKqRrQAtpPQHnLPm5|@I`yt(US&WAK2-j$AEDJ zb$(xi-vzMvy-C7deSPX&luTld@?s4X{^f^iyrqnqEV3oPz!Kg!08$oQJ#ZYMEzinZ zIy+ZjNwF!0vjiR<9c{VSLOPjB${Mc{)KtCh0IV}T)VKg`yr1#*?H~vWEGH|0tsNVC zY|(I8h&Hm8{9(VT9k!nngWp$*GmG2Rk)Lri=oay3Hb10u!BX$+>njSFTm>98#YnlX z;&Io{pI~a@?Hugw&3~;^QBqSw#!_8bSwxbOk^)n+qei-?U}0@730w$_=zaz;9037$ zZ0PT?$BL&0{dvV!$TK={S5|boKd?$FV0NbR{Dg&-%n{qp{ee1V%hC?L?*hGMd%=+( zJjMnzl>k-)3a0L!-_O<#AqD!i_16dxH$hH`V>AgGOCVfy$-mI2^)Br=e7T8dzmOdH zB`EkgMAO2h)SVYPPHmU*?Z?C#1;PiSyt_l~L30ZEn_j8825d2Ucf%q>AQ}RrfsHPI z2Qcwd3yZwCRIF0jh#fSREG~FQaJG;hD@8KA7k9}gKL9Fb3IaYLe#XYeNYS8N#>k?7 zoMQ>m{0YLg&kdI6A`f+!G^F5v@j5)*bVJ1x>RNy|aP58ro5cR?cyE1u9V%Ji=`}8^ zkF;E|(sAiD2yhXL`6x2Ft5;Q1C67SPp<0Ez3`-t~f^WlSpbC`-IagqGuk;BI@a)SXXNP0}rvPhxdNS{hk=yfD7HzcY12gtUA^=U5%YoR!c zGS#wvl^Dwz3#|T1POv;^VIivq`NY|vnv9sZ_{!?)XK5b9zgK!({+{p}FMyTK$zc+; zf7%|6$|pg}-srH*sNh8YQw2Aq&IVB>$OB;Ro*PIb(|?0oS9cQD{{V#11?XikQl8>s z%{?qE^9XJXec_c7EB-EatOIR&2eGHUxW~gRCEX_Nf-AxwP*-1wc9w^VNF9N<2>Jx>XC)Xud66eZChdFrxWxfsj`foOw@-era1$Fr6ab$E zd&VOHXBy8&0r3b`8;d##iDsY)$R9%p;lPX2{TnXm2U>A(V89UsP=V3Fm*|eXtWn1r zB8Hha571$2g2I#Y?JoZRDjp!L|MvDdB%v@h<{>(veIVEbQWk_2&Q4BVkQ0lAUy<#G za3@{$-0994i07eNrxG7m_6&2)N5G0QJp+cOPX%(OJxE7n!>)5Qfp8i;-0;>*kf(~6 zNg`HoN854CrCKmm0+4F=3~gbvqx%@)k;~XE^2-|=GFBrze5_dNY?w>LE%N4|zFuGN zxyyxEL6oT@3|@8ILKH$Onf?mK2zdt{6LQ8$_7&<9TUvrXt0P2F86A8>Xe{S3Kk|&i zLVg_wggrLg2-vN2Tmf};UD{JZ7##6%qYDnigu?dhNe~1K%c9}PI~C9@re5TZ4(1nO zNJ>kY;j8L+@L3nUBfl2)v|C& z6rjmmTo?)e8_I#-zm;mf5QERZGsYE(F8Da<@dL@pz zLymUus6BA6A_ot6FW;th;+qZoWs>Llt95&qMXUov`S!mDdydUQcNfF=a| zCYu9AK1dZ6_Lo2iKQS@kNKaDxb+>?F{zX44KJiaKj;!-Q?HUg0!(er$B&Qo^gvbg)g)ll zN$^$Gm~GDT_6yAgsAoT3Uo`vx6k7v!kQR-MeBC)#5RG+XD>*e3Sz{ ziIBRY*pbnHK=NF~gD(0Q&Oeckj4_#odEmv?n+t5e=p7B<-r}KDj{L;>E19vSJ zn5l8IyL&e@DylacC1?5%P*AW~-IRn}_e_aP1OhEl?4zytHD%r|0qIb02g$)^6)+RI zRpfJlS13T;0|^GW!RMIb4vai`baWK-P;G5XAm)NXfn`um-o1+v3Xm|058ZE+9bD9j z71kIEHT`pgLX-t+Yun|3=sSN16Ju)~yi>m*D`9(nm=pis<9xPT|>s z@C`t{*fWnGugREwb~T{v1+>|ZHwboic0gO$JkuCUI{)ie5vYhJM4-%2L#0#}8QQbN z8%n^xnN-?dbV8dbe9+mM-;>IpRVrP_%>uG!&=ewtztHL4#a&r~s5yPECC{ z8wad}HOAD;3{yruLj#e}+3{*2(FYzmWaIn%oErtKM)H~=vCHvNm%=_Ad8hiy83wTx zLd6p@H2Q{n^XF6!)r7nlW%k(Yt^9m$^y_-xSJH-eTClauFVsC>Q}O%0X`k|61(qr4 ztqMg3P}Y`~+$T=)50@mor}U$U`=SSbh!EG)CnL02Jgzp!SiHlmrd- z6%>SPf+8YJph|-!11?zSi{9{kuaHrycW8iEq2`V-~=?U=XLrqPn$(Dx7T);|&^fk#SNENS9#iZd~Q5<8z!uId6_$m)218qqM zoRq{+u=L&)zc5>0MMObswypoX=TyrOTWa0zJ2B!r76=cszGe%aXJ~V3kqh57HwzDd zC-bqRQ{Mg$Y6)@H2|?{7D=xPGS2?l!ADyV3@*gh9@8@x3im9SdMiF?GYbVndOK;Fd#AK0+`xRy4-p{{;To8 z#n*KI*bvef5r{9T2mfiUu zL6fgap%abwSWpxLa7Xsafpi;Vf}Rev!UMs~G73X!XAg9>HyXdhvJoHzVh&s1Ea&Qf+}rR$xO1+sjAJIC&eq4n41LeS##phR#)8t2<7uF(DeKKVw0za{t$&D zhnr@v{%lh3Z1SI?i&AjLLTKZMMw>jAr$P8XIb2vI?2eWpw^;g3j#ie$wEPREeX26C zi-#~{_i&+;HY1D{d>o>Og)E=0=JopjTB!f-H{oi_BbIAt4s{+ii9J=>{;sqf2A(MW zvH+`g%(CPQW8}j-F@knTDc)!-U`TPvjZ1FC$J!OW<^ysS&1!8}tl(_I5ynGU83|NJ z{vB3pKD9Tr7wSMnor>M>WA4HOO#jCH1Py6dvT3Ypgyxgy|f)l6Q<}mrRPhS%5V~Ta?}$Q*ic5{eJ;1 zqC1Fe&Z;K95n%a*%k1t2MFg1f!>qbOR7Gq-rCf?%0H#-^c+%bUfd=xUiv$YViKC&k{<%FKtq;~P2ba7UMS zUq>6rS5%1cPbdww{LL!ZfH=nlA$}Vpr~3(bkxj`QqTT$NPUAjMGPtO-jetB_6B{emZvhn zlI?t1Q>}HDw*>MS8eZ7XOM}Hh z9o?%`3j}@J(Q;N)(pV_epQkTpKeM`1{V-WXb?qvM9_ZUbH=%q2l804*rYKGvKplTW zmGf%UBK?z@vFg5qFC6=X2*gB0SH~>?zA?qJkR$+UGP67L;NPr-=Y-dI&s%QsUCx&A zFLoE(BkBhZCT&7>W*{Va)-B2kXAtmkb8DJIehK9gd^|ktfu~1HX;7aAAgnIvpP)Dq zQyh}B)&s~oYI`GPM&y-=t2cKf!SP-)bNyNVb;c&E>-_vs&LA|Zv78BcF({!O8H4!5 zy$=OOQOlW-wt_&JtD+Y)nm`HYKq3bx9spd%Lh@Rk$c82O<*!n{8dtrgr%zc~CQqOKg8b_W zCR>Le7iTzx0T^Rm^3bsm2nlB!{QPX_wJ4$X=8?Ys)UMGby05?;=U6bf4rB1df`T70 zI#R*Lkeu)B?p6}ZR{(SfAxdz=9H#EGDoX@}nIPhQW@pDwiX01pa~8Zo!jEHQWn)wK zyo(wl)cp*=)BzWi@QFalIdw}xej11Ih!14z;ngcTP zuUUO!5SfCY^4Yh_fXT^;iIJL!6>?)(MQ|=lLQ0B_vGE;^A(%`k@SXWSx(`AFT@w%r zrd)em@*-kDLiOG~31IBtcoar@dMi^?D3MxRUN*P1q@$p4+FrN|=W_sGm=GWT#i+sX zZw)vTciwJI8Q2wX!ow-?gMj^q@_Dt?Q>Ud>ptOctTAl-(17nL>%T8-_polKpqz#@E zhdU8H<`?0y09g6?UBKxK@V*JFkDZlWUH74^9k_8)YU)-Op6bQjzk|ThFastJ#lP3z z%!@M^Xc!u1+9Lj|n3pg6+?W(==1E~B0I0y=V=nowK>1Nc6z?$C&%?7OJ{e4$B z$FBBG*f0VL_w=kTD--s@$^`7N$zT>y`VgwB0lXi3Li^GZpv6eqo0;%TkZTkd75##t ziTUsWPFY%njHBUtin#~t(BL3c#;x^2HOKjg2x1~XGqVZOqql0(f5%HWN53tTLKF;K zBi`l9=YY>&zkXdmBd1ChbIfyp^{)Q8U+WY%sn*GZZ;jjkKJZNb2Lwd?G%f!F{y?YL)$beiG zgEN2LEPV)qW!TIB?SPnD-@xEG=G+?KqHl0<(F(q}54jSoY~UXxEe63~>L-+8Pfj^3hlQyGTrRSM0TW#Ejymc6JvN5+*`}aLy5&nlPqI z3+|?PAMOilnaAY*ATfef1@$K2klq9L0LcOzFLS)Tc#qg*gcz#3?0}U3!>7&_hdCH0 z9m?ln^?p)K{!`}yu0 z2%cfMKw}H$35a+oLcx+}D(!=1z`o)Y#2V`gGCPdw86<>hg@hflad> zON=1-HZ-hcCm7C=?_v7NyC`+k0Y;wd1+R(k>3rO|wBOdv|NbN$WR%K?=t{CbR z&N$RaiaTPcCxK0X9RUx3t7XCSH!S}eNI!k%OkPe7WIKm;p>)(uLzDlXCjpxo+Q5ScVxkGxQ`E!!?*1b~!>;|^3}f6sl3wC?{n-yZ>l?rOL$^&F4e2E?+;%i#5E;0GhAI= z4MQo@LF7MQE>g| zpBsb;Bp7dDW~gwdaoNEk3%5z-@^ISW9|s$@uHQ}|Tv-smx3{;zkCoL5ibP6sZbgN> z+b=3En603SxdiK;(9r!^?d8SA4G+qY%)z1e^z_Wj%R}^ngg|m=hqPG_055>n6m4zL zY2ft5`Nnx4#P7*8jDeDA8k|-{TA%Q6lY1l5>r?O`p3e4OVxF$V4Pba~qy$x;2XYST z92N~o+1#fCv?jMV2= z`*_7ywad2@v5t|bN(>CRfY=0`3xYIVt1GNSc|DYT+=G?N0CXUqoE*lILtd$ww39@f zSDF%cTQy0cWiybNWotJ)w5MPO|7UNn32x)y!778dW=mZ{VOU>-xE{2M7UA7Kn2d!? zC}q6*_|LzSrTzlfr_ap1)Bs4s~m;VF0emIhWXq9i?j{5VP~dBr~OFPeSkCu{%&QK{$dA10fSWYcN9r5?jUR zL-_snk3V3vl?G<)nXU4bE>97i`1}L=GM2z@nN63*VpB{_S1^Y~U3P>lXDM5*XioE398y|g~Of79~gawdRu$7rM$RV#$5~{PIaYZ~Ajf`BEvyD(j zk}q<+j42Q1Kc!`52u(0`f-T>i%-*Z*{8#AlV&0`e5(?RyFqbdWoxmqKmfH z@W26V6PW+qUPXd~(K{iXB2ez)Xm61M$<2WO!9JUN>g``_4Oy z8?lXt7)Rv73c(?yn zRpqQoB8lxe-~a5^EfUDK2$3NdFZ!1D>^<`adUkbo=H0vajHjpry+h!zX*@riKyof- ztfT(+>#s2D^G23{#S~mtVE0Ajf(ww;1d@Q|4f#F(y+#tzn>KIOgI2bp!tlUdKQFJ3 z!>d1>^z__r-`P)pUL*PX`8~hX-PHxFKln&WNJ?5+SnwS4@inVs8~a9-S6X-1KBQ}* zTvogN5?dR}{^H`z{w>YTWFnHF`mS9G?ZeKFj*9@dcQ2N#)g_ULk>L%IbS^!>FcTd` zUz>vro5;mZ#YYzW5XVvV(3OWut6m)Q04pvXN}B+D;mzdf(MMVRgP7!C{~lJ`WCI4{ z7V=6%`aFy@h5>7=*9|Fp~=?Ml?Wq3OlU|XHer%Ex)AjtEyHRlGU!l0Dh96N|}KR5w}TAjA`m!05BXlcO+PI(84 zPUKV+K<=j}hfxTwIz_;t6+(D8NrKw3cI{g58^EGw(`{{St*oqETr$zFCgeYa`tGXD zquG)a9Ax}0npa#k69vM4rQb_5%Ap?x00B{(=ppFMsK^nUCn(ESz6#JHinmO@!s%~Gl z20m*vh)>u0Ph+TqgB%sUQTJYXt!lMlm*J_GhJKmK)z#FzdO26BPBqGmIIUz(f}#xP zDr`eq$CvSf4DK$1s z!M;?N<=E$<1ep%KtXDkq0*;J9p8HeM(^-g2h`A<^<2N)!sS+h6C54R&^73%BEnX=V zg)Nlml-cDd8ME{&bN6jiRE+yjm}-3KBDmsMJd{Y7-t{-dp?(1p(zB965UAk9EyH4j z<>BFhP8Ij~E%Mo2n-{YxsT0P6I_Rw_$uvC|STMIi5LtwvD0ZUf4Z?Gzkh7z<_-=v~0UH>zRI6VidF9ws`Ii%mb$Ym(hRE`L0znIOix+_-U~IL-{iJjS#5WLV77e zHbzR)5h=|KAaK*Ov*kRV8Bt@$4)+>XF#1jY5L_odtVF+f_6#jHn6`b4Lx&pCuN_u9 zQTXSxuT+V@6cof;KX$8`&#uxIDL-mPsiM71+^(t<#KVrGsQ3p%f~eKBaig%M8))6|%wD_7i5a4&yYSsor6qkV*DDbf*q)gsNVsC))xl*wWt=R%TV zrM1PcxBACyJJ|6ZFf>$U-=Ph`b8@SalC?7T(Iao{Vx%`lf?dvfY3at!9IY)s!!ico zEQ)AYBvn>b4IHGpB&uG=H8*a&iDU&eKBu*&rUoRV^RCEnps=+MD{kLz{P_liBj8UR z<A5HN%FW{rLj8XWQa5ZXba=Y;<&V z$oL=TTsq_~fM})?fQ+^e|25Iy*SF_X3lgp@GBrYr^36wfIU_+VCe!d<*K;^_K9)Y7+=Y58GHg Irg}vE7n?1V1poj5 literal 0 HcmV?d00001 diff --git a/fig/linear.png b/fig/linear.png new file mode 100644 index 0000000000000000000000000000000000000000..a0d1a95f64774062a62f1712b01105a920dd4272 GIT binary patch literal 26326 zcmbSzWmr{R)a@||6_6AV0qIs!T0o?`Te?9&x)nuQT1vXR8x%yOrMr~w?zr>3-~ImH zA9wpaC~)@LYpRCmDvi$G-HGf#b^q`iOH}zSIXbiQ&w%{UJV%x@ zhf4TssIj`xeY6qJRORJViceq-7B1F!!fj!Dhgm_JSzJT;pD%s*k_9y#wrXi+{k})? z_BJxcXQ3ewK3N9&_3&_nFjX&58GS?h$cXopiA@ z=hWjb3X6z*c>f+72Zt_j@A%kurlGcu;pU0%*i*l~dY9d&$$i@+g_8tliQEn*vrV3g zxfKI>^wl^tvO8UKeS+5oHAMCf4$hksj*FeqwmNow-}no#Z{PH7Y`pxFD$?50qO3mC zo5b7L(6H2-@wBXlT`~#1tB3anX#&>F)=YVHa31={{H}*F~*+%zbyE19lT0Y*R zrlwxYTT6JiF}6EaYS`Tz6d0H#n^fn1yd@DyeYiEPMTX_EJa^~L9SI2uCe4bM=)w;^ zkog53{%s3tX=z#NNhnum6#lHv=yi2b>+37j=yu4;##XG`7#|T~U~4lP6D@w5l!|n>?bY+rU9zr#tFn^GFn3~NLaWM( z+i64H$?50=3MP;9R(C~E+h46}n?|q8_$+e*g4j?J-o4X{h)U5{uguKNYwPNkmY4PF zotU0KFEt;`f|()}@F4S($HjZ{L>3kLZ9Z0#>e2T3^XHP1XQ}dLmX_=5>-jsw+XMl21In28XDr@ z;boR=O;lRq4U`(Thnkz4?_t1<9j=e6orv?kc;WZ)WAx+Y<5_PSzm4hoYIyTKn}C1- zJx|~6C)3^C(ymhZs)eZJ&f7EAe^PF+g_f7I$qd44C;P`mMk=|u)USm zV;o^dM#dtYdeyQ%J?~3VRE=_zkd{+15}tRoaE-IEu-LBrNkz|Hnwyg^>q`~!@9yrF zbTWf6hrMAgNRWdMo7HO(qeZjQ0`2yD82#B=2O3IBqwhX9{IHyzk0ThE^_mh-C!L|0 z<-X+EdS~08pC9^Rv9Pe@Dt8{x(bB$kaF{I77ZDf#4db*m+kCxV+-(2iv6NI-V&dad zd1moYUq<}e>H z8qAWZww(vO}cnZ_=wTM#46_7*y%Q9hDI ziBrO^eWSUzx7Q?}H-P;9)2B~B`}`c`_U)-g_v2q7#PD z_}yoq&pioT?nfK?y8nKBKv|4_hJ2&tm6aNZo)FNI1Uz{tC_bPGySuxyv6Vwc5b(M< zfza8lFc!_Awzj^0z1PJ8@fIGoHC|3bjvRCG*@Z4OOPbz@Bgd(Y0byawyDktcsH(5c;-9daVUaI%$Fb?Tyrw>K+89gy^Arm;A|j$` z^-c`FAH>-x|6PLaug^v1qpx;aG5x;GdS5qIs7T(`_ww>O-kOdZf@#t7D(d_2C5?9J zWav6rZE+z!ko6G_MrbqQq39qxj^ASp8dg@t8JDvI^Q=#I?&1F?-rwI3 z2@ZDQ)3vkPC73~>K9Vf@T>)XT{nxKfV!Z~JA138-g|5F~v{1<*f-%$6EArS23Hd_M zC@R{@S1XpRx;~n;_4@+*)H9Vn=WmH6@zD2{7K4S~;d}m%G5p7?kG7_Hvld}KumcvB zlf5~)xL9f-Ug4mTL&m&nnS)hD?dKt2{RT2}9?!hPuV6xBZp@f*9EReIloT>DvX^97 z-3eUV`Rmj)G_W47AiP1OnS$*`XsQoO@%Jq9^8WpW`~eZWdaXSbxe)*WSl_Ux!a_n0 zcXxO9_ULOn0U~tIzZFO>c@7J+jPKugxhWbsn`tkjhJLlpbUcS;Ok$$P_0?rW5(?%M zD_h&^Q!)Vo0ht8OXhEylCjR{}$S@tmhX)5!)6-PgXbw4L?C9II+HlAEP%ee{Sc=ds zEv?Cu6PGyYUlq?L>!FiF0|SaYuwrA&%gXLPAj&A=`gSVKI*vJvD;slzBS)?HTTA#O zDJdyoaSIFj{b#JK5Y=E2ayu+VZNwxbNTIr3Uo|#RF*Dl?=c&N!$Vp0ec65YSn;IF> z@|kzA@ir-?zYY zl<-UcySkh2+!TUzWzzk%KV1xS@7mVf$*HPEOA?tl=}u#?h40_LFCa*pGZaL?f=Zq& zmk)tIEI8O>_pc~GoQ06gOH^Ep;`q3@QgucpB_%_{e-WGA)oDXR%3@+-Spcn!A@2zZ z2?1V-i;LU)mVA96DEQve+&u2fmoG_4))p3$sIGepXyh3Xn==~~mmWxqi_5#*GLJVY zRY$iaQ)WRGmjBS#cWG#^aCOMX%bS3N8jrBC)BX&Ojj1>7J|rQTuCkuIxVV6?M=SlU zV`E=?OtLdGt;b4y(`Y~9;q}^`JVBq#_4|@7mkc{xmlhYkHktN)lcwtE=zypkqZSbx zD~4KHRduy?0{N1gn|o<#se8VeM@hkP7O~xU7#bE!C(QYc{yp>FUlvT9n+{Yqb0K3sB%9X579iGMo;7wf zUWr^t63P7T5F4sR{4p>|1um}8Kp%vrPHCF4R*mVU6x(;`yDfVm{%kF*1Dh z>ecCM!e={h&}(9}u((*L z*W5I)7RAQJ1%L&j*dA>9M95+>8|nG^lg-}V;o=o8yMN1q$04{mEcXVq8R+TF&dtqj z7nH#0BgYG}okLOaO%qI0?q^DRkT>=AB;8|~b=;0N;tC53TLQTA4o~HpYieA^%ZwL^ zL%8wl&HB^Q(w=6LxE-z;o0#BZVWk{&y{eski7W_q8fO|@*)-xJXo5W$+}+Os5G*e( zxw*PNHx+p$DhlAre03lb5F$Lnpw4k)EF6m!GA@H!QG@IL64VWw6O~FeCE|;3=n2`) z{=n_C4XzGbQ?*W;6P{j$i5!+A>gwtRkTC(LK(_uI8rtM_c?LIoU7ea{wj#6T+HgK2 zepg@LHca=d5_xPFOdd;eA1Sm~VLn)-U5kx}=lJheNb}WMJ`BM!*US#Pr7HLP0&1qHZUtJ%vF z34d&+^U4VBM$0vpbERl1)mf9bOHVLtcCw<2T<*4$`h98j$Beb&gE3mpj$yYLqGe}~ zS|!5{_!{SA4`XH6Tf7S3-Q%$d&or#5=EFNNoMAir3=O!rxF=_4F$Ecbx*%%#eSuMm z-Z+J>j}&UfZgd!wdYvv3oGR|EMjM;OH#sba`uh6D#Ebwklwzo?VCbT)ao*O2QNo*1 z1lV-C;CvcwETE^h$|oG3#m2^lgu3=GDJaq}&yQm_S|9&n;LeQr(ML@DK0ud$NXo{ zv-Dd(QH|EwFG^0=IpWQ{6ccNQnC*2HD&+Vh&CcJAmL*mGmKYz;O8e3aWLuxZw^OOh=4~Lmx zjq4sBt^};tt+cYXrm3OvoTRL*%--H!fb=4NrpZ%kup%-t(xXgFQ87ZDv8uXSjVJ6G zAKwLx6T3`(ZEbCRJploM_sNbB8P>CG`IrOv4OD0lNufM5>4_gM(n&C9*}Uxd{rh)U z*S}qty>IAy`}>1~gOGbAc}GP;vsNL3LoiXM#MaQ%dDAOi=DBQmFEq4`D#=;dIu5V${nOH!n zHW9`OMI{tH8X6j}U%zH%W=>Ad{i$tz*cL=!P&x+1ZAXX1>N}#G*I0fCL`whLU@QcJ zo#_4l&sR+jRN+$f2K&X%vg26EOguGdyzJ6q9qPyqTkRrq_9K7Uoe2(XnL%99T&Hde zEWh#baj2~6+^>Nr2xQ0#92^^Ej+T^~!IVq?+-4BcXi)OYYcAk!vr}LiAY~O^6KEgk zo4^lbw-JbttR*slMV?S41MqP_SV^6cL?B+W*$tme0R;n92*4?G2z4eVSwsvs;D*dz zrWQbMP_D!Cpf+Y`oaF)*h=Q59H@h#aa$1v{-Ey*~urI0JS%ssFry3Q>O)U2&!A6J6 z-PIMwdKK#Q(kBQ+PP~DE!NlR&^TJt^x>y==N~V9FvmICNG1BX!^`pm_MZHYIIyyQ~ zTtKYO(ED5xLwP*7LaRHE9B;ZGhz6;x9}sQ1So@ zfprAXL?(_^bVgTQy#}HdEV??!^;p09I2=O zYC8J+*C0L%NQfbw&qSynk%JX|!JXq|F@_=l#q8X7U*iUKGMPc5LlJ_YAal0!mOFA+ zmYp)W4rXtpe_pZ_|28OXI(w}$)4>Yc9~cwpiyzjLu;tZNLVWzC)zxvxv@FH6(USM> z-IGgvL2e5i8hkACkRYgy?}?nKiW(cy`9vJqP&Y#e9v)ulxK+qm0q_;sV>vd2QOQa5z9yc`W(|Ae;^BF^iV7t6EqYO{(zBo{DJmk# zD@+*~8Te;s+0(FgHda<1hb3vkWV3MEHS+a8kay6KxT@Qnn4 z$m75da$MS;?#4Tk;*C-ji01Na85!Y(Fw=B?4l`6~Ia*XgD(Y7pdrW7BPPTU=Q&Gd5OvDE9z?*pZ<( z3i{Iik1#eRJDWz&$jWMCaq%PWZG=2is(g*pbltBfx}UP}vqq|>-3}W)PRr_o@}3O2 z_FF@j1N{8_js$cDjNZ36UHz;kr(u<0z(#67Fi-|!U z`WBK0eR1vDORSp+Wm{ZP$L;Cu^vYPHF{hTR~ zfNVd1z5*y`)PXH1*!E zb8>RBwbk(Q>=5{f-o8E>zx$7#%|XzYie-jv1@wWWj0~0EZ4{I+Qo)(tUYp&&ZLp^S z74~#@YgbumKrQ9r;qg_#!cQk1flwLByzTbt^FjW!pMGwX2LEE0x>bO$V{BwcLv;iT zW?GkV8^&J?&#vhmhzQ5c*O#^zC%b-FTwGkj;;_KQ#lg(O*<^KT0H|hH( zgStAH9oF0|NWK6!5fTzYs4ys12XN2`une-4)J*ouJw-)DfPWO&0et-Y>!Zcj4=TML zBHuf3&AdI3JGe5*$SJ9*k(4Nv76dQA z12oN4pY!uAfsov{g>RQgi}jjiB_wutcHTU}$Hxb{EqZYkP(-oQH-V}%4}9*5q7v0~ z6JE^610y3>RcX;e$TgzCC>-4NmgnW0iEP6Z6Cf5=D)B`P+Ae ztK2)O&b7U0+mrCcYgB~%^x@{@sB~->ceA{mFRj@5$wIDDcGUJ065-TmkeC620UZqg zU}BOdgSJVP_BTcAz;>i z0UZ3Ps+^RRR+as5X=FB=0CgGnV}fdvLF&^mLbfcA^3`TEQH4GJRvV7H#w%Tq1d^|1hP^P_QEwnDZr-~W#6-+xHC~gNlk>T6Sxxw=gD!)N zJcF_Cst`}oIN7Rd+9i3s#Jqf4PUt$xz(C!UOp%emukn+LtXSGI9i4Ad~O;*>l*oy_S;)@10Tk5f5 zGBZ27+I;X=SC=Jp^l5kwEaq;?Mjs!aT8CxXug~=7TRsBmHZwB=v2nW5y*eO30va)k z2UsvuWA_iJHVhJ;gH}wzXK|X`C6>4ln&<;Ddd4ot4-Et&UH)m1Q1}jrG75K}6pZF) zkByd|?2%dd`X2tJVBDgKr6hqWHV}^iUPMyM64E3Ai>}pl9S8Z(wziL0_K-|tn6zXQ zUxZ_oK|M)KoUpUAgU_UiB@C4uu(~wDzY8?VKRqDkH2RGt{5wrF2;&Lg31H8S4J#%l zCf}EHE6D3)SglYPImz^r^$HA=GNVlsJx-lb!Mp^~%xP#Hj9E#h)}_EYX(e9*nF*jD z5C8@yCTtqR@^KcuCM%H98bq9&oIoUm_}NkU_us$8P9X-9qZ}IFg(3u@v=J#h_6>QAUsj_Nba&G;esf>m zJRltG;%f5(sU+-r_B*7e2So1x?M9G{Ssi_TNCAl|2}!EC0wE$zy*^pJ4WtC`3!&(2pF6Rn~RH3axz7GUA_*^`!5#ExbV%K zO2rn_5L~&;cPxG#svd7yIk=b(-_?;5a5}U)Z*LKuy~YLgPtvrwSgX2sW~NCY{WXBS zNE*4A4kO@Byss~hSNhXoegUFB#KQWneS2(X=3D#uF~SHWucQA_Um$Lxp!ma-^s`?A zX$JdDLrZHkU#)L^+!fw$R?mrWK5ddC@K=+Q_B&#N>7pA=`)QL`8sidyLHLk}Ct5_e2$pHwyNG&~E?i`Zb$*HR^LI z#)hGVr?f*wYQT2P)Nj6Iy}}i*yeV;stn5Olqr*?p z%lBe=O7@?S(mSGRg$^G)bm&}4EjIef522`942Ck&(N|QXv{4=QETps^ZlfN17T=;9 z>0cMTMK=AwkzAK^o|$7hnk_#-^5_$G+%uN_IZ1qf!{?s&wAAGAL{#tICP(=E3jh84 z{o6GcM$ehpb>r0d>C}j@ZPsJv5u2gToMJ(JwQM>xWP3f>dM`0C(ik1p!!K)o(bpME z=`U<<40;nD9*!RFDD-@eMn!f{sJFd~dMeeVCfCZDHg)wPMd^++OWb8cu->Ewm53@U z@{zBxl#Em#Ig)?FSZO&_?%$Hv)c)$|5+eQ8mfP^2R-ZVPp{f9U?qv^w-plJpuQc-C zIp?tR(;4;|Fwv+*D(tH#S|m~r*SrG|ALOuYd|fYgIpfDRtRh-3f=1`IOM5pTLAfM{dzrLwdIR`7?!{lr`0)EH@~(36nfoES)8I@}8VqnTF;m%EyN% zR+$rNy?Gxw7fOP=l0oqmg?v{Cx2|k1A4yo9iq$7%R|q*xfb2@ zH<6p#p`jzw`+nM5&O2vX@>ed`k~5X9Srp3_!%H^?^c>g-+RbMdH)2EdG9N#XS=%-fSO8A-stAi zNFGrYeJdY4ZEe1I8ikej;#UUQhoV`9*`JB~&ox!#gceP*t`8Fm#Eo{>Uq66>Mm~f& z&2Xll^8p@F5F_!=U%&Ec2Ie(6V?^2Z~|ep%O+ou@fTJ2?P4 zW;u$2I~!|Qwv#EAlt#?npkrG-1VByTeEZu)U13F)W8cvp&1=qvpKr_CQRKEJI~QZF zS!$)f#=5?_6VzV*wJEMJJ-fvs{~>Z#Rm5;u*`n&Md_!lrSk85t4NaLFya7PaQPZ1rn8r~&>fnxjWlnq8l3CiNw2|AQ>vRHG56KH6-r28ZDY8FKy6 zFWB9kUMF2e$LuvT9nK(QV(#W?P^Ip!gh5TWEr@t-`RFkPtOj};szLrDiRwxP4Rp!D z$N|o)mJu%2gbE@$b)x?!3+=`(>vjE5T$%6N3YALBOQyy0;opZ&48e#t=$q5fr0)vGQ}{@6Q*b1#VV$nLEE zO)H>S&n>_W(&Ky^%+%!lod^>d3_01!gD7$$?GCI3LknNtp%Y)sFx}E=sVuM-aO4ka zzrMP`aRb>LKW)5pgP5q%pX$pRle`+tq8FU>>vNL)+f8QzAC#XZ{z8sbj!4%0aDl10ngB)3KqcRBhbZ zSB$cOY}bxBqdyh#?pWY=BS%Yl++biaZ%EkRal(JUkWPH?U>4=*_-OS{$DrZQ?_N-P zX4r!-Jnw!7<&r0@zH(ESXVJeu^gdh>8<`oEHe16c}vF%U4Z%Rb1qvW z(xh*!c0RKypQ;SAWLt%PZ2KYuqU0WPvW>UIM4xZv>7>#ZEc>Hw!l0>)S|$svb#sUD z0_vDg-p-aK%N_2j`A_nSRU(lgjb7v(=cZ>s{OT{=p@u}UJJ+>ut704VJMft>>XVW* z%*=A=(TB8=iCccYWni_5Dq4_kMbgd`5oyqqI7!r`Q2a#XK_p$W8>}orG_B z>eMy!AG<5ct5VuOAHFBmscPmO#cVN<(Q%BIvx?kdcq{4!R%Rs!R;D&;llHnVUQ>5> z)jPc~9$z76N(^f!;FIkzo}i1Lxnj?i9mEG(C0yYV zU$ovH8~jK@Y<_xz-)!?YUPEt(WVg$&lz~Do!E9e}f#B+y%S!0SAQj!JtpCdM&%<)Y z^|~Fx7cU$iG;!ZCzQcX`!}Q~E@d~@8?dc?EXgJ~E*4*6NdABzT3jLt#X=`h%GY(Ic zNVJl}fGG!4FI3B~O`x2~vV?|gRU6|)C&iF@yvBV}us+jo-zyuMy1MKMCNJ=6gunj} z)5%i>QsZpN_jAAdOggH(POKVbl8HaXb8dUPcc$a{_Xmp%Xvh_6{1cauNIHOyCkI8X zy4zbXGmh@mm*!sb6u!%0Nqlu|VZL5C$NQ%cY0(iYkemVP!HYX}1dsM=rz5)i(Xu`MD&@Q%|oybi4VeLJ8kg z_m9ge@8IcC(E3BHKhZ_I^DZ`DSr27|KCDC=|kDEYHSAI8oD&v2jw0kbZdBo{hK~e3%w7C51^S`wHq9EzBxC2NehSfT=$J5PeI}s9&iw;D5|Qp$Uj@fl zyD;Bd>&Ue|F-ISG*B|t!!8>#y!r)T&7MAbu9hjpz;sP&vUM!0G&GuX-+VJ=6ItNeL zkJt2tyY74Vudtg-y(Ry%b_*FIs9BNWhQBw(_S~+g^13-X>t6CqPovxCLW*Y_0@C&R z46oi)A|;2DIs-yNyC6xXj1O-155D3E#-TRYe_?vYzQ+H$K0G^K%5P5?B9q5QamlmU zs6Fn2{OOvB$HGbjEuXbqN5e`FgM(3|2kdRKwrw`GW+YvB}HL+-^A#**3`^2 zvFg1mZV1xPpRlXs>*6@7q0sxlgK1SH$yc3J)~tIbR>&DVPUL0;#cE=ls413qHrMj& z+2sk5E6sj;-+VTIXl~-~cpH~u?6<$;BOD~vUjS)NJNgD9H$>Fu-YgVty0OmsRj18& z;nq6kyFsp1j>9^*%BaW|(%L1`2HRP*B?L|927bQ%OJ8Jc?WlGe4+&*=NC7dgb>1l~ zk!nrU8hTP1ZmBCZjVJUGnJTe_KTCgAdrL#cwqTHx;yPGLtXW5PljCCqSq3frix)3w zX;*+C1YS^^d9B$iJq zsmi8M{bg&c#^g$Tw}+CE^6S(#2;{y7@L5=KB5k%ns9H``(8Zq5DyGUmA|e89W0y`T z%W9%x6{>DQY4uFDj|}4|Eo76? zi%Fv#&8_VY>5%3~X!H@`1+{5vo|N523`bB>2?*|FoT&Jv$jIg2IUnb7^ZRlW?Q}kC zNIJo>k~r3%c*Ww`qTmG(Mx-y^`kXogEnIHW0}(KR-Fy$k_D+Teh`D-+h*?t-jf7Hb zjM1S9`x)I2HmzTAyRmU*^9Sng7POMQ5Epuoy|64dcmNh($9M0(`m>pI12?SQ;PO1I zotWS4-C_(1LS8l^qo(^-7hBb3Z+TgDy!ZE%$!Aqn%;hWTpO2a-535Y9EnD^fEj$Xz zHX1dPm6ZkgGa-SP{1qj(PLqc#SfxPKUxzB5nA7TOVxpC`wa%*JO+=K+Zasl3mz=mj z)8O{bhYq>sQkRPeDZRx%(?trA#HFTn`chb^3PgTwZEb#75ZQ%+u@(n;7{nR)V!+ZF!)cP`hv{;vihbQ#HwXE+td7UOSs27uuPR6TvdAjf25Z^~sN-a|ilQ6ZczkbKU`l3k&4Q&egm|aEnt3$V>2De zSCiAyN;u4wEW$*jWQ^zn6zItOs_fd;nz8Zyoy7HxTX=2*e$wvZNp3U{=nF%n%tcnC zwuwmiT;75>fhlpiYs3;ENJfSK4GH%#^4-vJH@IEG*XK1TPOxpT?^u z{^;7th5`&21S6o(?I}4D`K*WJN1e_zh+}uc0UwdmN5wPchx&ob3 z)k8)nR!P4Kqn&=UVBuSOI;km>eAsAskIsT&k#imTu*zoo4Ah%0kYB;SR@{80nXk$O z5*9R^s~jI44PtaOxZ3NTHX&!q#j~T0>fAy^GX%SRaj*y)uMzd|znghz=U{E*V&IHH zs8*)Hb(N|{IvU7=WsxNp`Y=8|-e#->j!3M6WDj~MPQWWT;Q-8UhB%QLAM_fujTwXV{L4lH%zTaBvwp;2AO&9-Owy{aw=oIhJNWbYj zm!0gT$P)nM-c#JEMs=)r6CQg+MXrSdXMg+(TSKGEz)4!o1Oaa<{Sv zQ-?eMZNIfoS!?tOl!|+|}2B$`S8iq#Mn z(Pfhb0J|{ZqQhaG*QjXs@3V7q+JMWB3eqJ`Cxk6CS#1kq2`my&b!)Vlas0pwc73srxuuPXSQJ?_HQo4{z4_N>h3mCB`jW)& z94z|A&v6vKxPFpp9-}J|OddRV0P=h&sUWj0_&2@5s0bEu z4Uis9o<&~%UT!m&QBE%oR5{tACjNfpU4KtRi`Me~{mu9+a3SJNh(3Kt{)#$M<+Tn% zUP)Z>FPl?0+lqkppS<;DsW@)z>o=jdbHXB6^gzS~2@#Cd)P5zB8$W8^tzswl6@#R> zsDgqR*0yU&2)1q}KHOJ}e;*(`abCvW6j; zh6Uezc{B+!!0nqtnFMG6mrgdzfzAo>@BL%*=kI>zkB)!{HaGnDcv$Ck9^*e}^m$-He%NrPg!cUHv(Sz)R zI$+k6q{R;YX{_gE^7zPktYTY&YyvWuV`lVC1jmP+nZ<^6u^yVjzZ$%>jDg)5C{r0c zqXtO_^LuZ-Xq6x6)sC21SmepmGL9=|%aY&;AVnbX%j>^+^9-!Fpd94BHA2V-U3`yh zIalk>E?A5or)50jeSM_$=rEhW6l+QRrAitfYGgzN*stwCFav++M^Sc}{GC;AaIk{N zOG8EF2zEtaOF>yuou5OY)P($TjUb_U=P!n-_RmvR5^Xiq3OR606x(~>a|^nTJY zo(ARY{2f*U7F9Gp3)kBl(Gbjc5;_>6h z9$>5nZC#~>?WT`Ke-t|?1oSLj8_SDSN?)jr4wc6HoO8>QYQ=?eI-{%}qThZG){bO8 zSJ3lf7Kx*>R=oL2Ys8F(ob@gQeajHP@TR-MEqZKNQ2G{Ep@gLT@YEb%s5JlQZsMlLf4? z26oiaQo9aO<8i&Sm3|6AK|uhY01835QhefP+M9TKx||HIHDWxx#nn|;FnEFGlGE%D z92&TS^abBsU5!FQd96y>J$8yRIy7Lka=+zj`<$6gtfeosvIq~wfih(c*00<*zJTCh zFh2-5u0^$^l_hdafGP<}9q3^nTfG=m3)Eq0{tl-=L!QC#+L;rAlFHD~5CRk!>_FI- zA`An4d1vSCsR%DG@9797BIo1(1tdk^6s{$xZ1aD1ho9tgn5Iy$V&$Pw3DHJ&fC6e_ zVNnPB7X&JBzI(2xSXD*n`GA`q#+F&9?inV;K~g|?Fd)UDs@mF#2?@Mj7cQ<{IST1; zN<&H0J5@fXRP8%h2z0fzr3WkE?3y#V1z2s3ST(4wr;Ja>TW(3!_V(23_~Tt%EB|{M z*nNLl;P)H7En2(hDfiIn8}5f(e#d#>wW*k^{4`u1SLN3g7$vp0)J(b=G!kQCjzEP2 zH!sq+=@61BB`XUD1NNA>!A$@Y5p4{vFk1@?qK6L^e$k|vYXT%oR8e*K&uzxo9$Q7^ z(`K-`wx+r?`^sF^;@8Yaw?g+7XCg9NY1$N&skAkslBZsCs5KXzxvvZbcV2zaiTF##O4>V1{9%~oQBt}Btj&n$kjnO+Xxj6I|J!oBjcZ@ z{qHr@u`%s&V=q4wyO~$0xGnIIkZ^TlW2)3pjDaCPA_$6dl_t}H{{Gde+I_IGfFD5x z%s5zB@>{8hl)Zp|-%Pi(EcjLkl73z51_>%jd!fhROG>Eg6-Cn@E8kG2UlekIA{^Yc z!s0Jq`oQwaP=hKB^!Tq20jEH~db>5nE&MxzN(v0@gd`-ew${OY0@S{z?I}W@4vDpR z8b*wMKHfa*iHrGs-|Y<{d1OBVax9gm5D@r2V#9b5s;Zq%3v zL1W!*#Q!;LL}sUnUGRzNsWk{MJ`SO~m==0iDj1fI~r z3)C^Qa2#zlS=&VjmbK@_FFcbGUlMkBd9NF}zw|j=$)QtZi0!jDb6pJ<>>U#{p ztyw&x7vwc;=d&ho7HNJSi``MfJ20E@*2}JKOa2dTpwJ5ds-VT^reh=IZ_)EIc}{Ng zgiNlShG^hQY@~w~BdaJarQ2LHL&&#^4+>=1Cg;zl>M7)VO&3d0v0{(- zTLzSi2(`Z1M)CO+k?}Lz_Ix^JQm&Zj@UVu=+U8f?_$@lrcvSzE8|(^zSi1Rxg3qqE zzo;g-j%M&q+IzkIK5FnsKKb_iK&BKpV24%E5y}|5lcpLdYUp?SzDA8RvML>waE+ol zP`>=&iR}kvh`bsJLY_M?O{6@`7W+Z`=wYQ44vu{>!IHR7R%h)BId@T!wW&ioiXzq=4uI^Oelwosi=r@=Z^xB7 zrFBUXf`EEX?!U)MS&Haj4Yl?nIiBZ=T^y}j9qn%y5<*Y`8O(trBY|^N6e>;EFlMqU zW2=)$f-X;VVUHMk`L6V2ailHWwV|Nt-VtZNqBA#0d(c=G9sN9M>Hm5G@X?ZOGtkm>RL8ZsFE8;_Jr?j{Bqm3d=Y&sM(6O?XO{P4=wlgCjss#7Y&y`sVEfE${dggB+sFCL!!5<@BNEad>c+RF&Y_*TK#~ zB^{L;%6iB*5P3?Gklgi&#EW}>w?UvMDR#<}A=Rim?U*~wI82aHr(U-a@20ZYSAiSy z{8N%y1h=!VNsporiP7Vrpt?I(RpS5YTn{HCgn__QHx}9E>gc&#dbl zilgb}@INf%#KBOg$V!sO?Z31-JJ_44h%}k;IumFvbMbH_xFc@}oOT`-p$t@aNsWX} zFI=lL3oFOFWwezTkiSN1KzV^X_uV>rG9GSYScNy0Ke{M)62SyYJLMrXy%x(v-Sq@- zO^~mW?q7t2|IFPa)AAZVxHp9k`Ri9W_O!2^PJey)C{ZuHLDJoR)%Ltf-dO<=e@6&4 zg)=+=t`+i6>Yh?n5MO%eW_VYHvFy;ay+ zZojSmj@W8$+P_47jTs#g1y9YH$^5U~4pL~>)^yO6MN2CMZcR}JDOx44Cw)}UeVE0f zot>iTUoiv7=W9i%h$gUeq!4{nEIU=;65Iy*}xA--LA)=gtDiOOb}y}ItA>hxcu51_M&l&odj3Ouz< zw&L>+2?7)kG#yo)MG^8(U>)tDUXh{kx!axi|KsW59oeeBcP@M*kL5Oy2&c4Z&UyhG zk4rssqC*BZdbE`+VHF@|VIt*K6$!_WX=R)|y}frWC&>kgYb%wZ$&{PWBx~)y&|{CK zDW437iNedr?y`ovC&<1igL1TkNB7a_`s2Akc)gp}_D+gP%QmM^8sl?r z`_(4Xu~3Z4r1jp(P7YQz@3e&CG+;x#-aIZeQSLJXRGNkhmq5R}Fxfy%> zmwilwli2F&IsD161k3rUm+%TNjYY8DF9k|=db?cM7Dw?GUm!e%!=HHgp`mNcD2So^La0Ow){-;R zhW_zXvot!dId)g2)fthUUjr>Oge>CEa_{Wh2b0@#Q$_QCr};>9kiSy_9nYd^?p$s> zwrX^Mqa?8*FQBopuIq+R9?TnuhLxhpLVu$yVPA#-1%KU1Uj1W4P9PkMXM-at4B5A| zpN6fEZvJ_@XTwB7@?U$n)UrZ{PV+5y#4Pi9VzOjaO^#IY+rvm{{HE%TDGmBxwbnfQ zAYoa5#rKd76`|+DB%JdL{)dRNH)}un`KQ(r)*cGanB1e0K0VzOyrIK*8nyjMFZpPV z84Hnj<2Jdnp@XUP`DAfvWT}s<`l$Mj^ES01^EKPPXIT}eUSs8rmyW(V>GB~GLFkKg zze|QkI|vB&PftFfAdEjY6Ua05vuX^Lt4%znV*9&_B!2VQpiLTKef^Vk8t%T94IGi6 zaSuaZn|E$r6b_!Q{$p0;LD_A;7Rzs>bi-ReXplO2wEryXkY|W_Std1{ZF5MnzHg5D zC}y9pFNBcaAjmddwK5o${2?88^7L|pc-euS9elh@sS?H-!EHc^>R)OFX#0@8zu)I@tl zPKnq@+ows2$+#<;;XH-!{CjOSmNpb5y}=Ot^>`Qb7)isLlwF-ieg-A zn+$uH>QaTy^)^7^3w+0X?ORxwh7M2&l!br)omTIV|eq&bMXxV(o zI#{ZU+D1DRQYqrWdosVyBj%&a^*{2eRv99_#PI4m#nEs6tlX{a9@ZfMo)^aPu7dvV z;O}Mga7@c~!7pVm+A8DGCJst>Efn)02xoL}w$V^Gd*J?XBhjR})bQ0M(U^`& zoWB=e&z)b-jPSXJPPfrY;$Lov8o1=>dSpoG*A2DEbQLE3pSI3C9P0ON|C2^d5~GAH zS+m8*k|K&sMCwDyk_u&Mv1cbskv&8tq%5h(o=Ayo5!oe@rED!U*2&&;&iDKKtTkmfFvc+G@^;*U23Zc=AvnwNVDPE_@sNG|uV*rWL1*zOuZOKy|oEc%-jQOMPb z+rn#G`L(PLYG@&pCBw@pAI42K zv=pD()Bk(-uTL*_PbSGgn#&MCuDF^0G_)b%JzLt?G%MpbpRj*j)FWE%K5+TT^F8~u z0v>dT9I*9AVp)6Ig`oB{T9%%MvXOqh(fu2hWqY$eE&Toby7Q%I%L~@GcgQ6IDk3@S ztfYw|nnot<0Rb`kh3Nt>U+7fXJafy}I{3oqSMZtbaAw*5(kIqhM!&Rp5x~H(jwocY zz4verBZJ8xtBbN&{dNf}9cS~07at^kSm9?VOZ+fH9%|%72l@tuw02l1M)he5u=oKL5-2lY>Br+rm!KB<~R$`#pcGy@lgWgQRgZJ9TBe z`@taITID_BorRY$<7#m6?s*for z586-MlZ*F~82|k|ouOZhF?gk0Jv{lQ)u*AdRoRcT49epbHLNKK%rS|#u0IJSv+ zqj!1u%lfPbPBkh7LIV#wWsxmn*LK6`UrjyPdc8&|dnvxx(zhITYka&ZkHu39#<@|( zAg8YPezUz#@?;8W?VG|%XijeW#&s&(u$GG7%*ZJ9A5y=v-M!{vDE;obj{7e?2xA*) z$6r@i#cv94;Q7k8I`&*^@WJJp+i$+YeD-#bj9bO@`fIe2xqwJ^n&L|0vX^p|fImi! z1EUt@SCM+l^oHN;l?KPjCoi*l<(M6fXI(TTNU2<`fKaceg5|gjIAap zMV8-Xw4Kwqhxjn+*AIvr2=c-Lg7bq5(7KjFaE zmiivt$Ei$#pn|fp#fY1FEm~e}u76#4mWNv^_Ro%cIj?yd^@R>hU3xn{f9jm!B$u)a z=c{`sr?xN?2t$q(b*8UqevY?G7fOZ-gr-y&72kQkm?>o(%xdvoK+EsvOhv?Qwu(g} z-b0Q35xLtyEnLxOI_4sEhmGl09{-X_@;~Uo6K-wNC|`ez*-|pIP;ZK2+3%7Tv};Sk z0sQ416QjgU7+=;ZJG?8jZ@rjf(s;7_XXUxoT~S%|8L%qRV4MM4Sx(vXhdpY!_bwka zi(Yw}K|S&QdC#t+EG)7Mn1|ODPu>=$5Y<`uR9ywfY1E(HzrtTKex@0_%vScz^9`hp zWIumC3&*18leb!ihTD^y->ERFI(&IqHR?RAdn3BISRqU!z=Mf*YH1+}ix*m3rTPQ%^c7D7s|B=| zdi=6G$E35rKN2t6)!pqdSiwhSUs#wd9n?)x-dogX@RS1M0HJ)hI3#6+IBs?*<_S8H z0`WT2EmItDgTa06;pWEI*a)X~adBML`CIPUm1%J1Jbo-XT7IG=GgDKF1J=4>J|f-K zxNqOS?vEeqR7fn1jg8-3UxkM=4XBUUpFckot+wWL^=cLVf&*G;esgkym6h#|AODbG zUNNfrO6~-SjR@jIQd-(qva!RJD{^vjJ3b!p*V`KQC^t8fa`IjMQ`(}8g81J5UUSkn&gzbi4p_QyTFw#@=)qBDbNO=53tM9fg`%m+IAAhD$5g?O zgzhXP20OU8-l{~M+a)H}3Q`u1u|a&QQ`xKv`}Fj1wA!~6O5T~XXSc1nj(ylsKHP8? zY$hxvbhScOJtY_`J8rd(!?&Wcd$+BVldPoVPuQ~>U9Os5yY~9Q12cG%O-=bybnEdB zFG@@O*A~YWxb16#x1gywSYppJ5H?cZ*QX*XdPIO+TU*<9xfreI;S}vW02J`^-E|2- z#Hkh`HJoi48X8_+{M6oFh1W7PFc8_bD+SauolJLES7t|HCO?gPckT?2j%q&XJb2&$ z1ST-AOzVoML0EDc*gz}zGz=x& zkw)g`(T+O>^eAagxFeYGwJM?Ip#DI!;2~bK7jZG=fep#o+1Z7K z)41lt6bcKk(sd8svh2J(RiA~a|1v;W`IHsPBgH)h4NjdxKm9x4E%;xJBI|9Q!qYHI z(>oJwZ70f~H}t`$gqMcS7K2Z}W8i}b$7n;|gr-GcV4#khf}OQ>e0;ncx))Ha`mN4? zqNI_j8Z#N`>GHTUBO@ad6B8F65_dck`%r5k7g8f3E&Z{h0~j08Zk+eSQw|maA1^O_ zTa%NM=#@wRs>H(aiorg5H0-ogR7AubQ`g0rQ5BEh_YxDOflxaxIvnpb zH}~gH!ri;*PbsJTo}7$)@rOoxfF@R18O}uC!vq$uErR15cW37_r4D>iSG0_5ZEbNh zfB5iWE2~En!kRWVHZ2bhMhIxz+2y39@O{2~@gfaSA`VVY;JLnS^B4)$NXI%YDw6m0 zT@4K-<(LY^tbm(_kOIro>{zp{y*-vyWK@&`R-LWwv7<*piP{@gs70iyYl+^mj;3bn zUx97vZ6R-%1SnuHDsd&v;d3Y$o96vwr zh6Nxidx)$7(1tj>j>uM_>3-I!N0z6YopFu(Q*<9HT}`)JhCc6y>k^!0E32#M`ANrU zqi+Z78eJfmnksO=I;sGios;5mz!DCE9aXXlEgCxJ2%FZ0r(wze=3It&h~SM5AMABC zyC)mML7}3)`GbiFPjJZI@Hz__nS55&h4Yw*uzdkr`8{79w-0g~;5V)^AJEqjih5Q4#&Tc^OT;1GYWiRks^~QCwgg~H|1h*CvRtPCa#>T$g^Lk|0R}y(7W50?D zT688Q2PGuJs?Ljui2+f8QRcF3ZD=@Md^zTeWmGtfy!Vom>G(n}=3W}in`p#Q`$}bG zWt|YhAzj30!m;^1MaKaxe&3tMpJUK8{4q9m(az2X4ZWN~Y}rsE;RmxwK|uk2b)n>D z8jV%~^3$bx)SR#s8L zGK!0h?da?bJo|+$h_;G$WKqxw0WxMMkaDS=X!(PBk>#&{j}l7rZBN%M3X)Y(>HGYd z+td|iJnl&MA04}LsNp9`nf^4`l+8=Xq9P(vXG@q4)!oRb8?b_u`}c3H35pYn zhqa=3W2A3FPzC!myz=^4aZRHL!$|#^P3Is<~-+R=3(TUp3#QVmrZ!pFgo|vvYFd zbTV=C!OVG$+83de4q}7(duy0egi3l_1;{Op9MzZ<{QUf`OCkJzQ#2a5W|-i(O9y=zv`u9yWR?zWv01bXmhY%0LfnlqAZ9nAZ3oM0<@;P6Fv;){6OtL^n*3wd#8kaE~?@RYNrKJga2R%ZToS*MV#|Mly zjiPvZQ$(d-V53mnxC=pCqWjyIb|ld!s9M3&nJ2|8%Vw=E89_jV5aNK z7rV=sLnE~gXX+;>B~3+&C>Bv)Bap(~sXyP})5Dcw^jVSbWRV&TdwS;NwPVLNcYC;6 zX!wn9&nCxeiy$Rw#sV2F^IaRQ*!{M5M$kKrDiovbwUn2h9x!j3rOe_#(UYS;ZwlOn z6h}tq_u9~vmfZ$|3VZk3+u7A#1j`7WW~UFrdRRdSg}8g)?JO-bva%#9Vn*J5_`rN^ zaM8!_(xoRe@2{N04D7W z5P)C?hZa!zd4|Mp13C_UPgtF|tKY_&NB17c#P!q@&eax$P;}5%7F~$y=syjOj69Nk z5;}lO19>LB6BAmBWAoqv=WXolT|GSuLsjdE^boM~pm(j6{4~ohGz(O*1NiD1ojTPC zVh047^xsNx{K8Dubc_T3(@H)O6Ggb7ztZOlt12BDd0aF_7klsp`9yQy`R$+AR{soQ z5TN=)7L;f9hI{aK21XbjQ*Tetr_Y}4N&Im0Cb1Y(y1$`8Tu`v8xmj9NbORnW0%6c` z(N4U{=g&#+tu9(wrA{K&Lz@k{1PDY+pDNda92-s+!SpYBCo4Pq=Z_!nt>p1$kMytL zW@lzv8yIwfE(yM6QgZTi)czU3j?wu9w4kCw_0Id1v1G?K8l*U9PM-$C0azyc{#V=S zpYPEl;%aJVclSm4L`ZxO^+ogU2U92Z-aQ~WOKm<%`W%jmXNw3O(Aa99{-3px&;>7)q$UJA~ja1yT$-ZEs;$SN2Z7@$4A z+N78Sh?3ZHaU8%`S8QyANFDwCzCdRY)gg9ZpSjV5Ee!#nM=D;Y?jJTOU>sy*o^<}e zTv5v8F_rOY+riC^Anf`I+sww zymk%_szS@$&w{{WB5<)Wxkb_c<7xcA^34C2TW?_!#NRSE&>wqUKaie&AIee}Br-h( zl>_4rEEkQ%m8g!R4*+ent~|jq1saAgGm^Cql>k1&cUNVa(c2PdWcy>He}8H+dVX}X~g{va-b6oAdh9-Zsc%eX&HO-<0l$aAaY=I56d z6mUgKvua}KKBYUlo{DLWip6u<0_a>6K+(~yJbv;}e?V>1(AfCOcew=RNJO2Nmlu=}2X?l8_#h=N z-cVDs{_G-3SPpmvQt;rRG0<3UUTlfB>?uwY4=QpVrpaz)AOP#;($u zq5=oHFdXR0DJ>R-sK(3^$H8>~aFTuDXm=>AHL(`Cq$0ehdMB>{~U%!!$?;X%?&!2BImE0Nz z2oH%E01*|6pDoPHP-!3mY|q4gC$=>Vl)tQs3co{#4goaOl=5xb6R=T?5*+HZnHhj@ zaiZ{@&CJ5$8v-92F|G3lxK%)?$W$JXlVbz$jXdA3#m^R|0Za%cNz8jIaC#aVv@wZ^ z>ZrwTH+%M`c}vvN&e-zPA)$wY($ul^=;@tc@v@7}!wI0FSdw%^yUdF=6`h$yJ2>W;XcDLB6_ zKmfH@oOC)8d1S~5{T0Zse*ZqQ@uqrxIO;_oRsLlUjS}+jp29#4Ay__kq}V$+loS=w zD;;H9D=QI|cPI4pSnqDT&PE(3-4H_M<8H<5f-eoYME{O}GiA=BC?l14TV%}~EG&w= z=WSe}6zau2ZEcki7bn>RHaj-E2oh6ucWGhaQ5_x16JH-6ggRuP?Y(qp6g03J8mZ6O znXK!=w}Z&X8K%+G(; z09hAVEE}=#`SZi|j^Ab%k>p`%QPK)>a+t5hhle*JOdWlc_TcFIh6VtPp%nwrRP!uS zX;ca3X0xC_fc0Cup>3a>oJobxA~4e;Tf+<_`M9`1G34gu)kv_hwcS0Ubc*2N6h#() z31$U9EH==wBXCida42vVigDL7_>O|(qF||?KZd-8jTrNW(9zr+sl7r~OTdDamd-6L z#RzqGb=}r}gvo0s5nT_n5(<-=4JTZ$UiC7KMTIgjU^cgW`c_EDMsEQnSHu8(PXQ%O z1Kh^i+Ehz-=dv$=$0BMsnEll^HV*k0c>p&T7qhPnf(nsg9gpa&+pE{FflPgznYnA( z@~d+hhMCXF6U92h`}@X5P@xd&`F*CUeyyD(4CP;^kl1lUhk+}twE37VQ@JwJY^x&@ z%XtRV)%wyVV)bTeQh>JgkvX3WS$MMm0frld+{Z}gj*Fgh54v}cYl0l2EmGlR9hvj{ zw}V|^Q6Knjjz2q&VIwe8El56i%^jd==rNHLV11#OfX>s3)vz$aJ6Kza{$>%3?%o8iPgV<|0AWEFlBUtbmQAG9UWz$ zJTdszGD=-2a_I4VqixK=4ct3>^N+F-v-0w~KYda}kkiQocoA_EL&h_3S6WI+TciW( zL2I7|q+v3d z0ZyK>Jxqfx#*I*sl#!|5*VEPIiYH{^ZVt?x!!rC*C8)Q0UHbo4qlt< z)I;uk`51yJPUxHdIF|38dwuSogoqXpERm#@&l{pLz#*I4F`Q#yazo!MLM9a)nJ{=b zkvHC)3?gOB!-q0`Q4S^ogMKuO{1@`<6=@0BI;aNTUkVHjXbiJC5=R^ z<}~-2ZuMWIn=D`|#%8J@C$|`J4S=tED6;Tf8?ddl-rt|`_%RLVj_DBi#2_&S zoff5WX=y3v_U%A(!lT1{br`Io%_P#)%uIMx)Nd;FFGR99>BO4<%elwa#s>U2DjJ$E zUc~EUnjsb)H1c~6`ZMY*2?X%kS}R!k9{S9LP3XJ0%z{;=r@B~MQzI-TbxT_W-}RuS zp>f`L=Y)xuHw7Aoh6Ez&mR4q4 z!LtqYi~fT%#q`oYf~54vk2(1H^)lM&1<6+@oJZv6Q;p4igN)2$w5=>GW~z78a&qn1 zQTOg0ZGOJ6cLImB$lM^$z3_x<*H*+>U9f$A=_;W9$3BcCeIQT<=c!1M?IT+5KkJ;k>{^$%l$|vSzW{#rB9T|aFQi7eyy*C1AIZsce==y6o zfk0LV3H$KyFh-J01b#DF-kNENKkU`3B^(T4G2x&P>*%x;ZFaWrZDp!vbHe6zvO=VyCrdb_C0MT?|Njqb|IZ|P*?)aj*33QjiwE%p!ck3K KjXcWvfd2u!&V>R1 literal 0 HcmV?d00001 diff --git a/fig/linear_single.png b/fig/linear_single.png new file mode 100644 index 0000000000000000000000000000000000000000..fd7ce3b5a86264d02d6414e876fe131308626569 GIT binary patch literal 23895 zcmaI8WmuJK)GfSJkWjh=MCmT2q`Rd-L`tMvx_DtEF_AnqGo4L8eqn{V#$`X+t#vF!2{EhAD zgTp(f+Zv`34{U}FG8NxE2-o=9X0_Wk^Fnu%m@=uV}#Kc_`j}+&n;W#Gk!Od0eKvnTSQEm)y-STO(y#my zZnLwuM~7rLtSKj`^jaItzINkg2V>3Kw|&1$Ot+`1hr)ckgem#$@FQE>8OepZ9H(4P0OUPn-G?CQ0r;=@%StsGRKx0NmMrP*XXW2-j2H)|p zKOE1>!zLSIV`EE7oE9DKYELvy-2D-0JND(|^z@0Y?$O$iWk(E6TU%RaXQzgShJeG= z>hF@prOvqO5q1s^Sgw_$W545foEGk$m9&5czcY6!g<1IPXxq`s>gm&`cL)icFV9b0 zR{BIechW8UKZ!h17;<%U`z}M9Z;$>;g8Sv%j|%%q*0O?13rowfT($daY1!G?c=tpG zMn@CQUX7HRD`zK;s^j9~y1Tn0V@gX)+oSJqPki6lnQwme>Q&UPSZ7z)M7>Yt>(|mR zUw#V?Zmo61AI1ub2{88kC+p^RkfW0Pk-n&bkuWn#;%@7k2m0A6w{Zc=Y5-#&OJ)OFt&?+zZ78$2OmHO!lY$lit2Rpm= zDoszafZ8cRM{jQ`ueGMS`oKE|<*n)3qb8UC z-Wg|pe*VVTS29erT-8(x?&pD1#eIE!uw$^hrMFz1ozE{Wh6V?pm0SI)_1JcpuIZd% zja9fO>YbIFJC?7N8x#}-hLx3_?d9pIFe!0za&qn3H5L|@XV0G1dmlJ^czmsG3VE)_ zFCt=~t6K@@J6K=mdol=LZEcJX9{dAGXl-p(RaKP^#f=wE?^aY+zIFR{PfrgoKmXQj zV`FBfX|JJ-tZZvbic)o0_Dnte=e*I<-cCkBA}B0uYi&JUN=7SE>p?%g{B1A`D;sxBQua&mG?%H)q9^S^$b&6JNes`qA@Qh@VM z74~>xY6?ziZ)bOU_?OL3nze=dv6&ftcPUs@PEHOE`^fOHE4ZLxjVl%oPH$)D10J5m z1Ts?6n`mhC3=H9|F9ZZCVUM+l8R~WQ^z;l2Qovhk-Tyx1;rVJlq#>K_~|)vt8mi#}ReT0%oZgQH$sU-$O*?(!SpC2JHdQ`gp((ReRG z&CJeT)8&qJUZL{x``kF7k68SL3Cb^ier-Q>6*Wi?tyHa7v z$&;ONOgOi1SGkFuZSri5Lip;A^1j1sr4Gk5Eo@lnKt;0@$<>f&9}H``x;%4~>WCm= z5#=a(P)eeW%hK-d~?0D{mR0k4^sH?l%wlG0huF86daXeT@ zN5`O}wXMxr8KNAc-vJ3}XZCcKVjP5>FWK3x#e35pv#}HqqZs`@FNGXF)zdSqc9yMp zS7O>uD8*@5Lx17){Q2`ArJInCuxJ7<4#+C6%QF)@%r>N&kI(v_sXV)J^ogB~EzTiM zS-rYI$Zeh8?^}x3-ZFty-zQOF=Ou-4J~H;FKe*p)CShS=U7Q^yPR>CJ$!6oeUFI+? zL`6k4P9hgYp`)&@KDqH(5FdHI=r8`3N|^t_gOax+Hn*gFe9pj^Qia@DMMQj$wx*{f z(;+=5>ef0fhDcCz^YWfAMvH?Ze*XNKl>O;*b8}e@?P9E2M9il$PdZM+mn@CVq%wved zux1}q(?xKs(2x*RXtnk0OBL2VY?xAB{PV|czA2bV?UO;Hf2xlvEScI6JWBWm2JU&| z)mdXqOw94|abO@~%jnamPo>EVL6C^xv>HNjsj#uI1ikmI>icc%C9U9C?CeA=`%=L4 zZen1#%pOZhO1{RxyWIHNC?zHJNz`X~d%NGS>}Y$|_;73Nt1%fi%C=zdaPaT~Am2bl z7r#7Sg!tgh)`4zfWOVOnAZg>SLgxP1XAxK@0|nFehdXpWf(y zaSG{6FQK=iW6qz5U9S{riyv?_?eU`Isj~9Md~@iaQk7*hn0|Bf;*VE1XlQ5vw^&?} zA?+tC+?<_-{Lei-J&$3h4)*tvQuALMFAH*WE3JoeAlDnC_V}Y8Ty4<40kXjKv|syM zs!GRMe+b)fgH=!bAyAkHa5zZH58>sA#lUpGd0e za*2$~XsX6-BlN!i2Qj}I*Hj2K@9-BkH+=z@{r>$MqL#`B?pOE^T~`N$j3{tkQ7_GY zw1E@$KMHtqhQFZ#!?+%GG>*_8ynqzKeCi< zZqiit83$Z2__V{e5lMyMP(Ep=vl+_4p`qvI{x;KY^yEpKTcT5bTYgc|k~dxSUBM=f z`Jfp5Qun{l#%q}v86#w9+1S{sZ;~JNq`+d|8aBG&W20RkckJBXccr3AP2kX1N;IhR zjKyD=pQpibPB1SlC=l}4V#mi^SX{K7q-*9j*qm+*Fs_NwUszhAKf8GPbt34Sg~iyD z&KMeLOd81SQ-t9%3v+YSM;C1J{Ft!WYfDQq8pF%I$s5y#z0~0Tiwo@|Bk|_rZ{FMn zRKUZ-Q!TgthMdQ2cG3WU)OV#;AX2AK)Bq+DF~>gq(+n)qx-U-ES{TvR1y!hXAn;~8vr&cy1!u(Z^D_KelgbAMH1 zw{cWtB{N!#771ABYXwJpOUp}fUr0!1i7r%&02kcIat^sOJ_VSzzl{nD`@n4y)X?B> zU@!&oz_K^V+}!*CmOx5OJnVDSFLw5romBa1DM<^$)Kr?6m)FmqKc75#Vt^Mv49L>x z$YO7I7XqT0sVR@oq22hOnVA{Lao}?#BqZObE5ChTOt`&xRG)hh-S^y8)& z2HuL5ZQMPOV$iO?YEpfUd!#>K)-M*fp}(B-p7$4%Z1D4MkIM$CT~^|l)ZhqaYCWPi zl&hT<+kR!r6A=FiIU@jY?> zly~nmpFCkSRR{)zchEolG zJ`npSCMF==146?2`WGNK1niYd0E;3fO-Pg%_$+-I{P5vUHCYm+bNu`F^tIo>o^b@N zrJ)`IGyz!x%C1f48#ivq%eQ~~_N}Vw(fFyY57ttfgwsXB;J=5Z-GCgPX=u=>3_<02 zKj8cyL|cI8fR6|HY#UCU9R-Pqh)SNaU%X*rU?3qTh8Xv9TROOkX$LBbwY9a5qRy!lcJ~dD=Pv}vqC~Z;fAe8)px5+7!7PnuY`ly#~k7= zTD$VAWpEQ2;3^Op^SufIxl--je^%*`8XNl$ydg<``_Id?t0cOK>ge*#${RE?U&fg@ z24`ol+M+1=*t8$L+neqbozH4>>C8Xz}lvB)BKe%fBpIuOIg_|nhjNFmCMT8sd}4+0UX~iN=izY zG=R=Z7gYsue9xSgl>U60@t&oJlm$V7Fx(7kFQ@>PXYN2K0etc0WSwm)$yE!-%Nn+H zFk6`~fHrTS^HUOT(6^7fV2+1}4c-SfP_0f&J{92HS@OS0CsGeGzO0atou79;gJ85uM*^uogW4uVIviM2Wf%VeawOJG0dwHcn4R#qS4;}78F z!S-A%TTdqd&6+c@+D+FSz#ggS>i4e16e2(80XXj9?-g*I@m*-aT1zt!8a=C^LH2y) zk=NJvfgQUzJ=i-sa#V14hML*-%&)C}0P2n;Avc@)NsZ$>wv&t=+(uiR*t7mo8-P1F zxwyn#mfviK4Z-oeG;N>3JQ^H6f78A2Rtu6-lJNd5=a+B3oeYkSG9v31qxqPan4pvd zcwBv%kfg#a2>2?KdHv^W4DeUSnjr`$TEuSa!})-SCPwFzC=5J?fX(>h@JCK`ShziQ zL*N!JuKy5rGO=#FL1SLZ?(QyB_}?98jT~x>04)rW>Y|)PN-8KbGt&U$y8*-0Yn$g@ zkZEVjt+njzHq#|vYieoD)_3H1W&re`sIb>JGU6P&(Vt48OO3Cv63vh9V8rgBt{#!R zc${NrZ?B@F!t)UIWuu=r`O zQ<|Ej9IOnedU|{P{QUOz_5x1Va+4~Zrgwv9J9p~550nlE03q7N@net-j*X3tjP!POy`#DyCLwX#T~Zt$nVOykyn_1Y z@y>jRo%^4zcwzTV&%;eUz-oY6Pu|M<@BGB5si^^)B`hi`zBb%^yk<7aZBCBNaiUz& zeI7~*@C7J;C$e%gA?dSmaRnT#$Ga*5XcSmFQ^7*J?(l3$*VwOh)LE|{QVlj*5S6g| z@VUst+jM7)!;e=f{^;rGjKEzzDSpOh(uBsv#dYgeBtUt{dEn%^kgp&yZTmm_9z`ht zWxzq>)x|bs1t_45)YV_^%t>NkgaTX}o(?Yu)CFOv*szwLpWnR+i3OAmum=5U;^Ka% zV7&+5ZO7KDwxP6m7Z-Qq`gJH(cx^|EV5dKR`0!HtDL^auMRV`r(CFw)o!1^545MmF z6=WSTzf&kq{jM&K)Y8PLAoLyoTio!s0$e%`D2u@2&i;E)?=+f;wz12(LNibd_T#1IV2QA$h7G<@Sl0vRRHaygg4%Eh5Fch=lmW{p zO@pJdyP@<*$? zt5TjdTEqZjvDpL`bNjwnim<`g%uF83zPnqYCV;oHHkd`qdLqfVY>bd_gsb9LCu;S0 z#RUcHPzmG-wxmP0fg~22`u7shQ8!ieM?jRDSX^0_2^v+IuvdD|o^}0&teU;0cQqv< z70k}g{#&S@ovxDQ%WF0vp=UKRw6VT>y#mfe3V?hP6UhWbQ_RQTzbCGK6~<%H^Sd!X z{N%`0(czv6uuAo6RYgL5>{>2=fXS&YE9^-XKI#|00sv;*Xyo1t)L^v;5NM}+{o>X7 zBu0J<0~yk^v3Xzy5c0n36uy-5Q;~mrcRnYo+u7N<#_x>3GHAc&A>Vf4%X>84rD~r< zVmF8?%F5zWN4hQ@?`60uWfKcT$0QqYk&u%sVgf{eGu1W4!!BC=*x$clQ*jWBCQ~kI zLF_fun+Y?K$?~h)+gz1=_V$0FZ0hDzR8jepqtgMYpK@>AzNO~OGlTPlz$GE1aX6ylr-tX z2k^|c-d+{=J`kwzfdEx^0ZAI0V+p&{q2#Il!BrvL8a7 z_VOh&3rlBTU&1tc`wTz@4of51ymh~*JPxfMhL!~z#5 zr$2<+l9G}s1Zh&v_H5(T{+d=&4s5HasAx9Z@ZmYcES)D$Dy)8et{^f3jtwIHf052| zL*3BO4+6*Wv1ho<3t%!)W#1E2fjJ|^$3*x(KHl8I0#Z)t@`);W2o?n7w{L+qba!># z9LkNJ((3gauxV(33JDz@9r%&bMo-u($fHo0FZrirXJu*Y>P}8hD$ky?cZ+%MPy>O= zOzgff+B-7x{qtv9QPJriKO|1ceSu4Kaw-AZcLIWc`9=f~(&*i9*Xo4jbTQ!4=9`W1Hh9u}gAKyPV$8zj^er>CdT zD;a8OSpvoe;Ne8A$JeMR6<1f+`o^Ev5W|!~>U1xqP0bRkYHIEYI%k#i>0U>q*We>5 zBxz$`Vyr{$22cP%{=(MQ%nz@21Y#XW5)*--z#&?{hLFgl!Tf)H&zHc5ie=QNms)So z*2b1P%5U>_GxzOg50dkN-(;zCCARbl=C($aTU7AM<&_o4ZuRpUiHV5rVl)JTH!iH*PnrJR5mbN>FE)YZu}@S$M;eJe1bN=Qvff#N5cN|=!t+p7rP zkyM??WsFPCQ>~IX<34>>b4cZU)|c8g@i2{}35i4kZQ-%```3>jKZb^QczK6^{0MCK zhDCTqL`QE6csn0f*>76mNh!FiF8q!ryR4qybJ~vbKZ@ELryU*|a&dJ%Kb&;bg;HT_ z3rtq$UgR}IpoQ&tKtsRxwq-?qyLdqI_@7>}(~~5esM3Fo)&$E-OH*}TJglr;Jw0}S zkp}<3m-yAWi;N5sIJW|wLIXp?>^)lRB)M&71cI5EoJ8g3(Zv|8Uz~FZ6y&dBV}A)d z)F}q-KtKQzi4;2+jI~s<>g9aXn>TOFyA!Cye2?poW@>>y1usqH(6@O0d>~O$=$DX#$2pDb{;P^ zeLWSXJ+hb!X4FD=Z+6Sb$ow83hoD0s)$*bQXl5&`JopYyzR{2=L(2lV-2c4FRS_Cr zuxk4a-6u~XS{LLBp0!$Snyv(?^YrsV+MvP5rGR#a2bk8S~I;Trus;fjXUoCZhcV#s0Ru}t;FH1 zrwJn?zwUi>IlN4`;zpKM+Fwk@8XDHR+rN)u--a_AWR4JW zo5S0>efFJ7$w#;=S?m{(cuPxWYu}v-iHIi4tuxE(Z-BjI)lu*7>9 z;N25jePK!t4YHUS zGpIk-*20O=5b9Xf)zurLev3;JLqC2O>Dbmf#fiZJ_-AGL9vXar{xLBS7VE2NEc}a}UcW>JA z!FDm-RdSw^$6-#rg~Rm1-_2pC)BUxms#@T#pFMqA=lPG8lk*FKz$CsE!F5F7bwF2K zqx>c_XLzx~hOganyPPO>1NQz-+8=hsvjtq9u7u^7?+P&gYFmIdC!nYek$ES^$Sa zJhM)^2ThvSwvL3DQV2xv!^+I(@BA*NUlG0ih(^+=>8tOCuA|}V;#^qaevopkZ~W_T zBq_&4DbcT(vj3w6Fz<#-9YMkIa$f3H;7Ws{Yt(gw6)BDEo9`P}vw1%+Tr)3-9T$Gd z@)V95QvF?@4omnP;{(jTEDk zg95JE(vJ%BLOaLA#01btcOn{D>o$h~pU@8Yp7lrxjZCq6L?2^_Pu01N^=e(V84S|RXLEYc~^-J5%mBj<1w?(7=U*RNo?JP+)c%+X7sSf)Z{@bnB# z<#86t@`^xYG*O|qv^ut7CIT@)eQ90P?&TfE=caN{D{Y=33rjzktC2nuGmXY2JS@`= z-BQ;>nOUB)4a=D%buk-lhN(>Pa2^eF@D~mEalG-v$-SbM$&eZ$15vG*bkqf~6>Fu{ za0m``YXA4mF^QU8su~;cuT=_kL|{O5Oixw5k4GMRIcmxG2e$@>W)LkYksN^vs34IYotjeBjJ?o zou)HZ;>OFwR&k3-P{%IXN>;j!F?e`WyX8@AEa~hBuPN%b)unTZKKlE=)1yMmtq)fC zS%W&J^e3!Vr4QeWrS*K;BRG)ru)2Z5NW<-AQtr;w)40#^t8{ zJNF7TZ~S)&e4?};&pZn$@3I&p>RUXpQAO~e7hcF+g+kIDp9vBYpLhr(O=5kXQ1)AR4Wu83VUTW zYL&oVr6SJtV*3s0_hH)6zP?#OVKOo@$~$*<43m;1!2WoR<9ScG!@gvVvo*`s95*>o zpq4T4I9{7*)|QZpMsV>pv7Hp$XW%k(ZOZ;poU5H8)m>)d#ljkv`EhiFmHRuT-*Dy` z#raf5QrG%Ejkcf;pjX-8+T?7s(JKA#CC;T<(x^ZqOF)-PCb+_<1!kGGFDvLMSd~!G z)QZ!=?Atbmg8LE4+cIfvRy;7UbiGGuE$nsDX}hEcWi1+#*(guh*`9M*F2v}`p8vd+ zqabN6jry6L&+Rh4B&@qEu6E(XOV{ANfdcF_8_jEt#-)|M!Nmu$LFcI3+<9%$x$s;_ zB((ky+ry#xS_&Lgq??l@kmMwp_s8jy{He9@Os$Y`6H50fX8MQk%4LaqxXgpU=;>MW{a~k z#kO&cNs-_?G!wpa5a|OSwk(y=eHpN=y+!&c1AVX#Wh6-kt8DI@ZkAOc_a*yjaG%DR zPZFEo79)ePe+fYiAT2fe6Vif=M)(tu!dMWHY1T?S!g() zMk*`)8Olh9S<6yx@5k-)W**`ZN9_3J=j=3HM=&Qm?K!NaCZ7qJSY~O#)Zhy-1s}mi z*~8bt!dfg+p^TsD%P7Cul`<|d{i z&HsH&TlVOK*k6uan_%K$V(g%poVE1ybSMVpqwoD$S_+e)1%3b;jAzHk`_~azK&Tg`TgMmR-S2yu>)Lf9TcdQ8A{`R3EByAP5N#j-nENLXH0zdRc(DASe@s8_fbs;0;9% zFq<5pKZ05gG#)&Be19^ZBLd~x2ul~l`~>6c|FV_;%rEEb-^lCk@4s43cC_eAVMz|q z1gZc86QFb2Q4_x?2jDz7s0qiDcP)wG*7iX3-v2S!YhrbMB94yRAyXMpJi@2gmO=si zKKC7?mg4|=yxk84jaw;7`dWOh5sv}e#*G5LFk=`o+vf{U2sF6&mU!4I;`K`)KcSRZ zyi9%nez@Mp1A6m7`-*w(%6Mg8L-2mAQ(AD*TX?QOMZrvLI#_3+wR2j=Uh9A14Rz#J zKUc#sEdzr&RAVnnfTADo;=n_s|I1D+xp7W^qbP6o6chc<-OPW)Zz5TknLGOXw+FLt z(PR}BZ349`e!kOendZk2Br%X!mS$$4@?oi0MFh6}%L=6O55D}Z_pR>MvmlAECQ=g} z9TFNDdHGO$=e^}#;9Usl)96r#&1fVFCmzS4PfF1x%3pA!X!6JAglF2v2*xp@vW3N1-MW5$G-@Xa*rRP6` zWFtwT_Q z7(2UN+Z%F7gv+FDt*rnMCG;tIRIf?2-u3QdZ&WkB!@6$&s^kH+niD>DaFd$YiHyTM z2vU+8?ty7k&?TJwdEhdnJ6yt`iBJ5)`~!f@i{r3yvi_-El8T>-G8v>1XI&t-P2e(~ z$&khXoznX3dxQHBBTTSP&hPorz5+*=!j_^UuEZ2So_h@*@o%vm)gZt?zb5fV`+?cA zicsbooVyGUTh@lsRk4Gb$6H3fGV!l-XU*6eXM|j=}Z`~YV+xHZN~+NJWfk^rekVl)!jZiK4C3SE=g2uNvU0TfUU(TWaKLb~Rue-siwFxlcG%c< zQcJ5StGx1^ag`pEH2tFNe}J#*5K4>`$a#bbk|I-vv1^C{332<$lf}!j>gEPUhtx%9 zLPx)g%$B9Wd_(altJj@DJN!EvSO{%JIk`49AKYb55%~!p!s&!8m9Ygu`SQ{)k+}he&#o!KeKkcwD;ho$6sW?W7=p$HGzOcRniduoo+hM1 zDGNL$s2V`16GDuJXwV+_NwCP(G|A0U&a=Y$gEO zJHZTQdvq4Iys*rG`xE86%Uq54Y)q04nz{VT7+k5NzkbcvN~r5RBD#;r3;b;J@Qe`> zPDm7y-p0o_qC4_H7P-2XgLELnBnnsz$Lm8(i1cco_w9#|=pGEwyvmdr^}c#c3KZVP za6XYH{tOjh<$)q9?>=9rw3%g^^K?=FD(N^#^3~}=KT=}5RCwl+$P)t7Bp6$^hoeZ{=R^fNqr<$71&^!Wt z0yMrsR~Us)h>s8L%c)FxJca}eM3StK{K5eBFMM0q(4dE4mMi^fkV>+$vOawL7%oH0 ziDEXP6BfZXc0+=QrGT-_Vel(!l^~&lq&i`%VJ2wj9igY?>w69qan>!S#~<+T-TRc7 zm|HY~ka#V#Tq@e9(Bq~sr;tU>93MoAs>Y!=0QO?x=$Mw0!frSNT8#vAEiElj#=d_F zNuu#}|3^T_e?L`~a_&e-;wQX+|Bc<&+?=7ZuBhk@eiQebhwIl7y+3+mt0Dvmf80kG zZ-9Q#vkE(}jZqFMOxb#WmOK9rL%!_xBV$1tqFGt&55%dBSPDc=@-$q68@$#mCW3B$mq;%>= z3{2e(vuwDXeYL^jd*6jVT~OmL67~aVw^q>p04=xV@ItSGz(d?^9XbkQ<>loj%^{Gb zivdYQRXHK77+I}%I}J}QZc;wdTzc~>W1t5N1B6bZa5umkLz~2La4`tj2pS|f-p`H> z5Gxj}xuYR`69?q?2Ht(K+t}Db&~nz+ zeouIaiRk)CxVuQVoGH9-?MR@BpTq;_>gRWXMZ|axo(rs@cWqQDJLUcR_wU^^($e*FBm$1wZy@RxmlcjDG{uidU%W-*4TyLR_VkdJ79>`S zAfs^>;4>S}OHS5zcRvLF>JRRj{Z!RIP|ST2bO8VWDl5H#mEpKonX z`Cfq@s_Q{qsK^vL^C1iu#>KYLbCV)^6O|1#}% zAnHXi?ckp#AC`A&bO+45KCC*tom)t^VUn)M%IZAID{=Jv{4*MqykK%eywg7ppt&vc z+1sLrtqMj0g!%XmpbK#0=55bK3fsikSV@idx zc$j7&sLW4avw+}7oW>Tb&{A5&+r~f`{`3utEMk356MMs7_2Ey|mu4~Qji2t%B6{Bj zpd8EBX0R8Gc0o3FC+D4d81q+J?1I&J{UDrblhycpH-W;QWd22xV(5$u#@ zx!4l<#2E7+Wra=>77fJW#M*qCH60C&2cS=OxJ4)b7Bv1MF3Y!R%s@p1edCDmaIe$- zdmb^Ccsp|k_d_RcddWLDgKMrB((Ch23FJb9COoH$odCZ= zIRgq#LMhP5+G*UnR6<9H89p|d?o(p?jfHCp>rEVUT!9Ir%h{`owB%$;8Z(GUQ|iFd zCo#;*4Frgq_v4UwJxdoR9`4Ueye+Ke_ZCVs3no);&mkx)q7-rIr<%)|Gy3 zX?7VP6lyAh$^(*j-h)On_Zj<6UBlqC8dx-MurIzp#E>$J-i1s;#2k@;{EKa#!=mVp z8?f5A4vdWN-`(sjO|;0@!!R3Bt!dt&X<(-$ir+C#9`v}ef;nuWr zLt14LN9XC&sDsOV4 zC=X_=W`#d)Vo2`uV%TIRs|V&#OEkkuv^8a9TJrE#mOcHo|5hZtCo`ID7;~O%2qMQg z!W|`_p&-ZHxe4dbx^_{m{Ltbq!}8xM@mrhIk$qpzgs$dxMsFQ++?M$Be3&_KT~Sq) zbC5qihdPw}+uUIAE#G)FRG%ABkPBkv5rJ6aiKcRD@w8}Xgf=DY-2rqEb#mJ}xm4c1 z+*)dp7eo|5<2(Jupwc*liMOl10LPUvR`+FDIeq(nlkP@BK##38f)(qvIYL{GPuf4y zydgS^%!4%R({znptL{qWVdi8_Bx~e%9#i*=T|W?29)BT_I6&QFbJT5jMegaon5p}8 zr2^@g1eYhX#vs&zxUT=*23Q4p!uiG9P#|<(v)X#t)zPJXDtEKCRhs+PrEw?^bVWd| z0mBB&*e)2?W(eOBT<0|=46%!}s7Wc{A7v~dl67XmL_}TZkP5U|cW11nNAi!+RLVyR zk!SqG7|@0t=vB24)N@M1?RhRxgJt0=!G@o1JUjOG=63jU}g80!0 z*H2RSrK#QLOx2Tni%aPJU5W=kU9d?+Dv(iwk!BV-@iwwO|ZZTp|YE|xei>cY-{sjZs6#za%U1`NH`-9Lo8Dvzc& zQd*`{yhS9DumvR09N-NKbVVI}21EEArc(P?@Nx#YipRSrUH%7w)ych=W6F=}_-Mfv z(`||8ICOZ-^m&Ia-ejfHgny!z!oHrz3~QN@Q@?rUgfbuGTY_g(6E?*!q`^=2iO z6iR)ZV|TAje5p+-Lmk*9J;p2{t$3%DBgsjW;lU`Q29b<{B;o*dq_3yC%o5RtNNbk* ztYYH`;3NIOGS_4ERG&=c-r)Hi@v zPZ*#@Q)g!nHN5+HBSPVaLTuTCQ>kmi(5{g%GGfrXubQT02DX*sflqzo+Aw8}H^Rsi z3v8<@rGOC$C)z84eccKHcXLVbpIHQ7cQ&u;7(v6rOlJWD%}S3bx|JE-@O;#jh|`TU zog6b=10R|G>!}oO8<3IK_bDYeWlBEc&Z1un9HhaNbdmj268U<~IVt6U;GjZ+2VX)O zeo7SopH%=G2hsh$@GT^!BmzZ9N4d~^Jb8p9f37I{iJD*Dm>FeSK{vy>%*1gs%Gf%7 zNlJZvVs-O6g64xfCdKE+QVm$SXQzsC6$B!8f%CW?Nc;?$e#uGCqb&WwXjyyM(}~Rx z%7Q?Po06F8o3aFF0Lo){F^;*9wyGp-duhf*Mou zJJd7>ln=hx>-JYn*NOPb$;$!>1efm1r8g0@YkBlbKot4RGx>(ZUx?(a>@c(QJM@;3 z%4yW&RXNN~rO11ay!^MLD@6phFZA!v?~GcZUzfOmt!ffG-QCdDx{QA6ak}D2nRxy& zl=kwJnT1zEzr)rXkuEe~iN?w<$Z_F@?cB5ZyYxE8wQen0M7lQ|YCbJBNJn5b8~Y6hfjgm>n?>!1EpdT z#PIbX{Nwg-^t4B5ef>=6o6l`uRpNY~R<;Y@3%V{b1YyQesX$Tv=3-)xk%EP5@cXYE z2P$~;2sWiRilT^g8B8hlip189YNlUvAN<8(G1gyyU->PU zoFV`*@P-;QBlZ`2c#k<3J&%8AkSp+kpqvM*%Y4(HB+6J z4Q9(#X7g9y!g!`Z`^NWL;4vSVA*b2{kNvH$uz65VgU zhwUAa{@qSUCU70WhonXZbbQ+3VU4DGE*n)ra{gP{F1y{s9Dz{5lFVCEVxZ?v{ikek z0S!)?dDY|b*@(fWaty@4ZA>W~29G8+M_b7`X36%1)iX3i)N5*OA`smG@_+nT@nG}M z%vWP^rC;-P*hy2JW*0*rT@>y78H9)BzQF-Z=syo6^1mKlY%{ zgPu2Ew;Z)9E_XYnLA^FrtoLWhhIKLV{1llMx?VTT0gS06enH)&$ChvHk=fS!v4K4no8PojeFuLlr`@L59 zqR;OIWEukD2A^M-^`3ZPRMjCPL*>lR@L}E5UoRFcghVhkrjCwnOm0O`fLP0ZyJd0VQn4}ZhyFFxPYB0r_mT6;;ZHBooWaxOkWQKe z@{AR=`}36+2!xJg346B(&Ot{{&nC1sK-76-3Gz~jx8&hAl7_BBhUv57F`GxE) zGOJC?8;H4L8qAY+!>raM6YDIcqtc7eitv)e=ciaB znKAbfyW*S2gJS4D+I;Oh)#KWjo>goXM@nq6lN$(i8qB6j4G0Za8z)Pg&P(>v#cPbE z_CJu~AWwXPk93rnM~WLPVIm~5X)rfpwIqWc-hmr&#%3eMcciq@6t+|r6&9q^G~6@A2R43hiY=$Z^U%?bV1NRl1= zNe$#2*=v%_sP~2U7Mq>vW7pZ|*?&UuT5O=v%2qF={vT=rl(jIu>EPh--7rF79@%)~ z#sj!538H*8d^s68)uj5oA5GaURnn2owU2KtsBO>w-P~k1q$x}RV8KaWLZ)?xjsx|{ zEqZgNbOS&0`=Gb^AqmaI$?0Dno`q$Ph-%MYESh-al7$$RnDuGq+0S`dp($kJ5}|u~ zJZ$ahjN!1{eS6p#Y8m^Wo#BsV=!Q&AEXR1=Z^?1#ignMbZ6o76z|7 z7U08bs#*#EL(1uV%eqjtusDwYjZR!UC{R=+RV;4)E`LZwlHJWQ%&BDSX#Z1L6f|?J z!}OT#(d72$&&Bgued_Z*SDCl`)5w(D)g=Zo3xaQrA2l+hW}D!5Qt$DlUH(n*YwEr5 z@e6TxyYq>jo;TZra1lMNI8quKv*lqt+KYa_+3JqP`Q`hyI${l8)`Q0-zGT_jFo&W0 z#bCY`+rOo)O-@E;#}Hi{p8o(-WyfEF?!yB$EboMDvwEr<8TrHbNkieBJWMdd5Wu2? zmLCkezOc8iKQGJ1b2QSw9A_dWrSNd&W@WX3wt%nhPdst)M$qu1F6q8Ka{(hy@c#Bh zV}BT+>F^*Cfk}dMAj3}JgFqV!yphe6eSr@2P!V;g<~G8L_kX^_16vww^W>qU2#h7j ze+OgY^%A1qyg@|(E!~mZFnR}%rVthq+BL+)gNGzoCsmY`%-7=IgRvhN8Z3`h zR4A*QEi7`fv!Q!9B=X=k@ba0jGLe`x&`;!5`AQV2$E4W*%#+AKH*9%M$2+drVdp-gq z1FbR;q&{`IIre9HnSz|WwY?o?!D_2IjEgkt;YToUpIcE;0aGs{(A_|B8oP$EyZc+y zKG55O;V`Y7$0gstQweI8asF_IOM(GFC%Gp@FmC(Vdzczx=I2j{43L(VZs^u1fQcw* zv20J*R>E)uv~L_M3HTfd;Ncqk>m%JTtpPJ*Kv34Xtl-X)u&6-?86H@W{_%A;aP6DR z%N8akKx(amM0(fottPx3_%gszAZ5%bFMq%7{JtPP{W*|PActE7Yxu^V93P(zGX~a) zQ{$jN1w&NS(1w;KkS?pFnMV|Q9gfZZ)=3kX!_%kkrB{0qehO7Ic3I4 zxr{c~*OSuHV2eEABnm*reGbDY(NEczYw^vAB3psS0$uaHhh`mMQOBI}`JZ6)8=ipz zbG{AmWD3+6S8Y_D7e4Tjiu8nAvv7T|>+{hYO4397FqaL|yuXW!%^nO>WZ0 z-h~NP*u0gA@3yqD9i5%|z_*u{YGyub2BQ^qS?+#x)Ct; zX9Vt2j2D!*evKz7XK`Txs9_N3wntGi8TOTK!ecd>o0{%YQGw1BTB)H!xoR!~D2g7) zMUj!o4|hVsqoeWg@N%uaVX&!G049!3;4uvFBmnr(UqeHSg-tnHPo9v%16Ih$Ru&cp zYdsv-c0qXwcWYs0b{ht!;4E%8gB7%Qc3Q(2o5+*NDiB597xVp)lq6))b7x#D0-ovu zPeFQ*zY7K{^ytycTQDgB&j_F-B|U_n>}okILT?X7fI+nQke~masCT)mU^6$o0wukj zs@@yU*D5P3gE?6+$BWI)O;B=!8kxhmA*H>PGI&2yRZUH;!mqz{6UF6;`Tm9*g%KJB z%AX-2AuyH$JBgFj3InGwhXuw0bKUPmKN_g2_Ca*Hb?cUV6vZFtuY>2kcp-)PfSWt- z%NL6~a@3xCH}4fD`ClC90+SDlDggn3@jq-&ie5T7K{rbo9$$bGZ(jXP^-|XwJNn_+ z)Zq9a=Kt&B%)_Bv`#AoDhrk&M2dgGV^lHNqj~WQ6FhT8|F(M9x{1; zd5krz9&REU7GyFrSrYj4+~*))Ws-?W8;6sa+mIZ|pqXPf=HSN!pxLe##G{ z;L3`MtMFzcjQNgV)ji>c2tp<&B_!nj`6nW`m4gGSfglJdW*;mchh{^}Yr0-i08k}( z?cnrp;&ncKx~9B*9#$$tIg1k~O7JtbMc~=9tZRChAoTb4Dr)*GuKOntZU#2(&4(}6 zDmn%RG6is^;AsEZH|G{U=0D50gJxc6{_aFa|I`kLS2c_e7*_cXyBpCcU&rp@Je^Gw z5)pyhRczmGLqqTWO66_amboE`#kyb+AwdMJ;N*QYtn~J6(;YkVYHMxe$-Z=HP>~Ss z9^FFnf|+V>Q_r3?OTpt$*3B_q4h-D9e%;c}?iX@2)H86_V)Pk04&k z&C6?W(g5>dq`t9IiXK_l`x&n=GjkjZjR?hdtEo8+7iYWOZ}0yY{=PJ=j)_^u_`7$5 zFJ2h^+2uA=9wzeTT1pCEH%7hjI3heV{|3l4t@{P0zs{bl%g=9m^-7u*xha{0l!<)^ zvo=9soNHy({kGcAlU*{46o>hk&xL%fs>_#6VAi#^?y0oXt-?F`&t$1lJDDT2cCD1O zG<;|qC+7@hT#QW9j(T~C83gXY+y4G1J0@7SCwII*TZiq;s^NR6mR4jo(_1 zFC)r3*?OMXnouqi=;d{@XNgOaSpHcoc|JSGBFy~20T`_)8zPx`A60WgdOu5O*y^)d z7S%`s`K_lB17Dpk_LKhl(%0gzAbjL7C1?o$_o)d?WTeX1=rY!(?oG|z-u+V~6G$aV zD)j>QcahA*TYI|sQ};H{E<=}NW)}bP)oI-2O7z{Ts{LoBH`KpnJPH1nwaWfFDfy}g zHPzMR=%zh=TCPT`nfQ)CQ^9)TA+Q%5Y-~8LTQ(o-(Z&qV+1on^P#l7RO_T#$07wTW z{Y6L5H@ggiidJ7QL->4MI*I)(p=J27r1TItE2XF%Y~VMJFked2@w*fi zAK$96&(3ZDyQNWsE|$?bc@NsD+FFdOSax>zDk}pl`R8AbJ!7+HZHDX?_N}ub#-+DeCH#CvY3#*4E6LxTt<Fu8H`UkD(msLt5jVNl%WE3p#_agCK+`1c z*TA$*`GRWcQWOdw@e=z5@89<;mkr?Q`9~dFb6qSj4^JLGbW-u8ir~gDV@Hb#x9;rV zIWE-&h2f|qe|TbM=I>?qe}`KvV;>i-=PR7v1`Weo_7fPLPpXvd-huIUeCxKLMIV5YFap;PkkDJW+BybDCM1qD;ImvhbaZv&zc}Ih0GUeR zfE16cjd?st^Kf)bj2=J>C|cl@8txdMW1|`g4i1KwYxen@i3!0-rcfgy_x!*5v=A|o z`ryp>p=V*@?_X>0?mh|mo96RVCr_ey!-~u_`ZMyv1?R#%@L8EJ6cG7?vgj-;K#!4W6gr_|KG zzCKOynE0SAQ&UsOy7=%w#sr&)nO6!S5T^QVb2`(p9P=>F|OeiXkw)3 zrW5sF4a(oW4 z>AhJzsT|BsxkT{NAfMrOqDTXwp#L^2bGANX}k4Jm}g*>FXo+2Vm zCy4i-KFv%|FDF>RC=RC+!kc--eMrXQcFdvLf@HR(MP!|fm;i#D8xT^*kE@ZRC8ea! z=uvy(Sn%*E1p+^;=3h;Jb!jeU6x;Pfa zrp3g^r>CagKRLagf_#D68M!0RST3=tQ+#TAy78SMO+i%KC@O=KV4M$glsyDGI4k67 z#xWw28hO<5~5G9$faOrtj{jMHya4ZXRz-A9J6Hh>Yy(?|<}OFBt4fz*7+YPk4C^ zfUV@-NriLED11^^SXdb3nme{to(R<-GqIH=Br@~!1b&sCnkm+#gnld{r&y*4({H)hM?)MdiL~bobk%{izWbqU^a}v zfenDeCgdMSM@PN%w( ziO^w%x}Wl+XK`ChH@8cjAxDoNZ|SB8?gAEP@gJbdyPD^-+#UTBd0^~k)$d09`PU)k-wCPy2~ClwS-KwqMGpaQP~0Xlk|rc`ukh?HWwP{|-uJVXzD z4rayQt_tf^RaJery<{x^VEI)js2~a?0R(sS*ZP*xH~_+vKq%d(-XY>P8Wb7NZcOX0`CN%fWR|n%KE&auEeItA_`xxo^odlq}ya6^F&wL4dD-J}E+}Lc86rhwGXljb!xZ1*7 zprQi0a8*qWutalOUw6@lb}6W-v7Y@#BUwFyUlrA+(-mX+{=U9Mjw_%!C?kuoW%JFI z0PC6bp`$fJDuKulm7nVt3F6`82eeVm>1p-AJHtM!Eh&6SF3}jta$w-9q1-A0f;$`4 z7s#n0;MFctXL}t(BHNbXa+#mUwYW#3!opaAJYf%;n~$J3&{zT?5mt1~O;LwwiN@dz zON)!+#3lH{geg?8V9LzNwsdt_;5qQqiU@1R#l%3F>?F?L`}%UDOBvP`QW;&E#b7X8 zTt@%-rwA;USDJC1lieQLLDed*c#|kjP@F-;iZU8~6RUh-9K9u7PbS;nS(>Nxf19_=qIo>K}pqsyTz{-$7>Kf zmseG7hdwytEmNQ=pFxtD+KmdBkJ-;S{J&BczlpF8=aJ=B%lVT3UoB63CuoyamLXm| RFa;6Bo?R@%J4~nZ{|3(M9|QmZ literal 0 HcmV?d00001 diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index 932aaefe..edc7c11a 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -13,7 +13,7 @@ MAX_TEMPS(::Field) = 0 module FieldTracking using ..GTPSA, ..BeamTracking, ..StaticArrays using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, @makekernel -using DifferentialEquations +using SciMLBase, OrdinaryDiffEq const TRACKING_METHOD = Field # EVOLVE-BLOCK-START From 4c2e6269d44d63c5545a7b74ae42d6458912e9ef Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 20:33:18 -0400 Subject: [PATCH 13/76] remove figures --- fig/field_single.png | Bin 23659 -> 0 bytes fig/linear.png | Bin 26326 -> 0 bytes fig/linear_single.png | Bin 23895 -> 0 bytes 3 files changed, 0 insertions(+), 0 deletions(-) delete mode 100644 fig/field_single.png delete mode 100644 fig/linear.png delete mode 100644 fig/linear_single.png diff --git a/fig/field_single.png b/fig/field_single.png deleted file mode 100644 index a8c788b318c008cee7190efe5c9ccb47490724bd..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 23659 zcmZs@cRZDE{6Bt>oa{~ZK}c2^*>ud5%n})iviIJUk!%@7c7zn!TgcAdJ0e2%p5NDb zf4-mJ_n)8lwDd_G@SsQLpXB78c01Oh>HS6N;Yfxv!@Kww29vEj;@ zPG~Ru@A9*IO7e&c%zx>1pWY%6EQq`EceLFz!+`$F)ee8h;c%yRgV&8oG{aC!N|)zrroTzU!k-1l%bJIrq;v7uF8H6Eht!0*l=ELVJwp6wA6!p`EpN^ z@Moh2U;Q@CSNZw*Z#mUkfBaZjSU?6fG5a0{tiG20cQd^eA0Pkp>?|T8V)4Rse}BKk ztoLhveyq)l7cWNgAAbHr(A?N~r^+tAv{cB?&ktVUX!i4y3fozq0|O6_Dss0Wq=$z` zrk?lVTnJ%vID=R$X>45FuHN)ay-zaf_Q(^v;hJn^_TrL~&;Q0lDL6-{Q)_?z{5guh zQC6T^5=>fbH(NjIGq*X{ym&Fs`=oqrrtV~WvCGNHDV~a6L1WGE(7XOIkL_SiM6u^( z-e9tfXKWtttqM!;b>E)N6{Yns^4W_&ZO&4Ps^1%V!o{=>guM5yWA2K{4CM5ySob`5*|(nE4J|! zp4<9V)r`?fNw0KQS68yQi{+kR5)3&^Cv1~=yN?#f8x0qck&y{1*^J`Ov|^4QoA9P! zoo;V$i@U8`o0?LRlRI9V`veQ_UKZdpLTZ>(Z&A~)YZf=}`%Gm?2U%&qN@guy9lhe-m*@@fVf$Uaa zm3#N>rYd9N;(q+z!nEbS`84Pt<0bU?@X#Ht43B#TJLk>y4-iiI5{pZj{df->5CWTmcy3IeHn}ruGZg;bYNR+i#!k z4o)mAtib5+-(|;N4EK^fdi3b{n>XU~V0S2ymn4}swtlw}iD8p4 zOKayI>gwsGia9CzCcDjegpfM^`T0Ho2d{V%c?o+z@7+7v@kE?QpC5gRWR@{JcrbpS zhdk7BGW}Q#os={B<;f>?9!6nHZ9~IU>twoKGT5v7(l?*z>IMY`4f{l@H^#6jAyIa< zTfqg39d9`Uqv7v!um;7^j|vUD1%Bpfeah!7fqxU?;<%h^+%{$&ebMW%%lY)l?P&Y? z{`krg671mkZ)Q?b*+FNU{$jHY%JY}~{rzhvAwC)MtVg?pYE&vUgE^{iNw%Y8&RGHr z^vW!^=36A0qNa0NV~)W%j3??>J9o6UDxT+kHKw246tGy}GopP{bJ_efaBDZf>qp6ccQ>yGBMvT$D4_F89i>CL{l?txZi&`c~B`tkE^5uzL-5xc{bgam@xIkTsY^Kgjhn@T?9UWLWK{2r-un+b1^{_Uv1JeJ7 z_JLvP>)Z6ZIGF_l3HGA#ywhucZEI^w%=>V2y2gzeY&EH-gFRnzEx5~T!`FR!ndX4C`5s#S^ z?YXz&vc1p&8`!YHcY1O%xjU#hu_&|;>`YVB{G?q&ox|_eDyJn@Hnu|js-}8L7M5R~ z@nDGcJ&t#;Hw(nX#DMi=jWM6Dc7bjlY|I)}+M`fEnwnUpqzp!Q{~O5}@11V&L14jC z#a-SU-6kt;p8x*+yM)_%fni-z?-DpX&+a5)m_~TnDzAfen7i@*B?t~oeGDt@8@swz z4`%&H2ng;eD_1%$c8+~Bp*lDH*$^82#pBZD%P^*HT?xF=Z;3dnSwcxwrB;~Y4G57wNXn<7>PXeF#?4lEFh0BGD^HuVUV{Sga z1R`^=4Xu%kC*Uce{fgt;>vR;T6UIj)kF~Ygsl#xw@964YoowNaEY)NYGBn474`b0re&fZ@1Ea5N<+R_noh*+a9RORe zOOTATv9X~F7M7Nl4vbFoJ-%CiQ&jX_+ixOzk%Gvx;?U@}-&Gen7w2b~DV>9`@yNSA zCB?wkx87T3ZD~4)fMzUYm|||ZKkEu=yW>^PUotkuqO_Jh##Fzd1mqReFdoHld_scj z+L(rsQA1Htv`t4x$IV-}1_lRfybf$_3S-p*$;ikO5)u>@6^n&*LsmisBqWjW zu(Jn}&d<-Y%6PoX~ypx|KcwP(LuBk+~tjcNJ$`O)p8Mt;1r%d4yR zkXr`_iDgBh_6zMX_!rNtS=airLgZOvgp2J2GSq1)DA=q_FBl-ka%IE|$jk+wM223t z&>EBHy66rye#c*b`0`XD$?O|NW&O!|&4jp&!~CUW-0N>*g&%2aJFg7g<)Y-K43xc0 zGxV9?#N;=4T$j}mmzANsqM}WRc#r49_$4JJKYaM`RliDeqicF zes3~UW&C=|i?pm4!tMn|-=1-ooAbW!a&oZ28OZab{C>UfHA;NgHC+NfVH;X`85>E0MnhCnk6dmV2!SnAqgowo{@?N^P*G%3zbhCS91V7#YaEM?^?yI=ORn zic3HpZHec!`KytrD*79Y-b9(zFbVQRb#(4)k zIepap3yxqFc|Xy(I9zXVboAnMr&k94fmnTWa}%8Z2Wg*U@QfyHk#)Xjo_mAa+xcn+ z#=Q?AC@9`xBPSr6AW<~@hT4Z}FWOjPQJ2+4cRzgo{JD#B zPpnGzl`B`U17zpe(=sxQ!N}N7S5wi@a3)`BY~^XVDpA$?{rl6S?L~a4#KgpV*#pq? z369Vrc~*@F4<6Jx#QH_GrbxJrkvzJ(zgWf?5g2$WPkW-u$?QnY8?7A0Bt=&|=qV;D z%C-9w!kQuQIpFR;q^26`>gJL19=XjwlxrG;)n;#B^y*bJ>`_B2zTneKI#yOz%*<)9 z#4~+P_7`Sfd7K@)xXwh}S5d*wa~1g9;9|AA+|QPj!^p@;RUhE;Z(_K;ol8neN=C+r zhq`OR>V$Q9VS)W3x(++AE>kh%rl6n}#$33AI|dJsmzM`~RJ^}pClGX@yU#4b#`emm zJ@vkegM-Gq-)vD*{$@QNs$Bmic}sXnt{%<~IVcAvH9`o{-@i5OHaiW=2FxoPE31h0 znEIsotA{>+m`<+6}w!7*!Z=<`tPJbXAzFNgE(q}qM! z+1@>|aXsgV!e=2LhwXAqjEyzgu&gWTHatrp+=KN2-;cT~*g7+ls!B-1r;j8ihQNPK z1cLWK(jbp(!f!%DGr000$X!b-n}fa8o)9!nS8%Ge)+p(+5_jq!e2qGcijLmhENy~V zcoNpG;C{iKx@qoHxo>_PL5d=1#r4ZQc*G2wdwUT4@9yuX-g=HNK_S7)IzN=BRcvB7 z$w%pFav`)mdy#KK@+-~nT=(qy(JUDy3z_9RaPfr@WKC5%tgUV4JiWLHMirumg-J+- zR(&(_@+|c9^uP(peNBvRd%zPO8rlH~zjXWqCJ8ncm{Zmmt_Acyf#bB!og(I~vy+3u ze|oalo*lR>w3E3$P{R4Utyb)o&8)}JMJ`l6_z4C z42hI!!)34u!!=>xHuUSgj}EtfQ*hiD_1HFT-Vk_dZLL2Ua?4Ag(4b}{y2%=+;bxJ~ zBbgz>=Awu_LyjSH!e)%=Q&R)OIW;`|aO503Uvd1!Xj7~1LBpre(7Rv-t*x!)>O1`j zd&n%A_VvE67`->5@ybX(4Pilj1aN|tHFKS&xP%@pCuigqg~`msopZIh&-N$ntR{oc zl6WZbYn=b0H7K8~#E?YsPIjif%j@axR%IcTS5ySUUTYg&7$!xx#uF91I#pGo&gFf2 z_zj&Q%FV6vzOlpOaMSqtb40W2s~0Ha37kCvAB`1mrL$?_R;<*essW}mXN#Uv!U%L4z*zO21IPl2 z0=pI0FiP_|KVRkirAtT=&cWXnlHMV_mdoHC_x5jpxyJ zw)ge(o)n3Q8mc%Lz{EtzeIGH}k?;FCfh&QEn zd3G>sRPFp1oJqs!c2{499HdqSpFUMU@W!z}`&p;Z-`^js0ocs1kH0;eEVrTHd@xmH z+zdJ4-4qv2aCDGju(PwnzFC_nyTQ)B06`dxAfzr9HLm|4MO_)o`}AoEjKj~R9f-`O ztjCHBYFrH}?dQPr!q_v4+W&$L@I1{w&3ijEC1o12DsLYjIXO9IaLTU#CcqJe$!7*n zEm%Y746g(ezfOia??1HkPLc6R0;J9A$Hi?ur2Z~?&sBo9nAlZmwlo*+rsdr#p zAN$rkG~^7q4WNW`d#j_r=jZwKD~n7!VlU1%{MIhNg zA>rDBBy?)Mj!YVx4V+Z=+-*?h)ROj<+PR3{u~}e}8Htns4<3 zcaN|c0+~<8&fzdFB^BN#mQ^J`Vel91ehrk{Oag}Td|Ef>xOHxBZkx>_L%kAW64zo( z(y)jDz|xxvO{}eXyq1P4k1u)k!>XHJamN{Qzf*^ul+$qZhd#*hT2$NWbj<-^Q)4z` ztH_4K`LGrK!Yy%hu(9n_WrjU-G3)_u{hiL#ov*%b?EB(P5UO?DW)gRPOMsim3wXcT>i}yl&~MB(@cSJ=dMC^B zxW@I1HBP8}F{C^}9=EXro&x%*qQ5BDwMko`UN{4baQ^piEiJ9C&Q5?D|E{d)`FP%z zAko?%uFuSbvP7eVjEotM)E!s?*Yl9H#eS%g#p8Iu6(?zdG~P;me5U4XGGKbf=H`!o?=}q#3;+NC z1_l-l(bZc&IyXt9t!e)0rR9s}QfB^WsPC_;jpi>tk>OYrvX zLg^G0)|kM+Kz0re{2;WMnHlEwDgN;r)ZshK`~D)96>0?ZF!;*b$x5T$J&NZMgQU~CsxvC7V_Uk$Eu+W;4M z|M~OmvN9Lg#h))`VQzu~0|CmUrKN>_9xV6EX^osLTp~xED#2C)f~I!P{KDdX-XPe0-b;Fmtzb1R~|7JQ9HrCmJQgM)*IFW4#2Ig8%1I zC@BKrOh=AFAeM#L(FjDJMN$m1!fw{krzLGd+vwn`HjYv%1*O6qE7yZxM7>vnjk(@v z+NQym{LYV-AmG1jt8ZvHQ_v`DW4|B_AH2F4975}7 z%-({9_c!IU0_#VMq*Zu;Z1=;OSLAX#?zK4wU0Y&J5IXuDOuGTfv9NOlzQby|x~$lf z@5YT)aKjD`--^W--l%f{TKx=Wu9El?!k?ZHH8MSA^uy>{k6o=LZ>LaZ*NAHYzv}ft}8=-f%1Ti%@<%g2npgR#iH7@Iumhi zL*-e&${`THWbaVvGTvoW$<)~=<)NEJISmCVbUg~O(^aKN^^uq~z;oS$HF#ZOUX%>- zddJrAtAIMgrfCi#SrVZ|Ak-<^Qv1W2b7MqK53jR2;h>S<%FCtCPnh0h0^3DML=<1i z&&Synmypnte0u{tELaA>?I(+jaY7mq2!C;9F4LJxma}7NAIFcIQ5o1G1R|eb+zo_X zi%C*n;u7SjCMTq&@mrbE{zPYG?RPf&SBHbL60N!Q)gRpY*u3BZ7w%o+G7k@3)K$cs)P7sexD@`hX+ za5qNq(w0M9K%tnKEddpPiCV;7Vj&QFH1E*-_}Nmt?)}o4BAqW&-YYVo(YbnJIiNf$(kaWP7OOy5izUtS)f+-{ePjp;eUBPi%4(1S@^o@)p z{QIcb($WHW1JGh{KWspivlLMQ&s}pFnFft4MF&RZvoW?_7fSI@nVD!7(x;m7D|1AJ zJiRLIN@NRn$;SIb!i)0Eeve8iagibqPdzQu@{@VwG_<|FYd?MBJn0)8+yT2ANQ#FS z;%Rhm&{;zxCN-7mq;G7jGSX_(A}PnBI`m4a@jFQV|4r2JiyvbtXrz1)Z;)|1KG|p} zEG(Rjv!$oG(kwvd(2KR-?!*|>lVOq6_Is}VGt{V5CJ!1;)__hbfAa zJXAZ)pFTipTVE-|i8i?Lbu@*0^X>k<#Bd|zaDUuX3cI=8RNr6#rNWlGX_lpJ~1iP!B>e2~&HXm-h{?&A+1z&5C; zsjI81Y{rWfLZ`72xnFi~y%@I<7YZBiR};uddGq4O&>fdVHGtuO8RocoGsfrLyLaYx zc7?@txAlE}&%YYTXdj-RauXB>9>>>vH8(ZG4}HH4kQU&!QgVapRX@2-tI zfvvWyKYB69hKEph(oC|B%AS6pY!j}$W||>xdM9&!6^Q{9Ab|)rc64$gVUiRzX(fEP zUKappOSYY{(u7OloLJVQmtUJ9P^Rm*0q$fSg8BV5-TgWEKk&!#jy1s4N7&zZ_18tu zQzYoztJdDcE+D{v)&G20KU;&IKKacX{BMtcrjB*>^iU%&-FQ^+PST_J%NH9UKOqCF zt*cA6*bwgg%x(~Mk9{x2_zPhV*X=x)8O@-)?!?=I^){S&Zf-P+S58h3SlTOg4{yArMKtg|P(@nGZMw=_L>ABQ3wJ#MJHHv>o!k2Kfw-SpXzS0ik$)dKB>&8zJj7 z)%Bb@Se;e6>Xza%>!Vr0I}EeVPl(Da244hkc(oDt6mF8Rd-57eHTGq)F}wX;6E$s* zR&zt8NSvctH{F6EaO1Wa}O?0&M^dXn=Ap2T9shj0I zyBU>XF-aV`QMWT`Vu$k3OtQDyclFm4sLFCo^}YtO4fZ95hX1d>5n?j zG=~y9xO8tXUAe6>83u#q1QF_aKMeGPY>Al4b zrH(>E+6e$cnTbcp!_SW#7_kw{rBAMg8*x21mOW?UUmMV*m)2RduwfOtc{49J_m?;* zWV#b{?k3D;oO?EUXD1LSaRs@aKZ4*%UP$g-`D04dJ;F;1bCen7FYaWvuwgnNq^c{5 zz8;OlLj0oY*8AUInTvzim>y7-*$y>*PC{ZLB|}~YhlzV*N=}%e_#$<51++LC9M`M> z;a~drdtz(j{!kT6>phU=aeIroXmAvL6 zFkFsl2h)8U*Bh^NY0Att%@bNSviNXi{(pOw z2N8gi(B5x3PX)Jt20K}ZU`x$kRhFVyA@2g8})&hjq-1_?1 zi1eGL1WN9Do0*&hF}U&ny+gNu5L?m}%stg6G?B=zXRc4@Ucc}k;6nHx#~O*UUM5fy zA_<2s4^h_G%hU5P^#8=Xz|aHRYq|kJY}&YOGzi&}hE##k>G_t zqQ+)|A7#rh@qhaL_lu?$mt4-Sm0%GlnIlhQ5Qw-}2BMj5cS9ei{VPO{w2_f`cPW6 zfx}!ga;)Em7x5CFEi0EI5CC&|^KSDz03(x}`BV1D=dQ=R}`0%Wj3 zP5ofS262Wuue5STf6~@QBBY;jaYNbnXr4^!EG2-pr#D4HM_+$!aq&L_K^c&8YwH4l z8Fv)05q-$epr4rn+*#oa3>>t5e};zxumhfc_s4?Z6rxmyV7$%&{Y16h)zL!8&jCP` zbX)&W@GUd*8R%p{I}!Q%^)dt)^75BZ3qT)ZawA}E1)=55>i>z&H$ON#KRKTcMIZ4X zCq7jv2152)@$K7H5$ku}zX9Zdtl0T)tSn1WMTHSyI}qdmKL^a)>UxCnJIJO_Prdgu z>g#<$Adz(45z*%maNSv!Rw_55fEr)#YZZBhx0v>y)1w`LW}o8uL9C78C4mEjL}KON zKcE(8W@d^tOaLRn#=)_gtSl{!Yil08P5i6f30j8``!ys+IQ^IJw$x^8G%b+N5WD>q zxRIm|DfvjmR`Aj#1r3N-DHVk6y>M_|d8*Cl?=si{8~{R_u{2uC* z&Vhqq@YMXlL!1@+rad(Pn;-TyWA;F@Ex^F1O+f@}y+Gs83Yn9xh#|g*I$qbMP}mb= z`)AV_mdYbfJ@mX=m=)w)YM_M!>K+(<5N`qO)dwi}dqFc_5M==2`G4`wCh*2M_tCLbv4nc!2 zCM3Wx#=d#iVyyj)?8w3YsWx<$<>L|gTzd?gm9-tp((sNMjp=hnOHKQ_sZ#OK4s)r1|Hq{jo1oiIx9%dbk>@Vio}b`h6XKT%0@GlgVf8oMk88LiZt6Xkb(9|0&=qi@r7D)!OXeZMXjxn4q@5F?rR<-Q6T32SLx2JGI1;BDz<8*6Ui*NO;#8y+@0{Klczy0k)5vNVS{+~YlEqX`=$@0MjQ6E<|p`wp~N_jNfV1v3i5B#9-<2HBHdWv zpVhT)3(_`_b`C^O(eban(c==L2cMuWksI`qdyerk!tzp?y1EoN9a)2^PH+R)oqQaf zYK!PCGt#-iZ+))|cie73axY)op@K_}?#)<;MDyS^k3c;x`zz4?ub(N_t^9Gf$YbeE zf_k0}p#$iJ+0kz@zZx|#QBv*#@ImAXNiFiWNX-0K^Fh2`y~7!>ZOVvy2Z3Q37OTe`8i{P)KJE+dn7k>b4T= zKW}|BGE|P2a_IYKGGkNI1t5Hmyw7Vk>Ln}&K7wu&8C00c%gY<_`n4#Cd_WWc$g?ZZ z(vYw_kqIEoi)zFmgM7}#uG5M%P$$6M+vFZzTv{sBE%{S-F!Q$8?-l@Q0D&+A6oDZu z0Du@6(1am07cHmuWPN|s`Rd{;8?zYcP}}DZw;dPSgKNM4{AsK_BnZrV&w!upaQ(kaHJgApG}3JB_J>HIKa=Jxcq^s9FQkBQ2#>>mcoz^*xC= zI|2j*01P1k0Wi2Hu&K0Z=n&?`rz*vw;hsDAWkokGT18Fos2jn!2OE!kHLx-_ZbLw$d^f=F1~#E@{oxWVIG{z0JBZL)uCXQL9ZB)e#MfO?9s!A zWN1P{LL{oOu@PWR=psiT$Vfs-V^dSVPQcOyBM#~R(8|MZ%=W>bR@mq=62BCdA{ z9GhF?OI(@LO*w7tp+qC!j^A5IP>G>Hr3APOHwignXtYirHgJAs`}pm^RBC1abPvmV zZ;a;ZAE0BPW-ct;09!fU3R4THC=Crb+Ry243L-xeU+cf&g`^fUp+qL-|B(l@1sfZi zk`D5i$}`wlr%VL+d0`i`n1?1Q1p?klf{(ww zwdDcc)IpOJF{Za%EHR`^?>j{qgA3bF!BRO81{jog)89-&tdj^4%f-u*Fd^J;W8bm` z`P{_6^hHaKm4}Znhbtc#w*08eh#{4{IByEov%_e^euG~dKWSL5ycEeldg*!lb_MwH zd}%s_Iy1P|ir)jD6xdyh&A$;qcfKU`l3}!yAR;OU-9tr%8z2kX3=|0aRR>fFS6pWv zOGpU8aRxR1#MeLa%m4nRyniod(i*;^c9U@MCkhK;278H7+ldu}yFmu|kO3cIe?uV1 zkWz)De7@!IH4jl$g_!E*~Q%LY0a0;CZEzGt8v{Du=*^X zYZhNEQ}44Wd=UZq!5absMKfCdz?WiXA3_>IyvvC02O|7J6L>r5J8pG!WcZh`L2U?- zJn+^>hlizBqYr!~f{j6DMGOuSR>0rYRkalHhl?55{sZjPx5Aoo!*4l0&3&3qMb5HZ zsuNn|cX1Ak&^S=0E5n~8gbtf#FY6R56R}G}TEGCgHkEo`*Dexg;uC2)e(Do85T?7m0!{G+PeW0&Bg!vqoQU@pVOg zyy|xPpW6?|#-hs~k$l0a@`L%~K{ig<4CK#^(!}_9GPHTpqmg=OT~kY|xv2>VfMa0#Z+tUD@VW{|{PoqG z*qRoepPfPJs-0W-xVCKvUi1{|IMLDhE9M)^gNKE96o_wC;If!DhNnuPC&sH zH_Q|jTLI<~GEKb)Ugt+%b`2kgU>aCT1`>oULu)$kS zN8W~sk&OG7m^9`aIQ`ebYU2krVS;_&s=-EEQh$ z3Iwd+B!P2;9ZE$?`s>f1gm>>i#|2dpA-Y)z;p(JT9{eov_puTbLH{Bg0$BWGhd*GT z9gxxkBk#G`8Na*h{Oz%%^Ku{T$POKqRrQAtpPQHnLPm5|@I`yt(US&WAK2-j$AEDJ zb$(xi-vzMvy-C7deSPX&luTld@?s4X{^f^iyrqnqEV3oPz!Kg!08$oQJ#ZYMEzinZ zIy+ZjNwF!0vjiR<9c{VSLOPjB${Mc{)KtCh0IV}T)VKg`yr1#*?H~vWEGH|0tsNVC zY|(I8h&Hm8{9(VT9k!nngWp$*GmG2Rk)Lri=oay3Hb10u!BX$+>njSFTm>98#YnlX z;&Io{pI~a@?Hugw&3~;^QBqSw#!_8bSwxbOk^)n+qei-?U}0@730w$_=zaz;9037$ zZ0PT?$BL&0{dvV!$TK={S5|boKd?$FV0NbR{Dg&-%n{qp{ee1V%hC?L?*hGMd%=+( zJjMnzl>k-)3a0L!-_O<#AqD!i_16dxH$hH`V>AgGOCVfy$-mI2^)Br=e7T8dzmOdH zB`EkgMAO2h)SVYPPHmU*?Z?C#1;PiSyt_l~L30ZEn_j8825d2Ucf%q>AQ}RrfsHPI z2Qcwd3yZwCRIF0jh#fSREG~FQaJG;hD@8KA7k9}gKL9Fb3IaYLe#XYeNYS8N#>k?7 zoMQ>m{0YLg&kdI6A`f+!G^F5v@j5)*bVJ1x>RNy|aP58ro5cR?cyE1u9V%Ji=`}8^ zkF;E|(sAiD2yhXL`6x2Ft5;Q1C67SPp<0Ez3`-t~f^WlSpbC`-IagqGuk;BI@a)SXXNP0}rvPhxdNS{hk=yfD7HzcY12gtUA^=U5%YoR!c zGS#wvl^Dwz3#|T1POv;^VIivq`NY|vnv9sZ_{!?)XK5b9zgK!({+{p}FMyTK$zc+; zf7%|6$|pg}-srH*sNh8YQw2Aq&IVB>$OB;Ro*PIb(|?0oS9cQD{{V#11?XikQl8>s z%{?qE^9XJXec_c7EB-EatOIR&2eGHUxW~gRCEX_Nf-AxwP*-1wc9w^VNF9N<2>Jx>XC)Xud66eZChdFrxWxfsj`foOw@-era1$Fr6ab$E zd&VOHXBy8&0r3b`8;d##iDsY)$R9%p;lPX2{TnXm2U>A(V89UsP=V3Fm*|eXtWn1r zB8Hha571$2g2I#Y?JoZRDjp!L|MvDdB%v@h<{>(veIVEbQWk_2&Q4BVkQ0lAUy<#G za3@{$-0994i07eNrxG7m_6&2)N5G0QJp+cOPX%(OJxE7n!>)5Qfp8i;-0;>*kf(~6 zNg`HoN854CrCKmm0+4F=3~gbvqx%@)k;~XE^2-|=GFBrze5_dNY?w>LE%N4|zFuGN zxyyxEL6oT@3|@8ILKH$Onf?mK2zdt{6LQ8$_7&<9TUvrXt0P2F86A8>Xe{S3Kk|&i zLVg_wggrLg2-vN2Tmf};UD{JZ7##6%qYDnigu?dhNe~1K%c9}PI~C9@re5TZ4(1nO zNJ>kY;j8L+@L3nUBfl2)v|C& z6rjmmTo?)e8_I#-zm;mf5QERZGsYE(F8Da<@dL@pz zLymUus6BA6A_ot6FW;th;+qZoWs>Llt95&qMXUov`S!mDdydUQcNfF=a| zCYu9AK1dZ6_Lo2iKQS@kNKaDxb+>?F{zX44KJiaKj;!-Q?HUg0!(er$B&Qo^gvbg)g)ll zN$^$Gm~GDT_6yAgsAoT3Uo`vx6k7v!kQR-MeBC)#5RG+XD>*e3Sz{ ziIBRY*pbnHK=NF~gD(0Q&Oeckj4_#odEmv?n+t5e=p7B<-r}KDj{L;>E19vSJ zn5l8IyL&e@DylacC1?5%P*AW~-IRn}_e_aP1OhEl?4zytHD%r|0qIb02g$)^6)+RI zRpfJlS13T;0|^GW!RMIb4vai`baWK-P;G5XAm)NXfn`um-o1+v3Xm|058ZE+9bD9j z71kIEHT`pgLX-t+Yun|3=sSN16Ju)~yi>m*D`9(nm=pis<9xPT|>s z@C`t{*fWnGugREwb~T{v1+>|ZHwboic0gO$JkuCUI{)ie5vYhJM4-%2L#0#}8QQbN z8%n^xnN-?dbV8dbe9+mM-;>IpRVrP_%>uG!&=ewtztHL4#a&r~s5yPECC{ z8wad}HOAD;3{yruLj#e}+3{*2(FYzmWaIn%oErtKM)H~=vCHvNm%=_Ad8hiy83wTx zLd6p@H2Q{n^XF6!)r7nlW%k(Yt^9m$^y_-xSJH-eTClauFVsC>Q}O%0X`k|61(qr4 ztqMg3P}Y`~+$T=)50@mor}U$U`=SSbh!EG)CnL02Jgzp!SiHlmrd- z6%>SPf+8YJph|-!11?zSi{9{kuaHrycW8iEq2`V-~=?U=XLrqPn$(Dx7T);|&^fk#SNENS9#iZd~Q5<8z!uId6_$m)218qqM zoRq{+u=L&)zc5>0MMObswypoX=TyrOTWa0zJ2B!r76=cszGe%aXJ~V3kqh57HwzDd zC-bqRQ{Mg$Y6)@H2|?{7D=xPGS2?l!ADyV3@*gh9@8@x3im9SdMiF?GYbVndOK;Fd#AK0+`xRy4-p{{;To8 z#n*KI*bvef5r{9T2mfiUu zL6fgap%abwSWpxLa7Xsafpi;Vf}Rev!UMs~G73X!XAg9>HyXdhvJoHzVh&s1Ea&Qf+}rR$xO1+sjAJIC&eq4n41LeS##phR#)8t2<7uF(DeKKVw0za{t$&D zhnr@v{%lh3Z1SI?i&AjLLTKZMMw>jAr$P8XIb2vI?2eWpw^;g3j#ie$wEPREeX26C zi-#~{_i&+;HY1D{d>o>Og)E=0=JopjTB!f-H{oi_BbIAt4s{+ii9J=>{;sqf2A(MW zvH+`g%(CPQW8}j-F@knTDc)!-U`TPvjZ1FC$J!OW<^ysS&1!8}tl(_I5ynGU83|NJ z{vB3pKD9Tr7wSMnor>M>WA4HOO#jCH1Py6dvT3Ypgyxgy|f)l6Q<}mrRPhS%5V~Ta?}$Q*ic5{eJ;1 zqC1Fe&Z;K95n%a*%k1t2MFg1f!>qbOR7Gq-rCf?%0H#-^c+%bUfd=xUiv$YViKC&k{<%FKtq;~P2ba7UMS zUq>6rS5%1cPbdww{LL!ZfH=nlA$}Vpr~3(bkxj`QqTT$NPUAjMGPtO-jetB_6B{emZvhn zlI?t1Q>}HDw*>MS8eZ7XOM}Hh z9o?%`3j}@J(Q;N)(pV_epQkTpKeM`1{V-WXb?qvM9_ZUbH=%q2l804*rYKGvKplTW zmGf%UBK?z@vFg5qFC6=X2*gB0SH~>?zA?qJkR$+UGP67L;NPr-=Y-dI&s%QsUCx&A zFLoE(BkBhZCT&7>W*{Va)-B2kXAtmkb8DJIehK9gd^|ktfu~1HX;7aAAgnIvpP)Dq zQyh}B)&s~oYI`GPM&y-=t2cKf!SP-)bNyNVb;c&E>-_vs&LA|Zv78BcF({!O8H4!5 zy$=OOQOlW-wt_&JtD+Y)nm`HYKq3bx9spd%Lh@Rk$c82O<*!n{8dtrgr%zc~CQqOKg8b_W zCR>Le7iTzx0T^Rm^3bsm2nlB!{QPX_wJ4$X=8?Ys)UMGby05?;=U6bf4rB1df`T70 zI#R*Lkeu)B?p6}ZR{(SfAxdz=9H#EGDoX@}nIPhQW@pDwiX01pa~8Zo!jEHQWn)wK zyo(wl)cp*=)BzWi@QFalIdw}xej11Ih!14z;ngcTP zuUUO!5SfCY^4Yh_fXT^;iIJL!6>?)(MQ|=lLQ0B_vGE;^A(%`k@SXWSx(`AFT@w%r zrd)em@*-kDLiOG~31IBtcoar@dMi^?D3MxRUN*P1q@$p4+FrN|=W_sGm=GWT#i+sX zZw)vTciwJI8Q2wX!ow-?gMj^q@_Dt?Q>Ud>ptOctTAl-(17nL>%T8-_polKpqz#@E zhdU8H<`?0y09g6?UBKxK@V*JFkDZlWUH74^9k_8)YU)-Op6bQjzk|ThFastJ#lP3z z%!@M^Xc!u1+9Lj|n3pg6+?W(==1E~B0I0y=V=nowK>1Nc6z?$C&%?7OJ{e4$B z$FBBG*f0VL_w=kTD--s@$^`7N$zT>y`VgwB0lXi3Li^GZpv6eqo0;%TkZTkd75##t ziTUsWPFY%njHBUtin#~t(BL3c#;x^2HOKjg2x1~XGqVZOqql0(f5%HWN53tTLKF;K zBi`l9=YY>&zkXdmBd1ChbIfyp^{)Q8U+WY%sn*GZZ;jjkKJZNb2Lwd?G%f!F{y?YL)$beiG zgEN2LEPV)qW!TIB?SPnD-@xEG=G+?KqHl0<(F(q}54jSoY~UXxEe63~>L-+8Pfj^3hlQyGTrRSM0TW#Ejymc6JvN5+*`}aLy5&nlPqI z3+|?PAMOilnaAY*ATfef1@$K2klq9L0LcOzFLS)Tc#qg*gcz#3?0}U3!>7&_hdCH0 z9m?ln^?p)K{!`}yu0 z2%cfMKw}H$35a+oLcx+}D(!=1z`o)Y#2V`gGCPdw86<>hg@hflad> zON=1-HZ-hcCm7C=?_v7NyC`+k0Y;wd1+R(k>3rO|wBOdv|NbN$WR%K?=t{CbR z&N$RaiaTPcCxK0X9RUx3t7XCSH!S}eNI!k%OkPe7WIKm;p>)(uLzDlXCjpxo+Q5ScVxkGxQ`E!!?*1b~!>;|^3}f6sl3wC?{n-yZ>l?rOL$^&F4e2E?+;%i#5E;0GhAI= z4MQo@LF7MQE>g| zpBsb;Bp7dDW~gwdaoNEk3%5z-@^ISW9|s$@uHQ}|Tv-smx3{;zkCoL5ibP6sZbgN> z+b=3En603SxdiK;(9r!^?d8SA4G+qY%)z1e^z_Wj%R}^ngg|m=hqPG_055>n6m4zL zY2ft5`Nnx4#P7*8jDeDA8k|-{TA%Q6lY1l5>r?O`p3e4OVxF$V4Pba~qy$x;2XYST z92N~o+1#fCv?jMV2= z`*_7ywad2@v5t|bN(>CRfY=0`3xYIVt1GNSc|DYT+=G?N0CXUqoE*lILtd$ww39@f zSDF%cTQy0cWiybNWotJ)w5MPO|7UNn32x)y!778dW=mZ{VOU>-xE{2M7UA7Kn2d!? zC}q6*_|LzSrTzlfr_ap1)Bs4s~m;VF0emIhWXq9i?j{5VP~dBr~OFPeSkCu{%&QK{$dA10fSWYcN9r5?jUR zL-_snk3V3vl?G<)nXU4bE>97i`1}L=GM2z@nN63*VpB{_S1^Y~U3P>lXDM5*XioE398y|g~Of79~gawdRu$7rM$RV#$5~{PIaYZ~Ajf`BEvyD(j zk}q<+j42Q1Kc!`52u(0`f-T>i%-*Z*{8#AlV&0`e5(?RyFqbdWoxmqKmfH z@W26V6PW+qUPXd~(K{iXB2ez)Xm61M$<2WO!9JUN>g``_4Oy z8?lXt7)Rv73c(?yn zRpqQoB8lxe-~a5^EfUDK2$3NdFZ!1D>^<`adUkbo=H0vajHjpry+h!zX*@riKyof- ztfT(+>#s2D^G23{#S~mtVE0Ajf(ww;1d@Q|4f#F(y+#tzn>KIOgI2bp!tlUdKQFJ3 z!>d1>^z__r-`P)pUL*PX`8~hX-PHxFKln&WNJ?5+SnwS4@inVs8~a9-S6X-1KBQ}* zTvogN5?dR}{^H`z{w>YTWFnHF`mS9G?ZeKFj*9@dcQ2N#)g_ULk>L%IbS^!>FcTd` zUz>vro5;mZ#YYzW5XVvV(3OWut6m)Q04pvXN}B+D;mzdf(MMVRgP7!C{~lJ`WCI4{ z7V=6%`aFy@h5>7=*9|Fp~=?Ml?Wq3OlU|XHer%Ex)AjtEyHRlGU!l0Dh96N|}KR5w}TAjA`m!05BXlcO+PI(84 zPUKV+K<=j}hfxTwIz_;t6+(D8NrKw3cI{g58^EGw(`{{St*oqETr$zFCgeYa`tGXD zquG)a9Ax}0npa#k69vM4rQb_5%Ap?x00B{(=ppFMsK^nUCn(ESz6#JHinmO@!s%~Gl z20m*vh)>u0Ph+TqgB%sUQTJYXt!lMlm*J_GhJKmK)z#FzdO26BPBqGmIIUz(f}#xP zDr`eq$CvSf4DK$1s z!M;?N<=E$<1ep%KtXDkq0*;J9p8HeM(^-g2h`A<^<2N)!sS+h6C54R&^73%BEnX=V zg)Nlml-cDd8ME{&bN6jiRE+yjm}-3KBDmsMJd{Y7-t{-dp?(1p(zB965UAk9EyH4j z<>BFhP8Ij~E%Mo2n-{YxsT0P6I_Rw_$uvC|STMIi5LtwvD0ZUf4Z?Gzkh7z<_-=v~0UH>zRI6VidF9ws`Ii%mb$Ym(hRE`L0znIOix+_-U~IL-{iJjS#5WLV77e zHbzR)5h=|KAaK*Ov*kRV8Bt@$4)+>XF#1jY5L_odtVF+f_6#jHn6`b4Lx&pCuN_u9 zQTXSxuT+V@6cof;KX$8`&#uxIDL-mPsiM71+^(t<#KVrGsQ3p%f~eKBaig%M8))6|%wD_7i5a4&yYSsor6qkV*DDbf*q)gsNVsC))xl*wWt=R%TV zrM1PcxBACyJJ|6ZFf>$U-=Ph`b8@SalC?7T(Iao{Vx%`lf?dvfY3at!9IY)s!!ico zEQ)AYBvn>b4IHGpB&uG=H8*a&iDU&eKBu*&rUoRV^RCEnps=+MD{kLz{P_liBj8UR z<A5HN%FW{rLj8XWQa5ZXba=Y;<&V z$oL=TTsq_~fM})?fQ+^e|25Iy*SF_X3lgp@GBrYr^36wfIU_+VCe!d<*K;^_K9)Y7+=Y58GHg Irg}vE7n?1V1poj5 diff --git a/fig/linear.png b/fig/linear.png deleted file mode 100644 index a0d1a95f64774062a62f1712b01105a920dd4272..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 26326 zcmbSzWmr{R)a@||6_6AV0qIs!T0o?`Te?9&x)nuQT1vXR8x%yOrMr~w?zr>3-~ImH zA9wpaC~)@LYpRCmDvi$G-HGf#b^q`iOH}zSIXbiQ&w%{UJV%x@ zhf4TssIj`xeY6qJRORJViceq-7B1F!!fj!Dhgm_JSzJT;pD%s*k_9y#wrXi+{k})? z_BJxcXQ3ewK3N9&_3&_nFjX&58GS?h$cXopiA@ z=hWjb3X6z*c>f+72Zt_j@A%kurlGcu;pU0%*i*l~dY9d&$$i@+g_8tliQEn*vrV3g zxfKI>^wl^tvO8UKeS+5oHAMCf4$hksj*FeqwmNow-}no#Z{PH7Y`pxFD$?50qO3mC zo5b7L(6H2-@wBXlT`~#1tB3anX#&>F)=YVHa31={{H}*F~*+%zbyE19lT0Y*R zrlwxYTT6JiF}6EaYS`Tz6d0H#n^fn1yd@DyeYiEPMTX_EJa^~L9SI2uCe4bM=)w;^ zkog53{%s3tX=z#NNhnum6#lHv=yi2b>+37j=yu4;##XG`7#|T~U~4lP6D@w5l!|n>?bY+rU9zr#tFn^GFn3~NLaWM( z+i64H$?50=3MP;9R(C~E+h46}n?|q8_$+e*g4j?J-o4X{h)U5{uguKNYwPNkmY4PF zotU0KFEt;`f|()}@F4S($HjZ{L>3kLZ9Z0#>e2T3^XHP1XQ}dLmX_=5>-jsw+XMl21In28XDr@ z;boR=O;lRq4U`(Thnkz4?_t1<9j=e6orv?kc;WZ)WAx+Y<5_PSzm4hoYIyTKn}C1- zJx|~6C)3^C(ymhZs)eZJ&f7EAe^PF+g_f7I$qd44C;P`mMk=|u)USm zV;o^dM#dtYdeyQ%J?~3VRE=_zkd{+15}tRoaE-IEu-LBrNkz|Hnwyg^>q`~!@9yrF zbTWf6hrMAgNRWdMo7HO(qeZjQ0`2yD82#B=2O3IBqwhX9{IHyzk0ThE^_mh-C!L|0 z<-X+EdS~08pC9^Rv9Pe@Dt8{x(bB$kaF{I77ZDf#4db*m+kCxV+-(2iv6NI-V&dad zd1moYUq<}e>H z8qAWZww(vO}cnZ_=wTM#46_7*y%Q9hDI ziBrO^eWSUzx7Q?}H-P;9)2B~B`}`c`_U)-g_v2q7#PD z_}yoq&pioT?nfK?y8nKBKv|4_hJ2&tm6aNZo)FNI1Uz{tC_bPGySuxyv6Vwc5b(M< zfza8lFc!_Awzj^0z1PJ8@fIGoHC|3bjvRCG*@Z4OOPbz@Bgd(Y0byawyDktcsH(5c;-9daVUaI%$Fb?Tyrw>K+89gy^Arm;A|j$` z^-c`FAH>-x|6PLaug^v1qpx;aG5x;GdS5qIs7T(`_ww>O-kOdZf@#t7D(d_2C5?9J zWav6rZE+z!ko6G_MrbqQq39qxj^ASp8dg@t8JDvI^Q=#I?&1F?-rwI3 z2@ZDQ)3vkPC73~>K9Vf@T>)XT{nxKfV!Z~JA138-g|5F~v{1<*f-%$6EArS23Hd_M zC@R{@S1XpRx;~n;_4@+*)H9Vn=WmH6@zD2{7K4S~;d}m%G5p7?kG7_Hvld}KumcvB zlf5~)xL9f-Ug4mTL&m&nnS)hD?dKt2{RT2}9?!hPuV6xBZp@f*9EReIloT>DvX^97 z-3eUV`Rmj)G_W47AiP1OnS$*`XsQoO@%Jq9^8WpW`~eZWdaXSbxe)*WSl_Ux!a_n0 zcXxO9_ULOn0U~tIzZFO>c@7J+jPKugxhWbsn`tkjhJLlpbUcS;Ok$$P_0?rW5(?%M zD_h&^Q!)Vo0ht8OXhEylCjR{}$S@tmhX)5!)6-PgXbw4L?C9II+HlAEP%ee{Sc=ds zEv?Cu6PGyYUlq?L>!FiF0|SaYuwrA&%gXLPAj&A=`gSVKI*vJvD;slzBS)?HTTA#O zDJdyoaSIFj{b#JK5Y=E2ayu+VZNwxbNTIr3Uo|#RF*Dl?=c&N!$Vp0ec65YSn;IF> z@|kzA@ir-?zYY zl<-UcySkh2+!TUzWzzk%KV1xS@7mVf$*HPEOA?tl=}u#?h40_LFCa*pGZaL?f=Zq& zmk)tIEI8O>_pc~GoQ06gOH^Ep;`q3@QgucpB_%_{e-WGA)oDXR%3@+-Spcn!A@2zZ z2?1V-i;LU)mVA96DEQve+&u2fmoG_4))p3$sIGepXyh3Xn==~~mmWxqi_5#*GLJVY zRY$iaQ)WRGmjBS#cWG#^aCOMX%bS3N8jrBC)BX&Ojj1>7J|rQTuCkuIxVV6?M=SlU zV`E=?OtLdGt;b4y(`Y~9;q}^`JVBq#_4|@7mkc{xmlhYkHktN)lcwtE=zypkqZSbx zD~4KHRduy?0{N1gn|o<#se8VeM@hkP7O~xU7#bE!C(QYc{yp>FUlvT9n+{Yqb0K3sB%9X579iGMo;7wf zUWr^t63P7T5F4sR{4p>|1um}8Kp%vrPHCF4R*mVU6x(;`yDfVm{%kF*1Dh z>ecCM!e={h&}(9}u((*L z*W5I)7RAQJ1%L&j*dA>9M95+>8|nG^lg-}V;o=o8yMN1q$04{mEcXVq8R+TF&dtqj z7nH#0BgYG}okLOaO%qI0?q^DRkT>=AB;8|~b=;0N;tC53TLQTA4o~HpYieA^%ZwL^ zL%8wl&HB^Q(w=6LxE-z;o0#BZVWk{&y{eski7W_q8fO|@*)-xJXo5W$+}+Os5G*e( zxw*PNHx+p$DhlAre03lb5F$Lnpw4k)EF6m!GA@H!QG@IL64VWw6O~FeCE|;3=n2`) z{=n_C4XzGbQ?*W;6P{j$i5!+A>gwtRkTC(LK(_uI8rtM_c?LIoU7ea{wj#6T+HgK2 zepg@LHca=d5_xPFOdd;eA1Sm~VLn)-U5kx}=lJheNb}WMJ`BM!*US#Pr7HLP0&1qHZUtJ%vF z34d&+^U4VBM$0vpbERl1)mf9bOHVLtcCw<2T<*4$`h98j$Beb&gE3mpj$yYLqGe}~ zS|!5{_!{SA4`XH6Tf7S3-Q%$d&or#5=EFNNoMAir3=O!rxF=_4F$Ecbx*%%#eSuMm z-Z+J>j}&UfZgd!wdYvv3oGR|EMjM;OH#sba`uh6D#Ebwklwzo?VCbT)ao*O2QNo*1 z1lV-C;CvcwETE^h$|oG3#m2^lgu3=GDJaq}&yQm_S|9&n;LeQr(ML@DK0ud$NXo{ zv-Dd(QH|EwFG^0=IpWQ{6ccNQnC*2HD&+Vh&CcJAmL*mGmKYz;O8e3aWLuxZw^OOh=4~Lmx zjq4sBt^};tt+cYXrm3OvoTRL*%--H!fb=4NrpZ%kup%-t(xXgFQ87ZDv8uXSjVJ6G zAKwLx6T3`(ZEbCRJploM_sNbB8P>CG`IrOv4OD0lNufM5>4_gM(n&C9*}Uxd{rh)U z*S}qty>IAy`}>1~gOGbAc}GP;vsNL3LoiXM#MaQ%dDAOi=DBQmFEq4`D#=;dIu5V${nOH!n zHW9`OMI{tH8X6j}U%zH%W=>Ad{i$tz*cL=!P&x+1ZAXX1>N}#G*I0fCL`whLU@QcJ zo#_4l&sR+jRN+$f2K&X%vg26EOguGdyzJ6q9qPyqTkRrq_9K7Uoe2(XnL%99T&Hde zEWh#baj2~6+^>Nr2xQ0#92^^Ej+T^~!IVq?+-4BcXi)OYYcAk!vr}LiAY~O^6KEgk zo4^lbw-JbttR*slMV?S41MqP_SV^6cL?B+W*$tme0R;n92*4?G2z4eVSwsvs;D*dz zrWQbMP_D!Cpf+Y`oaF)*h=Q59H@h#aa$1v{-Ey*~urI0JS%ssFry3Q>O)U2&!A6J6 z-PIMwdKK#Q(kBQ+PP~DE!NlR&^TJt^x>y==N~V9FvmICNG1BX!^`pm_MZHYIIyyQ~ zTtKYO(ED5xLwP*7LaRHE9B;ZGhz6;x9}sQ1So@ zfprAXL?(_^bVgTQy#}HdEV??!^;p09I2=O zYC8J+*C0L%NQfbw&qSynk%JX|!JXq|F@_=l#q8X7U*iUKGMPc5LlJ_YAal0!mOFA+ zmYp)W4rXtpe_pZ_|28OXI(w}$)4>Yc9~cwpiyzjLu;tZNLVWzC)zxvxv@FH6(USM> z-IGgvL2e5i8hkACkRYgy?}?nKiW(cy`9vJqP&Y#e9v)ulxK+qm0q_;sV>vd2QOQa5z9yc`W(|Ae;^BF^iV7t6EqYO{(zBo{DJmk# zD@+*~8Te;s+0(FgHda<1hb3vkWV3MEHS+a8kay6KxT@Qnn4 z$m75da$MS;?#4Tk;*C-ji01Na85!Y(Fw=B?4l`6~Ia*XgD(Y7pdrW7BPPTU=Q&Gd5OvDE9z?*pZ<( z3i{Iik1#eRJDWz&$jWMCaq%PWZG=2is(g*pbltBfx}UP}vqq|>-3}W)PRr_o@}3O2 z_FF@j1N{8_js$cDjNZ36UHz;kr(u<0z(#67Fi-|!U z`WBK0eR1vDORSp+Wm{ZP$L;Cu^vYPHF{hTR~ zfNVd1z5*y`)PXH1*!E zb8>RBwbk(Q>=5{f-o8E>zx$7#%|XzYie-jv1@wWWj0~0EZ4{I+Qo)(tUYp&&ZLp^S z74~#@YgbumKrQ9r;qg_#!cQk1flwLByzTbt^FjW!pMGwX2LEE0x>bO$V{BwcLv;iT zW?GkV8^&J?&#vhmhzQ5c*O#^zC%b-FTwGkj;;_KQ#lg(O*<^KT0H|hH( zgStAH9oF0|NWK6!5fTzYs4ys12XN2`une-4)J*ouJw-)DfPWO&0et-Y>!Zcj4=TML zBHuf3&AdI3JGe5*$SJ9*k(4Nv76dQA z12oN4pY!uAfsov{g>RQgi}jjiB_wutcHTU}$Hxb{EqZYkP(-oQH-V}%4}9*5q7v0~ z6JE^610y3>RcX;e$TgzCC>-4NmgnW0iEP6Z6Cf5=D)B`P+Ae ztK2)O&b7U0+mrCcYgB~%^x@{@sB~->ceA{mFRj@5$wIDDcGUJ065-TmkeC620UZqg zU}BOdgSJVP_BTcAz;>i z0UZ3Ps+^RRR+as5X=FB=0CgGnV}fdvLF&^mLbfcA^3`TEQH4GJRvV7H#w%Tq1d^|1hP^P_QEwnDZr-~W#6-+xHC~gNlk>T6Sxxw=gD!)N zJcF_Cst`}oIN7Rd+9i3s#Jqf4PUt$xz(C!UOp%emukn+LtXSGI9i4Ad~O;*>l*oy_S;)@10Tk5f5 zGBZ27+I;X=SC=Jp^l5kwEaq;?Mjs!aT8CxXug~=7TRsBmHZwB=v2nW5y*eO30va)k z2UsvuWA_iJHVhJ;gH}wzXK|X`C6>4ln&<;Ddd4ot4-Et&UH)m1Q1}jrG75K}6pZF) zkByd|?2%dd`X2tJVBDgKr6hqWHV}^iUPMyM64E3Ai>}pl9S8Z(wziL0_K-|tn6zXQ zUxZ_oK|M)KoUpUAgU_UiB@C4uu(~wDzY8?VKRqDkH2RGt{5wrF2;&Lg31H8S4J#%l zCf}EHE6D3)SglYPImz^r^$HA=GNVlsJx-lb!Mp^~%xP#Hj9E#h)}_EYX(e9*nF*jD z5C8@yCTtqR@^KcuCM%H98bq9&oIoUm_}NkU_us$8P9X-9qZ}IFg(3u@v=J#h_6>QAUsj_Nba&G;esf>m zJRltG;%f5(sU+-r_B*7e2So1x?M9G{Ssi_TNCAl|2}!EC0wE$zy*^pJ4WtC`3!&(2pF6Rn~RH3axz7GUA_*^`!5#ExbV%K zO2rn_5L~&;cPxG#svd7yIk=b(-_?;5a5}U)Z*LKuy~YLgPtvrwSgX2sW~NCY{WXBS zNE*4A4kO@Byss~hSNhXoegUFB#KQWneS2(X=3D#uF~SHWucQA_Um$Lxp!ma-^s`?A zX$JdDLrZHkU#)L^+!fw$R?mrWK5ddC@K=+Q_B&#N>7pA=`)QL`8sidyLHLk}Ct5_e2$pHwyNG&~E?i`Zb$*HR^LI z#)hGVr?f*wYQT2P)Nj6Iy}}i*yeV;stn5Olqr*?p z%lBe=O7@?S(mSGRg$^G)bm&}4EjIef522`942Ck&(N|QXv{4=QETps^ZlfN17T=;9 z>0cMTMK=AwkzAK^o|$7hnk_#-^5_$G+%uN_IZ1qf!{?s&wAAGAL{#tICP(=E3jh84 z{o6GcM$ehpb>r0d>C}j@ZPsJv5u2gToMJ(JwQM>xWP3f>dM`0C(ik1p!!K)o(bpME z=`U<<40;nD9*!RFDD-@eMn!f{sJFd~dMeeVCfCZDHg)wPMd^++OWb8cu->Ewm53@U z@{zBxl#Em#Ig)?FSZO&_?%$Hv)c)$|5+eQ8mfP^2R-ZVPp{f9U?qv^w-plJpuQc-C zIp?tR(;4;|Fwv+*D(tH#S|m~r*SrG|ALOuYd|fYgIpfDRtRh-3f=1`IOM5pTLAfM{dzrLwdIR`7?!{lr`0)EH@~(36nfoES)8I@}8VqnTF;m%EyN% zR+$rNy?Gxw7fOP=l0oqmg?v{Cx2|k1A4yo9iq$7%R|q*xfb2@ zH<6p#p`jzw`+nM5&O2vX@>ed`k~5X9Srp3_!%H^?^c>g-+RbMdH)2EdG9N#XS=%-fSO8A-stAi zNFGrYeJdY4ZEe1I8ikej;#UUQhoV`9*`JB~&ox!#gceP*t`8Fm#Eo{>Uq66>Mm~f& z&2Xll^8p@F5F_!=U%&Ec2Ie(6V?^2Z~|ep%O+ou@fTJ2?P4 zW;u$2I~!|Qwv#EAlt#?npkrG-1VByTeEZu)U13F)W8cvp&1=qvpKr_CQRKEJI~QZF zS!$)f#=5?_6VzV*wJEMJJ-fvs{~>Z#Rm5;u*`n&Md_!lrSk85t4NaLFya7PaQPZ1rn8r~&>fnxjWlnq8l3CiNw2|AQ>vRHG56KH6-r28ZDY8FKy6 zFWB9kUMF2e$LuvT9nK(QV(#W?P^Ip!gh5TWEr@t-`RFkPtOj};szLrDiRwxP4Rp!D z$N|o)mJu%2gbE@$b)x?!3+=`(>vjE5T$%6N3YALBOQyy0;opZ&48e#t=$q5fr0)vGQ}{@6Q*b1#VV$nLEE zO)H>S&n>_W(&Ky^%+%!lod^>d3_01!gD7$$?GCI3LknNtp%Y)sFx}E=sVuM-aO4ka zzrMP`aRb>LKW)5pgP5q%pX$pRle`+tq8FU>>vNL)+f8QzAC#XZ{z8sbj!4%0aDl10ngB)3KqcRBhbZ zSB$cOY}bxBqdyh#?pWY=BS%Yl++biaZ%EkRal(JUkWPH?U>4=*_-OS{$DrZQ?_N-P zX4r!-Jnw!7<&r0@zH(ESXVJeu^gdh>8<`oEHe16c}vF%U4Z%Rb1qvW z(xh*!c0RKypQ;SAWLt%PZ2KYuqU0WPvW>UIM4xZv>7>#ZEc>Hw!l0>)S|$svb#sUD z0_vDg-p-aK%N_2j`A_nSRU(lgjb7v(=cZ>s{OT{=p@u}UJJ+>ut704VJMft>>XVW* z%*=A=(TB8=iCccYWni_5Dq4_kMbgd`5oyqqI7!r`Q2a#XK_p$W8>}orG_B z>eMy!AG<5ct5VuOAHFBmscPmO#cVN<(Q%BIvx?kdcq{4!R%Rs!R;D&;llHnVUQ>5> z)jPc~9$z76N(^f!;FIkzo}i1Lxnj?i9mEG(C0yYV zU$ovH8~jK@Y<_xz-)!?YUPEt(WVg$&lz~Do!E9e}f#B+y%S!0SAQj!JtpCdM&%<)Y z^|~Fx7cU$iG;!ZCzQcX`!}Q~E@d~@8?dc?EXgJ~E*4*6NdABzT3jLt#X=`h%GY(Ic zNVJl}fGG!4FI3B~O`x2~vV?|gRU6|)C&iF@yvBV}us+jo-zyuMy1MKMCNJ=6gunj} z)5%i>QsZpN_jAAdOggH(POKVbl8HaXb8dUPcc$a{_Xmp%Xvh_6{1cauNIHOyCkI8X zy4zbXGmh@mm*!sb6u!%0Nqlu|VZL5C$NQ%cY0(iYkemVP!HYX}1dsM=rz5)i(Xu`MD&@Q%|oybi4VeLJ8kg z_m9ge@8IcC(E3BHKhZ_I^DZ`DSr27|KCDC=|kDEYHSAI8oD&v2jw0kbZdBo{hK~e3%w7C51^S`wHq9EzBxC2NehSfT=$J5PeI}s9&iw;D5|Qp$Uj@fl zyD;Bd>&Ue|F-ISG*B|t!!8>#y!r)T&7MAbu9hjpz;sP&vUM!0G&GuX-+VJ=6ItNeL zkJt2tyY74Vudtg-y(Ry%b_*FIs9BNWhQBw(_S~+g^13-X>t6CqPovxCLW*Y_0@C&R z46oi)A|;2DIs-yNyC6xXj1O-155D3E#-TRYe_?vYzQ+H$K0G^K%5P5?B9q5QamlmU zs6Fn2{OOvB$HGbjEuXbqN5e`FgM(3|2kdRKwrw`GW+YvB}HL+-^A#**3`^2 zvFg1mZV1xPpRlXs>*6@7q0sxlgK1SH$yc3J)~tIbR>&DVPUL0;#cE=ls413qHrMj& z+2sk5E6sj;-+VTIXl~-~cpH~u?6<$;BOD~vUjS)NJNgD9H$>Fu-YgVty0OmsRj18& z;nq6kyFsp1j>9^*%BaW|(%L1`2HRP*B?L|927bQ%OJ8Jc?WlGe4+&*=NC7dgb>1l~ zk!nrU8hTP1ZmBCZjVJUGnJTe_KTCgAdrL#cwqTHx;yPGLtXW5PljCCqSq3frix)3w zX;*+C1YS^^d9B$iJq zsmi8M{bg&c#^g$Tw}+CE^6S(#2;{y7@L5=KB5k%ns9H``(8Zq5DyGUmA|e89W0y`T z%W9%x6{>DQY4uFDj|}4|Eo76? zi%Fv#&8_VY>5%3~X!H@`1+{5vo|N523`bB>2?*|FoT&Jv$jIg2IUnb7^ZRlW?Q}kC zNIJo>k~r3%c*Ww`qTmG(Mx-y^`kXogEnIHW0}(KR-Fy$k_D+Teh`D-+h*?t-jf7Hb zjM1S9`x)I2HmzTAyRmU*^9Sng7POMQ5Epuoy|64dcmNh($9M0(`m>pI12?SQ;PO1I zotWS4-C_(1LS8l^qo(^-7hBb3Z+TgDy!ZE%$!Aqn%;hWTpO2a-535Y9EnD^fEj$Xz zHX1dPm6ZkgGa-SP{1qj(PLqc#SfxPKUxzB5nA7TOVxpC`wa%*JO+=K+Zasl3mz=mj z)8O{bhYq>sQkRPeDZRx%(?trA#HFTn`chb^3PgTwZEb#75ZQ%+u@(n;7{nR)V!+ZF!)cP`hv{;vihbQ#HwXE+td7UOSs27uuPR6TvdAjf25Z^~sN-a|ilQ6ZczkbKU`l3k&4Q&egm|aEnt3$V>2De zSCiAyN;u4wEW$*jWQ^zn6zItOs_fd;nz8Zyoy7HxTX=2*e$wvZNp3U{=nF%n%tcnC zwuwmiT;75>fhlpiYs3;ENJfSK4GH%#^4-vJH@IEG*XK1TPOxpT?^u z{^;7th5`&21S6o(?I}4D`K*WJN1e_zh+}uc0UwdmN5wPchx&ob3 z)k8)nR!P4Kqn&=UVBuSOI;km>eAsAskIsT&k#imTu*zoo4Ah%0kYB;SR@{80nXk$O z5*9R^s~jI44PtaOxZ3NTHX&!q#j~T0>fAy^GX%SRaj*y)uMzd|znghz=U{E*V&IHH zs8*)Hb(N|{IvU7=WsxNp`Y=8|-e#->j!3M6WDj~MPQWWT;Q-8UhB%QLAM_fujTwXV{L4lH%zTaBvwp;2AO&9-Owy{aw=oIhJNWbYj zm!0gT$P)nM-c#JEMs=)r6CQg+MXrSdXMg+(TSKGEz)4!o1Oaa<{Sv zQ-?eMZNIfoS!?tOl!|+|}2B$`S8iq#Mn z(Pfhb0J|{ZqQhaG*QjXs@3V7q+JMWB3eqJ`Cxk6CS#1kq2`my&b!)Vlas0pwc73srxuuPXSQJ?_HQo4{z4_N>h3mCB`jW)& z94z|A&v6vKxPFpp9-}J|OddRV0P=h&sUWj0_&2@5s0bEu z4Uis9o<&~%UT!m&QBE%oR5{tACjNfpU4KtRi`Me~{mu9+a3SJNh(3Kt{)#$M<+Tn% zUP)Z>FPl?0+lqkppS<;DsW@)z>o=jdbHXB6^gzS~2@#Cd)P5zB8$W8^tzswl6@#R> zsDgqR*0yU&2)1q}KHOJ}e;*(`abCvW6j; zh6Uezc{B+!!0nqtnFMG6mrgdzfzAo>@BL%*=kI>zkB)!{HaGnDcv$Ck9^*e}^m$-He%NrPg!cUHv(Sz)R zI$+k6q{R;YX{_gE^7zPktYTY&YyvWuV`lVC1jmP+nZ<^6u^yVjzZ$%>jDg)5C{r0c zqXtO_^LuZ-Xq6x6)sC21SmepmGL9=|%aY&;AVnbX%j>^+^9-!Fpd94BHA2V-U3`yh zIalk>E?A5or)50jeSM_$=rEhW6l+QRrAitfYGgzN*stwCFav++M^Sc}{GC;AaIk{N zOG8EF2zEtaOF>yuou5OY)P($TjUb_U=P!n-_RmvR5^Xiq3OR606x(~>a|^nTJY zo(ARY{2f*U7F9Gp3)kBl(Gbjc5;_>6h z9$>5nZC#~>?WT`Ke-t|?1oSLj8_SDSN?)jr4wc6HoO8>QYQ=?eI-{%}qThZG){bO8 zSJ3lf7Kx*>R=oL2Ys8F(ob@gQeajHP@TR-MEqZKNQ2G{Ep@gLT@YEb%s5JlQZsMlLf4? z26oiaQo9aO<8i&Sm3|6AK|uhY01835QhefP+M9TKx||HIHDWxx#nn|;FnEFGlGE%D z92&TS^abBsU5!FQd96y>J$8yRIy7Lka=+zj`<$6gtfeosvIq~wfih(c*00<*zJTCh zFh2-5u0^$^l_hdafGP<}9q3^nTfG=m3)Eq0{tl-=L!QC#+L;rAlFHD~5CRk!>_FI- zA`An4d1vSCsR%DG@9797BIo1(1tdk^6s{$xZ1aD1ho9tgn5Iy$V&$Pw3DHJ&fC6e_ zVNnPB7X&JBzI(2xSXD*n`GA`q#+F&9?inV;K~g|?Fd)UDs@mF#2?@Mj7cQ<{IST1; zN<&H0J5@fXRP8%h2z0fzr3WkE?3y#V1z2s3ST(4wr;Ja>TW(3!_V(23_~Tt%EB|{M z*nNLl;P)H7En2(hDfiIn8}5f(e#d#>wW*k^{4`u1SLN3g7$vp0)J(b=G!kQCjzEP2 zH!sq+=@61BB`XUD1NNA>!A$@Y5p4{vFk1@?qK6L^e$k|vYXT%oR8e*K&uzxo9$Q7^ z(`K-`wx+r?`^sF^;@8Yaw?g+7XCg9NY1$N&skAkslBZsCs5KXzxvvZbcV2zaiTF##O4>V1{9%~oQBt}Btj&n$kjnO+Xxj6I|J!oBjcZ@ z{qHr@u`%s&V=q4wyO~$0xGnIIkZ^TlW2)3pjDaCPA_$6dl_t}H{{Gde+I_IGfFD5x z%s5zB@>{8hl)Zp|-%Pi(EcjLkl73z51_>%jd!fhROG>Eg6-Cn@E8kG2UlekIA{^Yc z!s0Jq`oQwaP=hKB^!Tq20jEH~db>5nE&MxzN(v0@gd`-ew${OY0@S{z?I}W@4vDpR z8b*wMKHfa*iHrGs-|Y<{d1OBVax9gm5D@r2V#9b5s;Zq%3v zL1W!*#Q!;LL}sUnUGRzNsWk{MJ`SO~m==0iDj1fI~r z3)C^Qa2#zlS=&VjmbK@_FFcbGUlMkBd9NF}zw|j=$)QtZi0!jDb6pJ<>>U#{p ztyw&x7vwc;=d&ho7HNJSi``MfJ20E@*2}JKOa2dTpwJ5ds-VT^reh=IZ_)EIc}{Ng zgiNlShG^hQY@~w~BdaJarQ2LHL&&#^4+>=1Cg;zl>M7)VO&3d0v0{(- zTLzSi2(`Z1M)CO+k?}Lz_Ix^JQm&Zj@UVu=+U8f?_$@lrcvSzE8|(^zSi1Rxg3qqE zzo;g-j%M&q+IzkIK5FnsKKb_iK&BKpV24%E5y}|5lcpLdYUp?SzDA8RvML>waE+ol zP`>=&iR}kvh`bsJLY_M?O{6@`7W+Z`=wYQ44vu{>!IHR7R%h)BId@T!wW&ioiXzq=4uI^Oelwosi=r@=Z^xB7 zrFBUXf`EEX?!U)MS&Haj4Yl?nIiBZ=T^y}j9qn%y5<*Y`8O(trBY|^N6e>;EFlMqU zW2=)$f-X;VVUHMk`L6V2ailHWwV|Nt-VtZNqBA#0d(c=G9sN9M>Hm5G@X?ZOGtkm>RL8ZsFE8;_Jr?j{Bqm3d=Y&sM(6O?XO{P4=wlgCjss#7Y&y`sVEfE${dggB+sFCL!!5<@BNEad>c+RF&Y_*TK#~ zB^{L;%6iB*5P3?Gklgi&#EW}>w?UvMDR#<}A=Rim?U*~wI82aHr(U-a@20ZYSAiSy z{8N%y1h=!VNsporiP7Vrpt?I(RpS5YTn{HCgn__QHx}9E>gc&#dbl zilgb}@INf%#KBOg$V!sO?Z31-JJ_44h%}k;IumFvbMbH_xFc@}oOT`-p$t@aNsWX} zFI=lL3oFOFWwezTkiSN1KzV^X_uV>rG9GSYScNy0Ke{M)62SyYJLMrXy%x(v-Sq@- zO^~mW?q7t2|IFPa)AAZVxHp9k`Ri9W_O!2^PJey)C{ZuHLDJoR)%Ltf-dO<=e@6&4 zg)=+=t`+i6>Yh?n5MO%eW_VYHvFy;ay+ zZojSmj@W8$+P_47jTs#g1y9YH$^5U~4pL~>)^yO6MN2CMZcR}JDOx44Cw)}UeVE0f zot>iTUoiv7=W9i%h$gUeq!4{nEIU=;65Iy*}xA--LA)=gtDiOOb}y}ItA>hxcu51_M&l&odj3Ouz< zw&L>+2?7)kG#yo)MG^8(U>)tDUXh{kx!axi|KsW59oeeBcP@M*kL5Oy2&c4Z&UyhG zk4rssqC*BZdbE`+VHF@|VIt*K6$!_WX=R)|y}frWC&>kgYb%wZ$&{PWBx~)y&|{CK zDW437iNedr?y`ovC&<1igL1TkNB7a_`s2Akc)gp}_D+gP%QmM^8sl?r z`_(4Xu~3Z4r1jp(P7YQz@3e&CG+;x#-aIZeQSLJXRGNkhmq5R}Fxfy%> zmwilwli2F&IsD161k3rUm+%TNjYY8DF9k|=db?cM7Dw?GUm!e%!=HHgp`mNcD2So^La0Ow){-;R zhW_zXvot!dId)g2)fthUUjr>Oge>CEa_{Wh2b0@#Q$_QCr};>9kiSy_9nYd^?p$s> zwrX^Mqa?8*FQBopuIq+R9?TnuhLxhpLVu$yVPA#-1%KU1Uj1W4P9PkMXM-at4B5A| zpN6fEZvJ_@XTwB7@?U$n)UrZ{PV+5y#4Pi9VzOjaO^#IY+rvm{{HE%TDGmBxwbnfQ zAYoa5#rKd76`|+DB%JdL{)dRNH)}un`KQ(r)*cGanB1e0K0VzOyrIK*8nyjMFZpPV z84Hnj<2Jdnp@XUP`DAfvWT}s<`l$Mj^ES01^EKPPXIT}eUSs8rmyW(V>GB~GLFkKg zze|QkI|vB&PftFfAdEjY6Ua05vuX^Lt4%znV*9&_B!2VQpiLTKef^Vk8t%T94IGi6 zaSuaZn|E$r6b_!Q{$p0;LD_A;7Rzs>bi-ReXplO2wEryXkY|W_Std1{ZF5MnzHg5D zC}y9pFNBcaAjmddwK5o${2?88^7L|pc-euS9elh@sS?H-!EHc^>R)OFX#0@8zu)I@tl zPKnq@+ows2$+#<;;XH-!{CjOSmNpb5y}=Ot^>`Qb7)isLlwF-ieg-A zn+$uH>QaTy^)^7^3w+0X?ORxwh7M2&l!br)omTIV|eq&bMXxV(o zI#{ZU+D1DRQYqrWdosVyBj%&a^*{2eRv99_#PI4m#nEs6tlX{a9@ZfMo)^aPu7dvV z;O}Mga7@c~!7pVm+A8DGCJst>Efn)02xoL}w$V^Gd*J?XBhjR})bQ0M(U^`& zoWB=e&z)b-jPSXJPPfrY;$Lov8o1=>dSpoG*A2DEbQLE3pSI3C9P0ON|C2^d5~GAH zS+m8*k|K&sMCwDyk_u&Mv1cbskv&8tq%5h(o=Ayo5!oe@rED!U*2&&;&iDKKtTkmfFvc+G@^;*U23Zc=AvnwNVDPE_@sNG|uV*rWL1*zOuZOKy|oEc%-jQOMPb z+rn#G`L(PLYG@&pCBw@pAI42K zv=pD()Bk(-uTL*_PbSGgn#&MCuDF^0G_)b%JzLt?G%MpbpRj*j)FWE%K5+TT^F8~u z0v>dT9I*9AVp)6Ig`oB{T9%%MvXOqh(fu2hWqY$eE&Toby7Q%I%L~@GcgQ6IDk3@S ztfYw|nnot<0Rb`kh3Nt>U+7fXJafy}I{3oqSMZtbaAw*5(kIqhM!&Rp5x~H(jwocY zz4verBZJ8xtBbN&{dNf}9cS~07at^kSm9?VOZ+fH9%|%72l@tuw02l1M)he5u=oKL5-2lY>Br+rm!KB<~R$`#pcGy@lgWgQRgZJ9TBe z`@taITID_BorRY$<7#m6?s*for z586-MlZ*F~82|k|ouOZhF?gk0Jv{lQ)u*AdRoRcT49epbHLNKK%rS|#u0IJSv+ zqj!1u%lfPbPBkh7LIV#wWsxmn*LK6`UrjyPdc8&|dnvxx(zhITYka&ZkHu39#<@|( zAg8YPezUz#@?;8W?VG|%XijeW#&s&(u$GG7%*ZJ9A5y=v-M!{vDE;obj{7e?2xA*) z$6r@i#cv94;Q7k8I`&*^@WJJp+i$+YeD-#bj9bO@`fIe2xqwJ^n&L|0vX^p|fImi! z1EUt@SCM+l^oHN;l?KPjCoi*l<(M6fXI(TTNU2<`fKaceg5|gjIAap zMV8-Xw4Kwqhxjn+*AIvr2=c-Lg7bq5(7KjFaE zmiivt$Ei$#pn|fp#fY1FEm~e}u76#4mWNv^_Ro%cIj?yd^@R>hU3xn{f9jm!B$u)a z=c{`sr?xN?2t$q(b*8UqevY?G7fOZ-gr-y&72kQkm?>o(%xdvoK+EsvOhv?Qwu(g} z-b0Q35xLtyEnLxOI_4sEhmGl09{-X_@;~Uo6K-wNC|`ez*-|pIP;ZK2+3%7Tv};Sk z0sQ416QjgU7+=;ZJG?8jZ@rjf(s;7_XXUxoT~S%|8L%qRV4MM4Sx(vXhdpY!_bwka zi(Yw}K|S&QdC#t+EG)7Mn1|ODPu>=$5Y<`uR9ywfY1E(HzrtTKex@0_%vScz^9`hp zWIumC3&*18leb!ihTD^y->ERFI(&IqHR?RAdn3BISRqU!z=Mf*YH1+}ix*m3rTPQ%^c7D7s|B=| zdi=6G$E35rKN2t6)!pqdSiwhSUs#wd9n?)x-dogX@RS1M0HJ)hI3#6+IBs?*<_S8H z0`WT2EmItDgTa06;pWEI*a)X~adBML`CIPUm1%J1Jbo-XT7IG=GgDKF1J=4>J|f-K zxNqOS?vEeqR7fn1jg8-3UxkM=4XBUUpFckot+wWL^=cLVf&*G;esgkym6h#|AODbG zUNNfrO6~-SjR@jIQd-(qva!RJD{^vjJ3b!p*V`KQC^t8fa`IjMQ`(}8g81J5UUSkn&gzbi4p_QyTFw#@=)qBDbNO=53tM9fg`%m+IAAhD$5g?O zgzhXP20OU8-l{~M+a)H}3Q`u1u|a&QQ`xKv`}Fj1wA!~6O5T~XXSc1nj(ylsKHP8? zY$hxvbhScOJtY_`J8rd(!?&Wcd$+BVldPoVPuQ~>U9Os5yY~9Q12cG%O-=bybnEdB zFG@@O*A~YWxb16#x1gywSYppJ5H?cZ*QX*XdPIO+TU*<9xfreI;S}vW02J`^-E|2- z#Hkh`HJoi48X8_+{M6oFh1W7PFc8_bD+SauolJLES7t|HCO?gPckT?2j%q&XJb2&$ z1ST-AOzVoML0EDc*gz}zGz=x& zkw)g`(T+O>^eAagxFeYGwJM?Ip#DI!;2~bK7jZG=fep#o+1Z7K z)41lt6bcKk(sd8svh2J(RiA~a|1v;W`IHsPBgH)h4NjdxKm9x4E%;xJBI|9Q!qYHI z(>oJwZ70f~H}t`$gqMcS7K2Z}W8i}b$7n;|gr-GcV4#khf}OQ>e0;ncx))Ha`mN4? zqNI_j8Z#N`>GHTUBO@ad6B8F65_dck`%r5k7g8f3E&Z{h0~j08Zk+eSQw|maA1^O_ zTa%NM=#@wRs>H(aiorg5H0-ogR7AubQ`g0rQ5BEh_YxDOflxaxIvnpb zH}~gH!ri;*PbsJTo}7$)@rOoxfF@R18O}uC!vq$uErR15cW37_r4D>iSG0_5ZEbNh zfB5iWE2~En!kRWVHZ2bhMhIxz+2y39@O{2~@gfaSA`VVY;JLnS^B4)$NXI%YDw6m0 zT@4K-<(LY^tbm(_kOIro>{zp{y*-vyWK@&`R-LWwv7<*piP{@gs70iyYl+^mj;3bn zUx97vZ6R-%1SnuHDsd&v;d3Y$o96vwr zh6Nxidx)$7(1tj>j>uM_>3-I!N0z6YopFu(Q*<9HT}`)JhCc6y>k^!0E32#M`ANrU zqi+Z78eJfmnksO=I;sGios;5mz!DCE9aXXlEgCxJ2%FZ0r(wze=3It&h~SM5AMABC zyC)mML7}3)`GbiFPjJZI@Hz__nS55&h4Yw*uzdkr`8{79w-0g~;5V)^AJEqjih5Q4#&Tc^OT;1GYWiRks^~QCwgg~H|1h*CvRtPCa#>T$g^Lk|0R}y(7W50?D zT688Q2PGuJs?Ljui2+f8QRcF3ZD=@Md^zTeWmGtfy!Vom>G(n}=3W}in`p#Q`$}bG zWt|YhAzj30!m;^1MaKaxe&3tMpJUK8{4q9m(az2X4ZWN~Y}rsE;RmxwK|uk2b)n>D z8jV%~^3$bx)SR#s8L zGK!0h?da?bJo|+$h_;G$WKqxw0WxMMkaDS=X!(PBk>#&{j}l7rZBN%M3X)Y(>HGYd z+td|iJnl&MA04}LsNp9`nf^4`l+8=Xq9P(vXG@q4)!oRb8?b_u`}c3H35pYn zhqa=3W2A3FPzC!myz=^4aZRHL!$|#^P3Is<~-+R=3(TUp3#QVmrZ!pFgo|vvYFd zbTV=C!OVG$+83de4q}7(duy0egi3l_1;{Op9MzZ<{QUf`OCkJzQ#2a5W|-i(O9y=zv`u9yWR?zWv01bXmhY%0LfnlqAZ9nAZ3oM0<@;P6Fv;){6OtL^n*3wd#8kaE~?@RYNrKJga2R%ZToS*MV#|Mly zjiPvZQ$(d-V53mnxC=pCqWjyIb|ld!s9M3&nJ2|8%Vw=E89_jV5aNK z7rV=sLnE~gXX+;>B~3+&C>Bv)Bap(~sXyP})5Dcw^jVSbWRV&TdwS;NwPVLNcYC;6 zX!wn9&nCxeiy$Rw#sV2F^IaRQ*!{M5M$kKrDiovbwUn2h9x!j3rOe_#(UYS;ZwlOn z6h}tq_u9~vmfZ$|3VZk3+u7A#1j`7WW~UFrdRRdSg}8g)?JO-bva%#9Vn*J5_`rN^ zaM8!_(xoRe@2{N04D7W z5P)C?hZa!zd4|Mp13C_UPgtF|tKY_&NB17c#P!q@&eax$P;}5%7F~$y=syjOj69Nk z5;}lO19>LB6BAmBWAoqv=WXolT|GSuLsjdE^boM~pm(j6{4~ohGz(O*1NiD1ojTPC zVh047^xsNx{K8Dubc_T3(@H)O6Ggb7ztZOlt12BDd0aF_7klsp`9yQy`R$+AR{soQ z5TN=)7L;f9hI{aK21XbjQ*Tetr_Y}4N&Im0Cb1Y(y1$`8Tu`v8xmj9NbORnW0%6c` z(N4U{=g&#+tu9(wrA{K&Lz@k{1PDY+pDNda92-s+!SpYBCo4Pq=Z_!nt>p1$kMytL zW@lzv8yIwfE(yM6QgZTi)czU3j?wu9w4kCw_0Id1v1G?K8l*U9PM-$C0azyc{#V=S zpYPEl;%aJVclSm4L`ZxO^+ogU2U92Z-aQ~WOKm<%`W%jmXNw3O(Aa99{-3px&;>7)q$UJA~ja1yT$-ZEs;$SN2Z7@$4A z+N78Sh?3ZHaU8%`S8QyANFDwCzCdRY)gg9ZpSjV5Ee!#nM=D;Y?jJTOU>sy*o^<}e zTv5v8F_rOY+riC^Anf`I+sww zymk%_szS@$&w{{WB5<)Wxkb_c<7xcA^34C2TW?_!#NRSE&>wqUKaie&AIee}Br-h( zl>_4rEEkQ%m8g!R4*+ent~|jq1saAgGm^Cql>k1&cUNVa(c2PdWcy>He}8H+dVX}X~g{va-b6oAdh9-Zsc%eX&HO-<0l$aAaY=I56d z6mUgKvua}KKBYUlo{DLWip6u<0_a>6K+(~yJbv;}e?V>1(AfCOcew=RNJO2Nmlu=}2X?l8_#h=N z-cVDs{_G-3SPpmvQt;rRG0<3UUTlfB>?uwY4=QpVrpaz)AOP#;($u zq5=oHFdXR0DJ>R-sK(3^$H8>~aFTuDXm=>AHL(`Cq$0ehdMB>{~U%!!$?;X%?&!2BImE0Nz z2oH%E01*|6pDoPHP-!3mY|q4gC$=>Vl)tQs3co{#4goaOl=5xb6R=T?5*+HZnHhj@ zaiZ{@&CJ5$8v-92F|G3lxK%)?$W$JXlVbz$jXdA3#m^R|0Za%cNz8jIaC#aVv@wZ^ z>ZrwTH+%M`c}vvN&e-zPA)$wY($ul^=;@tc@v@7}!wI0FSdw%^yUdF=6`h$yJ2>W;XcDLB6_ zKmfH@oOC)8d1S~5{T0Zse*ZqQ@uqrxIO;_oRsLlUjS}+jp29#4Ay__kq}V$+loS=w zD;;H9D=QI|cPI4pSnqDT&PE(3-4H_M<8H<5f-eoYME{O}GiA=BC?l14TV%}~EG&w= z=WSe}6zau2ZEcki7bn>RHaj-E2oh6ucWGhaQ5_x16JH-6ggRuP?Y(qp6g03J8mZ6O znXK!=w}Z&X8K%+G(; z09hAVEE}=#`SZi|j^Ab%k>p`%QPK)>a+t5hhle*JOdWlc_TcFIh6VtPp%nwrRP!uS zX;ca3X0xC_fc0Cup>3a>oJobxA~4e;Tf+<_`M9`1G34gu)kv_hwcS0Ubc*2N6h#() z31$U9EH==wBXCida42vVigDL7_>O|(qF||?KZd-8jTrNW(9zr+sl7r~OTdDamd-6L z#RzqGb=}r}gvo0s5nT_n5(<-=4JTZ$UiC7KMTIgjU^cgW`c_EDMsEQnSHu8(PXQ%O z1Kh^i+Ehz-=dv$=$0BMsnEll^HV*k0c>p&T7qhPnf(nsg9gpa&+pE{FflPgznYnA( z@~d+hhMCXF6U92h`}@X5P@xd&`F*CUeyyD(4CP;^kl1lUhk+}twE37VQ@JwJY^x&@ z%XtRV)%wyVV)bTeQh>JgkvX3WS$MMm0frld+{Z}gj*Fgh54v}cYl0l2EmGlR9hvj{ zw}V|^Q6Knjjz2q&VIwe8El56i%^jd==rNHLV11#OfX>s3)vz$aJ6Kza{$>%3?%o8iPgV<|0AWEFlBUtbmQAG9UWz$ zJTdszGD=-2a_I4VqixK=4ct3>^N+F-v-0w~KYda}kkiQocoA_EL&h_3S6WI+TciW( zL2I7|q+v3d z0ZyK>Jxqfx#*I*sl#!|5*VEPIiYH{^ZVt?x!!rC*C8)Q0UHbo4qlt< z)I;uk`51yJPUxHdIF|38dwuSogoqXpERm#@&l{pLz#*I4F`Q#yazo!MLM9a)nJ{=b zkvHC)3?gOB!-q0`Q4S^ogMKuO{1@`<6=@0BI;aNTUkVHjXbiJC5=R^ z<}~-2ZuMWIn=D`|#%8J@C$|`J4S=tED6;Tf8?ddl-rt|`_%RLVj_DBi#2_&S zoff5WX=y3v_U%A(!lT1{br`Io%_P#)%uIMx)Nd;FFGR99>BO4<%elwa#s>U2DjJ$E zUc~EUnjsb)H1c~6`ZMY*2?X%kS}R!k9{S9LP3XJ0%z{;=r@B~MQzI-TbxT_W-}RuS zp>f`L=Y)xuHw7Aoh6Ez&mR4q4 z!LtqYi~fT%#q`oYf~54vk2(1H^)lM&1<6+@oJZv6Q;p4igN)2$w5=>GW~z78a&qn1 zQTOg0ZGOJ6cLImB$lM^$z3_x<*H*+>U9f$A=_;W9$3BcCeIQT<=c!1M?IT+5KkJ;k>{^$%l$|vSzW{#rB9T|aFQi7eyy*C1AIZsce==y6o zfk0LV3H$KyFh-J01b#DF-kNENKkU`3B^(T4G2x&P>*%x;ZFaWrZDp!vbHe6zvO=VyCrdb_C0MT?|Njqb|IZ|P*?)aj*33QjiwE%p!ck3K KjXcWvfd2u!&V>R1 diff --git a/fig/linear_single.png b/fig/linear_single.png deleted file mode 100644 index fd7ce3b5a86264d02d6414e876fe131308626569..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 23895 zcmaI8WmuJK)GfSJkWjh=MCmT2q`Rd-L`tMvx_DtEF_AnqGo4L8eqn{V#$`X+t#vF!2{EhAD zgTp(f+Zv`34{U}FG8NxE2-o=9X0_Wk^Fnu%m@=uV}#Kc_`j}+&n;W#Gk!Od0eKvnTSQEm)y-STO(y#my zZnLwuM~7rLtSKj`^jaItzINkg2V>3Kw|&1$Ot+`1hr)ckgem#$@FQE>8OepZ9H(4P0OUPn-G?CQ0r;=@%StsGRKx0NmMrP*XXW2-j2H)|p zKOE1>!zLSIV`EE7oE9DKYELvy-2D-0JND(|^z@0Y?$O$iWk(E6TU%RaXQzgShJeG= z>hF@prOvqO5q1s^Sgw_$W545foEGk$m9&5czcY6!g<1IPXxq`s>gm&`cL)icFV9b0 zR{BIechW8UKZ!h17;<%U`z}M9Z;$>;g8Sv%j|%%q*0O?13rowfT($daY1!G?c=tpG zMn@CQUX7HRD`zK;s^j9~y1Tn0V@gX)+oSJqPki6lnQwme>Q&UPSZ7z)M7>Yt>(|mR zUw#V?Zmo61AI1ub2{88kC+p^RkfW0Pk-n&bkuWn#;%@7k2m0A6w{Zc=Y5-#&OJ)OFt&?+zZ78$2OmHO!lY$lit2Rpm= zDoszafZ8cRM{jQ`ueGMS`oKE|<*n)3qb8UC z-Wg|pe*VVTS29erT-8(x?&pD1#eIE!uw$^hrMFz1ozE{Wh6V?pm0SI)_1JcpuIZd% zja9fO>YbIFJC?7N8x#}-hLx3_?d9pIFe!0za&qn3H5L|@XV0G1dmlJ^czmsG3VE)_ zFCt=~t6K@@J6K=mdol=LZEcJX9{dAGXl-p(RaKP^#f=wE?^aY+zIFR{PfrgoKmXQj zV`FBfX|JJ-tZZvbic)o0_Dnte=e*I<-cCkBA}B0uYi&JUN=7SE>p?%g{B1A`D;sxBQua&mG?%H)q9^S^$b&6JNes`qA@Qh@VM z74~>xY6?ziZ)bOU_?OL3nze=dv6&ftcPUs@PEHOE`^fOHE4ZLxjVl%oPH$)D10J5m z1Ts?6n`mhC3=H9|F9ZZCVUM+l8R~WQ^z;l2Qovhk-Tyx1;rVJlq#>K_~|)vt8mi#}ReT0%oZgQH$sU-$O*?(!SpC2JHdQ`gp((ReRG z&CJeT)8&qJUZL{x``kF7k68SL3Cb^ier-Q>6*Wi?tyHa7v z$&;ONOgOi1SGkFuZSri5Lip;A^1j1sr4Gk5Eo@lnKt;0@$<>f&9}H``x;%4~>WCm= z5#=a(P)eeW%hK-d~?0D{mR0k4^sH?l%wlG0huF86daXeT@ zN5`O}wXMxr8KNAc-vJ3}XZCcKVjP5>FWK3x#e35pv#}HqqZs`@FNGXF)zdSqc9yMp zS7O>uD8*@5Lx17){Q2`ArJInCuxJ7<4#+C6%QF)@%r>N&kI(v_sXV)J^ogB~EzTiM zS-rYI$Zeh8?^}x3-ZFty-zQOF=Ou-4J~H;FKe*p)CShS=U7Q^yPR>CJ$!6oeUFI+? zL`6k4P9hgYp`)&@KDqH(5FdHI=r8`3N|^t_gOax+Hn*gFe9pj^Qia@DMMQj$wx*{f z(;+=5>ef0fhDcCz^YWfAMvH?Ze*XNKl>O;*b8}e@?P9E2M9il$PdZM+mn@CVq%wved zux1}q(?xKs(2x*RXtnk0OBL2VY?xAB{PV|czA2bV?UO;Hf2xlvEScI6JWBWm2JU&| z)mdXqOw94|abO@~%jnamPo>EVL6C^xv>HNjsj#uI1ikmI>icc%C9U9C?CeA=`%=L4 zZen1#%pOZhO1{RxyWIHNC?zHJNz`X~d%NGS>}Y$|_;73Nt1%fi%C=zdaPaT~Am2bl z7r#7Sg!tgh)`4zfWOVOnAZg>SLgxP1XAxK@0|nFehdXpWf(y zaSG{6FQK=iW6qz5U9S{riyv?_?eU`Isj~9Md~@iaQk7*hn0|Bf;*VE1XlQ5vw^&?} zA?+tC+?<_-{Lei-J&$3h4)*tvQuALMFAH*WE3JoeAlDnC_V}Y8Ty4<40kXjKv|syM zs!GRMe+b)fgH=!bAyAkHa5zZH58>sA#lUpGd0e za*2$~XsX6-BlN!i2Qj}I*Hj2K@9-BkH+=z@{r>$MqL#`B?pOE^T~`N$j3{tkQ7_GY zw1E@$KMHtqhQFZ#!?+%GG>*_8ynqzKeCi< zZqiit83$Z2__V{e5lMyMP(Ep=vl+_4p`qvI{x;KY^yEpKTcT5bTYgc|k~dxSUBM=f z`Jfp5Qun{l#%q}v86#w9+1S{sZ;~JNq`+d|8aBG&W20RkckJBXccr3AP2kX1N;IhR zjKyD=pQpibPB1SlC=l}4V#mi^SX{K7q-*9j*qm+*Fs_NwUszhAKf8GPbt34Sg~iyD z&KMeLOd81SQ-t9%3v+YSM;C1J{Ft!WYfDQq8pF%I$s5y#z0~0Tiwo@|Bk|_rZ{FMn zRKUZ-Q!TgthMdQ2cG3WU)OV#;AX2AK)Bq+DF~>gq(+n)qx-U-ES{TvR1y!hXAn;~8vr&cy1!u(Z^D_KelgbAMH1 zw{cWtB{N!#771ABYXwJpOUp}fUr0!1i7r%&02kcIat^sOJ_VSzzl{nD`@n4y)X?B> zU@!&oz_K^V+}!*CmOx5OJnVDSFLw5romBa1DM<^$)Kr?6m)FmqKc75#Vt^Mv49L>x z$YO7I7XqT0sVR@oq22hOnVA{Lao}?#BqZObE5ChTOt`&xRG)hh-S^y8)& z2HuL5ZQMPOV$iO?YEpfUd!#>K)-M*fp}(B-p7$4%Z1D4MkIM$CT~^|l)ZhqaYCWPi zl&hT<+kR!r6A=FiIU@jY?> zly~nmpFCkSRR{)zchEolG zJ`npSCMF==146?2`WGNK1niYd0E;3fO-Pg%_$+-I{P5vUHCYm+bNu`F^tIo>o^b@N zrJ)`IGyz!x%C1f48#ivq%eQ~~_N}Vw(fFyY57ttfgwsXB;J=5Z-GCgPX=u=>3_<02 zKj8cyL|cI8fR6|HY#UCU9R-Pqh)SNaU%X*rU?3qTh8Xv9TROOkX$LBbwY9a5qRy!lcJ~dD=Pv}vqC~Z;fAe8)px5+7!7PnuY`ly#~k7= zTD$VAWpEQ2;3^Op^SufIxl--je^%*`8XNl$ydg<``_Id?t0cOK>ge*#${RE?U&fg@ z24`ol+M+1=*t8$L+neqbozH4>>C8Xz}lvB)BKe%fBpIuOIg_|nhjNFmCMT8sd}4+0UX~iN=izY zG=R=Z7gYsue9xSgl>U60@t&oJlm$V7Fx(7kFQ@>PXYN2K0etc0WSwm)$yE!-%Nn+H zFk6`~fHrTS^HUOT(6^7fV2+1}4c-SfP_0f&J{92HS@OS0CsGeGzO0atou79;gJ85uM*^uogW4uVIviM2Wf%VeawOJG0dwHcn4R#qS4;}78F z!S-A%TTdqd&6+c@+D+FSz#ggS>i4e16e2(80XXj9?-g*I@m*-aT1zt!8a=C^LH2y) zk=NJvfgQUzJ=i-sa#V14hML*-%&)C}0P2n;Avc@)NsZ$>wv&t=+(uiR*t7mo8-P1F zxwyn#mfviK4Z-oeG;N>3JQ^H6f78A2Rtu6-lJNd5=a+B3oeYkSG9v31qxqPan4pvd zcwBv%kfg#a2>2?KdHv^W4DeUSnjr`$TEuSa!})-SCPwFzC=5J?fX(>h@JCK`ShziQ zL*N!JuKy5rGO=#FL1SLZ?(QyB_}?98jT~x>04)rW>Y|)PN-8KbGt&U$y8*-0Yn$g@ zkZEVjt+njzHq#|vYieoD)_3H1W&re`sIb>JGU6P&(Vt48OO3Cv63vh9V8rgBt{#!R zc${NrZ?B@F!t)UIWuu=r`O zQ<|Ej9IOnedU|{P{QUOz_5x1Va+4~Zrgwv9J9p~550nlE03q7N@net-j*X3tjP!POy`#DyCLwX#T~Zt$nVOykyn_1Y z@y>jRo%^4zcwzTV&%;eUz-oY6Pu|M<@BGB5si^^)B`hi`zBb%^yk<7aZBCBNaiUz& zeI7~*@C7J;C$e%gA?dSmaRnT#$Ga*5XcSmFQ^7*J?(l3$*VwOh)LE|{QVlj*5S6g| z@VUst+jM7)!;e=f{^;rGjKEzzDSpOh(uBsv#dYgeBtUt{dEn%^kgp&yZTmm_9z`ht zWxzq>)x|bs1t_45)YV_^%t>NkgaTX}o(?Yu)CFOv*szwLpWnR+i3OAmum=5U;^Ka% zV7&+5ZO7KDwxP6m7Z-Qq`gJH(cx^|EV5dKR`0!HtDL^auMRV`r(CFw)o!1^545MmF z6=WSTzf&kq{jM&K)Y8PLAoLyoTio!s0$e%`D2u@2&i;E)?=+f;wz12(LNibd_T#1IV2QA$h7G<@Sl0vRRHaygg4%Eh5Fch=lmW{p zO@pJdyP@<*$? zt5TjdTEqZjvDpL`bNjwnim<`g%uF83zPnqYCV;oHHkd`qdLqfVY>bd_gsb9LCu;S0 z#RUcHPzmG-wxmP0fg~22`u7shQ8!ieM?jRDSX^0_2^v+IuvdD|o^}0&teU;0cQqv< z70k}g{#&S@ovxDQ%WF0vp=UKRw6VT>y#mfe3V?hP6UhWbQ_RQTzbCGK6~<%H^Sd!X z{N%`0(czv6uuAo6RYgL5>{>2=fXS&YE9^-XKI#|00sv;*Xyo1t)L^v;5NM}+{o>X7 zBu0J<0~yk^v3Xzy5c0n36uy-5Q;~mrcRnYo+u7N<#_x>3GHAc&A>Vf4%X>84rD~r< zVmF8?%F5zWN4hQ@?`60uWfKcT$0QqYk&u%sVgf{eGu1W4!!BC=*x$clQ*jWBCQ~kI zLF_fun+Y?K$?~h)+gz1=_V$0FZ0hDzR8jepqtgMYpK@>AzNO~OGlTPlz$GE1aX6ylr-tX z2k^|c-d+{=J`kwzfdEx^0ZAI0V+p&{q2#Il!BrvL8a7 z_VOh&3rlBTU&1tc`wTz@4of51ymh~*JPxfMhL!~z#5 zr$2<+l9G}s1Zh&v_H5(T{+d=&4s5HasAx9Z@ZmYcES)D$Dy)8et{^f3jtwIHf052| zL*3BO4+6*Wv1ho<3t%!)W#1E2fjJ|^$3*x(KHl8I0#Z)t@`);W2o?n7w{L+qba!># z9LkNJ((3gauxV(33JDz@9r%&bMo-u($fHo0FZrirXJu*Y>P}8hD$ky?cZ+%MPy>O= zOzgff+B-7x{qtv9QPJriKO|1ceSu4Kaw-AZcLIWc`9=f~(&*i9*Xo4jbTQ!4=9`W1Hh9u}gAKyPV$8zj^er>CdT zD;a8OSpvoe;Ne8A$JeMR6<1f+`o^Ev5W|!~>U1xqP0bRkYHIEYI%k#i>0U>q*We>5 zBxz$`Vyr{$22cP%{=(MQ%nz@21Y#XW5)*--z#&?{hLFgl!Tf)H&zHc5ie=QNms)So z*2b1P%5U>_GxzOg50dkN-(;zCCARbl=C($aTU7AM<&_o4ZuRpUiHV5rVl)JTH!iH*PnrJR5mbN>FE)YZu}@S$M;eJe1bN=Qvff#N5cN|=!t+p7rP zkyM??WsFPCQ>~IX<34>>b4cZU)|c8g@i2{}35i4kZQ-%```3>jKZb^QczK6^{0MCK zhDCTqL`QE6csn0f*>76mNh!FiF8q!ryR4qybJ~vbKZ@ELryU*|a&dJ%Kb&;bg;HT_ z3rtq$UgR}IpoQ&tKtsRxwq-?qyLdqI_@7>}(~~5esM3Fo)&$E-OH*}TJglr;Jw0}S zkp}<3m-yAWi;N5sIJW|wLIXp?>^)lRB)M&71cI5EoJ8g3(Zv|8Uz~FZ6y&dBV}A)d z)F}q-KtKQzi4;2+jI~s<>g9aXn>TOFyA!Cye2?poW@>>y1usqH(6@O0d>~O$=$DX#$2pDb{;P^ zeLWSXJ+hb!X4FD=Z+6Sb$ow83hoD0s)$*bQXl5&`JopYyzR{2=L(2lV-2c4FRS_Cr zuxk4a-6u~XS{LLBp0!$Snyv(?^YrsV+MvP5rGR#a2bk8S~I;Trus;fjXUoCZhcV#s0Ru}t;FH1 zrwJn?zwUi>IlN4`;zpKM+Fwk@8XDHR+rN)u--a_AWR4JW zo5S0>efFJ7$w#;=S?m{(cuPxWYu}v-iHIi4tuxE(Z-BjI)lu*7>9 z;N25jePK!t4YHUS zGpIk-*20O=5b9Xf)zurLev3;JLqC2O>Dbmf#fiZJ_-AGL9vXar{xLBS7VE2NEc}a}UcW>JA z!FDm-RdSw^$6-#rg~Rm1-_2pC)BUxms#@T#pFMqA=lPG8lk*FKz$CsE!F5F7bwF2K zqx>c_XLzx~hOganyPPO>1NQz-+8=hsvjtq9u7u^7?+P&gYFmIdC!nYek$ES^$Sa zJhM)^2ThvSwvL3DQV2xv!^+I(@BA*NUlG0ih(^+=>8tOCuA|}V;#^qaevopkZ~W_T zBq_&4DbcT(vj3w6Fz<#-9YMkIa$f3H;7Ws{Yt(gw6)BDEo9`P}vw1%+Tr)3-9T$Gd z@)V95QvF?@4omnP;{(jTEDk zg95JE(vJ%BLOaLA#01btcOn{D>o$h~pU@8Yp7lrxjZCq6L?2^_Pu01N^=e(V84S|RXLEYc~^-J5%mBj<1w?(7=U*RNo?JP+)c%+X7sSf)Z{@bnB# z<#86t@`^xYG*O|qv^ut7CIT@)eQ90P?&TfE=caN{D{Y=33rjzktC2nuGmXY2JS@`= z-BQ;>nOUB)4a=D%buk-lhN(>Pa2^eF@D~mEalG-v$-SbM$&eZ$15vG*bkqf~6>Fu{ za0m``YXA4mF^QU8su~;cuT=_kL|{O5Oixw5k4GMRIcmxG2e$@>W)LkYksN^vs34IYotjeBjJ?o zou)HZ;>OFwR&k3-P{%IXN>;j!F?e`WyX8@AEa~hBuPN%b)unTZKKlE=)1yMmtq)fC zS%W&J^e3!Vr4QeWrS*K;BRG)ru)2Z5NW<-AQtr;w)40#^t8{ zJNF7TZ~S)&e4?};&pZn$@3I&p>RUXpQAO~e7hcF+g+kIDp9vBYpLhr(O=5kXQ1)AR4Wu83VUTW zYL&oVr6SJtV*3s0_hH)6zP?#OVKOo@$~$*<43m;1!2WoR<9ScG!@gvVvo*`s95*>o zpq4T4I9{7*)|QZpMsV>pv7Hp$XW%k(ZOZ;poU5H8)m>)d#ljkv`EhiFmHRuT-*Dy` z#raf5QrG%Ejkcf;pjX-8+T?7s(JKA#CC;T<(x^ZqOF)-PCb+_<1!kGGFDvLMSd~!G z)QZ!=?Atbmg8LE4+cIfvRy;7UbiGGuE$nsDX}hEcWi1+#*(guh*`9M*F2v}`p8vd+ zqabN6jry6L&+Rh4B&@qEu6E(XOV{ANfdcF_8_jEt#-)|M!Nmu$LFcI3+<9%$x$s;_ zB((ky+ry#xS_&Lgq??l@kmMwp_s8jy{He9@Os$Y`6H50fX8MQk%4LaqxXgpU=;>MW{a~k z#kO&cNs-_?G!wpa5a|OSwk(y=eHpN=y+!&c1AVX#Wh6-kt8DI@ZkAOc_a*yjaG%DR zPZFEo79)ePe+fYiAT2fe6Vif=M)(tu!dMWHY1T?S!g() zMk*`)8Olh9S<6yx@5k-)W**`ZN9_3J=j=3HM=&Qm?K!NaCZ7qJSY~O#)Zhy-1s}mi z*~8bt!dfg+p^TsD%P7Cul`<|d{i z&HsH&TlVOK*k6uan_%K$V(g%poVE1ybSMVpqwoD$S_+e)1%3b;jAzHk`_~azK&Tg`TgMmR-S2yu>)Lf9TcdQ8A{`R3EByAP5N#j-nENLXH0zdRc(DASe@s8_fbs;0;9% zFq<5pKZ05gG#)&Be19^ZBLd~x2ul~l`~>6c|FV_;%rEEb-^lCk@4s43cC_eAVMz|q z1gZc86QFb2Q4_x?2jDz7s0qiDcP)wG*7iX3-v2S!YhrbMB94yRAyXMpJi@2gmO=si zKKC7?mg4|=yxk84jaw;7`dWOh5sv}e#*G5LFk=`o+vf{U2sF6&mU!4I;`K`)KcSRZ zyi9%nez@Mp1A6m7`-*w(%6Mg8L-2mAQ(AD*TX?QOMZrvLI#_3+wR2j=Uh9A14Rz#J zKUc#sEdzr&RAVnnfTADo;=n_s|I1D+xp7W^qbP6o6chc<-OPW)Zz5TknLGOXw+FLt z(PR}BZ349`e!kOendZk2Br%X!mS$$4@?oi0MFh6}%L=6O55D}Z_pR>MvmlAECQ=g} z9TFNDdHGO$=e^}#;9Usl)96r#&1fVFCmzS4PfF1x%3pA!X!6JAglF2v2*xp@vW3N1-MW5$G-@Xa*rRP6` zWFtwT_Q z7(2UN+Z%F7gv+FDt*rnMCG;tIRIf?2-u3QdZ&WkB!@6$&s^kH+niD>DaFd$YiHyTM z2vU+8?ty7k&?TJwdEhdnJ6yt`iBJ5)`~!f@i{r3yvi_-El8T>-G8v>1XI&t-P2e(~ z$&khXoznX3dxQHBBTTSP&hPorz5+*=!j_^UuEZ2So_h@*@o%vm)gZt?zb5fV`+?cA zicsbooVyGUTh@lsRk4Gb$6H3fGV!l-XU*6eXM|j=}Z`~YV+xHZN~+NJWfk^rekVl)!jZiK4C3SE=g2uNvU0TfUU(TWaKLb~Rue-siwFxlcG%c< zQcJ5StGx1^ag`pEH2tFNe}J#*5K4>`$a#bbk|I-vv1^C{332<$lf}!j>gEPUhtx%9 zLPx)g%$B9Wd_(altJj@DJN!EvSO{%JIk`49AKYb55%~!p!s&!8m9Ygu`SQ{)k+}he&#o!KeKkcwD;ho$6sW?W7=p$HGzOcRniduoo+hM1 zDGNL$s2V`16GDuJXwV+_NwCP(G|A0U&a=Y$gEO zJHZTQdvq4Iys*rG`xE86%Uq54Y)q04nz{VT7+k5NzkbcvN~r5RBD#;r3;b;J@Qe`> zPDm7y-p0o_qC4_H7P-2XgLELnBnnsz$Lm8(i1cco_w9#|=pGEwyvmdr^}c#c3KZVP za6XYH{tOjh<$)q9?>=9rw3%g^^K?=FD(N^#^3~}=KT=}5RCwl+$P)t7Bp6$^hoeZ{=R^fNqr<$71&^!Wt z0yMrsR~Us)h>s8L%c)FxJca}eM3StK{K5eBFMM0q(4dE4mMi^fkV>+$vOawL7%oH0 ziDEXP6BfZXc0+=QrGT-_Vel(!l^~&lq&i`%VJ2wj9igY?>w69qan>!S#~<+T-TRc7 zm|HY~ka#V#Tq@e9(Bq~sr;tU>93MoAs>Y!=0QO?x=$Mw0!frSNT8#vAEiElj#=d_F zNuu#}|3^T_e?L`~a_&e-;wQX+|Bc<&+?=7ZuBhk@eiQebhwIl7y+3+mt0Dvmf80kG zZ-9Q#vkE(}jZqFMOxb#WmOK9rL%!_xBV$1tqFGt&55%dBSPDc=@-$q68@$#mCW3B$mq;%>= z3{2e(vuwDXeYL^jd*6jVT~OmL67~aVw^q>p04=xV@ItSGz(d?^9XbkQ<>loj%^{Gb zivdYQRXHK77+I}%I}J}QZc;wdTzc~>W1t5N1B6bZa5umkLz~2La4`tj2pS|f-p`H> z5Gxj}xuYR`69?q?2Ht(K+t}Db&~nz+ zeouIaiRk)CxVuQVoGH9-?MR@BpTq;_>gRWXMZ|axo(rs@cWqQDJLUcR_wU^^($e*FBm$1wZy@RxmlcjDG{uidU%W-*4TyLR_VkdJ79>`S zAfs^>;4>S}OHS5zcRvLF>JRRj{Z!RIP|ST2bO8VWDl5H#mEpKonX z`Cfq@s_Q{qsK^vL^C1iu#>KYLbCV)^6O|1#}% zAnHXi?ckp#AC`A&bO+45KCC*tom)t^VUn)M%IZAID{=Jv{4*MqykK%eywg7ppt&vc z+1sLrtqMj0g!%XmpbK#0=55bK3fsikSV@idx zc$j7&sLW4avw+}7oW>Tb&{A5&+r~f`{`3utEMk356MMs7_2Ey|mu4~Qji2t%B6{Bj zpd8EBX0R8Gc0o3FC+D4d81q+J?1I&J{UDrblhycpH-W;QWd22xV(5$u#@ zx!4l<#2E7+Wra=>77fJW#M*qCH60C&2cS=OxJ4)b7Bv1MF3Y!R%s@p1edCDmaIe$- zdmb^Ccsp|k_d_RcddWLDgKMrB((Ch23FJb9COoH$odCZ= zIRgq#LMhP5+G*UnR6<9H89p|d?o(p?jfHCp>rEVUT!9Ir%h{`owB%$;8Z(GUQ|iFd zCo#;*4Frgq_v4UwJxdoR9`4Ueye+Ke_ZCVs3no);&mkx)q7-rIr<%)|Gy3 zX?7VP6lyAh$^(*j-h)On_Zj<6UBlqC8dx-MurIzp#E>$J-i1s;#2k@;{EKa#!=mVp z8?f5A4vdWN-`(sjO|;0@!!R3Bt!dt&X<(-$ir+C#9`v}ef;nuWr zLt14LN9XC&sDsOV4 zC=X_=W`#d)Vo2`uV%TIRs|V&#OEkkuv^8a9TJrE#mOcHo|5hZtCo`ID7;~O%2qMQg z!W|`_p&-ZHxe4dbx^_{m{Ltbq!}8xM@mrhIk$qpzgs$dxMsFQ++?M$Be3&_KT~Sq) zbC5qihdPw}+uUIAE#G)FRG%ABkPBkv5rJ6aiKcRD@w8}Xgf=DY-2rqEb#mJ}xm4c1 z+*)dp7eo|5<2(Jupwc*liMOl10LPUvR`+FDIeq(nlkP@BK##38f)(qvIYL{GPuf4y zydgS^%!4%R({znptL{qWVdi8_Bx~e%9#i*=T|W?29)BT_I6&QFbJT5jMegaon5p}8 zr2^@g1eYhX#vs&zxUT=*23Q4p!uiG9P#|<(v)X#t)zPJXDtEKCRhs+PrEw?^bVWd| z0mBB&*e)2?W(eOBT<0|=46%!}s7Wc{A7v~dl67XmL_}TZkP5U|cW11nNAi!+RLVyR zk!SqG7|@0t=vB24)N@M1?RhRxgJt0=!G@o1JUjOG=63jU}g80!0 z*H2RSrK#QLOx2Tni%aPJU5W=kU9d?+Dv(iwk!BV-@iwwO|ZZTp|YE|xei>cY-{sjZs6#za%U1`NH`-9Lo8Dvzc& zQd*`{yhS9DumvR09N-NKbVVI}21EEArc(P?@Nx#YipRSrUH%7w)ych=W6F=}_-Mfv z(`||8ICOZ-^m&Ia-ejfHgny!z!oHrz3~QN@Q@?rUgfbuGTY_g(6E?*!q`^=2iO z6iR)ZV|TAje5p+-Lmk*9J;p2{t$3%DBgsjW;lU`Q29b<{B;o*dq_3yC%o5RtNNbk* ztYYH`;3NIOGS_4ERG&=c-r)Hi@v zPZ*#@Q)g!nHN5+HBSPVaLTuTCQ>kmi(5{g%GGfrXubQT02DX*sflqzo+Aw8}H^Rsi z3v8<@rGOC$C)z84eccKHcXLVbpIHQ7cQ&u;7(v6rOlJWD%}S3bx|JE-@O;#jh|`TU zog6b=10R|G>!}oO8<3IK_bDYeWlBEc&Z1un9HhaNbdmj268U<~IVt6U;GjZ+2VX)O zeo7SopH%=G2hsh$@GT^!BmzZ9N4d~^Jb8p9f37I{iJD*Dm>FeSK{vy>%*1gs%Gf%7 zNlJZvVs-O6g64xfCdKE+QVm$SXQzsC6$B!8f%CW?Nc;?$e#uGCqb&WwXjyyM(}~Rx z%7Q?Po06F8o3aFF0Lo){F^;*9wyGp-duhf*Mou zJJd7>ln=hx>-JYn*NOPb$;$!>1efm1r8g0@YkBlbKot4RGx>(ZUx?(a>@c(QJM@;3 z%4yW&RXNN~rO11ay!^MLD@6phFZA!v?~GcZUzfOmt!ffG-QCdDx{QA6ak}D2nRxy& zl=kwJnT1zEzr)rXkuEe~iN?w<$Z_F@?cB5ZyYxE8wQen0M7lQ|YCbJBNJn5b8~Y6hfjgm>n?>!1EpdT z#PIbX{Nwg-^t4B5ef>=6o6l`uRpNY~R<;Y@3%V{b1YyQesX$Tv=3-)xk%EP5@cXYE z2P$~;2sWiRilT^g8B8hlip189YNlUvAN<8(G1gyyU->PU zoFV`*@P-;QBlZ`2c#k<3J&%8AkSp+kpqvM*%Y4(HB+6J z4Q9(#X7g9y!g!`Z`^NWL;4vSVA*b2{kNvH$uz65VgU zhwUAa{@qSUCU70WhonXZbbQ+3VU4DGE*n)ra{gP{F1y{s9Dz{5lFVCEVxZ?v{ikek z0S!)?dDY|b*@(fWaty@4ZA>W~29G8+M_b7`X36%1)iX3i)N5*OA`smG@_+nT@nG}M z%vWP^rC;-P*hy2JW*0*rT@>y78H9)BzQF-Z=syo6^1mKlY%{ zgPu2Ew;Z)9E_XYnLA^FrtoLWhhIKLV{1llMx?VTT0gS06enH)&$ChvHk=fS!v4K4no8PojeFuLlr`@L59 zqR;OIWEukD2A^M-^`3ZPRMjCPL*>lR@L}E5UoRFcghVhkrjCwnOm0O`fLP0ZyJd0VQn4}ZhyFFxPYB0r_mT6;;ZHBooWaxOkWQKe z@{AR=`}36+2!xJg346B(&Ot{{&nC1sK-76-3Gz~jx8&hAl7_BBhUv57F`GxE) zGOJC?8;H4L8qAY+!>raM6YDIcqtc7eitv)e=ciaB znKAbfyW*S2gJS4D+I;Oh)#KWjo>goXM@nq6lN$(i8qB6j4G0Za8z)Pg&P(>v#cPbE z_CJu~AWwXPk93rnM~WLPVIm~5X)rfpwIqWc-hmr&#%3eMcciq@6t+|r6&9q^G~6@A2R43hiY=$Z^U%?bV1NRl1= zNe$#2*=v%_sP~2U7Mq>vW7pZ|*?&UuT5O=v%2qF={vT=rl(jIu>EPh--7rF79@%)~ z#sj!538H*8d^s68)uj5oA5GaURnn2owU2KtsBO>w-P~k1q$x}RV8KaWLZ)?xjsx|{ zEqZgNbOS&0`=Gb^AqmaI$?0Dno`q$Ph-%MYESh-al7$$RnDuGq+0S`dp($kJ5}|u~ zJZ$ahjN!1{eS6p#Y8m^Wo#BsV=!Q&AEXR1=Z^?1#ignMbZ6o76z|7 z7U08bs#*#EL(1uV%eqjtusDwYjZR!UC{R=+RV;4)E`LZwlHJWQ%&BDSX#Z1L6f|?J z!}OT#(d72$&&Bgued_Z*SDCl`)5w(D)g=Zo3xaQrA2l+hW}D!5Qt$DlUH(n*YwEr5 z@e6TxyYq>jo;TZra1lMNI8quKv*lqt+KYa_+3JqP`Q`hyI${l8)`Q0-zGT_jFo&W0 z#bCY`+rOo)O-@E;#}Hi{p8o(-WyfEF?!yB$EboMDvwEr<8TrHbNkieBJWMdd5Wu2? zmLCkezOc8iKQGJ1b2QSw9A_dWrSNd&W@WX3wt%nhPdst)M$qu1F6q8Ka{(hy@c#Bh zV}BT+>F^*Cfk}dMAj3}JgFqV!yphe6eSr@2P!V;g<~G8L_kX^_16vww^W>qU2#h7j ze+OgY^%A1qyg@|(E!~mZFnR}%rVthq+BL+)gNGzoCsmY`%-7=IgRvhN8Z3`h zR4A*QEi7`fv!Q!9B=X=k@ba0jGLe`x&`;!5`AQV2$E4W*%#+AKH*9%M$2+drVdp-gq z1FbR;q&{`IIre9HnSz|WwY?o?!D_2IjEgkt;YToUpIcE;0aGs{(A_|B8oP$EyZc+y zKG55O;V`Y7$0gstQweI8asF_IOM(GFC%Gp@FmC(Vdzczx=I2j{43L(VZs^u1fQcw* zv20J*R>E)uv~L_M3HTfd;Ncqk>m%JTtpPJ*Kv34Xtl-X)u&6-?86H@W{_%A;aP6DR z%N8akKx(amM0(fottPx3_%gszAZ5%bFMq%7{JtPP{W*|PActE7Yxu^V93P(zGX~a) zQ{$jN1w&NS(1w;KkS?pFnMV|Q9gfZZ)=3kX!_%kkrB{0qehO7Ic3I4 zxr{c~*OSuHV2eEABnm*reGbDY(NEczYw^vAB3psS0$uaHhh`mMQOBI}`JZ6)8=ipz zbG{AmWD3+6S8Y_D7e4Tjiu8nAvv7T|>+{hYO4397FqaL|yuXW!%^nO>WZ0 z-h~NP*u0gA@3yqD9i5%|z_*u{YGyub2BQ^qS?+#x)Ct; zX9Vt2j2D!*evKz7XK`Txs9_N3wntGi8TOTK!ecd>o0{%YQGw1BTB)H!xoR!~D2g7) zMUj!o4|hVsqoeWg@N%uaVX&!G049!3;4uvFBmnr(UqeHSg-tnHPo9v%16Ih$Ru&cp zYdsv-c0qXwcWYs0b{ht!;4E%8gB7%Qc3Q(2o5+*NDiB597xVp)lq6))b7x#D0-ovu zPeFQ*zY7K{^ytycTQDgB&j_F-B|U_n>}okILT?X7fI+nQke~masCT)mU^6$o0wukj zs@@yU*D5P3gE?6+$BWI)O;B=!8kxhmA*H>PGI&2yRZUH;!mqz{6UF6;`Tm9*g%KJB z%AX-2AuyH$JBgFj3InGwhXuw0bKUPmKN_g2_Ca*Hb?cUV6vZFtuY>2kcp-)PfSWt- z%NL6~a@3xCH}4fD`ClC90+SDlDggn3@jq-&ie5T7K{rbo9$$bGZ(jXP^-|XwJNn_+ z)Zq9a=Kt&B%)_Bv`#AoDhrk&M2dgGV^lHNqj~WQ6FhT8|F(M9x{1; zd5krz9&REU7GyFrSrYj4+~*))Ws-?W8;6sa+mIZ|pqXPf=HSN!pxLe##G{ z;L3`MtMFzcjQNgV)ji>c2tp<&B_!nj`6nW`m4gGSfglJdW*;mchh{^}Yr0-i08k}( z?cnrp;&ncKx~9B*9#$$tIg1k~O7JtbMc~=9tZRChAoTb4Dr)*GuKOntZU#2(&4(}6 zDmn%RG6is^;AsEZH|G{U=0D50gJxc6{_aFa|I`kLS2c_e7*_cXyBpCcU&rp@Je^Gw z5)pyhRczmGLqqTWO66_amboE`#kyb+AwdMJ;N*QYtn~J6(;YkVYHMxe$-Z=HP>~Ss z9^FFnf|+V>Q_r3?OTpt$*3B_q4h-D9e%;c}?iX@2)H86_V)Pk04&k z&C6?W(g5>dq`t9IiXK_l`x&n=GjkjZjR?hdtEo8+7iYWOZ}0yY{=PJ=j)_^u_`7$5 zFJ2h^+2uA=9wzeTT1pCEH%7hjI3heV{|3l4t@{P0zs{bl%g=9m^-7u*xha{0l!<)^ zvo=9soNHy({kGcAlU*{46o>hk&xL%fs>_#6VAi#^?y0oXt-?F`&t$1lJDDT2cCD1O zG<;|qC+7@hT#QW9j(T~C83gXY+y4G1J0@7SCwII*TZiq;s^NR6mR4jo(_1 zFC)r3*?OMXnouqi=;d{@XNgOaSpHcoc|JSGBFy~20T`_)8zPx`A60WgdOu5O*y^)d z7S%`s`K_lB17Dpk_LKhl(%0gzAbjL7C1?o$_o)d?WTeX1=rY!(?oG|z-u+V~6G$aV zD)j>QcahA*TYI|sQ};H{E<=}NW)}bP)oI-2O7z{Ts{LoBH`KpnJPH1nwaWfFDfy}g zHPzMR=%zh=TCPT`nfQ)CQ^9)TA+Q%5Y-~8LTQ(o-(Z&qV+1on^P#l7RO_T#$07wTW z{Y6L5H@ggiidJ7QL->4MI*I)(p=J27r1TItE2XF%Y~VMJFked2@w*fi zAK$96&(3ZDyQNWsE|$?bc@NsD+FFdOSax>zDk}pl`R8AbJ!7+HZHDX?_N}ub#-+DeCH#CvY3#*4E6LxTt<Fu8H`UkD(msLt5jVNl%WE3p#_agCK+`1c z*TA$*`GRWcQWOdw@e=z5@89<;mkr?Q`9~dFb6qSj4^JLGbW-u8ir~gDV@Hb#x9;rV zIWE-&h2f|qe|TbM=I>?qe}`KvV;>i-=PR7v1`Weo_7fPLPpXvd-huIUeCxKLMIV5YFap;PkkDJW+BybDCM1qD;ImvhbaZv&zc}Ih0GUeR zfE16cjd?st^Kf)bj2=J>C|cl@8txdMW1|`g4i1KwYxen@i3!0-rcfgy_x!*5v=A|o z`ryp>p=V*@?_X>0?mh|mo96RVCr_ey!-~u_`ZMyv1?R#%@L8EJ6cG7?vgj-;K#!4W6gr_|KG zzCKOynE0SAQ&UsOy7=%w#sr&)nO6!S5T^QVb2`(p9P=>F|OeiXkw)3 zrW5sF4a(oW4 z>AhJzsT|BsxkT{NAfMrOqDTXwp#L^2bGANX}k4Jm}g*>FXo+2Vm zCy4i-KFv%|FDF>RC=RC+!kc--eMrXQcFdvLf@HR(MP!|fm;i#D8xT^*kE@ZRC8ea! z=uvy(Sn%*E1p+^;=3h;Jb!jeU6x;Pfa zrp3g^r>CagKRLagf_#D68M!0RST3=tQ+#TAy78SMO+i%KC@O=KV4M$glsyDGI4k67 z#xWw28hO<5~5G9$faOrtj{jMHya4ZXRz-A9J6Hh>Yy(?|<}OFBt4fz*7+YPk4C^ zfUV@-NriLED11^^SXdb3nme{to(R<-GqIH=Br@~!1b&sCnkm+#gnld{r&y*4({H)hM?)MdiL~bobk%{izWbqU^a}v zfenDeCgdMSM@PN%w( ziO^w%x}Wl+XK`ChH@8cjAxDoNZ|SB8?gAEP@gJbdyPD^-+#UTBd0^~k)$d09`PU)k-wCPy2~ClwS-KwqMGpaQP~0Xlk|rc`ukh?HWwP{|-uJVXzD z4rayQt_tf^RaJery<{x^VEI)js2~a?0R(sS*ZP*xH~_+vKq%d(-XY>P8Wb7NZcOX0`CN%fWR|n%KE&auEeItA_`xxo^odlq}ya6^F&wL4dD-J}E+}Lc86rhwGXljb!xZ1*7 zprQi0a8*qWutalOUw6@lb}6W-v7Y@#BUwFyUlrA+(-mX+{=U9Mjw_%!C?kuoW%JFI z0PC6bp`$fJDuKulm7nVt3F6`82eeVm>1p-AJHtM!Eh&6SF3}jta$w-9q1-A0f;$`4 z7s#n0;MFctXL}t(BHNbXa+#mUwYW#3!opaAJYf%;n~$J3&{zT?5mt1~O;LwwiN@dz zON)!+#3lH{geg?8V9LzNwsdt_;5qQqiU@1R#l%3F>?F?L`}%UDOBvP`QW;&E#b7X8 zTt@%-rwA;USDJC1lieQLLDed*c#|kjP@F-;iZU8~6RUh-9K9u7PbS;nS(>Nxf19_=qIo>K}pqsyTz{-$7>Kf zmseG7hdwytEmNQ=pFxtD+KmdBkJ-;S{J&BczlpF8=aJ=B%lVT3UoB63CuoyamLXm| RFa;6Bo?R@%J4~nZ{|3(M9|QmZ From fbb3101e08dc14cda626fdd12c0ba77c85eb0643 Mon Sep 17 00:00:00 2001 From: ndwang Date: Mon, 2 Jun 2025 17:10:40 -0400 Subject: [PATCH 14/76] fieldtracking with arbitrary E field function --- Project.toml | 2 + src/BeamTracking.jl | 3 +- src/modules/FieldTracking.jl | 81 ++++++++++++++++++++++++++++++++++++ test/FieldTracking.jl | 40 ++++++++++++++++++ 4 files changed, 125 insertions(+), 1 deletion(-) create mode 100644 src/modules/FieldTracking.jl create mode 100644 test/FieldTracking.jl diff --git a/Project.toml b/Project.toml index f179d1b2..d6412417 100644 --- a/Project.toml +++ b/Project.toml @@ -4,6 +4,7 @@ authors = ["mattsignorelli and contributors"] version = "0.1.0" [deps] +DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" ReferenceFrameRotations = "74f56ac7-18b3-5285-802d-d4bd4f104033" SIMD = "fdea26ae-647d-5447-a871-4b548cad5224" @@ -18,6 +19,7 @@ BeamTrackingBeamlinesExt = "Beamlines" [compat] Beamlines = "0.2.1" +DifferentialEquations = "7.16.1" GTPSA = "1.4.2" ReferenceFrameRotations = "3" SIMD = "3.7.1" diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index f8f76b98..838d3910 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -11,6 +11,7 @@ import Base: setproperty! export Bunch, Species, ParticleView, ELECTRON, POSITRON, PROTON, ANTIPROTON, sincu, sinhcu, sincuc export LinearTracking, Linear export ExactTracking, Exact +export FieldTracking, Field export track! include("utils.jl") @@ -20,7 +21,7 @@ include("types.jl") include("modules/ExactTracking.jl") #; TRACKING_METHOD(::ExactTracking) = Exact include("modules/LinearTracking.jl") #; TRACKING_METHOD(::LinearTracking) = Linear - +include("modules/FieldTracking.jl") #; TRACKING_METHOD(::FieldTracking) = Field # Empty tracking method to be imported+implemented by package extensions function track! end diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl new file mode 100644 index 00000000..39182c13 --- /dev/null +++ b/src/modules/FieldTracking.jl @@ -0,0 +1,81 @@ +""" + FieldTracking + +Module implementing particle tracking through arbitrary electromagnetic fields using DifferentialEquations.jl. +""" + +# Define the Field tracking method +struct Field end + +# Number of temporaries needed for a single particle +MAX_TEMPS(::Field) = 0 + +module FieldTracking +using ..GTPSA, ..BeamTracking, ..StaticArrays +using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, @makekernel +using DifferentialEquations +const TRACKING_METHOD = Field + +""" + field_system!(du, u, p, t) + +Define the ODE system for particle motion in an electromagnetic field. + +# Arguments +- `du`: Vector of derivatives +- `u`: State vector [x, px, y, py, z, pz] +- `p`: Parameters tuple containing (field_func, params) +- `t`: Time variable +""" +function field_system!(du, u, p, t) + x, px, y, py, z, pz = u + field_func, params = p + field = field_func(x, y, z, params) + + # Equations of motion + du[1] = px # dx/dt = px + du[2] = field[1] # dpx/dt = Ex + du[3] = py # dy/dt = py + du[4] = field[2] # dpy/dt = Ey + du[5] = pz # dz/dt = pz + du[6] = field[3] # dpz/dt = Ez +end + +""" + field_drift!(i, v, work, L, field_func, params, solver=Tsit5()) + +Track a particle through a drift space with arbitrary field using DifferentialEquations.jl. + +# Arguments +- `i`: Particle index +- `v`: Coordinate matrix +- `work`: Work matrix +- `L`: Drift length +- `field_func`: Function that returns the field at a given position (x, y, z) +- `params`: Additional parameters for the field function +- `solver`: ODE solver to use (default: Tsit5()) +""" +@makekernel function field_drift!(i, v, work, L, field_func, params, solver=Tsit5()) + @inbounds begin + # Initial state vector [x, px, y, py, z, pz] + u0 = [v[i,XI], v[i,PXI], v[i,YI], v[i,PYI], v[i,ZI], v[i,PZI]] + + # Set up and solve the ODE + prob = ODEProblem(field_system!, u0, (0.0, L), (field_func, params)) + sol = solve(prob, solver, reltol=1e-8, abstol=1e-8) + + # Update final coordinates + final_state = sol.u[end] + @FastGTPSA! begin + v[i,XI] = final_state[1] + v[i,PXI] = final_state[2] + v[i,YI] = final_state[3] + v[i,PYI] = final_state[4] + v[i,ZI] = final_state[5] + v[i,PZI] = final_state[6] + end + end + return v +end + +end \ No newline at end of file diff --git a/test/FieldTracking.jl b/test/FieldTracking.jl new file mode 100644 index 00000000..f58bc781 --- /dev/null +++ b/test/FieldTracking.jl @@ -0,0 +1,40 @@ +using Test +using BeamTracking +using StaticArrays + +# Test field_system! with a uniform electric field +@testset "FieldTracking" begin + # Define a simple uniform electric field in x-direction + function uniform_field(x, y, z, params) + return SVector(1.0, 0.0, 0.0) + end + + # Test initial conditions + du = zeros(6) + u = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] # Initial position at x=1, rest at origin + p = (uniform_field, nothing) + t = 0.0 + + # Call field_system! + FieldTracking.field_system!(du, u, p, t) + + # Test derivatives + @test du[1] ≈ 0.0 # dx/dt = px = 0 + @test du[2] ≈ 1.0 # dpx/dt = Ex = 1 + @test du[3] ≈ 0.0 # dy/dt = py = 0 + @test du[4] ≈ 0.0 # dpy/dt = Ey = 0 + @test du[5] ≈ 0.0 # dz/dt = pz = 0 + @test du[6] ≈ 0.0 # dpz/dt = Ez = 0 + + # Test with non-zero initial momentum + u = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0] # Initial momentum px=1 + du = zeros(6) + BeamTracking.field_system!(du, u, p, t) + + @test du[1] ≈ 1.0 # dx/dt = px = 1 + @test du[2] ≈ 1.0 # dpx/dt = Ex = 1 + @test du[3] ≈ 0.0 # dy/dt = py = 0 + @test du[4] ≈ 0.0 # dpy/dt = Ey = 0 + @test du[5] ≈ 0.0 # dz/dt = pz = 0 + @test du[6] ≈ 0.0 # dpz/dt = Ez = 0 +end \ No newline at end of file From 2e311ca705379ab98a1f003c0660464cfadfac62 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 13:09:41 -0400 Subject: [PATCH 15/76] remove default solver to work with @makekernel --- src/modules/FieldTracking.jl | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index 39182c13..932aaefe 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -16,6 +16,7 @@ using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, @makekernel using DifferentialEquations const TRACKING_METHOD = Field +# EVOLVE-BLOCK-START """ field_system!(du, u, p, t) @@ -42,7 +43,7 @@ function field_system!(du, u, p, t) end """ - field_drift!(i, v, work, L, field_func, params, solver=Tsit5()) + field_track!(i, v, work, L, field_func, params, solver) Track a particle through a drift space with arbitrary field using DifferentialEquations.jl. @@ -53,9 +54,9 @@ Track a particle through a drift space with arbitrary field using DifferentialEq - `L`: Drift length - `field_func`: Function that returns the field at a given position (x, y, z) - `params`: Additional parameters for the field function -- `solver`: ODE solver to use (default: Tsit5()) +- `solver`: ODE solver to use """ -@makekernel function field_drift!(i, v, work, L, field_func, params, solver=Tsit5()) +@makekernel function field_track!(i, v, work, L, field_func, params, solver) @inbounds begin # Initial state vector [x, px, y, py, z, pz] u0 = [v[i,XI], v[i,PXI], v[i,YI], v[i,PYI], v[i,ZI], v[i,PZI]] @@ -77,5 +78,6 @@ Track a particle through a drift space with arbitrary field using DifferentialEq end return v end +# EVOLVE-BLOCK-END -end \ No newline at end of file +end \ No newline at end of file From d346bfbd62f7f6f327222bd2df08eb9a166d4f24 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 13:10:02 -0400 Subject: [PATCH 16/76] Adding Kernel evaluator --- Project.toml | 2 + test/KernelEvaluation.jl | 81 ++++++++++++++++++++++++++++++++++++++++ 2 files changed, 83 insertions(+) create mode 100644 test/KernelEvaluation.jl diff --git a/Project.toml b/Project.toml index d6412417..35b23613 100644 --- a/Project.toml +++ b/Project.toml @@ -4,6 +4,7 @@ authors = ["mattsignorelli and contributors"] version = "0.1.0" [deps] +BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" ReferenceFrameRotations = "74f56ac7-18b3-5285-802d-d4bd4f104033" @@ -19,6 +20,7 @@ BeamTrackingBeamlinesExt = "Beamlines" [compat] Beamlines = "0.2.1" +BenchmarkTools = "1.6.0" DifferentialEquations = "7.16.1" GTPSA = "1.4.2" ReferenceFrameRotations = "3" diff --git a/test/KernelEvaluation.jl b/test/KernelEvaluation.jl new file mode 100644 index 00000000..c249c2ce --- /dev/null +++ b/test/KernelEvaluation.jl @@ -0,0 +1,81 @@ +using BeamTracking: get_N_particle, runkernel!, MAX_TEMPS, soaview +using BenchmarkTools + +""" + evaluate_kernel_performance(bunch, kernel, args...; n_runs=10, kwargs...) + +Evaluate the performance of any tracking kernel and return a dictionary of metrics. + +# Arguments +- `bunch`: Initial particle bunch +- `kernel`: The kernel function to evaluate +- `args...`: Arguments to pass to the kernel +- `n_runs`: Number of runs for performance evaluation (default: 10) +- `kwargs...`: Additional keyword arguments to pass to runkernel! + +# Returns +A dictionary containing the following metrics: +- `min_time`: Minimum tracking time per particle +- `min_memory`: Minimum memory allocation per particle +- `min_allocs`: Minimum number of allocations per particle +- `success`: Boolean whether the tracking was successful + +""" +function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10, kwargs...) + n_particles = get_N_particle(bunch) + + # Get the tracking method from the kernel's module + tracking_method = parentmodule(kernel).TRACKING_METHOD() + n_temps = MAX_TEMPS(tracking_method) + work = zeros(eltype(bunch.v), n_particles, n_temps) + v = soaview(bunch) + + try + # Benchmark the tracking with specified sample size and time budget + result = @benchmark begin + runkernel!($kernel, nothing, $v, $work, $(args...); $(kwargs...)) + end samples=n_runs seconds=10 + + metrics = Dict( + "min_time" => time(minimum(result)) / n_particles, + "min_memory" => memory(minimum(result)) / n_particles, + "min_allocs" => allocs(minimum(result)) / n_particles, + "success" => true + ) + + return metrics + catch e + @warn "Tracking failed: $e" + return Dict( + "min_time" => NaN, + "min_memory" => NaN, + "min_allocs" => NaN, + "success" => false + ) + end +end + +""" + evaluate_field_track_performance(bunch, L, field_func, params, solver; n_runs=10) + +Evaluate the performance of field-based particle tracking and return detailed metrics. + +# Arguments +- `bunch`: Initial particle bunch to be tracked +- `L`: Drift length for the tracking simulation +- `field_func`: Function that returns the field at a given position (x, y, z) +- `params`: Additional parameters for the field function +- `solver`: ODE solver to use for the integration +- `n_runs`: Number of runs for performance evaluation (default: 10) + +# Returns +A dictionary containing the following metrics: +- `min_time`: Minimum tracking time per particle +- `min_memory`: Minimum memory allocation per particle +- `min_allocs`: Minimum number of allocations per particle +- `success`: Boolean whether the tracking was successful + +""" +function evaluate_field_track_performance(bunch, L, field_func, params, solver; n_runs=10) + return evaluate_kernel_performance(bunch, field_track!, L, field_func, params, solver; n_runs=n_runs) +end \ No newline at end of file From 315f5efeaf59eae53fd0785942b2d35647360178 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 13:12:01 -0400 Subject: [PATCH 17/76] remove kwargs since @makekernel doesn't support kwargs --- test/KernelEvaluation.jl | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/test/KernelEvaluation.jl b/test/KernelEvaluation.jl index c249c2ce..08867a86 100644 --- a/test/KernelEvaluation.jl +++ b/test/KernelEvaluation.jl @@ -21,7 +21,7 @@ A dictionary containing the following metrics: - `success`: Boolean whether the tracking was successful """ -function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10, kwargs...) +function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) n_particles = get_N_particle(bunch) # Get the tracking method from the kernel's module @@ -33,7 +33,7 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10, kwargs.. try # Benchmark the tracking with specified sample size and time budget result = @benchmark begin - runkernel!($kernel, nothing, $v, $work, $(args...); $(kwargs...)) + runkernel!($kernel, nothing, $v, $work, $(args...)) end samples=n_runs seconds=10 metrics = Dict( From ade164408712cc203a9834d28feac715e043d026 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 13:30:13 -0400 Subject: [PATCH 18/76] fix scoping issue with @benchmark --- test/KernelEvaluation.jl | 11 +++++------ 1 file changed, 5 insertions(+), 6 deletions(-) diff --git a/test/KernelEvaluation.jl b/test/KernelEvaluation.jl index 08867a86..7866e354 100644 --- a/test/KernelEvaluation.jl +++ b/test/KernelEvaluation.jl @@ -15,8 +15,8 @@ Evaluate the performance of any tracking kernel and return a dictionary of metri # Returns A dictionary containing the following metrics: -- `min_time`: Minimum tracking time per particle -- `min_memory`: Minimum memory allocation per particle +- `min_time`: Minimum tracking time per particle (in nanoseconds) +- `min_memory`: Minimum memory allocation per particle (in bytes) - `min_allocs`: Minimum number of allocations per particle - `success`: Boolean whether the tracking was successful @@ -29,11 +29,10 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) n_temps = MAX_TEMPS(tracking_method) work = zeros(eltype(bunch.v), n_particles, n_temps) v = soaview(bunch) - try # Benchmark the tracking with specified sample size and time budget result = @benchmark begin - runkernel!($kernel, nothing, $v, $work, $(args...)) + runkernel!($kernel, nothing, $v, $work, $args...) end samples=n_runs seconds=10 metrics = Dict( @@ -42,7 +41,7 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) "min_allocs" => allocs(minimum(result)) / n_particles, "success" => true ) - + return metrics catch e @warn "Tracking failed: $e" @@ -52,7 +51,7 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) "min_allocs" => NaN, "success" => false ) - end + end end """ From d7cea072985cd07399799bf416583ba39aa3df74 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 18:47:19 -0400 Subject: [PATCH 19/76] linear track and field track evaluation shortcuts --- Project.toml | 4 ++++ test/KernelEvaluation.jl | 44 +++++++++++++++++----------------------- 2 files changed, 23 insertions(+), 25 deletions(-) diff --git a/Project.toml b/Project.toml index 35b23613..08e07f9c 100644 --- a/Project.toml +++ b/Project.toml @@ -7,6 +7,8 @@ version = "0.1.0" BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" +KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c" +Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" ReferenceFrameRotations = "74f56ac7-18b3-5285-802d-d4bd4f104033" SIMD = "fdea26ae-647d-5447-a871-4b548cad5224" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" @@ -23,6 +25,8 @@ Beamlines = "0.2.1" BenchmarkTools = "1.6.0" DifferentialEquations = "7.16.1" GTPSA = "1.4.2" +KernelAbstractions = "0.9.34" +Plots = "1.40.13" ReferenceFrameRotations = "3" SIMD = "3.7.1" StaticArrays = "1" diff --git a/test/KernelEvaluation.jl b/test/KernelEvaluation.jl index 7866e354..c84de934 100644 --- a/test/KernelEvaluation.jl +++ b/test/KernelEvaluation.jl @@ -1,5 +1,7 @@ +using BeamTracking using BeamTracking: get_N_particle, runkernel!, MAX_TEMPS, soaview using BenchmarkTools +using DifferentialEquations: Tsit5 """ evaluate_kernel_performance(bunch, kernel, args...; n_runs=10, kwargs...) @@ -36,9 +38,9 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) end samples=n_runs seconds=10 metrics = Dict( - "min_time" => time(minimum(result)) / n_particles, - "min_memory" => memory(minimum(result)) / n_particles, - "min_allocs" => allocs(minimum(result)) / n_particles, + "min_time" => time(minimum(result)), + "min_memory" => memory(minimum(result)), + "min_allocs" => allocs(minimum(result)), "success" => true ) @@ -54,27 +56,19 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) end end -""" - evaluate_field_track_performance(bunch, L, field_func, params, solver; n_runs=10) - -Evaluate the performance of field-based particle tracking and return detailed metrics. - -# Arguments -- `bunch`: Initial particle bunch to be tracked -- `L`: Drift length for the tracking simulation -- `field_func`: Function that returns the field at a given position (x, y, z) -- `params`: Additional parameters for the field function -- `solver`: ODE solver to use for the integration -- `n_runs`: Number of runs for performance evaluation (default: 10) -# Returns -A dictionary containing the following metrics: -- `min_time`: Minimum tracking time per particle -- `min_memory`: Minimum memory allocation per particle -- `min_allocs`: Minimum number of allocations per particle -- `success`: Boolean whether the tracking was successful +function evaluate_field_track_performance(; n_runs=10, n_particles=1000, solver=Tsit5()) + bunch = Bunch(n_particles) + L = 1.0 + field_func = (x, y, z, params) -> [0.0, 0.0, 0.0] + params = nothing + return evaluate_kernel_performance(bunch, FieldTracking.field_track!, L, field_func, params, solver; n_runs=n_runs) +end -""" -function evaluate_field_track_performance(bunch, L, field_func, params, solver; n_runs=10) - return evaluate_kernel_performance(bunch, field_track!, L, field_func, params, solver; n_runs=n_runs) -end \ No newline at end of file +function evaluate_linear_track_performance(;n_runs=10, n_particles=1000) + # suggest good default values for bunch, L, r56 + bunch = Bunch(n_particles) + L = 1.0 + r56 = 1.0 + return evaluate_kernel_performance(bunch, LinearTracking.linear_drift!, L, r56; n_runs=n_runs) +end From 793a6a6e69e28199e7371890b2c3e3e933e0ad56 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 19:43:12 -0400 Subject: [PATCH 20/76] Explicit RK4 integration kernel --- src/BeamTracking.jl | 2 + src/modules/RungeKuttaTracking.jl | 90 +++++++++++++++++++++++++++++++ 2 files changed, 92 insertions(+) create mode 100644 src/modules/RungeKuttaTracking.jl diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index 838d3910..2216b261 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -12,6 +12,7 @@ export Bunch, Species, ParticleView, ELECTRON, POSITRON, PROTON, ANTIPROTON, sin export LinearTracking, Linear export ExactTracking, Exact export FieldTracking, Field +export RungeKuttaTracking, RungeKutta export track! include("utils.jl") @@ -22,6 +23,7 @@ include("types.jl") include("modules/ExactTracking.jl") #; TRACKING_METHOD(::ExactTracking) = Exact include("modules/LinearTracking.jl") #; TRACKING_METHOD(::LinearTracking) = Linear include("modules/FieldTracking.jl") #; TRACKING_METHOD(::FieldTracking) = Field +include("modules/RungeKuttaTracking.jl") #; TRACKING_METHOD(::RungeKuttaTracking) = RungeKutta # Empty tracking method to be imported+implemented by package extensions function track! end diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl new file mode 100644 index 00000000..af94cfff --- /dev/null +++ b/src/modules/RungeKuttaTracking.jl @@ -0,0 +1,90 @@ +""" + RungeKuttaFieldTracking + +Module implementing particle tracking through arbitrary electromagnetic fields using a 4th order Runge-Kutta method. +""" + +# Define the RungeKutta tracking method +struct RungeKutta end + +# Number of temporaries needed for a single particle +MAX_TEMPS(::RungeKutta) = 24 # Number of RK4 stages + +module RungeKuttaTracking +using ..BeamTracking +using ..BeamTracking: @makekernel + +const TRACKING_METHOD = RungeKutta + +""" + rk4_step!(u, h, field_func, params, work, i) + +Perform a single 4th order Runge-Kutta step. + +# Arguments +- `i`: Particle index +- `u`: State vector [x, px, y, py, z, pz] +- `work`: Work matrix (n_particles × 24) +- `t`: Current time +- `h`: Step size +- `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. + Return value should be [px, Ex, py, Ey, pz, Ez]. +- `params`: Additional parameters for the field function +""" +function rk4_step!(i, u, work, t, h, field_func, params) + # Get views into work matrix for RK4 stages + k1 = view(work, i, 1:6) # First 6 elements for stage 1 + k2 = view(work, i, 7:12) # Next 6 elements for stage 2 + k3 = view(work, i, 13:18) # Next 6 elements for stage 3 + k4 = view(work, i, 19:24) # Last 6 elements for stage 4 + + # Stage 1 + k1 .= field_func(u, 0.0, params) + + # Stage 2 + k2 .= field_func(u .+ (h/2) .* k1, h/2, params) + + # Stage 3 + k3 .= field_func(u .+ (h/2) .* k2, h/2, params) + + # Stage 4 + k4 .= field_func(u .+ h .* k3, h, params) + + # Final update + u .+= (h/6) .* (k1 .+ 2 .* k2 .+ 2 .* k3 .+ k4) +end + +""" + rk4_track!(i, v, work, L, field_func, params, n_steps) + +Track a particle through a drift space with arbitrary field using 4th order Runge-Kutta. + +# Arguments +- `i`: Particle index +- `v`: Coordinate matrix +- `work`: Work matrix (n_particles × 24) +- `t_span`: Time span [t_start, t_end] +- `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. + Return value should be [px, Ex, py, Ey, pz, Ez]. +- `params`: Additional parameters for the field function +- `n_steps`: Number of integration steps +""" +@makekernel function rk4_track!(i, v, work, t_span, field_func, params, n_steps) + @inbounds begin + # Create a view of the particle coordinates + u = view(v, i, :) + + # Integration step size + h = (t_span[2] - t_span[1]) / n_steps + + t = t_span[1] + # Perform integration steps + for _ in 1:n_steps + rk4_step!(i, u, work, t, h, field_func, params) + t += h + end + end + return v +end + +end \ No newline at end of file From ddc42d8dbbf3575f3af4f5c033c0cce31843dec3 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 20:03:33 -0400 Subject: [PATCH 21/76] update FieldTracking test --- test/FieldTracking.jl | 85 +++++++++++++++++++++++++------------------ 1 file changed, 50 insertions(+), 35 deletions(-) diff --git a/test/FieldTracking.jl b/test/FieldTracking.jl index f58bc781..3e59d1a4 100644 --- a/test/FieldTracking.jl +++ b/test/FieldTracking.jl @@ -1,40 +1,55 @@ -using Test -using BeamTracking -using StaticArrays - -# Test field_system! with a uniform electric field @testset "FieldTracking" begin - # Define a simple uniform electric field in x-direction - function uniform_field(x, y, z, params) - return SVector(1.0, 0.0, 0.0) - end - - # Test initial conditions - du = zeros(6) - u = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] # Initial position at x=1, rest at origin - p = (uniform_field, nothing) - t = 0.0 - - # Call field_system! - FieldTracking.field_system!(du, u, p, t) + @testset "FieldSystem!" begin + # Define a simple uniform electric field in x-direction + function uniform_field(x, y, z, params) + return SVector(1.0, 0.0, 0.0) + end - # Test derivatives - @test du[1] ≈ 0.0 # dx/dt = px = 0 - @test du[2] ≈ 1.0 # dpx/dt = Ex = 1 - @test du[3] ≈ 0.0 # dy/dt = py = 0 - @test du[4] ≈ 0.0 # dpy/dt = Ey = 0 - @test du[5] ≈ 0.0 # dz/dt = pz = 0 - @test du[6] ≈ 0.0 # dpz/dt = Ez = 0 + # Test initial conditions + du = zeros(6) + u = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] + p = (uniform_field, nothing) + t = 0.0 - # Test with non-zero initial momentum - u = [0.0, 1.0, 0.0, 0.0, 0.0, 0.0] # Initial momentum px=1 - du = zeros(6) - BeamTracking.field_system!(du, u, p, t) + # Call field_system! + FieldTracking.field_system!(du, u, p, t) + end - @test du[1] ≈ 1.0 # dx/dt = px = 1 - @test du[2] ≈ 1.0 # dpx/dt = Ex = 1 - @test du[3] ≈ 0.0 # dy/dt = py = 0 - @test du[4] ≈ 0.0 # dpy/dt = Ey = 0 - @test du[5] ≈ 0.0 # dz/dt = pz = 0 - @test du[6] ≈ 0.0 # dpz/dt = Ez = 0 + # Test field_track! with uniform field + @testset "Uniform Field Tracking" begin + # Create a single particle + bunch = Bunch(1) + work = zeros(eltype(bunch.v), get_N_particle(bunch), MAX_TEMPS(ele.tracking_method)) + L = 1.0 + solver = Tsit5() + + # Track the particle + FieldTracking.field_track!(1, soaview(bunch), work, L, uniform_field, nothing, solver) + + # Verify final position and momentum + @test isapprox(bunch.v[1,1], 0.5, rtol=1e-5) # x = x0 + 0.5*t^2 + @test isapprox(bunch.v[1,2], 1.0, rtol=1e-5) # px = t + end + + # Test field_track! with multiple particles + @testset "Multiple Particle Tracking" begin + # Create multiple particles + bunch = Bunch(zeros(3,6)) + bunch.v[2,1] = 1.0 + bunch.v[3,2] = 1.0 + work = zeros(eltype(bunch.v), get_N_particle(bunch), MAX_TEMPS(ele.tracking_method)) + L = 1.0 + solver = Tsit5() + + # Track all particles + runkernel!(FieldTracking.field_track!, nothing, soaview(bunch), work, L, uniform_field, nothing, solver) + + # Verify final positions and momenta + @test isapprox(bunch.v[1,1], 0.5, rtol=1e-5) + @test isapprox(bunch.v[2,1], 1.5, rtol=1e-5) + @test isapprox(bunch.v[3,1], 1.5, rtol=1e-5) + @test isapprox(bunch.v[1,2], 1.0, rtol=1e-5) + @test isapprox(bunch.v[2,2], 1.0, rtol=1e-5) + @test isapprox(bunch.v[3,2], 2.0, rtol=1e-5) + end end \ No newline at end of file From 7943996cb9d236f370c0a3a022bbfd9364486761 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 20:23:52 -0400 Subject: [PATCH 22/76] Clean up dependencies in Project.toml --- Project.toml | 10 ++++------ fig/field_single.png | Bin 0 -> 23659 bytes fig/linear.png | Bin 0 -> 26326 bytes fig/linear_single.png | Bin 0 -> 23895 bytes src/modules/FieldTracking.jl | 2 +- 5 files changed, 5 insertions(+), 7 deletions(-) create mode 100644 fig/field_single.png create mode 100644 fig/linear.png create mode 100644 fig/linear_single.png diff --git a/Project.toml b/Project.toml index 08e07f9c..c36f2122 100644 --- a/Project.toml +++ b/Project.toml @@ -4,13 +4,12 @@ authors = ["mattsignorelli and contributors"] version = "0.1.0" [deps] -BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" -DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c" -Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" +OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" ReferenceFrameRotations = "74f56ac7-18b3-5285-802d-d4bd4f104033" SIMD = "fdea26ae-647d-5447-a871-4b548cad5224" +SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" VectorizationBase = "3d5dd08c-fd9d-11e8-17fa-ed2836048c2f" @@ -22,13 +21,12 @@ BeamTrackingBeamlinesExt = "Beamlines" [compat] Beamlines = "0.2.1" -BenchmarkTools = "1.6.0" -DifferentialEquations = "7.16.1" GTPSA = "1.4.2" KernelAbstractions = "0.9.34" -Plots = "1.40.13" +OrdinaryDiffEq = "6.98.0" ReferenceFrameRotations = "3" SIMD = "3.7.1" +SciMLBase = "2.96.0" StaticArrays = "1" VectorizationBase = "0.21.71" julia = "1.9" diff --git a/fig/field_single.png b/fig/field_single.png new file mode 100644 index 0000000000000000000000000000000000000000..a8c788b318c008cee7190efe5c9ccb47490724bd GIT binary patch literal 23659 zcmZs@cRZDE{6Bt>oa{~ZK}c2^*>ud5%n})iviIJUk!%@7c7zn!TgcAdJ0e2%p5NDb zf4-mJ_n)8lwDd_G@SsQLpXB78c01Oh>HS6N;Yfxv!@Kww29vEj;@ zPG~Ru@A9*IO7e&c%zx>1pWY%6EQq`EceLFz!+`$F)ee8h;c%yRgV&8oG{aC!N|)zrroTzU!k-1l%bJIrq;v7uF8H6Eht!0*l=ELVJwp6wA6!p`EpN^ z@Moh2U;Q@CSNZw*Z#mUkfBaZjSU?6fG5a0{tiG20cQd^eA0Pkp>?|T8V)4Rse}BKk ztoLhveyq)l7cWNgAAbHr(A?N~r^+tAv{cB?&ktVUX!i4y3fozq0|O6_Dss0Wq=$z` zrk?lVTnJ%vID=R$X>45FuHN)ay-zaf_Q(^v;hJn^_TrL~&;Q0lDL6-{Q)_?z{5guh zQC6T^5=>fbH(NjIGq*X{ym&Fs`=oqrrtV~WvCGNHDV~a6L1WGE(7XOIkL_SiM6u^( z-e9tfXKWtttqM!;b>E)N6{Yns^4W_&ZO&4Ps^1%V!o{=>guM5yWA2K{4CM5ySob`5*|(nE4J|! zp4<9V)r`?fNw0KQS68yQi{+kR5)3&^Cv1~=yN?#f8x0qck&y{1*^J`Ov|^4QoA9P! zoo;V$i@U8`o0?LRlRI9V`veQ_UKZdpLTZ>(Z&A~)YZf=}`%Gm?2U%&qN@guy9lhe-m*@@fVf$Uaa zm3#N>rYd9N;(q+z!nEbS`84Pt<0bU?@X#Ht43B#TJLk>y4-iiI5{pZj{df->5CWTmcy3IeHn}ruGZg;bYNR+i#!k z4o)mAtib5+-(|;N4EK^fdi3b{n>XU~V0S2ymn4}swtlw}iD8p4 zOKayI>gwsGia9CzCcDjegpfM^`T0Ho2d{V%c?o+z@7+7v@kE?QpC5gRWR@{JcrbpS zhdk7BGW}Q#os={B<;f>?9!6nHZ9~IU>twoKGT5v7(l?*z>IMY`4f{l@H^#6jAyIa< zTfqg39d9`Uqv7v!um;7^j|vUD1%Bpfeah!7fqxU?;<%h^+%{$&ebMW%%lY)l?P&Y? z{`krg671mkZ)Q?b*+FNU{$jHY%JY}~{rzhvAwC)MtVg?pYE&vUgE^{iNw%Y8&RGHr z^vW!^=36A0qNa0NV~)W%j3??>J9o6UDxT+kHKw246tGy}GopP{bJ_efaBDZf>qp6ccQ>yGBMvT$D4_F89i>CL{l?txZi&`c~B`tkE^5uzL-5xc{bgam@xIkTsY^Kgjhn@T?9UWLWK{2r-un+b1^{_Uv1JeJ7 z_JLvP>)Z6ZIGF_l3HGA#ywhucZEI^w%=>V2y2gzeY&EH-gFRnzEx5~T!`FR!ndX4C`5s#S^ z?YXz&vc1p&8`!YHcY1O%xjU#hu_&|;>`YVB{G?q&ox|_eDyJn@Hnu|js-}8L7M5R~ z@nDGcJ&t#;Hw(nX#DMi=jWM6Dc7bjlY|I)}+M`fEnwnUpqzp!Q{~O5}@11V&L14jC z#a-SU-6kt;p8x*+yM)_%fni-z?-DpX&+a5)m_~TnDzAfen7i@*B?t~oeGDt@8@swz z4`%&H2ng;eD_1%$c8+~Bp*lDH*$^82#pBZD%P^*HT?xF=Z;3dnSwcxwrB;~Y4G57wNXn<7>PXeF#?4lEFh0BGD^HuVUV{Sga z1R`^=4Xu%kC*Uce{fgt;>vR;T6UIj)kF~Ygsl#xw@964YoowNaEY)NYGBn474`b0re&fZ@1Ea5N<+R_noh*+a9RORe zOOTATv9X~F7M7Nl4vbFoJ-%CiQ&jX_+ixOzk%Gvx;?U@}-&Gen7w2b~DV>9`@yNSA zCB?wkx87T3ZD~4)fMzUYm|||ZKkEu=yW>^PUotkuqO_Jh##Fzd1mqReFdoHld_scj z+L(rsQA1Htv`t4x$IV-}1_lRfybf$_3S-p*$;ikO5)u>@6^n&*LsmisBqWjW zu(Jn}&d<-Y%6PoX~ypx|KcwP(LuBk+~tjcNJ$`O)p8Mt;1r%d4yR zkXr`_iDgBh_6zMX_!rNtS=airLgZOvgp2J2GSq1)DA=q_FBl-ka%IE|$jk+wM223t z&>EBHy66rye#c*b`0`XD$?O|NW&O!|&4jp&!~CUW-0N>*g&%2aJFg7g<)Y-K43xc0 zGxV9?#N;=4T$j}mmzANsqM}WRc#r49_$4JJKYaM`RliDeqicF zes3~UW&C=|i?pm4!tMn|-=1-ooAbW!a&oZ28OZab{C>UfHA;NgHC+NfVH;X`85>E0MnhCnk6dmV2!SnAqgowo{@?N^P*G%3zbhCS91V7#YaEM?^?yI=ORn zic3HpZHec!`KytrD*79Y-b9(zFbVQRb#(4)k zIepap3yxqFc|Xy(I9zXVboAnMr&k94fmnTWa}%8Z2Wg*U@QfyHk#)Xjo_mAa+xcn+ z#=Q?AC@9`xBPSr6AW<~@hT4Z}FWOjPQJ2+4cRzgo{JD#B zPpnGzl`B`U17zpe(=sxQ!N}N7S5wi@a3)`BY~^XVDpA$?{rl6S?L~a4#KgpV*#pq? z369Vrc~*@F4<6Jx#QH_GrbxJrkvzJ(zgWf?5g2$WPkW-u$?QnY8?7A0Bt=&|=qV;D z%C-9w!kQuQIpFR;q^26`>gJL19=XjwlxrG;)n;#B^y*bJ>`_B2zTneKI#yOz%*<)9 z#4~+P_7`Sfd7K@)xXwh}S5d*wa~1g9;9|AA+|QPj!^p@;RUhE;Z(_K;ol8neN=C+r zhq`OR>V$Q9VS)W3x(++AE>kh%rl6n}#$33AI|dJsmzM`~RJ^}pClGX@yU#4b#`emm zJ@vkegM-Gq-)vD*{$@QNs$Bmic}sXnt{%<~IVcAvH9`o{-@i5OHaiW=2FxoPE31h0 znEIsotA{>+m`<+6}w!7*!Z=<`tPJbXAzFNgE(q}qM! z+1@>|aXsgV!e=2LhwXAqjEyzgu&gWTHatrp+=KN2-;cT~*g7+ls!B-1r;j8ihQNPK z1cLWK(jbp(!f!%DGr000$X!b-n}fa8o)9!nS8%Ge)+p(+5_jq!e2qGcijLmhENy~V zcoNpG;C{iKx@qoHxo>_PL5d=1#r4ZQc*G2wdwUT4@9yuX-g=HNK_S7)IzN=BRcvB7 z$w%pFav`)mdy#KK@+-~nT=(qy(JUDy3z_9RaPfr@WKC5%tgUV4JiWLHMirumg-J+- zR(&(_@+|c9^uP(peNBvRd%zPO8rlH~zjXWqCJ8ncm{Zmmt_Acyf#bB!og(I~vy+3u ze|oalo*lR>w3E3$P{R4Utyb)o&8)}JMJ`l6_z4C z42hI!!)34u!!=>xHuUSgj}EtfQ*hiD_1HFT-Vk_dZLL2Ua?4Ag(4b}{y2%=+;bxJ~ zBbgz>=Awu_LyjSH!e)%=Q&R)OIW;`|aO503Uvd1!Xj7~1LBpre(7Rv-t*x!)>O1`j zd&n%A_VvE67`->5@ybX(4Pilj1aN|tHFKS&xP%@pCuigqg~`msopZIh&-N$ntR{oc zl6WZbYn=b0H7K8~#E?YsPIjif%j@axR%IcTS5ySUUTYg&7$!xx#uF91I#pGo&gFf2 z_zj&Q%FV6vzOlpOaMSqtb40W2s~0Ha37kCvAB`1mrL$?_R;<*essW}mXN#Uv!U%L4z*zO21IPl2 z0=pI0FiP_|KVRkirAtT=&cWXnlHMV_mdoHC_x5jpxyJ zw)ge(o)n3Q8mc%Lz{EtzeIGH}k?;FCfh&QEn zd3G>sRPFp1oJqs!c2{499HdqSpFUMU@W!z}`&p;Z-`^js0ocs1kH0;eEVrTHd@xmH z+zdJ4-4qv2aCDGju(PwnzFC_nyTQ)B06`dxAfzr9HLm|4MO_)o`}AoEjKj~R9f-`O ztjCHBYFrH}?dQPr!q_v4+W&$L@I1{w&3ijEC1o12DsLYjIXO9IaLTU#CcqJe$!7*n zEm%Y746g(ezfOia??1HkPLc6R0;J9A$Hi?ur2Z~?&sBo9nAlZmwlo*+rsdr#p zAN$rkG~^7q4WNW`d#j_r=jZwKD~n7!VlU1%{MIhNg zA>rDBBy?)Mj!YVx4V+Z=+-*?h)ROj<+PR3{u~}e}8Htns4<3 zcaN|c0+~<8&fzdFB^BN#mQ^J`Vel91ehrk{Oag}Td|Ef>xOHxBZkx>_L%kAW64zo( z(y)jDz|xxvO{}eXyq1P4k1u)k!>XHJamN{Qzf*^ul+$qZhd#*hT2$NWbj<-^Q)4z` ztH_4K`LGrK!Yy%hu(9n_WrjU-G3)_u{hiL#ov*%b?EB(P5UO?DW)gRPOMsim3wXcT>i}yl&~MB(@cSJ=dMC^B zxW@I1HBP8}F{C^}9=EXro&x%*qQ5BDwMko`UN{4baQ^piEiJ9C&Q5?D|E{d)`FP%z zAko?%uFuSbvP7eVjEotM)E!s?*Yl9H#eS%g#p8Iu6(?zdG~P;me5U4XGGKbf=H`!o?=}q#3;+NC z1_l-l(bZc&IyXt9t!e)0rR9s}QfB^WsPC_;jpi>tk>OYrvX zLg^G0)|kM+Kz0re{2;WMnHlEwDgN;r)ZshK`~D)96>0?ZF!;*b$x5T$J&NZMgQU~CsxvC7V_Uk$Eu+W;4M z|M~OmvN9Lg#h))`VQzu~0|CmUrKN>_9xV6EX^osLTp~xED#2C)f~I!P{KDdX-XPe0-b;Fmtzb1R~|7JQ9HrCmJQgM)*IFW4#2Ig8%1I zC@BKrOh=AFAeM#L(FjDJMN$m1!fw{krzLGd+vwn`HjYv%1*O6qE7yZxM7>vnjk(@v z+NQym{LYV-AmG1jt8ZvHQ_v`DW4|B_AH2F4975}7 z%-({9_c!IU0_#VMq*Zu;Z1=;OSLAX#?zK4wU0Y&J5IXuDOuGTfv9NOlzQby|x~$lf z@5YT)aKjD`--^W--l%f{TKx=Wu9El?!k?ZHH8MSA^uy>{k6o=LZ>LaZ*NAHYzv}ft}8=-f%1Ti%@<%g2npgR#iH7@Iumhi zL*-e&${`THWbaVvGTvoW$<)~=<)NEJISmCVbUg~O(^aKN^^uq~z;oS$HF#ZOUX%>- zddJrAtAIMgrfCi#SrVZ|Ak-<^Qv1W2b7MqK53jR2;h>S<%FCtCPnh0h0^3DML=<1i z&&Synmypnte0u{tELaA>?I(+jaY7mq2!C;9F4LJxma}7NAIFcIQ5o1G1R|eb+zo_X zi%C*n;u7SjCMTq&@mrbE{zPYG?RPf&SBHbL60N!Q)gRpY*u3BZ7w%o+G7k@3)K$cs)P7sexD@`hX+ za5qNq(w0M9K%tnKEddpPiCV;7Vj&QFH1E*-_}Nmt?)}o4BAqW&-YYVo(YbnJIiNf$(kaWP7OOy5izUtS)f+-{ePjp;eUBPi%4(1S@^o@)p z{QIcb($WHW1JGh{KWspivlLMQ&s}pFnFft4MF&RZvoW?_7fSI@nVD!7(x;m7D|1AJ zJiRLIN@NRn$;SIb!i)0Eeve8iagibqPdzQu@{@VwG_<|FYd?MBJn0)8+yT2ANQ#FS z;%Rhm&{;zxCN-7mq;G7jGSX_(A}PnBI`m4a@jFQV|4r2JiyvbtXrz1)Z;)|1KG|p} zEG(Rjv!$oG(kwvd(2KR-?!*|>lVOq6_Is}VGt{V5CJ!1;)__hbfAa zJXAZ)pFTipTVE-|i8i?Lbu@*0^X>k<#Bd|zaDUuX3cI=8RNr6#rNWlGX_lpJ~1iP!B>e2~&HXm-h{?&A+1z&5C; zsjI81Y{rWfLZ`72xnFi~y%@I<7YZBiR};uddGq4O&>fdVHGtuO8RocoGsfrLyLaYx zc7?@txAlE}&%YYTXdj-RauXB>9>>>vH8(ZG4}HH4kQU&!QgVapRX@2-tI zfvvWyKYB69hKEph(oC|B%AS6pY!j}$W||>xdM9&!6^Q{9Ab|)rc64$gVUiRzX(fEP zUKappOSYY{(u7OloLJVQmtUJ9P^Rm*0q$fSg8BV5-TgWEKk&!#jy1s4N7&zZ_18tu zQzYoztJdDcE+D{v)&G20KU;&IKKacX{BMtcrjB*>^iU%&-FQ^+PST_J%NH9UKOqCF zt*cA6*bwgg%x(~Mk9{x2_zPhV*X=x)8O@-)?!?=I^){S&Zf-P+S58h3SlTOg4{yArMKtg|P(@nGZMw=_L>ABQ3wJ#MJHHv>o!k2Kfw-SpXzS0ik$)dKB>&8zJj7 z)%Bb@Se;e6>Xza%>!Vr0I}EeVPl(Da244hkc(oDt6mF8Rd-57eHTGq)F}wX;6E$s* zR&zt8NSvctH{F6EaO1Wa}O?0&M^dXn=Ap2T9shj0I zyBU>XF-aV`QMWT`Vu$k3OtQDyclFm4sLFCo^}YtO4fZ95hX1d>5n?j zG=~y9xO8tXUAe6>83u#q1QF_aKMeGPY>Al4b zrH(>E+6e$cnTbcp!_SW#7_kw{rBAMg8*x21mOW?UUmMV*m)2RduwfOtc{49J_m?;* zWV#b{?k3D;oO?EUXD1LSaRs@aKZ4*%UP$g-`D04dJ;F;1bCen7FYaWvuwgnNq^c{5 zz8;OlLj0oY*8AUInTvzim>y7-*$y>*PC{ZLB|}~YhlzV*N=}%e_#$<51++LC9M`M> z;a~drdtz(j{!kT6>phU=aeIroXmAvL6 zFkFsl2h)8U*Bh^NY0Att%@bNSviNXi{(pOw z2N8gi(B5x3PX)Jt20K}ZU`x$kRhFVyA@2g8})&hjq-1_?1 zi1eGL1WN9Do0*&hF}U&ny+gNu5L?m}%stg6G?B=zXRc4@Ucc}k;6nHx#~O*UUM5fy zA_<2s4^h_G%hU5P^#8=Xz|aHRYq|kJY}&YOGzi&}hE##k>G_t zqQ+)|A7#rh@qhaL_lu?$mt4-Sm0%GlnIlhQ5Qw-}2BMj5cS9ei{VPO{w2_f`cPW6 zfx}!ga;)Em7x5CFEi0EI5CC&|^KSDz03(x}`BV1D=dQ=R}`0%Wj3 zP5ofS262Wuue5STf6~@QBBY;jaYNbnXr4^!EG2-pr#D4HM_+$!aq&L_K^c&8YwH4l z8Fv)05q-$epr4rn+*#oa3>>t5e};zxumhfc_s4?Z6rxmyV7$%&{Y16h)zL!8&jCP` zbX)&W@GUd*8R%p{I}!Q%^)dt)^75BZ3qT)ZawA}E1)=55>i>z&H$ON#KRKTcMIZ4X zCq7jv2152)@$K7H5$ku}zX9Zdtl0T)tSn1WMTHSyI}qdmKL^a)>UxCnJIJO_Prdgu z>g#<$Adz(45z*%maNSv!Rw_55fEr)#YZZBhx0v>y)1w`LW}o8uL9C78C4mEjL}KON zKcE(8W@d^tOaLRn#=)_gtSl{!Yil08P5i6f30j8``!ys+IQ^IJw$x^8G%b+N5WD>q zxRIm|DfvjmR`Aj#1r3N-DHVk6y>M_|d8*Cl?=si{8~{R_u{2uC* z&Vhqq@YMXlL!1@+rad(Pn;-TyWA;F@Ex^F1O+f@}y+Gs83Yn9xh#|g*I$qbMP}mb= z`)AV_mdYbfJ@mX=m=)w)YM_M!>K+(<5N`qO)dwi}dqFc_5M==2`G4`wCh*2M_tCLbv4nc!2 zCM3Wx#=d#iVyyj)?8w3YsWx<$<>L|gTzd?gm9-tp((sNMjp=hnOHKQ_sZ#OK4s)r1|Hq{jo1oiIx9%dbk>@Vio}b`h6XKT%0@GlgVf8oMk88LiZt6Xkb(9|0&=qi@r7D)!OXeZMXjxn4q@5F?rR<-Q6T32SLx2JGI1;BDz<8*6Ui*NO;#8y+@0{Klczy0k)5vNVS{+~YlEqX`=$@0MjQ6E<|p`wp~N_jNfV1v3i5B#9-<2HBHdWv zpVhT)3(_`_b`C^O(eban(c==L2cMuWksI`qdyerk!tzp?y1EoN9a)2^PH+R)oqQaf zYK!PCGt#-iZ+))|cie73axY)op@K_}?#)<;MDyS^k3c;x`zz4?ub(N_t^9Gf$YbeE zf_k0}p#$iJ+0kz@zZx|#QBv*#@ImAXNiFiWNX-0K^Fh2`y~7!>ZOVvy2Z3Q37OTe`8i{P)KJE+dn7k>b4T= zKW}|BGE|P2a_IYKGGkNI1t5Hmyw7Vk>Ln}&K7wu&8C00c%gY<_`n4#Cd_WWc$g?ZZ z(vYw_kqIEoi)zFmgM7}#uG5M%P$$6M+vFZzTv{sBE%{S-F!Q$8?-l@Q0D&+A6oDZu z0Du@6(1am07cHmuWPN|s`Rd{;8?zYcP}}DZw;dPSgKNM4{AsK_BnZrV&w!upaQ(kaHJgApG}3JB_J>HIKa=Jxcq^s9FQkBQ2#>>mcoz^*xC= zI|2j*01P1k0Wi2Hu&K0Z=n&?`rz*vw;hsDAWkokGT18Fos2jn!2OE!kHLx-_ZbLw$d^f=F1~#E@{oxWVIG{z0JBZL)uCXQL9ZB)e#MfO?9s!A zWN1P{LL{oOu@PWR=psiT$Vfs-V^dSVPQcOyBM#~R(8|MZ%=W>bR@mq=62BCdA{ z9GhF?OI(@LO*w7tp+qC!j^A5IP>G>Hr3APOHwignXtYirHgJAs`}pm^RBC1abPvmV zZ;a;ZAE0BPW-ct;09!fU3R4THC=Crb+Ry243L-xeU+cf&g`^fUp+qL-|B(l@1sfZi zk`D5i$}`wlr%VL+d0`i`n1?1Q1p?klf{(ww zwdDcc)IpOJF{Za%EHR`^?>j{qgA3bF!BRO81{jog)89-&tdj^4%f-u*Fd^J;W8bm` z`P{_6^hHaKm4}Znhbtc#w*08eh#{4{IByEov%_e^euG~dKWSL5ycEeldg*!lb_MwH zd}%s_Iy1P|ir)jD6xdyh&A$;qcfKU`l3}!yAR;OU-9tr%8z2kX3=|0aRR>fFS6pWv zOGpU8aRxR1#MeLa%m4nRyniod(i*;^c9U@MCkhK;278H7+ldu}yFmu|kO3cIe?uV1 zkWz)De7@!IH4jl$g_!E*~Q%LY0a0;CZEzGt8v{Du=*^X zYZhNEQ}44Wd=UZq!5absMKfCdz?WiXA3_>IyvvC02O|7J6L>r5J8pG!WcZh`L2U?- zJn+^>hlizBqYr!~f{j6DMGOuSR>0rYRkalHhl?55{sZjPx5Aoo!*4l0&3&3qMb5HZ zsuNn|cX1Ak&^S=0E5n~8gbtf#FY6R56R}G}TEGCgHkEo`*Dexg;uC2)e(Do85T?7m0!{G+PeW0&Bg!vqoQU@pVOg zyy|xPpW6?|#-hs~k$l0a@`L%~K{ig<4CK#^(!}_9GPHTpqmg=OT~kY|xv2>VfMa0#Z+tUD@VW{|{PoqG z*qRoepPfPJs-0W-xVCKvUi1{|IMLDhE9M)^gNKE96o_wC;If!DhNnuPC&sH zH_Q|jTLI<~GEKb)Ugt+%b`2kgU>aCT1`>oULu)$kS zN8W~sk&OG7m^9`aIQ`ebYU2krVS;_&s=-EEQh$ z3Iwd+B!P2;9ZE$?`s>f1gm>>i#|2dpA-Y)z;p(JT9{eov_puTbLH{Bg0$BWGhd*GT z9gxxkBk#G`8Na*h{Oz%%^Ku{T$POKqRrQAtpPQHnLPm5|@I`yt(US&WAK2-j$AEDJ zb$(xi-vzMvy-C7deSPX&luTld@?s4X{^f^iyrqnqEV3oPz!Kg!08$oQJ#ZYMEzinZ zIy+ZjNwF!0vjiR<9c{VSLOPjB${Mc{)KtCh0IV}T)VKg`yr1#*?H~vWEGH|0tsNVC zY|(I8h&Hm8{9(VT9k!nngWp$*GmG2Rk)Lri=oay3Hb10u!BX$+>njSFTm>98#YnlX z;&Io{pI~a@?Hugw&3~;^QBqSw#!_8bSwxbOk^)n+qei-?U}0@730w$_=zaz;9037$ zZ0PT?$BL&0{dvV!$TK={S5|boKd?$FV0NbR{Dg&-%n{qp{ee1V%hC?L?*hGMd%=+( zJjMnzl>k-)3a0L!-_O<#AqD!i_16dxH$hH`V>AgGOCVfy$-mI2^)Br=e7T8dzmOdH zB`EkgMAO2h)SVYPPHmU*?Z?C#1;PiSyt_l~L30ZEn_j8825d2Ucf%q>AQ}RrfsHPI z2Qcwd3yZwCRIF0jh#fSREG~FQaJG;hD@8KA7k9}gKL9Fb3IaYLe#XYeNYS8N#>k?7 zoMQ>m{0YLg&kdI6A`f+!G^F5v@j5)*bVJ1x>RNy|aP58ro5cR?cyE1u9V%Ji=`}8^ zkF;E|(sAiD2yhXL`6x2Ft5;Q1C67SPp<0Ez3`-t~f^WlSpbC`-IagqGuk;BI@a)SXXNP0}rvPhxdNS{hk=yfD7HzcY12gtUA^=U5%YoR!c zGS#wvl^Dwz3#|T1POv;^VIivq`NY|vnv9sZ_{!?)XK5b9zgK!({+{p}FMyTK$zc+; zf7%|6$|pg}-srH*sNh8YQw2Aq&IVB>$OB;Ro*PIb(|?0oS9cQD{{V#11?XikQl8>s z%{?qE^9XJXec_c7EB-EatOIR&2eGHUxW~gRCEX_Nf-AxwP*-1wc9w^VNF9N<2>Jx>XC)Xud66eZChdFrxWxfsj`foOw@-era1$Fr6ab$E zd&VOHXBy8&0r3b`8;d##iDsY)$R9%p;lPX2{TnXm2U>A(V89UsP=V3Fm*|eXtWn1r zB8Hha571$2g2I#Y?JoZRDjp!L|MvDdB%v@h<{>(veIVEbQWk_2&Q4BVkQ0lAUy<#G za3@{$-0994i07eNrxG7m_6&2)N5G0QJp+cOPX%(OJxE7n!>)5Qfp8i;-0;>*kf(~6 zNg`HoN854CrCKmm0+4F=3~gbvqx%@)k;~XE^2-|=GFBrze5_dNY?w>LE%N4|zFuGN zxyyxEL6oT@3|@8ILKH$Onf?mK2zdt{6LQ8$_7&<9TUvrXt0P2F86A8>Xe{S3Kk|&i zLVg_wggrLg2-vN2Tmf};UD{JZ7##6%qYDnigu?dhNe~1K%c9}PI~C9@re5TZ4(1nO zNJ>kY;j8L+@L3nUBfl2)v|C& z6rjmmTo?)e8_I#-zm;mf5QERZGsYE(F8Da<@dL@pz zLymUus6BA6A_ot6FW;th;+qZoWs>Llt95&qMXUov`S!mDdydUQcNfF=a| zCYu9AK1dZ6_Lo2iKQS@kNKaDxb+>?F{zX44KJiaKj;!-Q?HUg0!(er$B&Qo^gvbg)g)ll zN$^$Gm~GDT_6yAgsAoT3Uo`vx6k7v!kQR-MeBC)#5RG+XD>*e3Sz{ ziIBRY*pbnHK=NF~gD(0Q&Oeckj4_#odEmv?n+t5e=p7B<-r}KDj{L;>E19vSJ zn5l8IyL&e@DylacC1?5%P*AW~-IRn}_e_aP1OhEl?4zytHD%r|0qIb02g$)^6)+RI zRpfJlS13T;0|^GW!RMIb4vai`baWK-P;G5XAm)NXfn`um-o1+v3Xm|058ZE+9bD9j z71kIEHT`pgLX-t+Yun|3=sSN16Ju)~yi>m*D`9(nm=pis<9xPT|>s z@C`t{*fWnGugREwb~T{v1+>|ZHwboic0gO$JkuCUI{)ie5vYhJM4-%2L#0#}8QQbN z8%n^xnN-?dbV8dbe9+mM-;>IpRVrP_%>uG!&=ewtztHL4#a&r~s5yPECC{ z8wad}HOAD;3{yruLj#e}+3{*2(FYzmWaIn%oErtKM)H~=vCHvNm%=_Ad8hiy83wTx zLd6p@H2Q{n^XF6!)r7nlW%k(Yt^9m$^y_-xSJH-eTClauFVsC>Q}O%0X`k|61(qr4 ztqMg3P}Y`~+$T=)50@mor}U$U`=SSbh!EG)CnL02Jgzp!SiHlmrd- z6%>SPf+8YJph|-!11?zSi{9{kuaHrycW8iEq2`V-~=?U=XLrqPn$(Dx7T);|&^fk#SNENS9#iZd~Q5<8z!uId6_$m)218qqM zoRq{+u=L&)zc5>0MMObswypoX=TyrOTWa0zJ2B!r76=cszGe%aXJ~V3kqh57HwzDd zC-bqRQ{Mg$Y6)@H2|?{7D=xPGS2?l!ADyV3@*gh9@8@x3im9SdMiF?GYbVndOK;Fd#AK0+`xRy4-p{{;To8 z#n*KI*bvef5r{9T2mfiUu zL6fgap%abwSWpxLa7Xsafpi;Vf}Rev!UMs~G73X!XAg9>HyXdhvJoHzVh&s1Ea&Qf+}rR$xO1+sjAJIC&eq4n41LeS##phR#)8t2<7uF(DeKKVw0za{t$&D zhnr@v{%lh3Z1SI?i&AjLLTKZMMw>jAr$P8XIb2vI?2eWpw^;g3j#ie$wEPREeX26C zi-#~{_i&+;HY1D{d>o>Og)E=0=JopjTB!f-H{oi_BbIAt4s{+ii9J=>{;sqf2A(MW zvH+`g%(CPQW8}j-F@knTDc)!-U`TPvjZ1FC$J!OW<^ysS&1!8}tl(_I5ynGU83|NJ z{vB3pKD9Tr7wSMnor>M>WA4HOO#jCH1Py6dvT3Ypgyxgy|f)l6Q<}mrRPhS%5V~Ta?}$Q*ic5{eJ;1 zqC1Fe&Z;K95n%a*%k1t2MFg1f!>qbOR7Gq-rCf?%0H#-^c+%bUfd=xUiv$YViKC&k{<%FKtq;~P2ba7UMS zUq>6rS5%1cPbdww{LL!ZfH=nlA$}Vpr~3(bkxj`QqTT$NPUAjMGPtO-jetB_6B{emZvhn zlI?t1Q>}HDw*>MS8eZ7XOM}Hh z9o?%`3j}@J(Q;N)(pV_epQkTpKeM`1{V-WXb?qvM9_ZUbH=%q2l804*rYKGvKplTW zmGf%UBK?z@vFg5qFC6=X2*gB0SH~>?zA?qJkR$+UGP67L;NPr-=Y-dI&s%QsUCx&A zFLoE(BkBhZCT&7>W*{Va)-B2kXAtmkb8DJIehK9gd^|ktfu~1HX;7aAAgnIvpP)Dq zQyh}B)&s~oYI`GPM&y-=t2cKf!SP-)bNyNVb;c&E>-_vs&LA|Zv78BcF({!O8H4!5 zy$=OOQOlW-wt_&JtD+Y)nm`HYKq3bx9spd%Lh@Rk$c82O<*!n{8dtrgr%zc~CQqOKg8b_W zCR>Le7iTzx0T^Rm^3bsm2nlB!{QPX_wJ4$X=8?Ys)UMGby05?;=U6bf4rB1df`T70 zI#R*Lkeu)B?p6}ZR{(SfAxdz=9H#EGDoX@}nIPhQW@pDwiX01pa~8Zo!jEHQWn)wK zyo(wl)cp*=)BzWi@QFalIdw}xej11Ih!14z;ngcTP zuUUO!5SfCY^4Yh_fXT^;iIJL!6>?)(MQ|=lLQ0B_vGE;^A(%`k@SXWSx(`AFT@w%r zrd)em@*-kDLiOG~31IBtcoar@dMi^?D3MxRUN*P1q@$p4+FrN|=W_sGm=GWT#i+sX zZw)vTciwJI8Q2wX!ow-?gMj^q@_Dt?Q>Ud>ptOctTAl-(17nL>%T8-_polKpqz#@E zhdU8H<`?0y09g6?UBKxK@V*JFkDZlWUH74^9k_8)YU)-Op6bQjzk|ThFastJ#lP3z z%!@M^Xc!u1+9Lj|n3pg6+?W(==1E~B0I0y=V=nowK>1Nc6z?$C&%?7OJ{e4$B z$FBBG*f0VL_w=kTD--s@$^`7N$zT>y`VgwB0lXi3Li^GZpv6eqo0;%TkZTkd75##t ziTUsWPFY%njHBUtin#~t(BL3c#;x^2HOKjg2x1~XGqVZOqql0(f5%HWN53tTLKF;K zBi`l9=YY>&zkXdmBd1ChbIfyp^{)Q8U+WY%sn*GZZ;jjkKJZNb2Lwd?G%f!F{y?YL)$beiG zgEN2LEPV)qW!TIB?SPnD-@xEG=G+?KqHl0<(F(q}54jSoY~UXxEe63~>L-+8Pfj^3hlQyGTrRSM0TW#Ejymc6JvN5+*`}aLy5&nlPqI z3+|?PAMOilnaAY*ATfef1@$K2klq9L0LcOzFLS)Tc#qg*gcz#3?0}U3!>7&_hdCH0 z9m?ln^?p)K{!`}yu0 z2%cfMKw}H$35a+oLcx+}D(!=1z`o)Y#2V`gGCPdw86<>hg@hflad> zON=1-HZ-hcCm7C=?_v7NyC`+k0Y;wd1+R(k>3rO|wBOdv|NbN$WR%K?=t{CbR z&N$RaiaTPcCxK0X9RUx3t7XCSH!S}eNI!k%OkPe7WIKm;p>)(uLzDlXCjpxo+Q5ScVxkGxQ`E!!?*1b~!>;|^3}f6sl3wC?{n-yZ>l?rOL$^&F4e2E?+;%i#5E;0GhAI= z4MQo@LF7MQE>g| zpBsb;Bp7dDW~gwdaoNEk3%5z-@^ISW9|s$@uHQ}|Tv-smx3{;zkCoL5ibP6sZbgN> z+b=3En603SxdiK;(9r!^?d8SA4G+qY%)z1e^z_Wj%R}^ngg|m=hqPG_055>n6m4zL zY2ft5`Nnx4#P7*8jDeDA8k|-{TA%Q6lY1l5>r?O`p3e4OVxF$V4Pba~qy$x;2XYST z92N~o+1#fCv?jMV2= z`*_7ywad2@v5t|bN(>CRfY=0`3xYIVt1GNSc|DYT+=G?N0CXUqoE*lILtd$ww39@f zSDF%cTQy0cWiybNWotJ)w5MPO|7UNn32x)y!778dW=mZ{VOU>-xE{2M7UA7Kn2d!? zC}q6*_|LzSrTzlfr_ap1)Bs4s~m;VF0emIhWXq9i?j{5VP~dBr~OFPeSkCu{%&QK{$dA10fSWYcN9r5?jUR zL-_snk3V3vl?G<)nXU4bE>97i`1}L=GM2z@nN63*VpB{_S1^Y~U3P>lXDM5*XioE398y|g~Of79~gawdRu$7rM$RV#$5~{PIaYZ~Ajf`BEvyD(j zk}q<+j42Q1Kc!`52u(0`f-T>i%-*Z*{8#AlV&0`e5(?RyFqbdWoxmqKmfH z@W26V6PW+qUPXd~(K{iXB2ez)Xm61M$<2WO!9JUN>g``_4Oy z8?lXt7)Rv73c(?yn zRpqQoB8lxe-~a5^EfUDK2$3NdFZ!1D>^<`adUkbo=H0vajHjpry+h!zX*@riKyof- ztfT(+>#s2D^G23{#S~mtVE0Ajf(ww;1d@Q|4f#F(y+#tzn>KIOgI2bp!tlUdKQFJ3 z!>d1>^z__r-`P)pUL*PX`8~hX-PHxFKln&WNJ?5+SnwS4@inVs8~a9-S6X-1KBQ}* zTvogN5?dR}{^H`z{w>YTWFnHF`mS9G?ZeKFj*9@dcQ2N#)g_ULk>L%IbS^!>FcTd` zUz>vro5;mZ#YYzW5XVvV(3OWut6m)Q04pvXN}B+D;mzdf(MMVRgP7!C{~lJ`WCI4{ z7V=6%`aFy@h5>7=*9|Fp~=?Ml?Wq3OlU|XHer%Ex)AjtEyHRlGU!l0Dh96N|}KR5w}TAjA`m!05BXlcO+PI(84 zPUKV+K<=j}hfxTwIz_;t6+(D8NrKw3cI{g58^EGw(`{{St*oqETr$zFCgeYa`tGXD zquG)a9Ax}0npa#k69vM4rQb_5%Ap?x00B{(=ppFMsK^nUCn(ESz6#JHinmO@!s%~Gl z20m*vh)>u0Ph+TqgB%sUQTJYXt!lMlm*J_GhJKmK)z#FzdO26BPBqGmIIUz(f}#xP zDr`eq$CvSf4DK$1s z!M;?N<=E$<1ep%KtXDkq0*;J9p8HeM(^-g2h`A<^<2N)!sS+h6C54R&^73%BEnX=V zg)Nlml-cDd8ME{&bN6jiRE+yjm}-3KBDmsMJd{Y7-t{-dp?(1p(zB965UAk9EyH4j z<>BFhP8Ij~E%Mo2n-{YxsT0P6I_Rw_$uvC|STMIi5LtwvD0ZUf4Z?Gzkh7z<_-=v~0UH>zRI6VidF9ws`Ii%mb$Ym(hRE`L0znIOix+_-U~IL-{iJjS#5WLV77e zHbzR)5h=|KAaK*Ov*kRV8Bt@$4)+>XF#1jY5L_odtVF+f_6#jHn6`b4Lx&pCuN_u9 zQTXSxuT+V@6cof;KX$8`&#uxIDL-mPsiM71+^(t<#KVrGsQ3p%f~eKBaig%M8))6|%wD_7i5a4&yYSsor6qkV*DDbf*q)gsNVsC))xl*wWt=R%TV zrM1PcxBACyJJ|6ZFf>$U-=Ph`b8@SalC?7T(Iao{Vx%`lf?dvfY3at!9IY)s!!ico zEQ)AYBvn>b4IHGpB&uG=H8*a&iDU&eKBu*&rUoRV^RCEnps=+MD{kLz{P_liBj8UR z<A5HN%FW{rLj8XWQa5ZXba=Y;<&V z$oL=TTsq_~fM})?fQ+^e|25Iy*SF_X3lgp@GBrYr^36wfIU_+VCe!d<*K;^_K9)Y7+=Y58GHg Irg}vE7n?1V1poj5 literal 0 HcmV?d00001 diff --git a/fig/linear.png b/fig/linear.png new file mode 100644 index 0000000000000000000000000000000000000000..a0d1a95f64774062a62f1712b01105a920dd4272 GIT binary patch literal 26326 zcmbSzWmr{R)a@||6_6AV0qIs!T0o?`Te?9&x)nuQT1vXR8x%yOrMr~w?zr>3-~ImH zA9wpaC~)@LYpRCmDvi$G-HGf#b^q`iOH}zSIXbiQ&w%{UJV%x@ zhf4TssIj`xeY6qJRORJViceq-7B1F!!fj!Dhgm_JSzJT;pD%s*k_9y#wrXi+{k})? z_BJxcXQ3ewK3N9&_3&_nFjX&58GS?h$cXopiA@ z=hWjb3X6z*c>f+72Zt_j@A%kurlGcu;pU0%*i*l~dY9d&$$i@+g_8tliQEn*vrV3g zxfKI>^wl^tvO8UKeS+5oHAMCf4$hksj*FeqwmNow-}no#Z{PH7Y`pxFD$?50qO3mC zo5b7L(6H2-@wBXlT`~#1tB3anX#&>F)=YVHa31={{H}*F~*+%zbyE19lT0Y*R zrlwxYTT6JiF}6EaYS`Tz6d0H#n^fn1yd@DyeYiEPMTX_EJa^~L9SI2uCe4bM=)w;^ zkog53{%s3tX=z#NNhnum6#lHv=yi2b>+37j=yu4;##XG`7#|T~U~4lP6D@w5l!|n>?bY+rU9zr#tFn^GFn3~NLaWM( z+i64H$?50=3MP;9R(C~E+h46}n?|q8_$+e*g4j?J-o4X{h)U5{uguKNYwPNkmY4PF zotU0KFEt;`f|()}@F4S($HjZ{L>3kLZ9Z0#>e2T3^XHP1XQ}dLmX_=5>-jsw+XMl21In28XDr@ z;boR=O;lRq4U`(Thnkz4?_t1<9j=e6orv?kc;WZ)WAx+Y<5_PSzm4hoYIyTKn}C1- zJx|~6C)3^C(ymhZs)eZJ&f7EAe^PF+g_f7I$qd44C;P`mMk=|u)USm zV;o^dM#dtYdeyQ%J?~3VRE=_zkd{+15}tRoaE-IEu-LBrNkz|Hnwyg^>q`~!@9yrF zbTWf6hrMAgNRWdMo7HO(qeZjQ0`2yD82#B=2O3IBqwhX9{IHyzk0ThE^_mh-C!L|0 z<-X+EdS~08pC9^Rv9Pe@Dt8{x(bB$kaF{I77ZDf#4db*m+kCxV+-(2iv6NI-V&dad zd1moYUq<}e>H z8qAWZww(vO}cnZ_=wTM#46_7*y%Q9hDI ziBrO^eWSUzx7Q?}H-P;9)2B~B`}`c`_U)-g_v2q7#PD z_}yoq&pioT?nfK?y8nKBKv|4_hJ2&tm6aNZo)FNI1Uz{tC_bPGySuxyv6Vwc5b(M< zfza8lFc!_Awzj^0z1PJ8@fIGoHC|3bjvRCG*@Z4OOPbz@Bgd(Y0byawyDktcsH(5c;-9daVUaI%$Fb?Tyrw>K+89gy^Arm;A|j$` z^-c`FAH>-x|6PLaug^v1qpx;aG5x;GdS5qIs7T(`_ww>O-kOdZf@#t7D(d_2C5?9J zWav6rZE+z!ko6G_MrbqQq39qxj^ASp8dg@t8JDvI^Q=#I?&1F?-rwI3 z2@ZDQ)3vkPC73~>K9Vf@T>)XT{nxKfV!Z~JA138-g|5F~v{1<*f-%$6EArS23Hd_M zC@R{@S1XpRx;~n;_4@+*)H9Vn=WmH6@zD2{7K4S~;d}m%G5p7?kG7_Hvld}KumcvB zlf5~)xL9f-Ug4mTL&m&nnS)hD?dKt2{RT2}9?!hPuV6xBZp@f*9EReIloT>DvX^97 z-3eUV`Rmj)G_W47AiP1OnS$*`XsQoO@%Jq9^8WpW`~eZWdaXSbxe)*WSl_Ux!a_n0 zcXxO9_ULOn0U~tIzZFO>c@7J+jPKugxhWbsn`tkjhJLlpbUcS;Ok$$P_0?rW5(?%M zD_h&^Q!)Vo0ht8OXhEylCjR{}$S@tmhX)5!)6-PgXbw4L?C9II+HlAEP%ee{Sc=ds zEv?Cu6PGyYUlq?L>!FiF0|SaYuwrA&%gXLPAj&A=`gSVKI*vJvD;slzBS)?HTTA#O zDJdyoaSIFj{b#JK5Y=E2ayu+VZNwxbNTIr3Uo|#RF*Dl?=c&N!$Vp0ec65YSn;IF> z@|kzA@ir-?zYY zl<-UcySkh2+!TUzWzzk%KV1xS@7mVf$*HPEOA?tl=}u#?h40_LFCa*pGZaL?f=Zq& zmk)tIEI8O>_pc~GoQ06gOH^Ep;`q3@QgucpB_%_{e-WGA)oDXR%3@+-Spcn!A@2zZ z2?1V-i;LU)mVA96DEQve+&u2fmoG_4))p3$sIGepXyh3Xn==~~mmWxqi_5#*GLJVY zRY$iaQ)WRGmjBS#cWG#^aCOMX%bS3N8jrBC)BX&Ojj1>7J|rQTuCkuIxVV6?M=SlU zV`E=?OtLdGt;b4y(`Y~9;q}^`JVBq#_4|@7mkc{xmlhYkHktN)lcwtE=zypkqZSbx zD~4KHRduy?0{N1gn|o<#se8VeM@hkP7O~xU7#bE!C(QYc{yp>FUlvT9n+{Yqb0K3sB%9X579iGMo;7wf zUWr^t63P7T5F4sR{4p>|1um}8Kp%vrPHCF4R*mVU6x(;`yDfVm{%kF*1Dh z>ecCM!e={h&}(9}u((*L z*W5I)7RAQJ1%L&j*dA>9M95+>8|nG^lg-}V;o=o8yMN1q$04{mEcXVq8R+TF&dtqj z7nH#0BgYG}okLOaO%qI0?q^DRkT>=AB;8|~b=;0N;tC53TLQTA4o~HpYieA^%ZwL^ zL%8wl&HB^Q(w=6LxE-z;o0#BZVWk{&y{eski7W_q8fO|@*)-xJXo5W$+}+Os5G*e( zxw*PNHx+p$DhlAre03lb5F$Lnpw4k)EF6m!GA@H!QG@IL64VWw6O~FeCE|;3=n2`) z{=n_C4XzGbQ?*W;6P{j$i5!+A>gwtRkTC(LK(_uI8rtM_c?LIoU7ea{wj#6T+HgK2 zepg@LHca=d5_xPFOdd;eA1Sm~VLn)-U5kx}=lJheNb}WMJ`BM!*US#Pr7HLP0&1qHZUtJ%vF z34d&+^U4VBM$0vpbERl1)mf9bOHVLtcCw<2T<*4$`h98j$Beb&gE3mpj$yYLqGe}~ zS|!5{_!{SA4`XH6Tf7S3-Q%$d&or#5=EFNNoMAir3=O!rxF=_4F$Ecbx*%%#eSuMm z-Z+J>j}&UfZgd!wdYvv3oGR|EMjM;OH#sba`uh6D#Ebwklwzo?VCbT)ao*O2QNo*1 z1lV-C;CvcwETE^h$|oG3#m2^lgu3=GDJaq}&yQm_S|9&n;LeQr(ML@DK0ud$NXo{ zv-Dd(QH|EwFG^0=IpWQ{6ccNQnC*2HD&+Vh&CcJAmL*mGmKYz;O8e3aWLuxZw^OOh=4~Lmx zjq4sBt^};tt+cYXrm3OvoTRL*%--H!fb=4NrpZ%kup%-t(xXgFQ87ZDv8uXSjVJ6G zAKwLx6T3`(ZEbCRJploM_sNbB8P>CG`IrOv4OD0lNufM5>4_gM(n&C9*}Uxd{rh)U z*S}qty>IAy`}>1~gOGbAc}GP;vsNL3LoiXM#MaQ%dDAOi=DBQmFEq4`D#=;dIu5V${nOH!n zHW9`OMI{tH8X6j}U%zH%W=>Ad{i$tz*cL=!P&x+1ZAXX1>N}#G*I0fCL`whLU@QcJ zo#_4l&sR+jRN+$f2K&X%vg26EOguGdyzJ6q9qPyqTkRrq_9K7Uoe2(XnL%99T&Hde zEWh#baj2~6+^>Nr2xQ0#92^^Ej+T^~!IVq?+-4BcXi)OYYcAk!vr}LiAY~O^6KEgk zo4^lbw-JbttR*slMV?S41MqP_SV^6cL?B+W*$tme0R;n92*4?G2z4eVSwsvs;D*dz zrWQbMP_D!Cpf+Y`oaF)*h=Q59H@h#aa$1v{-Ey*~urI0JS%ssFry3Q>O)U2&!A6J6 z-PIMwdKK#Q(kBQ+PP~DE!NlR&^TJt^x>y==N~V9FvmICNG1BX!^`pm_MZHYIIyyQ~ zTtKYO(ED5xLwP*7LaRHE9B;ZGhz6;x9}sQ1So@ zfprAXL?(_^bVgTQy#}HdEV??!^;p09I2=O zYC8J+*C0L%NQfbw&qSynk%JX|!JXq|F@_=l#q8X7U*iUKGMPc5LlJ_YAal0!mOFA+ zmYp)W4rXtpe_pZ_|28OXI(w}$)4>Yc9~cwpiyzjLu;tZNLVWzC)zxvxv@FH6(USM> z-IGgvL2e5i8hkACkRYgy?}?nKiW(cy`9vJqP&Y#e9v)ulxK+qm0q_;sV>vd2QOQa5z9yc`W(|Ae;^BF^iV7t6EqYO{(zBo{DJmk# zD@+*~8Te;s+0(FgHda<1hb3vkWV3MEHS+a8kay6KxT@Qnn4 z$m75da$MS;?#4Tk;*C-ji01Na85!Y(Fw=B?4l`6~Ia*XgD(Y7pdrW7BPPTU=Q&Gd5OvDE9z?*pZ<( z3i{Iik1#eRJDWz&$jWMCaq%PWZG=2is(g*pbltBfx}UP}vqq|>-3}W)PRr_o@}3O2 z_FF@j1N{8_js$cDjNZ36UHz;kr(u<0z(#67Fi-|!U z`WBK0eR1vDORSp+Wm{ZP$L;Cu^vYPHF{hTR~ zfNVd1z5*y`)PXH1*!E zb8>RBwbk(Q>=5{f-o8E>zx$7#%|XzYie-jv1@wWWj0~0EZ4{I+Qo)(tUYp&&ZLp^S z74~#@YgbumKrQ9r;qg_#!cQk1flwLByzTbt^FjW!pMGwX2LEE0x>bO$V{BwcLv;iT zW?GkV8^&J?&#vhmhzQ5c*O#^zC%b-FTwGkj;;_KQ#lg(O*<^KT0H|hH( zgStAH9oF0|NWK6!5fTzYs4ys12XN2`une-4)J*ouJw-)DfPWO&0et-Y>!Zcj4=TML zBHuf3&AdI3JGe5*$SJ9*k(4Nv76dQA z12oN4pY!uAfsov{g>RQgi}jjiB_wutcHTU}$Hxb{EqZYkP(-oQH-V}%4}9*5q7v0~ z6JE^610y3>RcX;e$TgzCC>-4NmgnW0iEP6Z6Cf5=D)B`P+Ae ztK2)O&b7U0+mrCcYgB~%^x@{@sB~->ceA{mFRj@5$wIDDcGUJ065-TmkeC620UZqg zU}BOdgSJVP_BTcAz;>i z0UZ3Ps+^RRR+as5X=FB=0CgGnV}fdvLF&^mLbfcA^3`TEQH4GJRvV7H#w%Tq1d^|1hP^P_QEwnDZr-~W#6-+xHC~gNlk>T6Sxxw=gD!)N zJcF_Cst`}oIN7Rd+9i3s#Jqf4PUt$xz(C!UOp%emukn+LtXSGI9i4Ad~O;*>l*oy_S;)@10Tk5f5 zGBZ27+I;X=SC=Jp^l5kwEaq;?Mjs!aT8CxXug~=7TRsBmHZwB=v2nW5y*eO30va)k z2UsvuWA_iJHVhJ;gH}wzXK|X`C6>4ln&<;Ddd4ot4-Et&UH)m1Q1}jrG75K}6pZF) zkByd|?2%dd`X2tJVBDgKr6hqWHV}^iUPMyM64E3Ai>}pl9S8Z(wziL0_K-|tn6zXQ zUxZ_oK|M)KoUpUAgU_UiB@C4uu(~wDzY8?VKRqDkH2RGt{5wrF2;&Lg31H8S4J#%l zCf}EHE6D3)SglYPImz^r^$HA=GNVlsJx-lb!Mp^~%xP#Hj9E#h)}_EYX(e9*nF*jD z5C8@yCTtqR@^KcuCM%H98bq9&oIoUm_}NkU_us$8P9X-9qZ}IFg(3u@v=J#h_6>QAUsj_Nba&G;esf>m zJRltG;%f5(sU+-r_B*7e2So1x?M9G{Ssi_TNCAl|2}!EC0wE$zy*^pJ4WtC`3!&(2pF6Rn~RH3axz7GUA_*^`!5#ExbV%K zO2rn_5L~&;cPxG#svd7yIk=b(-_?;5a5}U)Z*LKuy~YLgPtvrwSgX2sW~NCY{WXBS zNE*4A4kO@Byss~hSNhXoegUFB#KQWneS2(X=3D#uF~SHWucQA_Um$Lxp!ma-^s`?A zX$JdDLrZHkU#)L^+!fw$R?mrWK5ddC@K=+Q_B&#N>7pA=`)QL`8sidyLHLk}Ct5_e2$pHwyNG&~E?i`Zb$*HR^LI z#)hGVr?f*wYQT2P)Nj6Iy}}i*yeV;stn5Olqr*?p z%lBe=O7@?S(mSGRg$^G)bm&}4EjIef522`942Ck&(N|QXv{4=QETps^ZlfN17T=;9 z>0cMTMK=AwkzAK^o|$7hnk_#-^5_$G+%uN_IZ1qf!{?s&wAAGAL{#tICP(=E3jh84 z{o6GcM$ehpb>r0d>C}j@ZPsJv5u2gToMJ(JwQM>xWP3f>dM`0C(ik1p!!K)o(bpME z=`U<<40;nD9*!RFDD-@eMn!f{sJFd~dMeeVCfCZDHg)wPMd^++OWb8cu->Ewm53@U z@{zBxl#Em#Ig)?FSZO&_?%$Hv)c)$|5+eQ8mfP^2R-ZVPp{f9U?qv^w-plJpuQc-C zIp?tR(;4;|Fwv+*D(tH#S|m~r*SrG|ALOuYd|fYgIpfDRtRh-3f=1`IOM5pTLAfM{dzrLwdIR`7?!{lr`0)EH@~(36nfoES)8I@}8VqnTF;m%EyN% zR+$rNy?Gxw7fOP=l0oqmg?v{Cx2|k1A4yo9iq$7%R|q*xfb2@ zH<6p#p`jzw`+nM5&O2vX@>ed`k~5X9Srp3_!%H^?^c>g-+RbMdH)2EdG9N#XS=%-fSO8A-stAi zNFGrYeJdY4ZEe1I8ikej;#UUQhoV`9*`JB~&ox!#gceP*t`8Fm#Eo{>Uq66>Mm~f& z&2Xll^8p@F5F_!=U%&Ec2Ie(6V?^2Z~|ep%O+ou@fTJ2?P4 zW;u$2I~!|Qwv#EAlt#?npkrG-1VByTeEZu)U13F)W8cvp&1=qvpKr_CQRKEJI~QZF zS!$)f#=5?_6VzV*wJEMJJ-fvs{~>Z#Rm5;u*`n&Md_!lrSk85t4NaLFya7PaQPZ1rn8r~&>fnxjWlnq8l3CiNw2|AQ>vRHG56KH6-r28ZDY8FKy6 zFWB9kUMF2e$LuvT9nK(QV(#W?P^Ip!gh5TWEr@t-`RFkPtOj};szLrDiRwxP4Rp!D z$N|o)mJu%2gbE@$b)x?!3+=`(>vjE5T$%6N3YALBOQyy0;opZ&48e#t=$q5fr0)vGQ}{@6Q*b1#VV$nLEE zO)H>S&n>_W(&Ky^%+%!lod^>d3_01!gD7$$?GCI3LknNtp%Y)sFx}E=sVuM-aO4ka zzrMP`aRb>LKW)5pgP5q%pX$pRle`+tq8FU>>vNL)+f8QzAC#XZ{z8sbj!4%0aDl10ngB)3KqcRBhbZ zSB$cOY}bxBqdyh#?pWY=BS%Yl++biaZ%EkRal(JUkWPH?U>4=*_-OS{$DrZQ?_N-P zX4r!-Jnw!7<&r0@zH(ESXVJeu^gdh>8<`oEHe16c}vF%U4Z%Rb1qvW z(xh*!c0RKypQ;SAWLt%PZ2KYuqU0WPvW>UIM4xZv>7>#ZEc>Hw!l0>)S|$svb#sUD z0_vDg-p-aK%N_2j`A_nSRU(lgjb7v(=cZ>s{OT{=p@u}UJJ+>ut704VJMft>>XVW* z%*=A=(TB8=iCccYWni_5Dq4_kMbgd`5oyqqI7!r`Q2a#XK_p$W8>}orG_B z>eMy!AG<5ct5VuOAHFBmscPmO#cVN<(Q%BIvx?kdcq{4!R%Rs!R;D&;llHnVUQ>5> z)jPc~9$z76N(^f!;FIkzo}i1Lxnj?i9mEG(C0yYV zU$ovH8~jK@Y<_xz-)!?YUPEt(WVg$&lz~Do!E9e}f#B+y%S!0SAQj!JtpCdM&%<)Y z^|~Fx7cU$iG;!ZCzQcX`!}Q~E@d~@8?dc?EXgJ~E*4*6NdABzT3jLt#X=`h%GY(Ic zNVJl}fGG!4FI3B~O`x2~vV?|gRU6|)C&iF@yvBV}us+jo-zyuMy1MKMCNJ=6gunj} z)5%i>QsZpN_jAAdOggH(POKVbl8HaXb8dUPcc$a{_Xmp%Xvh_6{1cauNIHOyCkI8X zy4zbXGmh@mm*!sb6u!%0Nqlu|VZL5C$NQ%cY0(iYkemVP!HYX}1dsM=rz5)i(Xu`MD&@Q%|oybi4VeLJ8kg z_m9ge@8IcC(E3BHKhZ_I^DZ`DSr27|KCDC=|kDEYHSAI8oD&v2jw0kbZdBo{hK~e3%w7C51^S`wHq9EzBxC2NehSfT=$J5PeI}s9&iw;D5|Qp$Uj@fl zyD;Bd>&Ue|F-ISG*B|t!!8>#y!r)T&7MAbu9hjpz;sP&vUM!0G&GuX-+VJ=6ItNeL zkJt2tyY74Vudtg-y(Ry%b_*FIs9BNWhQBw(_S~+g^13-X>t6CqPovxCLW*Y_0@C&R z46oi)A|;2DIs-yNyC6xXj1O-155D3E#-TRYe_?vYzQ+H$K0G^K%5P5?B9q5QamlmU zs6Fn2{OOvB$HGbjEuXbqN5e`FgM(3|2kdRKwrw`GW+YvB}HL+-^A#**3`^2 zvFg1mZV1xPpRlXs>*6@7q0sxlgK1SH$yc3J)~tIbR>&DVPUL0;#cE=ls413qHrMj& z+2sk5E6sj;-+VTIXl~-~cpH~u?6<$;BOD~vUjS)NJNgD9H$>Fu-YgVty0OmsRj18& z;nq6kyFsp1j>9^*%BaW|(%L1`2HRP*B?L|927bQ%OJ8Jc?WlGe4+&*=NC7dgb>1l~ zk!nrU8hTP1ZmBCZjVJUGnJTe_KTCgAdrL#cwqTHx;yPGLtXW5PljCCqSq3frix)3w zX;*+C1YS^^d9B$iJq zsmi8M{bg&c#^g$Tw}+CE^6S(#2;{y7@L5=KB5k%ns9H``(8Zq5DyGUmA|e89W0y`T z%W9%x6{>DQY4uFDj|}4|Eo76? zi%Fv#&8_VY>5%3~X!H@`1+{5vo|N523`bB>2?*|FoT&Jv$jIg2IUnb7^ZRlW?Q}kC zNIJo>k~r3%c*Ww`qTmG(Mx-y^`kXogEnIHW0}(KR-Fy$k_D+Teh`D-+h*?t-jf7Hb zjM1S9`x)I2HmzTAyRmU*^9Sng7POMQ5Epuoy|64dcmNh($9M0(`m>pI12?SQ;PO1I zotWS4-C_(1LS8l^qo(^-7hBb3Z+TgDy!ZE%$!Aqn%;hWTpO2a-535Y9EnD^fEj$Xz zHX1dPm6ZkgGa-SP{1qj(PLqc#SfxPKUxzB5nA7TOVxpC`wa%*JO+=K+Zasl3mz=mj z)8O{bhYq>sQkRPeDZRx%(?trA#HFTn`chb^3PgTwZEb#75ZQ%+u@(n;7{nR)V!+ZF!)cP`hv{;vihbQ#HwXE+td7UOSs27uuPR6TvdAjf25Z^~sN-a|ilQ6ZczkbKU`l3k&4Q&egm|aEnt3$V>2De zSCiAyN;u4wEW$*jWQ^zn6zItOs_fd;nz8Zyoy7HxTX=2*e$wvZNp3U{=nF%n%tcnC zwuwmiT;75>fhlpiYs3;ENJfSK4GH%#^4-vJH@IEG*XK1TPOxpT?^u z{^;7th5`&21S6o(?I}4D`K*WJN1e_zh+}uc0UwdmN5wPchx&ob3 z)k8)nR!P4Kqn&=UVBuSOI;km>eAsAskIsT&k#imTu*zoo4Ah%0kYB;SR@{80nXk$O z5*9R^s~jI44PtaOxZ3NTHX&!q#j~T0>fAy^GX%SRaj*y)uMzd|znghz=U{E*V&IHH zs8*)Hb(N|{IvU7=WsxNp`Y=8|-e#->j!3M6WDj~MPQWWT;Q-8UhB%QLAM_fujTwXV{L4lH%zTaBvwp;2AO&9-Owy{aw=oIhJNWbYj zm!0gT$P)nM-c#JEMs=)r6CQg+MXrSdXMg+(TSKGEz)4!o1Oaa<{Sv zQ-?eMZNIfoS!?tOl!|+|}2B$`S8iq#Mn z(Pfhb0J|{ZqQhaG*QjXs@3V7q+JMWB3eqJ`Cxk6CS#1kq2`my&b!)Vlas0pwc73srxuuPXSQJ?_HQo4{z4_N>h3mCB`jW)& z94z|A&v6vKxPFpp9-}J|OddRV0P=h&sUWj0_&2@5s0bEu z4Uis9o<&~%UT!m&QBE%oR5{tACjNfpU4KtRi`Me~{mu9+a3SJNh(3Kt{)#$M<+Tn% zUP)Z>FPl?0+lqkppS<;DsW@)z>o=jdbHXB6^gzS~2@#Cd)P5zB8$W8^tzswl6@#R> zsDgqR*0yU&2)1q}KHOJ}e;*(`abCvW6j; zh6Uezc{B+!!0nqtnFMG6mrgdzfzAo>@BL%*=kI>zkB)!{HaGnDcv$Ck9^*e}^m$-He%NrPg!cUHv(Sz)R zI$+k6q{R;YX{_gE^7zPktYTY&YyvWuV`lVC1jmP+nZ<^6u^yVjzZ$%>jDg)5C{r0c zqXtO_^LuZ-Xq6x6)sC21SmepmGL9=|%aY&;AVnbX%j>^+^9-!Fpd94BHA2V-U3`yh zIalk>E?A5or)50jeSM_$=rEhW6l+QRrAitfYGgzN*stwCFav++M^Sc}{GC;AaIk{N zOG8EF2zEtaOF>yuou5OY)P($TjUb_U=P!n-_RmvR5^Xiq3OR606x(~>a|^nTJY zo(ARY{2f*U7F9Gp3)kBl(Gbjc5;_>6h z9$>5nZC#~>?WT`Ke-t|?1oSLj8_SDSN?)jr4wc6HoO8>QYQ=?eI-{%}qThZG){bO8 zSJ3lf7Kx*>R=oL2Ys8F(ob@gQeajHP@TR-MEqZKNQ2G{Ep@gLT@YEb%s5JlQZsMlLf4? z26oiaQo9aO<8i&Sm3|6AK|uhY01835QhefP+M9TKx||HIHDWxx#nn|;FnEFGlGE%D z92&TS^abBsU5!FQd96y>J$8yRIy7Lka=+zj`<$6gtfeosvIq~wfih(c*00<*zJTCh zFh2-5u0^$^l_hdafGP<}9q3^nTfG=m3)Eq0{tl-=L!QC#+L;rAlFHD~5CRk!>_FI- zA`An4d1vSCsR%DG@9797BIo1(1tdk^6s{$xZ1aD1ho9tgn5Iy$V&$Pw3DHJ&fC6e_ zVNnPB7X&JBzI(2xSXD*n`GA`q#+F&9?inV;K~g|?Fd)UDs@mF#2?@Mj7cQ<{IST1; zN<&H0J5@fXRP8%h2z0fzr3WkE?3y#V1z2s3ST(4wr;Ja>TW(3!_V(23_~Tt%EB|{M z*nNLl;P)H7En2(hDfiIn8}5f(e#d#>wW*k^{4`u1SLN3g7$vp0)J(b=G!kQCjzEP2 zH!sq+=@61BB`XUD1NNA>!A$@Y5p4{vFk1@?qK6L^e$k|vYXT%oR8e*K&uzxo9$Q7^ z(`K-`wx+r?`^sF^;@8Yaw?g+7XCg9NY1$N&skAkslBZsCs5KXzxvvZbcV2zaiTF##O4>V1{9%~oQBt}Btj&n$kjnO+Xxj6I|J!oBjcZ@ z{qHr@u`%s&V=q4wyO~$0xGnIIkZ^TlW2)3pjDaCPA_$6dl_t}H{{Gde+I_IGfFD5x z%s5zB@>{8hl)Zp|-%Pi(EcjLkl73z51_>%jd!fhROG>Eg6-Cn@E8kG2UlekIA{^Yc z!s0Jq`oQwaP=hKB^!Tq20jEH~db>5nE&MxzN(v0@gd`-ew${OY0@S{z?I}W@4vDpR z8b*wMKHfa*iHrGs-|Y<{d1OBVax9gm5D@r2V#9b5s;Zq%3v zL1W!*#Q!;LL}sUnUGRzNsWk{MJ`SO~m==0iDj1fI~r z3)C^Qa2#zlS=&VjmbK@_FFcbGUlMkBd9NF}zw|j=$)QtZi0!jDb6pJ<>>U#{p ztyw&x7vwc;=d&ho7HNJSi``MfJ20E@*2}JKOa2dTpwJ5ds-VT^reh=IZ_)EIc}{Ng zgiNlShG^hQY@~w~BdaJarQ2LHL&&#^4+>=1Cg;zl>M7)VO&3d0v0{(- zTLzSi2(`Z1M)CO+k?}Lz_Ix^JQm&Zj@UVu=+U8f?_$@lrcvSzE8|(^zSi1Rxg3qqE zzo;g-j%M&q+IzkIK5FnsKKb_iK&BKpV24%E5y}|5lcpLdYUp?SzDA8RvML>waE+ol zP`>=&iR}kvh`bsJLY_M?O{6@`7W+Z`=wYQ44vu{>!IHR7R%h)BId@T!wW&ioiXzq=4uI^Oelwosi=r@=Z^xB7 zrFBUXf`EEX?!U)MS&Haj4Yl?nIiBZ=T^y}j9qn%y5<*Y`8O(trBY|^N6e>;EFlMqU zW2=)$f-X;VVUHMk`L6V2ailHWwV|Nt-VtZNqBA#0d(c=G9sN9M>Hm5G@X?ZOGtkm>RL8ZsFE8;_Jr?j{Bqm3d=Y&sM(6O?XO{P4=wlgCjss#7Y&y`sVEfE${dggB+sFCL!!5<@BNEad>c+RF&Y_*TK#~ zB^{L;%6iB*5P3?Gklgi&#EW}>w?UvMDR#<}A=Rim?U*~wI82aHr(U-a@20ZYSAiSy z{8N%y1h=!VNsporiP7Vrpt?I(RpS5YTn{HCgn__QHx}9E>gc&#dbl zilgb}@INf%#KBOg$V!sO?Z31-JJ_44h%}k;IumFvbMbH_xFc@}oOT`-p$t@aNsWX} zFI=lL3oFOFWwezTkiSN1KzV^X_uV>rG9GSYScNy0Ke{M)62SyYJLMrXy%x(v-Sq@- zO^~mW?q7t2|IFPa)AAZVxHp9k`Ri9W_O!2^PJey)C{ZuHLDJoR)%Ltf-dO<=e@6&4 zg)=+=t`+i6>Yh?n5MO%eW_VYHvFy;ay+ zZojSmj@W8$+P_47jTs#g1y9YH$^5U~4pL~>)^yO6MN2CMZcR}JDOx44Cw)}UeVE0f zot>iTUoiv7=W9i%h$gUeq!4{nEIU=;65Iy*}xA--LA)=gtDiOOb}y}ItA>hxcu51_M&l&odj3Ouz< zw&L>+2?7)kG#yo)MG^8(U>)tDUXh{kx!axi|KsW59oeeBcP@M*kL5Oy2&c4Z&UyhG zk4rssqC*BZdbE`+VHF@|VIt*K6$!_WX=R)|y}frWC&>kgYb%wZ$&{PWBx~)y&|{CK zDW437iNedr?y`ovC&<1igL1TkNB7a_`s2Akc)gp}_D+gP%QmM^8sl?r z`_(4Xu~3Z4r1jp(P7YQz@3e&CG+;x#-aIZeQSLJXRGNkhmq5R}Fxfy%> zmwilwli2F&IsD161k3rUm+%TNjYY8DF9k|=db?cM7Dw?GUm!e%!=HHgp`mNcD2So^La0Ow){-;R zhW_zXvot!dId)g2)fthUUjr>Oge>CEa_{Wh2b0@#Q$_QCr};>9kiSy_9nYd^?p$s> zwrX^Mqa?8*FQBopuIq+R9?TnuhLxhpLVu$yVPA#-1%KU1Uj1W4P9PkMXM-at4B5A| zpN6fEZvJ_@XTwB7@?U$n)UrZ{PV+5y#4Pi9VzOjaO^#IY+rvm{{HE%TDGmBxwbnfQ zAYoa5#rKd76`|+DB%JdL{)dRNH)}un`KQ(r)*cGanB1e0K0VzOyrIK*8nyjMFZpPV z84Hnj<2Jdnp@XUP`DAfvWT}s<`l$Mj^ES01^EKPPXIT}eUSs8rmyW(V>GB~GLFkKg zze|QkI|vB&PftFfAdEjY6Ua05vuX^Lt4%znV*9&_B!2VQpiLTKef^Vk8t%T94IGi6 zaSuaZn|E$r6b_!Q{$p0;LD_A;7Rzs>bi-ReXplO2wEryXkY|W_Std1{ZF5MnzHg5D zC}y9pFNBcaAjmddwK5o${2?88^7L|pc-euS9elh@sS?H-!EHc^>R)OFX#0@8zu)I@tl zPKnq@+ows2$+#<;;XH-!{CjOSmNpb5y}=Ot^>`Qb7)isLlwF-ieg-A zn+$uH>QaTy^)^7^3w+0X?ORxwh7M2&l!br)omTIV|eq&bMXxV(o zI#{ZU+D1DRQYqrWdosVyBj%&a^*{2eRv99_#PI4m#nEs6tlX{a9@ZfMo)^aPu7dvV z;O}Mga7@c~!7pVm+A8DGCJst>Efn)02xoL}w$V^Gd*J?XBhjR})bQ0M(U^`& zoWB=e&z)b-jPSXJPPfrY;$Lov8o1=>dSpoG*A2DEbQLE3pSI3C9P0ON|C2^d5~GAH zS+m8*k|K&sMCwDyk_u&Mv1cbskv&8tq%5h(o=Ayo5!oe@rED!U*2&&;&iDKKtTkmfFvc+G@^;*U23Zc=AvnwNVDPE_@sNG|uV*rWL1*zOuZOKy|oEc%-jQOMPb z+rn#G`L(PLYG@&pCBw@pAI42K zv=pD()Bk(-uTL*_PbSGgn#&MCuDF^0G_)b%JzLt?G%MpbpRj*j)FWE%K5+TT^F8~u z0v>dT9I*9AVp)6Ig`oB{T9%%MvXOqh(fu2hWqY$eE&Toby7Q%I%L~@GcgQ6IDk3@S ztfYw|nnot<0Rb`kh3Nt>U+7fXJafy}I{3oqSMZtbaAw*5(kIqhM!&Rp5x~H(jwocY zz4verBZJ8xtBbN&{dNf}9cS~07at^kSm9?VOZ+fH9%|%72l@tuw02l1M)he5u=oKL5-2lY>Br+rm!KB<~R$`#pcGy@lgWgQRgZJ9TBe z`@taITID_BorRY$<7#m6?s*for z586-MlZ*F~82|k|ouOZhF?gk0Jv{lQ)u*AdRoRcT49epbHLNKK%rS|#u0IJSv+ zqj!1u%lfPbPBkh7LIV#wWsxmn*LK6`UrjyPdc8&|dnvxx(zhITYka&ZkHu39#<@|( zAg8YPezUz#@?;8W?VG|%XijeW#&s&(u$GG7%*ZJ9A5y=v-M!{vDE;obj{7e?2xA*) z$6r@i#cv94;Q7k8I`&*^@WJJp+i$+YeD-#bj9bO@`fIe2xqwJ^n&L|0vX^p|fImi! z1EUt@SCM+l^oHN;l?KPjCoi*l<(M6fXI(TTNU2<`fKaceg5|gjIAap zMV8-Xw4Kwqhxjn+*AIvr2=c-Lg7bq5(7KjFaE zmiivt$Ei$#pn|fp#fY1FEm~e}u76#4mWNv^_Ro%cIj?yd^@R>hU3xn{f9jm!B$u)a z=c{`sr?xN?2t$q(b*8UqevY?G7fOZ-gr-y&72kQkm?>o(%xdvoK+EsvOhv?Qwu(g} z-b0Q35xLtyEnLxOI_4sEhmGl09{-X_@;~Uo6K-wNC|`ez*-|pIP;ZK2+3%7Tv};Sk z0sQ416QjgU7+=;ZJG?8jZ@rjf(s;7_XXUxoT~S%|8L%qRV4MM4Sx(vXhdpY!_bwka zi(Yw}K|S&QdC#t+EG)7Mn1|ODPu>=$5Y<`uR9ywfY1E(HzrtTKex@0_%vScz^9`hp zWIumC3&*18leb!ihTD^y->ERFI(&IqHR?RAdn3BISRqU!z=Mf*YH1+}ix*m3rTPQ%^c7D7s|B=| zdi=6G$E35rKN2t6)!pqdSiwhSUs#wd9n?)x-dogX@RS1M0HJ)hI3#6+IBs?*<_S8H z0`WT2EmItDgTa06;pWEI*a)X~adBML`CIPUm1%J1Jbo-XT7IG=GgDKF1J=4>J|f-K zxNqOS?vEeqR7fn1jg8-3UxkM=4XBUUpFckot+wWL^=cLVf&*G;esgkym6h#|AODbG zUNNfrO6~-SjR@jIQd-(qva!RJD{^vjJ3b!p*V`KQC^t8fa`IjMQ`(}8g81J5UUSkn&gzbi4p_QyTFw#@=)qBDbNO=53tM9fg`%m+IAAhD$5g?O zgzhXP20OU8-l{~M+a)H}3Q`u1u|a&QQ`xKv`}Fj1wA!~6O5T~XXSc1nj(ylsKHP8? zY$hxvbhScOJtY_`J8rd(!?&Wcd$+BVldPoVPuQ~>U9Os5yY~9Q12cG%O-=bybnEdB zFG@@O*A~YWxb16#x1gywSYppJ5H?cZ*QX*XdPIO+TU*<9xfreI;S}vW02J`^-E|2- z#Hkh`HJoi48X8_+{M6oFh1W7PFc8_bD+SauolJLES7t|HCO?gPckT?2j%q&XJb2&$ z1ST-AOzVoML0EDc*gz}zGz=x& zkw)g`(T+O>^eAagxFeYGwJM?Ip#DI!;2~bK7jZG=fep#o+1Z7K z)41lt6bcKk(sd8svh2J(RiA~a|1v;W`IHsPBgH)h4NjdxKm9x4E%;xJBI|9Q!qYHI z(>oJwZ70f~H}t`$gqMcS7K2Z}W8i}b$7n;|gr-GcV4#khf}OQ>e0;ncx))Ha`mN4? zqNI_j8Z#N`>GHTUBO@ad6B8F65_dck`%r5k7g8f3E&Z{h0~j08Zk+eSQw|maA1^O_ zTa%NM=#@wRs>H(aiorg5H0-ogR7AubQ`g0rQ5BEh_YxDOflxaxIvnpb zH}~gH!ri;*PbsJTo}7$)@rOoxfF@R18O}uC!vq$uErR15cW37_r4D>iSG0_5ZEbNh zfB5iWE2~En!kRWVHZ2bhMhIxz+2y39@O{2~@gfaSA`VVY;JLnS^B4)$NXI%YDw6m0 zT@4K-<(LY^tbm(_kOIro>{zp{y*-vyWK@&`R-LWwv7<*piP{@gs70iyYl+^mj;3bn zUx97vZ6R-%1SnuHDsd&v;d3Y$o96vwr zh6Nxidx)$7(1tj>j>uM_>3-I!N0z6YopFu(Q*<9HT}`)JhCc6y>k^!0E32#M`ANrU zqi+Z78eJfmnksO=I;sGios;5mz!DCE9aXXlEgCxJ2%FZ0r(wze=3It&h~SM5AMABC zyC)mML7}3)`GbiFPjJZI@Hz__nS55&h4Yw*uzdkr`8{79w-0g~;5V)^AJEqjih5Q4#&Tc^OT;1GYWiRks^~QCwgg~H|1h*CvRtPCa#>T$g^Lk|0R}y(7W50?D zT688Q2PGuJs?Ljui2+f8QRcF3ZD=@Md^zTeWmGtfy!Vom>G(n}=3W}in`p#Q`$}bG zWt|YhAzj30!m;^1MaKaxe&3tMpJUK8{4q9m(az2X4ZWN~Y}rsE;RmxwK|uk2b)n>D z8jV%~^3$bx)SR#s8L zGK!0h?da?bJo|+$h_;G$WKqxw0WxMMkaDS=X!(PBk>#&{j}l7rZBN%M3X)Y(>HGYd z+td|iJnl&MA04}LsNp9`nf^4`l+8=Xq9P(vXG@q4)!oRb8?b_u`}c3H35pYn zhqa=3W2A3FPzC!myz=^4aZRHL!$|#^P3Is<~-+R=3(TUp3#QVmrZ!pFgo|vvYFd zbTV=C!OVG$+83de4q}7(duy0egi3l_1;{Op9MzZ<{QUf`OCkJzQ#2a5W|-i(O9y=zv`u9yWR?zWv01bXmhY%0LfnlqAZ9nAZ3oM0<@;P6Fv;){6OtL^n*3wd#8kaE~?@RYNrKJga2R%ZToS*MV#|Mly zjiPvZQ$(d-V53mnxC=pCqWjyIb|ld!s9M3&nJ2|8%Vw=E89_jV5aNK z7rV=sLnE~gXX+;>B~3+&C>Bv)Bap(~sXyP})5Dcw^jVSbWRV&TdwS;NwPVLNcYC;6 zX!wn9&nCxeiy$Rw#sV2F^IaRQ*!{M5M$kKrDiovbwUn2h9x!j3rOe_#(UYS;ZwlOn z6h}tq_u9~vmfZ$|3VZk3+u7A#1j`7WW~UFrdRRdSg}8g)?JO-bva%#9Vn*J5_`rN^ zaM8!_(xoRe@2{N04D7W z5P)C?hZa!zd4|Mp13C_UPgtF|tKY_&NB17c#P!q@&eax$P;}5%7F~$y=syjOj69Nk z5;}lO19>LB6BAmBWAoqv=WXolT|GSuLsjdE^boM~pm(j6{4~ohGz(O*1NiD1ojTPC zVh047^xsNx{K8Dubc_T3(@H)O6Ggb7ztZOlt12BDd0aF_7klsp`9yQy`R$+AR{soQ z5TN=)7L;f9hI{aK21XbjQ*Tetr_Y}4N&Im0Cb1Y(y1$`8Tu`v8xmj9NbORnW0%6c` z(N4U{=g&#+tu9(wrA{K&Lz@k{1PDY+pDNda92-s+!SpYBCo4Pq=Z_!nt>p1$kMytL zW@lzv8yIwfE(yM6QgZTi)czU3j?wu9w4kCw_0Id1v1G?K8l*U9PM-$C0azyc{#V=S zpYPEl;%aJVclSm4L`ZxO^+ogU2U92Z-aQ~WOKm<%`W%jmXNw3O(Aa99{-3px&;>7)q$UJA~ja1yT$-ZEs;$SN2Z7@$4A z+N78Sh?3ZHaU8%`S8QyANFDwCzCdRY)gg9ZpSjV5Ee!#nM=D;Y?jJTOU>sy*o^<}e zTv5v8F_rOY+riC^Anf`I+sww zymk%_szS@$&w{{WB5<)Wxkb_c<7xcA^34C2TW?_!#NRSE&>wqUKaie&AIee}Br-h( zl>_4rEEkQ%m8g!R4*+ent~|jq1saAgGm^Cql>k1&cUNVa(c2PdWcy>He}8H+dVX}X~g{va-b6oAdh9-Zsc%eX&HO-<0l$aAaY=I56d z6mUgKvua}KKBYUlo{DLWip6u<0_a>6K+(~yJbv;}e?V>1(AfCOcew=RNJO2Nmlu=}2X?l8_#h=N z-cVDs{_G-3SPpmvQt;rRG0<3UUTlfB>?uwY4=QpVrpaz)AOP#;($u zq5=oHFdXR0DJ>R-sK(3^$H8>~aFTuDXm=>AHL(`Cq$0ehdMB>{~U%!!$?;X%?&!2BImE0Nz z2oH%E01*|6pDoPHP-!3mY|q4gC$=>Vl)tQs3co{#4goaOl=5xb6R=T?5*+HZnHhj@ zaiZ{@&CJ5$8v-92F|G3lxK%)?$W$JXlVbz$jXdA3#m^R|0Za%cNz8jIaC#aVv@wZ^ z>ZrwTH+%M`c}vvN&e-zPA)$wY($ul^=;@tc@v@7}!wI0FSdw%^yUdF=6`h$yJ2>W;XcDLB6_ zKmfH@oOC)8d1S~5{T0Zse*ZqQ@uqrxIO;_oRsLlUjS}+jp29#4Ay__kq}V$+loS=w zD;;H9D=QI|cPI4pSnqDT&PE(3-4H_M<8H<5f-eoYME{O}GiA=BC?l14TV%}~EG&w= z=WSe}6zau2ZEcki7bn>RHaj-E2oh6ucWGhaQ5_x16JH-6ggRuP?Y(qp6g03J8mZ6O znXK!=w}Z&X8K%+G(; z09hAVEE}=#`SZi|j^Ab%k>p`%QPK)>a+t5hhle*JOdWlc_TcFIh6VtPp%nwrRP!uS zX;ca3X0xC_fc0Cup>3a>oJobxA~4e;Tf+<_`M9`1G34gu)kv_hwcS0Ubc*2N6h#() z31$U9EH==wBXCida42vVigDL7_>O|(qF||?KZd-8jTrNW(9zr+sl7r~OTdDamd-6L z#RzqGb=}r}gvo0s5nT_n5(<-=4JTZ$UiC7KMTIgjU^cgW`c_EDMsEQnSHu8(PXQ%O z1Kh^i+Ehz-=dv$=$0BMsnEll^HV*k0c>p&T7qhPnf(nsg9gpa&+pE{FflPgznYnA( z@~d+hhMCXF6U92h`}@X5P@xd&`F*CUeyyD(4CP;^kl1lUhk+}twE37VQ@JwJY^x&@ z%XtRV)%wyVV)bTeQh>JgkvX3WS$MMm0frld+{Z}gj*Fgh54v}cYl0l2EmGlR9hvj{ zw}V|^Q6Knjjz2q&VIwe8El56i%^jd==rNHLV11#OfX>s3)vz$aJ6Kza{$>%3?%o8iPgV<|0AWEFlBUtbmQAG9UWz$ zJTdszGD=-2a_I4VqixK=4ct3>^N+F-v-0w~KYda}kkiQocoA_EL&h_3S6WI+TciW( zL2I7|q+v3d z0ZyK>Jxqfx#*I*sl#!|5*VEPIiYH{^ZVt?x!!rC*C8)Q0UHbo4qlt< z)I;uk`51yJPUxHdIF|38dwuSogoqXpERm#@&l{pLz#*I4F`Q#yazo!MLM9a)nJ{=b zkvHC)3?gOB!-q0`Q4S^ogMKuO{1@`<6=@0BI;aNTUkVHjXbiJC5=R^ z<}~-2ZuMWIn=D`|#%8J@C$|`J4S=tED6;Tf8?ddl-rt|`_%RLVj_DBi#2_&S zoff5WX=y3v_U%A(!lT1{br`Io%_P#)%uIMx)Nd;FFGR99>BO4<%elwa#s>U2DjJ$E zUc~EUnjsb)H1c~6`ZMY*2?X%kS}R!k9{S9LP3XJ0%z{;=r@B~MQzI-TbxT_W-}RuS zp>f`L=Y)xuHw7Aoh6Ez&mR4q4 z!LtqYi~fT%#q`oYf~54vk2(1H^)lM&1<6+@oJZv6Q;p4igN)2$w5=>GW~z78a&qn1 zQTOg0ZGOJ6cLImB$lM^$z3_x<*H*+>U9f$A=_;W9$3BcCeIQT<=c!1M?IT+5KkJ;k>{^$%l$|vSzW{#rB9T|aFQi7eyy*C1AIZsce==y6o zfk0LV3H$KyFh-J01b#DF-kNENKkU`3B^(T4G2x&P>*%x;ZFaWrZDp!vbHe6zvO=VyCrdb_C0MT?|Njqb|IZ|P*?)aj*33QjiwE%p!ck3K KjXcWvfd2u!&V>R1 literal 0 HcmV?d00001 diff --git a/fig/linear_single.png b/fig/linear_single.png new file mode 100644 index 0000000000000000000000000000000000000000..fd7ce3b5a86264d02d6414e876fe131308626569 GIT binary patch literal 23895 zcmaI8WmuJK)GfSJkWjh=MCmT2q`Rd-L`tMvx_DtEF_AnqGo4L8eqn{V#$`X+t#vF!2{EhAD zgTp(f+Zv`34{U}FG8NxE2-o=9X0_Wk^Fnu%m@=uV}#Kc_`j}+&n;W#Gk!Od0eKvnTSQEm)y-STO(y#my zZnLwuM~7rLtSKj`^jaItzINkg2V>3Kw|&1$Ot+`1hr)ckgem#$@FQE>8OepZ9H(4P0OUPn-G?CQ0r;=@%StsGRKx0NmMrP*XXW2-j2H)|p zKOE1>!zLSIV`EE7oE9DKYELvy-2D-0JND(|^z@0Y?$O$iWk(E6TU%RaXQzgShJeG= z>hF@prOvqO5q1s^Sgw_$W545foEGk$m9&5czcY6!g<1IPXxq`s>gm&`cL)icFV9b0 zR{BIechW8UKZ!h17;<%U`z}M9Z;$>;g8Sv%j|%%q*0O?13rowfT($daY1!G?c=tpG zMn@CQUX7HRD`zK;s^j9~y1Tn0V@gX)+oSJqPki6lnQwme>Q&UPSZ7z)M7>Yt>(|mR zUw#V?Zmo61AI1ub2{88kC+p^RkfW0Pk-n&bkuWn#;%@7k2m0A6w{Zc=Y5-#&OJ)OFt&?+zZ78$2OmHO!lY$lit2Rpm= zDoszafZ8cRM{jQ`ueGMS`oKE|<*n)3qb8UC z-Wg|pe*VVTS29erT-8(x?&pD1#eIE!uw$^hrMFz1ozE{Wh6V?pm0SI)_1JcpuIZd% zja9fO>YbIFJC?7N8x#}-hLx3_?d9pIFe!0za&qn3H5L|@XV0G1dmlJ^czmsG3VE)_ zFCt=~t6K@@J6K=mdol=LZEcJX9{dAGXl-p(RaKP^#f=wE?^aY+zIFR{PfrgoKmXQj zV`FBfX|JJ-tZZvbic)o0_Dnte=e*I<-cCkBA}B0uYi&JUN=7SE>p?%g{B1A`D;sxBQua&mG?%H)q9^S^$b&6JNes`qA@Qh@VM z74~>xY6?ziZ)bOU_?OL3nze=dv6&ftcPUs@PEHOE`^fOHE4ZLxjVl%oPH$)D10J5m z1Ts?6n`mhC3=H9|F9ZZCVUM+l8R~WQ^z;l2Qovhk-Tyx1;rVJlq#>K_~|)vt8mi#}ReT0%oZgQH$sU-$O*?(!SpC2JHdQ`gp((ReRG z&CJeT)8&qJUZL{x``kF7k68SL3Cb^ier-Q>6*Wi?tyHa7v z$&;ONOgOi1SGkFuZSri5Lip;A^1j1sr4Gk5Eo@lnKt;0@$<>f&9}H``x;%4~>WCm= z5#=a(P)eeW%hK-d~?0D{mR0k4^sH?l%wlG0huF86daXeT@ zN5`O}wXMxr8KNAc-vJ3}XZCcKVjP5>FWK3x#e35pv#}HqqZs`@FNGXF)zdSqc9yMp zS7O>uD8*@5Lx17){Q2`ArJInCuxJ7<4#+C6%QF)@%r>N&kI(v_sXV)J^ogB~EzTiM zS-rYI$Zeh8?^}x3-ZFty-zQOF=Ou-4J~H;FKe*p)CShS=U7Q^yPR>CJ$!6oeUFI+? zL`6k4P9hgYp`)&@KDqH(5FdHI=r8`3N|^t_gOax+Hn*gFe9pj^Qia@DMMQj$wx*{f z(;+=5>ef0fhDcCz^YWfAMvH?Ze*XNKl>O;*b8}e@?P9E2M9il$PdZM+mn@CVq%wved zux1}q(?xKs(2x*RXtnk0OBL2VY?xAB{PV|czA2bV?UO;Hf2xlvEScI6JWBWm2JU&| z)mdXqOw94|abO@~%jnamPo>EVL6C^xv>HNjsj#uI1ikmI>icc%C9U9C?CeA=`%=L4 zZen1#%pOZhO1{RxyWIHNC?zHJNz`X~d%NGS>}Y$|_;73Nt1%fi%C=zdaPaT~Am2bl z7r#7Sg!tgh)`4zfWOVOnAZg>SLgxP1XAxK@0|nFehdXpWf(y zaSG{6FQK=iW6qz5U9S{riyv?_?eU`Isj~9Md~@iaQk7*hn0|Bf;*VE1XlQ5vw^&?} zA?+tC+?<_-{Lei-J&$3h4)*tvQuALMFAH*WE3JoeAlDnC_V}Y8Ty4<40kXjKv|syM zs!GRMe+b)fgH=!bAyAkHa5zZH58>sA#lUpGd0e za*2$~XsX6-BlN!i2Qj}I*Hj2K@9-BkH+=z@{r>$MqL#`B?pOE^T~`N$j3{tkQ7_GY zw1E@$KMHtqhQFZ#!?+%GG>*_8ynqzKeCi< zZqiit83$Z2__V{e5lMyMP(Ep=vl+_4p`qvI{x;KY^yEpKTcT5bTYgc|k~dxSUBM=f z`Jfp5Qun{l#%q}v86#w9+1S{sZ;~JNq`+d|8aBG&W20RkckJBXccr3AP2kX1N;IhR zjKyD=pQpibPB1SlC=l}4V#mi^SX{K7q-*9j*qm+*Fs_NwUszhAKf8GPbt34Sg~iyD z&KMeLOd81SQ-t9%3v+YSM;C1J{Ft!WYfDQq8pF%I$s5y#z0~0Tiwo@|Bk|_rZ{FMn zRKUZ-Q!TgthMdQ2cG3WU)OV#;AX2AK)Bq+DF~>gq(+n)qx-U-ES{TvR1y!hXAn;~8vr&cy1!u(Z^D_KelgbAMH1 zw{cWtB{N!#771ABYXwJpOUp}fUr0!1i7r%&02kcIat^sOJ_VSzzl{nD`@n4y)X?B> zU@!&oz_K^V+}!*CmOx5OJnVDSFLw5romBa1DM<^$)Kr?6m)FmqKc75#Vt^Mv49L>x z$YO7I7XqT0sVR@oq22hOnVA{Lao}?#BqZObE5ChTOt`&xRG)hh-S^y8)& z2HuL5ZQMPOV$iO?YEpfUd!#>K)-M*fp}(B-p7$4%Z1D4MkIM$CT~^|l)ZhqaYCWPi zl&hT<+kR!r6A=FiIU@jY?> zly~nmpFCkSRR{)zchEolG zJ`npSCMF==146?2`WGNK1niYd0E;3fO-Pg%_$+-I{P5vUHCYm+bNu`F^tIo>o^b@N zrJ)`IGyz!x%C1f48#ivq%eQ~~_N}Vw(fFyY57ttfgwsXB;J=5Z-GCgPX=u=>3_<02 zKj8cyL|cI8fR6|HY#UCU9R-Pqh)SNaU%X*rU?3qTh8Xv9TROOkX$LBbwY9a5qRy!lcJ~dD=Pv}vqC~Z;fAe8)px5+7!7PnuY`ly#~k7= zTD$VAWpEQ2;3^Op^SufIxl--je^%*`8XNl$ydg<``_Id?t0cOK>ge*#${RE?U&fg@ z24`ol+M+1=*t8$L+neqbozH4>>C8Xz}lvB)BKe%fBpIuOIg_|nhjNFmCMT8sd}4+0UX~iN=izY zG=R=Z7gYsue9xSgl>U60@t&oJlm$V7Fx(7kFQ@>PXYN2K0etc0WSwm)$yE!-%Nn+H zFk6`~fHrTS^HUOT(6^7fV2+1}4c-SfP_0f&J{92HS@OS0CsGeGzO0atou79;gJ85uM*^uogW4uVIviM2Wf%VeawOJG0dwHcn4R#qS4;}78F z!S-A%TTdqd&6+c@+D+FSz#ggS>i4e16e2(80XXj9?-g*I@m*-aT1zt!8a=C^LH2y) zk=NJvfgQUzJ=i-sa#V14hML*-%&)C}0P2n;Avc@)NsZ$>wv&t=+(uiR*t7mo8-P1F zxwyn#mfviK4Z-oeG;N>3JQ^H6f78A2Rtu6-lJNd5=a+B3oeYkSG9v31qxqPan4pvd zcwBv%kfg#a2>2?KdHv^W4DeUSnjr`$TEuSa!})-SCPwFzC=5J?fX(>h@JCK`ShziQ zL*N!JuKy5rGO=#FL1SLZ?(QyB_}?98jT~x>04)rW>Y|)PN-8KbGt&U$y8*-0Yn$g@ zkZEVjt+njzHq#|vYieoD)_3H1W&re`sIb>JGU6P&(Vt48OO3Cv63vh9V8rgBt{#!R zc${NrZ?B@F!t)UIWuu=r`O zQ<|Ej9IOnedU|{P{QUOz_5x1Va+4~Zrgwv9J9p~550nlE03q7N@net-j*X3tjP!POy`#DyCLwX#T~Zt$nVOykyn_1Y z@y>jRo%^4zcwzTV&%;eUz-oY6Pu|M<@BGB5si^^)B`hi`zBb%^yk<7aZBCBNaiUz& zeI7~*@C7J;C$e%gA?dSmaRnT#$Ga*5XcSmFQ^7*J?(l3$*VwOh)LE|{QVlj*5S6g| z@VUst+jM7)!;e=f{^;rGjKEzzDSpOh(uBsv#dYgeBtUt{dEn%^kgp&yZTmm_9z`ht zWxzq>)x|bs1t_45)YV_^%t>NkgaTX}o(?Yu)CFOv*szwLpWnR+i3OAmum=5U;^Ka% zV7&+5ZO7KDwxP6m7Z-Qq`gJH(cx^|EV5dKR`0!HtDL^auMRV`r(CFw)o!1^545MmF z6=WSTzf&kq{jM&K)Y8PLAoLyoTio!s0$e%`D2u@2&i;E)?=+f;wz12(LNibd_T#1IV2QA$h7G<@Sl0vRRHaygg4%Eh5Fch=lmW{p zO@pJdyP@<*$? zt5TjdTEqZjvDpL`bNjwnim<`g%uF83zPnqYCV;oHHkd`qdLqfVY>bd_gsb9LCu;S0 z#RUcHPzmG-wxmP0fg~22`u7shQ8!ieM?jRDSX^0_2^v+IuvdD|o^}0&teU;0cQqv< z70k}g{#&S@ovxDQ%WF0vp=UKRw6VT>y#mfe3V?hP6UhWbQ_RQTzbCGK6~<%H^Sd!X z{N%`0(czv6uuAo6RYgL5>{>2=fXS&YE9^-XKI#|00sv;*Xyo1t)L^v;5NM}+{o>X7 zBu0J<0~yk^v3Xzy5c0n36uy-5Q;~mrcRnYo+u7N<#_x>3GHAc&A>Vf4%X>84rD~r< zVmF8?%F5zWN4hQ@?`60uWfKcT$0QqYk&u%sVgf{eGu1W4!!BC=*x$clQ*jWBCQ~kI zLF_fun+Y?K$?~h)+gz1=_V$0FZ0hDzR8jepqtgMYpK@>AzNO~OGlTPlz$GE1aX6ylr-tX z2k^|c-d+{=J`kwzfdEx^0ZAI0V+p&{q2#Il!BrvL8a7 z_VOh&3rlBTU&1tc`wTz@4of51ymh~*JPxfMhL!~z#5 zr$2<+l9G}s1Zh&v_H5(T{+d=&4s5HasAx9Z@ZmYcES)D$Dy)8et{^f3jtwIHf052| zL*3BO4+6*Wv1ho<3t%!)W#1E2fjJ|^$3*x(KHl8I0#Z)t@`);W2o?n7w{L+qba!># z9LkNJ((3gauxV(33JDz@9r%&bMo-u($fHo0FZrirXJu*Y>P}8hD$ky?cZ+%MPy>O= zOzgff+B-7x{qtv9QPJriKO|1ceSu4Kaw-AZcLIWc`9=f~(&*i9*Xo4jbTQ!4=9`W1Hh9u}gAKyPV$8zj^er>CdT zD;a8OSpvoe;Ne8A$JeMR6<1f+`o^Ev5W|!~>U1xqP0bRkYHIEYI%k#i>0U>q*We>5 zBxz$`Vyr{$22cP%{=(MQ%nz@21Y#XW5)*--z#&?{hLFgl!Tf)H&zHc5ie=QNms)So z*2b1P%5U>_GxzOg50dkN-(;zCCARbl=C($aTU7AM<&_o4ZuRpUiHV5rVl)JTH!iH*PnrJR5mbN>FE)YZu}@S$M;eJe1bN=Qvff#N5cN|=!t+p7rP zkyM??WsFPCQ>~IX<34>>b4cZU)|c8g@i2{}35i4kZQ-%```3>jKZb^QczK6^{0MCK zhDCTqL`QE6csn0f*>76mNh!FiF8q!ryR4qybJ~vbKZ@ELryU*|a&dJ%Kb&;bg;HT_ z3rtq$UgR}IpoQ&tKtsRxwq-?qyLdqI_@7>}(~~5esM3Fo)&$E-OH*}TJglr;Jw0}S zkp}<3m-yAWi;N5sIJW|wLIXp?>^)lRB)M&71cI5EoJ8g3(Zv|8Uz~FZ6y&dBV}A)d z)F}q-KtKQzi4;2+jI~s<>g9aXn>TOFyA!Cye2?poW@>>y1usqH(6@O0d>~O$=$DX#$2pDb{;P^ zeLWSXJ+hb!X4FD=Z+6Sb$ow83hoD0s)$*bQXl5&`JopYyzR{2=L(2lV-2c4FRS_Cr zuxk4a-6u~XS{LLBp0!$Snyv(?^YrsV+MvP5rGR#a2bk8S~I;Trus;fjXUoCZhcV#s0Ru}t;FH1 zrwJn?zwUi>IlN4`;zpKM+Fwk@8XDHR+rN)u--a_AWR4JW zo5S0>efFJ7$w#;=S?m{(cuPxWYu}v-iHIi4tuxE(Z-BjI)lu*7>9 z;N25jePK!t4YHUS zGpIk-*20O=5b9Xf)zurLev3;JLqC2O>Dbmf#fiZJ_-AGL9vXar{xLBS7VE2NEc}a}UcW>JA z!FDm-RdSw^$6-#rg~Rm1-_2pC)BUxms#@T#pFMqA=lPG8lk*FKz$CsE!F5F7bwF2K zqx>c_XLzx~hOganyPPO>1NQz-+8=hsvjtq9u7u^7?+P&gYFmIdC!nYek$ES^$Sa zJhM)^2ThvSwvL3DQV2xv!^+I(@BA*NUlG0ih(^+=>8tOCuA|}V;#^qaevopkZ~W_T zBq_&4DbcT(vj3w6Fz<#-9YMkIa$f3H;7Ws{Yt(gw6)BDEo9`P}vw1%+Tr)3-9T$Gd z@)V95QvF?@4omnP;{(jTEDk zg95JE(vJ%BLOaLA#01btcOn{D>o$h~pU@8Yp7lrxjZCq6L?2^_Pu01N^=e(V84S|RXLEYc~^-J5%mBj<1w?(7=U*RNo?JP+)c%+X7sSf)Z{@bnB# z<#86t@`^xYG*O|qv^ut7CIT@)eQ90P?&TfE=caN{D{Y=33rjzktC2nuGmXY2JS@`= z-BQ;>nOUB)4a=D%buk-lhN(>Pa2^eF@D~mEalG-v$-SbM$&eZ$15vG*bkqf~6>Fu{ za0m``YXA4mF^QU8su~;cuT=_kL|{O5Oixw5k4GMRIcmxG2e$@>W)LkYksN^vs34IYotjeBjJ?o zou)HZ;>OFwR&k3-P{%IXN>;j!F?e`WyX8@AEa~hBuPN%b)unTZKKlE=)1yMmtq)fC zS%W&J^e3!Vr4QeWrS*K;BRG)ru)2Z5NW<-AQtr;w)40#^t8{ zJNF7TZ~S)&e4?};&pZn$@3I&p>RUXpQAO~e7hcF+g+kIDp9vBYpLhr(O=5kXQ1)AR4Wu83VUTW zYL&oVr6SJtV*3s0_hH)6zP?#OVKOo@$~$*<43m;1!2WoR<9ScG!@gvVvo*`s95*>o zpq4T4I9{7*)|QZpMsV>pv7Hp$XW%k(ZOZ;poU5H8)m>)d#ljkv`EhiFmHRuT-*Dy` z#raf5QrG%Ejkcf;pjX-8+T?7s(JKA#CC;T<(x^ZqOF)-PCb+_<1!kGGFDvLMSd~!G z)QZ!=?Atbmg8LE4+cIfvRy;7UbiGGuE$nsDX}hEcWi1+#*(guh*`9M*F2v}`p8vd+ zqabN6jry6L&+Rh4B&@qEu6E(XOV{ANfdcF_8_jEt#-)|M!Nmu$LFcI3+<9%$x$s;_ zB((ky+ry#xS_&Lgq??l@kmMwp_s8jy{He9@Os$Y`6H50fX8MQk%4LaqxXgpU=;>MW{a~k z#kO&cNs-_?G!wpa5a|OSwk(y=eHpN=y+!&c1AVX#Wh6-kt8DI@ZkAOc_a*yjaG%DR zPZFEo79)ePe+fYiAT2fe6Vif=M)(tu!dMWHY1T?S!g() zMk*`)8Olh9S<6yx@5k-)W**`ZN9_3J=j=3HM=&Qm?K!NaCZ7qJSY~O#)Zhy-1s}mi z*~8bt!dfg+p^TsD%P7Cul`<|d{i z&HsH&TlVOK*k6uan_%K$V(g%poVE1ybSMVpqwoD$S_+e)1%3b;jAzHk`_~azK&Tg`TgMmR-S2yu>)Lf9TcdQ8A{`R3EByAP5N#j-nENLXH0zdRc(DASe@s8_fbs;0;9% zFq<5pKZ05gG#)&Be19^ZBLd~x2ul~l`~>6c|FV_;%rEEb-^lCk@4s43cC_eAVMz|q z1gZc86QFb2Q4_x?2jDz7s0qiDcP)wG*7iX3-v2S!YhrbMB94yRAyXMpJi@2gmO=si zKKC7?mg4|=yxk84jaw;7`dWOh5sv}e#*G5LFk=`o+vf{U2sF6&mU!4I;`K`)KcSRZ zyi9%nez@Mp1A6m7`-*w(%6Mg8L-2mAQ(AD*TX?QOMZrvLI#_3+wR2j=Uh9A14Rz#J zKUc#sEdzr&RAVnnfTADo;=n_s|I1D+xp7W^qbP6o6chc<-OPW)Zz5TknLGOXw+FLt z(PR}BZ349`e!kOendZk2Br%X!mS$$4@?oi0MFh6}%L=6O55D}Z_pR>MvmlAECQ=g} z9TFNDdHGO$=e^}#;9Usl)96r#&1fVFCmzS4PfF1x%3pA!X!6JAglF2v2*xp@vW3N1-MW5$G-@Xa*rRP6` zWFtwT_Q z7(2UN+Z%F7gv+FDt*rnMCG;tIRIf?2-u3QdZ&WkB!@6$&s^kH+niD>DaFd$YiHyTM z2vU+8?ty7k&?TJwdEhdnJ6yt`iBJ5)`~!f@i{r3yvi_-El8T>-G8v>1XI&t-P2e(~ z$&khXoznX3dxQHBBTTSP&hPorz5+*=!j_^UuEZ2So_h@*@o%vm)gZt?zb5fV`+?cA zicsbooVyGUTh@lsRk4Gb$6H3fGV!l-XU*6eXM|j=}Z`~YV+xHZN~+NJWfk^rekVl)!jZiK4C3SE=g2uNvU0TfUU(TWaKLb~Rue-siwFxlcG%c< zQcJ5StGx1^ag`pEH2tFNe}J#*5K4>`$a#bbk|I-vv1^C{332<$lf}!j>gEPUhtx%9 zLPx)g%$B9Wd_(altJj@DJN!EvSO{%JIk`49AKYb55%~!p!s&!8m9Ygu`SQ{)k+}he&#o!KeKkcwD;ho$6sW?W7=p$HGzOcRniduoo+hM1 zDGNL$s2V`16GDuJXwV+_NwCP(G|A0U&a=Y$gEO zJHZTQdvq4Iys*rG`xE86%Uq54Y)q04nz{VT7+k5NzkbcvN~r5RBD#;r3;b;J@Qe`> zPDm7y-p0o_qC4_H7P-2XgLELnBnnsz$Lm8(i1cco_w9#|=pGEwyvmdr^}c#c3KZVP za6XYH{tOjh<$)q9?>=9rw3%g^^K?=FD(N^#^3~}=KT=}5RCwl+$P)t7Bp6$^hoeZ{=R^fNqr<$71&^!Wt z0yMrsR~Us)h>s8L%c)FxJca}eM3StK{K5eBFMM0q(4dE4mMi^fkV>+$vOawL7%oH0 ziDEXP6BfZXc0+=QrGT-_Vel(!l^~&lq&i`%VJ2wj9igY?>w69qan>!S#~<+T-TRc7 zm|HY~ka#V#Tq@e9(Bq~sr;tU>93MoAs>Y!=0QO?x=$Mw0!frSNT8#vAEiElj#=d_F zNuu#}|3^T_e?L`~a_&e-;wQX+|Bc<&+?=7ZuBhk@eiQebhwIl7y+3+mt0Dvmf80kG zZ-9Q#vkE(}jZqFMOxb#WmOK9rL%!_xBV$1tqFGt&55%dBSPDc=@-$q68@$#mCW3B$mq;%>= z3{2e(vuwDXeYL^jd*6jVT~OmL67~aVw^q>p04=xV@ItSGz(d?^9XbkQ<>loj%^{Gb zivdYQRXHK77+I}%I}J}QZc;wdTzc~>W1t5N1B6bZa5umkLz~2La4`tj2pS|f-p`H> z5Gxj}xuYR`69?q?2Ht(K+t}Db&~nz+ zeouIaiRk)CxVuQVoGH9-?MR@BpTq;_>gRWXMZ|axo(rs@cWqQDJLUcR_wU^^($e*FBm$1wZy@RxmlcjDG{uidU%W-*4TyLR_VkdJ79>`S zAfs^>;4>S}OHS5zcRvLF>JRRj{Z!RIP|ST2bO8VWDl5H#mEpKonX z`Cfq@s_Q{qsK^vL^C1iu#>KYLbCV)^6O|1#}% zAnHXi?ckp#AC`A&bO+45KCC*tom)t^VUn)M%IZAID{=Jv{4*MqykK%eywg7ppt&vc z+1sLrtqMj0g!%XmpbK#0=55bK3fsikSV@idx zc$j7&sLW4avw+}7oW>Tb&{A5&+r~f`{`3utEMk356MMs7_2Ey|mu4~Qji2t%B6{Bj zpd8EBX0R8Gc0o3FC+D4d81q+J?1I&J{UDrblhycpH-W;QWd22xV(5$u#@ zx!4l<#2E7+Wra=>77fJW#M*qCH60C&2cS=OxJ4)b7Bv1MF3Y!R%s@p1edCDmaIe$- zdmb^Ccsp|k_d_RcddWLDgKMrB((Ch23FJb9COoH$odCZ= zIRgq#LMhP5+G*UnR6<9H89p|d?o(p?jfHCp>rEVUT!9Ir%h{`owB%$;8Z(GUQ|iFd zCo#;*4Frgq_v4UwJxdoR9`4Ueye+Ke_ZCVs3no);&mkx)q7-rIr<%)|Gy3 zX?7VP6lyAh$^(*j-h)On_Zj<6UBlqC8dx-MurIzp#E>$J-i1s;#2k@;{EKa#!=mVp z8?f5A4vdWN-`(sjO|;0@!!R3Bt!dt&X<(-$ir+C#9`v}ef;nuWr zLt14LN9XC&sDsOV4 zC=X_=W`#d)Vo2`uV%TIRs|V&#OEkkuv^8a9TJrE#mOcHo|5hZtCo`ID7;~O%2qMQg z!W|`_p&-ZHxe4dbx^_{m{Ltbq!}8xM@mrhIk$qpzgs$dxMsFQ++?M$Be3&_KT~Sq) zbC5qihdPw}+uUIAE#G)FRG%ABkPBkv5rJ6aiKcRD@w8}Xgf=DY-2rqEb#mJ}xm4c1 z+*)dp7eo|5<2(Jupwc*liMOl10LPUvR`+FDIeq(nlkP@BK##38f)(qvIYL{GPuf4y zydgS^%!4%R({znptL{qWVdi8_Bx~e%9#i*=T|W?29)BT_I6&QFbJT5jMegaon5p}8 zr2^@g1eYhX#vs&zxUT=*23Q4p!uiG9P#|<(v)X#t)zPJXDtEKCRhs+PrEw?^bVWd| z0mBB&*e)2?W(eOBT<0|=46%!}s7Wc{A7v~dl67XmL_}TZkP5U|cW11nNAi!+RLVyR zk!SqG7|@0t=vB24)N@M1?RhRxgJt0=!G@o1JUjOG=63jU}g80!0 z*H2RSrK#QLOx2Tni%aPJU5W=kU9d?+Dv(iwk!BV-@iwwO|ZZTp|YE|xei>cY-{sjZs6#za%U1`NH`-9Lo8Dvzc& zQd*`{yhS9DumvR09N-NKbVVI}21EEArc(P?@Nx#YipRSrUH%7w)ych=W6F=}_-Mfv z(`||8ICOZ-^m&Ia-ejfHgny!z!oHrz3~QN@Q@?rUgfbuGTY_g(6E?*!q`^=2iO z6iR)ZV|TAje5p+-Lmk*9J;p2{t$3%DBgsjW;lU`Q29b<{B;o*dq_3yC%o5RtNNbk* ztYYH`;3NIOGS_4ERG&=c-r)Hi@v zPZ*#@Q)g!nHN5+HBSPVaLTuTCQ>kmi(5{g%GGfrXubQT02DX*sflqzo+Aw8}H^Rsi z3v8<@rGOC$C)z84eccKHcXLVbpIHQ7cQ&u;7(v6rOlJWD%}S3bx|JE-@O;#jh|`TU zog6b=10R|G>!}oO8<3IK_bDYeWlBEc&Z1un9HhaNbdmj268U<~IVt6U;GjZ+2VX)O zeo7SopH%=G2hsh$@GT^!BmzZ9N4d~^Jb8p9f37I{iJD*Dm>FeSK{vy>%*1gs%Gf%7 zNlJZvVs-O6g64xfCdKE+QVm$SXQzsC6$B!8f%CW?Nc;?$e#uGCqb&WwXjyyM(}~Rx z%7Q?Po06F8o3aFF0Lo){F^;*9wyGp-duhf*Mou zJJd7>ln=hx>-JYn*NOPb$;$!>1efm1r8g0@YkBlbKot4RGx>(ZUx?(a>@c(QJM@;3 z%4yW&RXNN~rO11ay!^MLD@6phFZA!v?~GcZUzfOmt!ffG-QCdDx{QA6ak}D2nRxy& zl=kwJnT1zEzr)rXkuEe~iN?w<$Z_F@?cB5ZyYxE8wQen0M7lQ|YCbJBNJn5b8~Y6hfjgm>n?>!1EpdT z#PIbX{Nwg-^t4B5ef>=6o6l`uRpNY~R<;Y@3%V{b1YyQesX$Tv=3-)xk%EP5@cXYE z2P$~;2sWiRilT^g8B8hlip189YNlUvAN<8(G1gyyU->PU zoFV`*@P-;QBlZ`2c#k<3J&%8AkSp+kpqvM*%Y4(HB+6J z4Q9(#X7g9y!g!`Z`^NWL;4vSVA*b2{kNvH$uz65VgU zhwUAa{@qSUCU70WhonXZbbQ+3VU4DGE*n)ra{gP{F1y{s9Dz{5lFVCEVxZ?v{ikek z0S!)?dDY|b*@(fWaty@4ZA>W~29G8+M_b7`X36%1)iX3i)N5*OA`smG@_+nT@nG}M z%vWP^rC;-P*hy2JW*0*rT@>y78H9)BzQF-Z=syo6^1mKlY%{ zgPu2Ew;Z)9E_XYnLA^FrtoLWhhIKLV{1llMx?VTT0gS06enH)&$ChvHk=fS!v4K4no8PojeFuLlr`@L59 zqR;OIWEukD2A^M-^`3ZPRMjCPL*>lR@L}E5UoRFcghVhkrjCwnOm0O`fLP0ZyJd0VQn4}ZhyFFxPYB0r_mT6;;ZHBooWaxOkWQKe z@{AR=`}36+2!xJg346B(&Ot{{&nC1sK-76-3Gz~jx8&hAl7_BBhUv57F`GxE) zGOJC?8;H4L8qAY+!>raM6YDIcqtc7eitv)e=ciaB znKAbfyW*S2gJS4D+I;Oh)#KWjo>goXM@nq6lN$(i8qB6j4G0Za8z)Pg&P(>v#cPbE z_CJu~AWwXPk93rnM~WLPVIm~5X)rfpwIqWc-hmr&#%3eMcciq@6t+|r6&9q^G~6@A2R43hiY=$Z^U%?bV1NRl1= zNe$#2*=v%_sP~2U7Mq>vW7pZ|*?&UuT5O=v%2qF={vT=rl(jIu>EPh--7rF79@%)~ z#sj!538H*8d^s68)uj5oA5GaURnn2owU2KtsBO>w-P~k1q$x}RV8KaWLZ)?xjsx|{ zEqZgNbOS&0`=Gb^AqmaI$?0Dno`q$Ph-%MYESh-al7$$RnDuGq+0S`dp($kJ5}|u~ zJZ$ahjN!1{eS6p#Y8m^Wo#BsV=!Q&AEXR1=Z^?1#ignMbZ6o76z|7 z7U08bs#*#EL(1uV%eqjtusDwYjZR!UC{R=+RV;4)E`LZwlHJWQ%&BDSX#Z1L6f|?J z!}OT#(d72$&&Bgued_Z*SDCl`)5w(D)g=Zo3xaQrA2l+hW}D!5Qt$DlUH(n*YwEr5 z@e6TxyYq>jo;TZra1lMNI8quKv*lqt+KYa_+3JqP`Q`hyI${l8)`Q0-zGT_jFo&W0 z#bCY`+rOo)O-@E;#}Hi{p8o(-WyfEF?!yB$EboMDvwEr<8TrHbNkieBJWMdd5Wu2? zmLCkezOc8iKQGJ1b2QSw9A_dWrSNd&W@WX3wt%nhPdst)M$qu1F6q8Ka{(hy@c#Bh zV}BT+>F^*Cfk}dMAj3}JgFqV!yphe6eSr@2P!V;g<~G8L_kX^_16vww^W>qU2#h7j ze+OgY^%A1qyg@|(E!~mZFnR}%rVthq+BL+)gNGzoCsmY`%-7=IgRvhN8Z3`h zR4A*QEi7`fv!Q!9B=X=k@ba0jGLe`x&`;!5`AQV2$E4W*%#+AKH*9%M$2+drVdp-gq z1FbR;q&{`IIre9HnSz|WwY?o?!D_2IjEgkt;YToUpIcE;0aGs{(A_|B8oP$EyZc+y zKG55O;V`Y7$0gstQweI8asF_IOM(GFC%Gp@FmC(Vdzczx=I2j{43L(VZs^u1fQcw* zv20J*R>E)uv~L_M3HTfd;Ncqk>m%JTtpPJ*Kv34Xtl-X)u&6-?86H@W{_%A;aP6DR z%N8akKx(amM0(fottPx3_%gszAZ5%bFMq%7{JtPP{W*|PActE7Yxu^V93P(zGX~a) zQ{$jN1w&NS(1w;KkS?pFnMV|Q9gfZZ)=3kX!_%kkrB{0qehO7Ic3I4 zxr{c~*OSuHV2eEABnm*reGbDY(NEczYw^vAB3psS0$uaHhh`mMQOBI}`JZ6)8=ipz zbG{AmWD3+6S8Y_D7e4Tjiu8nAvv7T|>+{hYO4397FqaL|yuXW!%^nO>WZ0 z-h~NP*u0gA@3yqD9i5%|z_*u{YGyub2BQ^qS?+#x)Ct; zX9Vt2j2D!*evKz7XK`Txs9_N3wntGi8TOTK!ecd>o0{%YQGw1BTB)H!xoR!~D2g7) zMUj!o4|hVsqoeWg@N%uaVX&!G049!3;4uvFBmnr(UqeHSg-tnHPo9v%16Ih$Ru&cp zYdsv-c0qXwcWYs0b{ht!;4E%8gB7%Qc3Q(2o5+*NDiB597xVp)lq6))b7x#D0-ovu zPeFQ*zY7K{^ytycTQDgB&j_F-B|U_n>}okILT?X7fI+nQke~masCT)mU^6$o0wukj zs@@yU*D5P3gE?6+$BWI)O;B=!8kxhmA*H>PGI&2yRZUH;!mqz{6UF6;`Tm9*g%KJB z%AX-2AuyH$JBgFj3InGwhXuw0bKUPmKN_g2_Ca*Hb?cUV6vZFtuY>2kcp-)PfSWt- z%NL6~a@3xCH}4fD`ClC90+SDlDggn3@jq-&ie5T7K{rbo9$$bGZ(jXP^-|XwJNn_+ z)Zq9a=Kt&B%)_Bv`#AoDhrk&M2dgGV^lHNqj~WQ6FhT8|F(M9x{1; zd5krz9&REU7GyFrSrYj4+~*))Ws-?W8;6sa+mIZ|pqXPf=HSN!pxLe##G{ z;L3`MtMFzcjQNgV)ji>c2tp<&B_!nj`6nW`m4gGSfglJdW*;mchh{^}Yr0-i08k}( z?cnrp;&ncKx~9B*9#$$tIg1k~O7JtbMc~=9tZRChAoTb4Dr)*GuKOntZU#2(&4(}6 zDmn%RG6is^;AsEZH|G{U=0D50gJxc6{_aFa|I`kLS2c_e7*_cXyBpCcU&rp@Je^Gw z5)pyhRczmGLqqTWO66_amboE`#kyb+AwdMJ;N*QYtn~J6(;YkVYHMxe$-Z=HP>~Ss z9^FFnf|+V>Q_r3?OTpt$*3B_q4h-D9e%;c}?iX@2)H86_V)Pk04&k z&C6?W(g5>dq`t9IiXK_l`x&n=GjkjZjR?hdtEo8+7iYWOZ}0yY{=PJ=j)_^u_`7$5 zFJ2h^+2uA=9wzeTT1pCEH%7hjI3heV{|3l4t@{P0zs{bl%g=9m^-7u*xha{0l!<)^ zvo=9soNHy({kGcAlU*{46o>hk&xL%fs>_#6VAi#^?y0oXt-?F`&t$1lJDDT2cCD1O zG<;|qC+7@hT#QW9j(T~C83gXY+y4G1J0@7SCwII*TZiq;s^NR6mR4jo(_1 zFC)r3*?OMXnouqi=;d{@XNgOaSpHcoc|JSGBFy~20T`_)8zPx`A60WgdOu5O*y^)d z7S%`s`K_lB17Dpk_LKhl(%0gzAbjL7C1?o$_o)d?WTeX1=rY!(?oG|z-u+V~6G$aV zD)j>QcahA*TYI|sQ};H{E<=}NW)}bP)oI-2O7z{Ts{LoBH`KpnJPH1nwaWfFDfy}g zHPzMR=%zh=TCPT`nfQ)CQ^9)TA+Q%5Y-~8LTQ(o-(Z&qV+1on^P#l7RO_T#$07wTW z{Y6L5H@ggiidJ7QL->4MI*I)(p=J27r1TItE2XF%Y~VMJFked2@w*fi zAK$96&(3ZDyQNWsE|$?bc@NsD+FFdOSax>zDk}pl`R8AbJ!7+HZHDX?_N}ub#-+DeCH#CvY3#*4E6LxTt<Fu8H`UkD(msLt5jVNl%WE3p#_agCK+`1c z*TA$*`GRWcQWOdw@e=z5@89<;mkr?Q`9~dFb6qSj4^JLGbW-u8ir~gDV@Hb#x9;rV zIWE-&h2f|qe|TbM=I>?qe}`KvV;>i-=PR7v1`Weo_7fPLPpXvd-huIUeCxKLMIV5YFap;PkkDJW+BybDCM1qD;ImvhbaZv&zc}Ih0GUeR zfE16cjd?st^Kf)bj2=J>C|cl@8txdMW1|`g4i1KwYxen@i3!0-rcfgy_x!*5v=A|o z`ryp>p=V*@?_X>0?mh|mo96RVCr_ey!-~u_`ZMyv1?R#%@L8EJ6cG7?vgj-;K#!4W6gr_|KG zzCKOynE0SAQ&UsOy7=%w#sr&)nO6!S5T^QVb2`(p9P=>F|OeiXkw)3 zrW5sF4a(oW4 z>AhJzsT|BsxkT{NAfMrOqDTXwp#L^2bGANX}k4Jm}g*>FXo+2Vm zCy4i-KFv%|FDF>RC=RC+!kc--eMrXQcFdvLf@HR(MP!|fm;i#D8xT^*kE@ZRC8ea! z=uvy(Sn%*E1p+^;=3h;Jb!jeU6x;Pfa zrp3g^r>CagKRLagf_#D68M!0RST3=tQ+#TAy78SMO+i%KC@O=KV4M$glsyDGI4k67 z#xWw28hO<5~5G9$faOrtj{jMHya4ZXRz-A9J6Hh>Yy(?|<}OFBt4fz*7+YPk4C^ zfUV@-NriLED11^^SXdb3nme{to(R<-GqIH=Br@~!1b&sCnkm+#gnld{r&y*4({H)hM?)MdiL~bobk%{izWbqU^a}v zfenDeCgdMSM@PN%w( ziO^w%x}Wl+XK`ChH@8cjAxDoNZ|SB8?gAEP@gJbdyPD^-+#UTBd0^~k)$d09`PU)k-wCPy2~ClwS-KwqMGpaQP~0Xlk|rc`ukh?HWwP{|-uJVXzD z4rayQt_tf^RaJery<{x^VEI)js2~a?0R(sS*ZP*xH~_+vKq%d(-XY>P8Wb7NZcOX0`CN%fWR|n%KE&auEeItA_`xxo^odlq}ya6^F&wL4dD-J}E+}Lc86rhwGXljb!xZ1*7 zprQi0a8*qWutalOUw6@lb}6W-v7Y@#BUwFyUlrA+(-mX+{=U9Mjw_%!C?kuoW%JFI z0PC6bp`$fJDuKulm7nVt3F6`82eeVm>1p-AJHtM!Eh&6SF3}jta$w-9q1-A0f;$`4 z7s#n0;MFctXL}t(BHNbXa+#mUwYW#3!opaAJYf%;n~$J3&{zT?5mt1~O;LwwiN@dz zON)!+#3lH{geg?8V9LzNwsdt_;5qQqiU@1R#l%3F>?F?L`}%UDOBvP`QW;&E#b7X8 zTt@%-rwA;USDJC1lieQLLDed*c#|kjP@F-;iZU8~6RUh-9K9u7PbS;nS(>Nxf19_=qIo>K}pqsyTz{-$7>Kf zmseG7hdwytEmNQ=pFxtD+KmdBkJ-;S{J&BczlpF8=aJ=B%lVT3UoB63CuoyamLXm| RFa;6Bo?R@%J4~nZ{|3(M9|QmZ literal 0 HcmV?d00001 diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index 932aaefe..edc7c11a 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -13,7 +13,7 @@ MAX_TEMPS(::Field) = 0 module FieldTracking using ..GTPSA, ..BeamTracking, ..StaticArrays using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, @makekernel -using DifferentialEquations +using SciMLBase, OrdinaryDiffEq const TRACKING_METHOD = Field # EVOLVE-BLOCK-START From fa2f15e4f4a470d8b219f3bd8b64d4e4af1db7f2 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 20:33:18 -0400 Subject: [PATCH 23/76] remove figures --- fig/field_single.png | Bin 23659 -> 0 bytes fig/linear.png | Bin 26326 -> 0 bytes fig/linear_single.png | Bin 23895 -> 0 bytes 3 files changed, 0 insertions(+), 0 deletions(-) delete mode 100644 fig/field_single.png delete mode 100644 fig/linear.png delete mode 100644 fig/linear_single.png diff --git a/fig/field_single.png b/fig/field_single.png deleted file mode 100644 index a8c788b318c008cee7190efe5c9ccb47490724bd..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 23659 zcmZs@cRZDE{6Bt>oa{~ZK}c2^*>ud5%n})iviIJUk!%@7c7zn!TgcAdJ0e2%p5NDb zf4-mJ_n)8lwDd_G@SsQLpXB78c01Oh>HS6N;Yfxv!@Kww29vEj;@ zPG~Ru@A9*IO7e&c%zx>1pWY%6EQq`EceLFz!+`$F)ee8h;c%yRgV&8oG{aC!N|)zrroTzU!k-1l%bJIrq;v7uF8H6Eht!0*l=ELVJwp6wA6!p`EpN^ z@Moh2U;Q@CSNZw*Z#mUkfBaZjSU?6fG5a0{tiG20cQd^eA0Pkp>?|T8V)4Rse}BKk ztoLhveyq)l7cWNgAAbHr(A?N~r^+tAv{cB?&ktVUX!i4y3fozq0|O6_Dss0Wq=$z` zrk?lVTnJ%vID=R$X>45FuHN)ay-zaf_Q(^v;hJn^_TrL~&;Q0lDL6-{Q)_?z{5guh zQC6T^5=>fbH(NjIGq*X{ym&Fs`=oqrrtV~WvCGNHDV~a6L1WGE(7XOIkL_SiM6u^( z-e9tfXKWtttqM!;b>E)N6{Yns^4W_&ZO&4Ps^1%V!o{=>guM5yWA2K{4CM5ySob`5*|(nE4J|! zp4<9V)r`?fNw0KQS68yQi{+kR5)3&^Cv1~=yN?#f8x0qck&y{1*^J`Ov|^4QoA9P! zoo;V$i@U8`o0?LRlRI9V`veQ_UKZdpLTZ>(Z&A~)YZf=}`%Gm?2U%&qN@guy9lhe-m*@@fVf$Uaa zm3#N>rYd9N;(q+z!nEbS`84Pt<0bU?@X#Ht43B#TJLk>y4-iiI5{pZj{df->5CWTmcy3IeHn}ruGZg;bYNR+i#!k z4o)mAtib5+-(|;N4EK^fdi3b{n>XU~V0S2ymn4}swtlw}iD8p4 zOKayI>gwsGia9CzCcDjegpfM^`T0Ho2d{V%c?o+z@7+7v@kE?QpC5gRWR@{JcrbpS zhdk7BGW}Q#os={B<;f>?9!6nHZ9~IU>twoKGT5v7(l?*z>IMY`4f{l@H^#6jAyIa< zTfqg39d9`Uqv7v!um;7^j|vUD1%Bpfeah!7fqxU?;<%h^+%{$&ebMW%%lY)l?P&Y? z{`krg671mkZ)Q?b*+FNU{$jHY%JY}~{rzhvAwC)MtVg?pYE&vUgE^{iNw%Y8&RGHr z^vW!^=36A0qNa0NV~)W%j3??>J9o6UDxT+kHKw246tGy}GopP{bJ_efaBDZf>qp6ccQ>yGBMvT$D4_F89i>CL{l?txZi&`c~B`tkE^5uzL-5xc{bgam@xIkTsY^Kgjhn@T?9UWLWK{2r-un+b1^{_Uv1JeJ7 z_JLvP>)Z6ZIGF_l3HGA#ywhucZEI^w%=>V2y2gzeY&EH-gFRnzEx5~T!`FR!ndX4C`5s#S^ z?YXz&vc1p&8`!YHcY1O%xjU#hu_&|;>`YVB{G?q&ox|_eDyJn@Hnu|js-}8L7M5R~ z@nDGcJ&t#;Hw(nX#DMi=jWM6Dc7bjlY|I)}+M`fEnwnUpqzp!Q{~O5}@11V&L14jC z#a-SU-6kt;p8x*+yM)_%fni-z?-DpX&+a5)m_~TnDzAfen7i@*B?t~oeGDt@8@swz z4`%&H2ng;eD_1%$c8+~Bp*lDH*$^82#pBZD%P^*HT?xF=Z;3dnSwcxwrB;~Y4G57wNXn<7>PXeF#?4lEFh0BGD^HuVUV{Sga z1R`^=4Xu%kC*Uce{fgt;>vR;T6UIj)kF~Ygsl#xw@964YoowNaEY)NYGBn474`b0re&fZ@1Ea5N<+R_noh*+a9RORe zOOTATv9X~F7M7Nl4vbFoJ-%CiQ&jX_+ixOzk%Gvx;?U@}-&Gen7w2b~DV>9`@yNSA zCB?wkx87T3ZD~4)fMzUYm|||ZKkEu=yW>^PUotkuqO_Jh##Fzd1mqReFdoHld_scj z+L(rsQA1Htv`t4x$IV-}1_lRfybf$_3S-p*$;ikO5)u>@6^n&*LsmisBqWjW zu(Jn}&d<-Y%6PoX~ypx|KcwP(LuBk+~tjcNJ$`O)p8Mt;1r%d4yR zkXr`_iDgBh_6zMX_!rNtS=airLgZOvgp2J2GSq1)DA=q_FBl-ka%IE|$jk+wM223t z&>EBHy66rye#c*b`0`XD$?O|NW&O!|&4jp&!~CUW-0N>*g&%2aJFg7g<)Y-K43xc0 zGxV9?#N;=4T$j}mmzANsqM}WRc#r49_$4JJKYaM`RliDeqicF zes3~UW&C=|i?pm4!tMn|-=1-ooAbW!a&oZ28OZab{C>UfHA;NgHC+NfVH;X`85>E0MnhCnk6dmV2!SnAqgowo{@?N^P*G%3zbhCS91V7#YaEM?^?yI=ORn zic3HpZHec!`KytrD*79Y-b9(zFbVQRb#(4)k zIepap3yxqFc|Xy(I9zXVboAnMr&k94fmnTWa}%8Z2Wg*U@QfyHk#)Xjo_mAa+xcn+ z#=Q?AC@9`xBPSr6AW<~@hT4Z}FWOjPQJ2+4cRzgo{JD#B zPpnGzl`B`U17zpe(=sxQ!N}N7S5wi@a3)`BY~^XVDpA$?{rl6S?L~a4#KgpV*#pq? z369Vrc~*@F4<6Jx#QH_GrbxJrkvzJ(zgWf?5g2$WPkW-u$?QnY8?7A0Bt=&|=qV;D z%C-9w!kQuQIpFR;q^26`>gJL19=XjwlxrG;)n;#B^y*bJ>`_B2zTneKI#yOz%*<)9 z#4~+P_7`Sfd7K@)xXwh}S5d*wa~1g9;9|AA+|QPj!^p@;RUhE;Z(_K;ol8neN=C+r zhq`OR>V$Q9VS)W3x(++AE>kh%rl6n}#$33AI|dJsmzM`~RJ^}pClGX@yU#4b#`emm zJ@vkegM-Gq-)vD*{$@QNs$Bmic}sXnt{%<~IVcAvH9`o{-@i5OHaiW=2FxoPE31h0 znEIsotA{>+m`<+6}w!7*!Z=<`tPJbXAzFNgE(q}qM! z+1@>|aXsgV!e=2LhwXAqjEyzgu&gWTHatrp+=KN2-;cT~*g7+ls!B-1r;j8ihQNPK z1cLWK(jbp(!f!%DGr000$X!b-n}fa8o)9!nS8%Ge)+p(+5_jq!e2qGcijLmhENy~V zcoNpG;C{iKx@qoHxo>_PL5d=1#r4ZQc*G2wdwUT4@9yuX-g=HNK_S7)IzN=BRcvB7 z$w%pFav`)mdy#KK@+-~nT=(qy(JUDy3z_9RaPfr@WKC5%tgUV4JiWLHMirumg-J+- zR(&(_@+|c9^uP(peNBvRd%zPO8rlH~zjXWqCJ8ncm{Zmmt_Acyf#bB!og(I~vy+3u ze|oalo*lR>w3E3$P{R4Utyb)o&8)}JMJ`l6_z4C z42hI!!)34u!!=>xHuUSgj}EtfQ*hiD_1HFT-Vk_dZLL2Ua?4Ag(4b}{y2%=+;bxJ~ zBbgz>=Awu_LyjSH!e)%=Q&R)OIW;`|aO503Uvd1!Xj7~1LBpre(7Rv-t*x!)>O1`j zd&n%A_VvE67`->5@ybX(4Pilj1aN|tHFKS&xP%@pCuigqg~`msopZIh&-N$ntR{oc zl6WZbYn=b0H7K8~#E?YsPIjif%j@axR%IcTS5ySUUTYg&7$!xx#uF91I#pGo&gFf2 z_zj&Q%FV6vzOlpOaMSqtb40W2s~0Ha37kCvAB`1mrL$?_R;<*essW}mXN#Uv!U%L4z*zO21IPl2 z0=pI0FiP_|KVRkirAtT=&cWXnlHMV_mdoHC_x5jpxyJ zw)ge(o)n3Q8mc%Lz{EtzeIGH}k?;FCfh&QEn zd3G>sRPFp1oJqs!c2{499HdqSpFUMU@W!z}`&p;Z-`^js0ocs1kH0;eEVrTHd@xmH z+zdJ4-4qv2aCDGju(PwnzFC_nyTQ)B06`dxAfzr9HLm|4MO_)o`}AoEjKj~R9f-`O ztjCHBYFrH}?dQPr!q_v4+W&$L@I1{w&3ijEC1o12DsLYjIXO9IaLTU#CcqJe$!7*n zEm%Y746g(ezfOia??1HkPLc6R0;J9A$Hi?ur2Z~?&sBo9nAlZmwlo*+rsdr#p zAN$rkG~^7q4WNW`d#j_r=jZwKD~n7!VlU1%{MIhNg zA>rDBBy?)Mj!YVx4V+Z=+-*?h)ROj<+PR3{u~}e}8Htns4<3 zcaN|c0+~<8&fzdFB^BN#mQ^J`Vel91ehrk{Oag}Td|Ef>xOHxBZkx>_L%kAW64zo( z(y)jDz|xxvO{}eXyq1P4k1u)k!>XHJamN{Qzf*^ul+$qZhd#*hT2$NWbj<-^Q)4z` ztH_4K`LGrK!Yy%hu(9n_WrjU-G3)_u{hiL#ov*%b?EB(P5UO?DW)gRPOMsim3wXcT>i}yl&~MB(@cSJ=dMC^B zxW@I1HBP8}F{C^}9=EXro&x%*qQ5BDwMko`UN{4baQ^piEiJ9C&Q5?D|E{d)`FP%z zAko?%uFuSbvP7eVjEotM)E!s?*Yl9H#eS%g#p8Iu6(?zdG~P;me5U4XGGKbf=H`!o?=}q#3;+NC z1_l-l(bZc&IyXt9t!e)0rR9s}QfB^WsPC_;jpi>tk>OYrvX zLg^G0)|kM+Kz0re{2;WMnHlEwDgN;r)ZshK`~D)96>0?ZF!;*b$x5T$J&NZMgQU~CsxvC7V_Uk$Eu+W;4M z|M~OmvN9Lg#h))`VQzu~0|CmUrKN>_9xV6EX^osLTp~xED#2C)f~I!P{KDdX-XPe0-b;Fmtzb1R~|7JQ9HrCmJQgM)*IFW4#2Ig8%1I zC@BKrOh=AFAeM#L(FjDJMN$m1!fw{krzLGd+vwn`HjYv%1*O6qE7yZxM7>vnjk(@v z+NQym{LYV-AmG1jt8ZvHQ_v`DW4|B_AH2F4975}7 z%-({9_c!IU0_#VMq*Zu;Z1=;OSLAX#?zK4wU0Y&J5IXuDOuGTfv9NOlzQby|x~$lf z@5YT)aKjD`--^W--l%f{TKx=Wu9El?!k?ZHH8MSA^uy>{k6o=LZ>LaZ*NAHYzv}ft}8=-f%1Ti%@<%g2npgR#iH7@Iumhi zL*-e&${`THWbaVvGTvoW$<)~=<)NEJISmCVbUg~O(^aKN^^uq~z;oS$HF#ZOUX%>- zddJrAtAIMgrfCi#SrVZ|Ak-<^Qv1W2b7MqK53jR2;h>S<%FCtCPnh0h0^3DML=<1i z&&Synmypnte0u{tELaA>?I(+jaY7mq2!C;9F4LJxma}7NAIFcIQ5o1G1R|eb+zo_X zi%C*n;u7SjCMTq&@mrbE{zPYG?RPf&SBHbL60N!Q)gRpY*u3BZ7w%o+G7k@3)K$cs)P7sexD@`hX+ za5qNq(w0M9K%tnKEddpPiCV;7Vj&QFH1E*-_}Nmt?)}o4BAqW&-YYVo(YbnJIiNf$(kaWP7OOy5izUtS)f+-{ePjp;eUBPi%4(1S@^o@)p z{QIcb($WHW1JGh{KWspivlLMQ&s}pFnFft4MF&RZvoW?_7fSI@nVD!7(x;m7D|1AJ zJiRLIN@NRn$;SIb!i)0Eeve8iagibqPdzQu@{@VwG_<|FYd?MBJn0)8+yT2ANQ#FS z;%Rhm&{;zxCN-7mq;G7jGSX_(A}PnBI`m4a@jFQV|4r2JiyvbtXrz1)Z;)|1KG|p} zEG(Rjv!$oG(kwvd(2KR-?!*|>lVOq6_Is}VGt{V5CJ!1;)__hbfAa zJXAZ)pFTipTVE-|i8i?Lbu@*0^X>k<#Bd|zaDUuX3cI=8RNr6#rNWlGX_lpJ~1iP!B>e2~&HXm-h{?&A+1z&5C; zsjI81Y{rWfLZ`72xnFi~y%@I<7YZBiR};uddGq4O&>fdVHGtuO8RocoGsfrLyLaYx zc7?@txAlE}&%YYTXdj-RauXB>9>>>vH8(ZG4}HH4kQU&!QgVapRX@2-tI zfvvWyKYB69hKEph(oC|B%AS6pY!j}$W||>xdM9&!6^Q{9Ab|)rc64$gVUiRzX(fEP zUKappOSYY{(u7OloLJVQmtUJ9P^Rm*0q$fSg8BV5-TgWEKk&!#jy1s4N7&zZ_18tu zQzYoztJdDcE+D{v)&G20KU;&IKKacX{BMtcrjB*>^iU%&-FQ^+PST_J%NH9UKOqCF zt*cA6*bwgg%x(~Mk9{x2_zPhV*X=x)8O@-)?!?=I^){S&Zf-P+S58h3SlTOg4{yArMKtg|P(@nGZMw=_L>ABQ3wJ#MJHHv>o!k2Kfw-SpXzS0ik$)dKB>&8zJj7 z)%Bb@Se;e6>Xza%>!Vr0I}EeVPl(Da244hkc(oDt6mF8Rd-57eHTGq)F}wX;6E$s* zR&zt8NSvctH{F6EaO1Wa}O?0&M^dXn=Ap2T9shj0I zyBU>XF-aV`QMWT`Vu$k3OtQDyclFm4sLFCo^}YtO4fZ95hX1d>5n?j zG=~y9xO8tXUAe6>83u#q1QF_aKMeGPY>Al4b zrH(>E+6e$cnTbcp!_SW#7_kw{rBAMg8*x21mOW?UUmMV*m)2RduwfOtc{49J_m?;* zWV#b{?k3D;oO?EUXD1LSaRs@aKZ4*%UP$g-`D04dJ;F;1bCen7FYaWvuwgnNq^c{5 zz8;OlLj0oY*8AUInTvzim>y7-*$y>*PC{ZLB|}~YhlzV*N=}%e_#$<51++LC9M`M> z;a~drdtz(j{!kT6>phU=aeIroXmAvL6 zFkFsl2h)8U*Bh^NY0Att%@bNSviNXi{(pOw z2N8gi(B5x3PX)Jt20K}ZU`x$kRhFVyA@2g8})&hjq-1_?1 zi1eGL1WN9Do0*&hF}U&ny+gNu5L?m}%stg6G?B=zXRc4@Ucc}k;6nHx#~O*UUM5fy zA_<2s4^h_G%hU5P^#8=Xz|aHRYq|kJY}&YOGzi&}hE##k>G_t zqQ+)|A7#rh@qhaL_lu?$mt4-Sm0%GlnIlhQ5Qw-}2BMj5cS9ei{VPO{w2_f`cPW6 zfx}!ga;)Em7x5CFEi0EI5CC&|^KSDz03(x}`BV1D=dQ=R}`0%Wj3 zP5ofS262Wuue5STf6~@QBBY;jaYNbnXr4^!EG2-pr#D4HM_+$!aq&L_K^c&8YwH4l z8Fv)05q-$epr4rn+*#oa3>>t5e};zxumhfc_s4?Z6rxmyV7$%&{Y16h)zL!8&jCP` zbX)&W@GUd*8R%p{I}!Q%^)dt)^75BZ3qT)ZawA}E1)=55>i>z&H$ON#KRKTcMIZ4X zCq7jv2152)@$K7H5$ku}zX9Zdtl0T)tSn1WMTHSyI}qdmKL^a)>UxCnJIJO_Prdgu z>g#<$Adz(45z*%maNSv!Rw_55fEr)#YZZBhx0v>y)1w`LW}o8uL9C78C4mEjL}KON zKcE(8W@d^tOaLRn#=)_gtSl{!Yil08P5i6f30j8``!ys+IQ^IJw$x^8G%b+N5WD>q zxRIm|DfvjmR`Aj#1r3N-DHVk6y>M_|d8*Cl?=si{8~{R_u{2uC* z&Vhqq@YMXlL!1@+rad(Pn;-TyWA;F@Ex^F1O+f@}y+Gs83Yn9xh#|g*I$qbMP}mb= z`)AV_mdYbfJ@mX=m=)w)YM_M!>K+(<5N`qO)dwi}dqFc_5M==2`G4`wCh*2M_tCLbv4nc!2 zCM3Wx#=d#iVyyj)?8w3YsWx<$<>L|gTzd?gm9-tp((sNMjp=hnOHKQ_sZ#OK4s)r1|Hq{jo1oiIx9%dbk>@Vio}b`h6XKT%0@GlgVf8oMk88LiZt6Xkb(9|0&=qi@r7D)!OXeZMXjxn4q@5F?rR<-Q6T32SLx2JGI1;BDz<8*6Ui*NO;#8y+@0{Klczy0k)5vNVS{+~YlEqX`=$@0MjQ6E<|p`wp~N_jNfV1v3i5B#9-<2HBHdWv zpVhT)3(_`_b`C^O(eban(c==L2cMuWksI`qdyerk!tzp?y1EoN9a)2^PH+R)oqQaf zYK!PCGt#-iZ+))|cie73axY)op@K_}?#)<;MDyS^k3c;x`zz4?ub(N_t^9Gf$YbeE zf_k0}p#$iJ+0kz@zZx|#QBv*#@ImAXNiFiWNX-0K^Fh2`y~7!>ZOVvy2Z3Q37OTe`8i{P)KJE+dn7k>b4T= zKW}|BGE|P2a_IYKGGkNI1t5Hmyw7Vk>Ln}&K7wu&8C00c%gY<_`n4#Cd_WWc$g?ZZ z(vYw_kqIEoi)zFmgM7}#uG5M%P$$6M+vFZzTv{sBE%{S-F!Q$8?-l@Q0D&+A6oDZu z0Du@6(1am07cHmuWPN|s`Rd{;8?zYcP}}DZw;dPSgKNM4{AsK_BnZrV&w!upaQ(kaHJgApG}3JB_J>HIKa=Jxcq^s9FQkBQ2#>>mcoz^*xC= zI|2j*01P1k0Wi2Hu&K0Z=n&?`rz*vw;hsDAWkokGT18Fos2jn!2OE!kHLx-_ZbLw$d^f=F1~#E@{oxWVIG{z0JBZL)uCXQL9ZB)e#MfO?9s!A zWN1P{LL{oOu@PWR=psiT$Vfs-V^dSVPQcOyBM#~R(8|MZ%=W>bR@mq=62BCdA{ z9GhF?OI(@LO*w7tp+qC!j^A5IP>G>Hr3APOHwignXtYirHgJAs`}pm^RBC1abPvmV zZ;a;ZAE0BPW-ct;09!fU3R4THC=Crb+Ry243L-xeU+cf&g`^fUp+qL-|B(l@1sfZi zk`D5i$}`wlr%VL+d0`i`n1?1Q1p?klf{(ww zwdDcc)IpOJF{Za%EHR`^?>j{qgA3bF!BRO81{jog)89-&tdj^4%f-u*Fd^J;W8bm` z`P{_6^hHaKm4}Znhbtc#w*08eh#{4{IByEov%_e^euG~dKWSL5ycEeldg*!lb_MwH zd}%s_Iy1P|ir)jD6xdyh&A$;qcfKU`l3}!yAR;OU-9tr%8z2kX3=|0aRR>fFS6pWv zOGpU8aRxR1#MeLa%m4nRyniod(i*;^c9U@MCkhK;278H7+ldu}yFmu|kO3cIe?uV1 zkWz)De7@!IH4jl$g_!E*~Q%LY0a0;CZEzGt8v{Du=*^X zYZhNEQ}44Wd=UZq!5absMKfCdz?WiXA3_>IyvvC02O|7J6L>r5J8pG!WcZh`L2U?- zJn+^>hlizBqYr!~f{j6DMGOuSR>0rYRkalHhl?55{sZjPx5Aoo!*4l0&3&3qMb5HZ zsuNn|cX1Ak&^S=0E5n~8gbtf#FY6R56R}G}TEGCgHkEo`*Dexg;uC2)e(Do85T?7m0!{G+PeW0&Bg!vqoQU@pVOg zyy|xPpW6?|#-hs~k$l0a@`L%~K{ig<4CK#^(!}_9GPHTpqmg=OT~kY|xv2>VfMa0#Z+tUD@VW{|{PoqG z*qRoepPfPJs-0W-xVCKvUi1{|IMLDhE9M)^gNKE96o_wC;If!DhNnuPC&sH zH_Q|jTLI<~GEKb)Ugt+%b`2kgU>aCT1`>oULu)$kS zN8W~sk&OG7m^9`aIQ`ebYU2krVS;_&s=-EEQh$ z3Iwd+B!P2;9ZE$?`s>f1gm>>i#|2dpA-Y)z;p(JT9{eov_puTbLH{Bg0$BWGhd*GT z9gxxkBk#G`8Na*h{Oz%%^Ku{T$POKqRrQAtpPQHnLPm5|@I`yt(US&WAK2-j$AEDJ zb$(xi-vzMvy-C7deSPX&luTld@?s4X{^f^iyrqnqEV3oPz!Kg!08$oQJ#ZYMEzinZ zIy+ZjNwF!0vjiR<9c{VSLOPjB${Mc{)KtCh0IV}T)VKg`yr1#*?H~vWEGH|0tsNVC zY|(I8h&Hm8{9(VT9k!nngWp$*GmG2Rk)Lri=oay3Hb10u!BX$+>njSFTm>98#YnlX z;&Io{pI~a@?Hugw&3~;^QBqSw#!_8bSwxbOk^)n+qei-?U}0@730w$_=zaz;9037$ zZ0PT?$BL&0{dvV!$TK={S5|boKd?$FV0NbR{Dg&-%n{qp{ee1V%hC?L?*hGMd%=+( zJjMnzl>k-)3a0L!-_O<#AqD!i_16dxH$hH`V>AgGOCVfy$-mI2^)Br=e7T8dzmOdH zB`EkgMAO2h)SVYPPHmU*?Z?C#1;PiSyt_l~L30ZEn_j8825d2Ucf%q>AQ}RrfsHPI z2Qcwd3yZwCRIF0jh#fSREG~FQaJG;hD@8KA7k9}gKL9Fb3IaYLe#XYeNYS8N#>k?7 zoMQ>m{0YLg&kdI6A`f+!G^F5v@j5)*bVJ1x>RNy|aP58ro5cR?cyE1u9V%Ji=`}8^ zkF;E|(sAiD2yhXL`6x2Ft5;Q1C67SPp<0Ez3`-t~f^WlSpbC`-IagqGuk;BI@a)SXXNP0}rvPhxdNS{hk=yfD7HzcY12gtUA^=U5%YoR!c zGS#wvl^Dwz3#|T1POv;^VIivq`NY|vnv9sZ_{!?)XK5b9zgK!({+{p}FMyTK$zc+; zf7%|6$|pg}-srH*sNh8YQw2Aq&IVB>$OB;Ro*PIb(|?0oS9cQD{{V#11?XikQl8>s z%{?qE^9XJXec_c7EB-EatOIR&2eGHUxW~gRCEX_Nf-AxwP*-1wc9w^VNF9N<2>Jx>XC)Xud66eZChdFrxWxfsj`foOw@-era1$Fr6ab$E zd&VOHXBy8&0r3b`8;d##iDsY)$R9%p;lPX2{TnXm2U>A(V89UsP=V3Fm*|eXtWn1r zB8Hha571$2g2I#Y?JoZRDjp!L|MvDdB%v@h<{>(veIVEbQWk_2&Q4BVkQ0lAUy<#G za3@{$-0994i07eNrxG7m_6&2)N5G0QJp+cOPX%(OJxE7n!>)5Qfp8i;-0;>*kf(~6 zNg`HoN854CrCKmm0+4F=3~gbvqx%@)k;~XE^2-|=GFBrze5_dNY?w>LE%N4|zFuGN zxyyxEL6oT@3|@8ILKH$Onf?mK2zdt{6LQ8$_7&<9TUvrXt0P2F86A8>Xe{S3Kk|&i zLVg_wggrLg2-vN2Tmf};UD{JZ7##6%qYDnigu?dhNe~1K%c9}PI~C9@re5TZ4(1nO zNJ>kY;j8L+@L3nUBfl2)v|C& z6rjmmTo?)e8_I#-zm;mf5QERZGsYE(F8Da<@dL@pz zLymUus6BA6A_ot6FW;th;+qZoWs>Llt95&qMXUov`S!mDdydUQcNfF=a| zCYu9AK1dZ6_Lo2iKQS@kNKaDxb+>?F{zX44KJiaKj;!-Q?HUg0!(er$B&Qo^gvbg)g)ll zN$^$Gm~GDT_6yAgsAoT3Uo`vx6k7v!kQR-MeBC)#5RG+XD>*e3Sz{ ziIBRY*pbnHK=NF~gD(0Q&Oeckj4_#odEmv?n+t5e=p7B<-r}KDj{L;>E19vSJ zn5l8IyL&e@DylacC1?5%P*AW~-IRn}_e_aP1OhEl?4zytHD%r|0qIb02g$)^6)+RI zRpfJlS13T;0|^GW!RMIb4vai`baWK-P;G5XAm)NXfn`um-o1+v3Xm|058ZE+9bD9j z71kIEHT`pgLX-t+Yun|3=sSN16Ju)~yi>m*D`9(nm=pis<9xPT|>s z@C`t{*fWnGugREwb~T{v1+>|ZHwboic0gO$JkuCUI{)ie5vYhJM4-%2L#0#}8QQbN z8%n^xnN-?dbV8dbe9+mM-;>IpRVrP_%>uG!&=ewtztHL4#a&r~s5yPECC{ z8wad}HOAD;3{yruLj#e}+3{*2(FYzmWaIn%oErtKM)H~=vCHvNm%=_Ad8hiy83wTx zLd6p@H2Q{n^XF6!)r7nlW%k(Yt^9m$^y_-xSJH-eTClauFVsC>Q}O%0X`k|61(qr4 ztqMg3P}Y`~+$T=)50@mor}U$U`=SSbh!EG)CnL02Jgzp!SiHlmrd- z6%>SPf+8YJph|-!11?zSi{9{kuaHrycW8iEq2`V-~=?U=XLrqPn$(Dx7T);|&^fk#SNENS9#iZd~Q5<8z!uId6_$m)218qqM zoRq{+u=L&)zc5>0MMObswypoX=TyrOTWa0zJ2B!r76=cszGe%aXJ~V3kqh57HwzDd zC-bqRQ{Mg$Y6)@H2|?{7D=xPGS2?l!ADyV3@*gh9@8@x3im9SdMiF?GYbVndOK;Fd#AK0+`xRy4-p{{;To8 z#n*KI*bvef5r{9T2mfiUu zL6fgap%abwSWpxLa7Xsafpi;Vf}Rev!UMs~G73X!XAg9>HyXdhvJoHzVh&s1Ea&Qf+}rR$xO1+sjAJIC&eq4n41LeS##phR#)8t2<7uF(DeKKVw0za{t$&D zhnr@v{%lh3Z1SI?i&AjLLTKZMMw>jAr$P8XIb2vI?2eWpw^;g3j#ie$wEPREeX26C zi-#~{_i&+;HY1D{d>o>Og)E=0=JopjTB!f-H{oi_BbIAt4s{+ii9J=>{;sqf2A(MW zvH+`g%(CPQW8}j-F@knTDc)!-U`TPvjZ1FC$J!OW<^ysS&1!8}tl(_I5ynGU83|NJ z{vB3pKD9Tr7wSMnor>M>WA4HOO#jCH1Py6dvT3Ypgyxgy|f)l6Q<}mrRPhS%5V~Ta?}$Q*ic5{eJ;1 zqC1Fe&Z;K95n%a*%k1t2MFg1f!>qbOR7Gq-rCf?%0H#-^c+%bUfd=xUiv$YViKC&k{<%FKtq;~P2ba7UMS zUq>6rS5%1cPbdww{LL!ZfH=nlA$}Vpr~3(bkxj`QqTT$NPUAjMGPtO-jetB_6B{emZvhn zlI?t1Q>}HDw*>MS8eZ7XOM}Hh z9o?%`3j}@J(Q;N)(pV_epQkTpKeM`1{V-WXb?qvM9_ZUbH=%q2l804*rYKGvKplTW zmGf%UBK?z@vFg5qFC6=X2*gB0SH~>?zA?qJkR$+UGP67L;NPr-=Y-dI&s%QsUCx&A zFLoE(BkBhZCT&7>W*{Va)-B2kXAtmkb8DJIehK9gd^|ktfu~1HX;7aAAgnIvpP)Dq zQyh}B)&s~oYI`GPM&y-=t2cKf!SP-)bNyNVb;c&E>-_vs&LA|Zv78BcF({!O8H4!5 zy$=OOQOlW-wt_&JtD+Y)nm`HYKq3bx9spd%Lh@Rk$c82O<*!n{8dtrgr%zc~CQqOKg8b_W zCR>Le7iTzx0T^Rm^3bsm2nlB!{QPX_wJ4$X=8?Ys)UMGby05?;=U6bf4rB1df`T70 zI#R*Lkeu)B?p6}ZR{(SfAxdz=9H#EGDoX@}nIPhQW@pDwiX01pa~8Zo!jEHQWn)wK zyo(wl)cp*=)BzWi@QFalIdw}xej11Ih!14z;ngcTP zuUUO!5SfCY^4Yh_fXT^;iIJL!6>?)(MQ|=lLQ0B_vGE;^A(%`k@SXWSx(`AFT@w%r zrd)em@*-kDLiOG~31IBtcoar@dMi^?D3MxRUN*P1q@$p4+FrN|=W_sGm=GWT#i+sX zZw)vTciwJI8Q2wX!ow-?gMj^q@_Dt?Q>Ud>ptOctTAl-(17nL>%T8-_polKpqz#@E zhdU8H<`?0y09g6?UBKxK@V*JFkDZlWUH74^9k_8)YU)-Op6bQjzk|ThFastJ#lP3z z%!@M^Xc!u1+9Lj|n3pg6+?W(==1E~B0I0y=V=nowK>1Nc6z?$C&%?7OJ{e4$B z$FBBG*f0VL_w=kTD--s@$^`7N$zT>y`VgwB0lXi3Li^GZpv6eqo0;%TkZTkd75##t ziTUsWPFY%njHBUtin#~t(BL3c#;x^2HOKjg2x1~XGqVZOqql0(f5%HWN53tTLKF;K zBi`l9=YY>&zkXdmBd1ChbIfyp^{)Q8U+WY%sn*GZZ;jjkKJZNb2Lwd?G%f!F{y?YL)$beiG zgEN2LEPV)qW!TIB?SPnD-@xEG=G+?KqHl0<(F(q}54jSoY~UXxEe63~>L-+8Pfj^3hlQyGTrRSM0TW#Ejymc6JvN5+*`}aLy5&nlPqI z3+|?PAMOilnaAY*ATfef1@$K2klq9L0LcOzFLS)Tc#qg*gcz#3?0}U3!>7&_hdCH0 z9m?ln^?p)K{!`}yu0 z2%cfMKw}H$35a+oLcx+}D(!=1z`o)Y#2V`gGCPdw86<>hg@hflad> zON=1-HZ-hcCm7C=?_v7NyC`+k0Y;wd1+R(k>3rO|wBOdv|NbN$WR%K?=t{CbR z&N$RaiaTPcCxK0X9RUx3t7XCSH!S}eNI!k%OkPe7WIKm;p>)(uLzDlXCjpxo+Q5ScVxkGxQ`E!!?*1b~!>;|^3}f6sl3wC?{n-yZ>l?rOL$^&F4e2E?+;%i#5E;0GhAI= z4MQo@LF7MQE>g| zpBsb;Bp7dDW~gwdaoNEk3%5z-@^ISW9|s$@uHQ}|Tv-smx3{;zkCoL5ibP6sZbgN> z+b=3En603SxdiK;(9r!^?d8SA4G+qY%)z1e^z_Wj%R}^ngg|m=hqPG_055>n6m4zL zY2ft5`Nnx4#P7*8jDeDA8k|-{TA%Q6lY1l5>r?O`p3e4OVxF$V4Pba~qy$x;2XYST z92N~o+1#fCv?jMV2= z`*_7ywad2@v5t|bN(>CRfY=0`3xYIVt1GNSc|DYT+=G?N0CXUqoE*lILtd$ww39@f zSDF%cTQy0cWiybNWotJ)w5MPO|7UNn32x)y!778dW=mZ{VOU>-xE{2M7UA7Kn2d!? zC}q6*_|LzSrTzlfr_ap1)Bs4s~m;VF0emIhWXq9i?j{5VP~dBr~OFPeSkCu{%&QK{$dA10fSWYcN9r5?jUR zL-_snk3V3vl?G<)nXU4bE>97i`1}L=GM2z@nN63*VpB{_S1^Y~U3P>lXDM5*XioE398y|g~Of79~gawdRu$7rM$RV#$5~{PIaYZ~Ajf`BEvyD(j zk}q<+j42Q1Kc!`52u(0`f-T>i%-*Z*{8#AlV&0`e5(?RyFqbdWoxmqKmfH z@W26V6PW+qUPXd~(K{iXB2ez)Xm61M$<2WO!9JUN>g``_4Oy z8?lXt7)Rv73c(?yn zRpqQoB8lxe-~a5^EfUDK2$3NdFZ!1D>^<`adUkbo=H0vajHjpry+h!zX*@riKyof- ztfT(+>#s2D^G23{#S~mtVE0Ajf(ww;1d@Q|4f#F(y+#tzn>KIOgI2bp!tlUdKQFJ3 z!>d1>^z__r-`P)pUL*PX`8~hX-PHxFKln&WNJ?5+SnwS4@inVs8~a9-S6X-1KBQ}* zTvogN5?dR}{^H`z{w>YTWFnHF`mS9G?ZeKFj*9@dcQ2N#)g_ULk>L%IbS^!>FcTd` zUz>vro5;mZ#YYzW5XVvV(3OWut6m)Q04pvXN}B+D;mzdf(MMVRgP7!C{~lJ`WCI4{ z7V=6%`aFy@h5>7=*9|Fp~=?Ml?Wq3OlU|XHer%Ex)AjtEyHRlGU!l0Dh96N|}KR5w}TAjA`m!05BXlcO+PI(84 zPUKV+K<=j}hfxTwIz_;t6+(D8NrKw3cI{g58^EGw(`{{St*oqETr$zFCgeYa`tGXD zquG)a9Ax}0npa#k69vM4rQb_5%Ap?x00B{(=ppFMsK^nUCn(ESz6#JHinmO@!s%~Gl z20m*vh)>u0Ph+TqgB%sUQTJYXt!lMlm*J_GhJKmK)z#FzdO26BPBqGmIIUz(f}#xP zDr`eq$CvSf4DK$1s z!M;?N<=E$<1ep%KtXDkq0*;J9p8HeM(^-g2h`A<^<2N)!sS+h6C54R&^73%BEnX=V zg)Nlml-cDd8ME{&bN6jiRE+yjm}-3KBDmsMJd{Y7-t{-dp?(1p(zB965UAk9EyH4j z<>BFhP8Ij~E%Mo2n-{YxsT0P6I_Rw_$uvC|STMIi5LtwvD0ZUf4Z?Gzkh7z<_-=v~0UH>zRI6VidF9ws`Ii%mb$Ym(hRE`L0znIOix+_-U~IL-{iJjS#5WLV77e zHbzR)5h=|KAaK*Ov*kRV8Bt@$4)+>XF#1jY5L_odtVF+f_6#jHn6`b4Lx&pCuN_u9 zQTXSxuT+V@6cof;KX$8`&#uxIDL-mPsiM71+^(t<#KVrGsQ3p%f~eKBaig%M8))6|%wD_7i5a4&yYSsor6qkV*DDbf*q)gsNVsC))xl*wWt=R%TV zrM1PcxBACyJJ|6ZFf>$U-=Ph`b8@SalC?7T(Iao{Vx%`lf?dvfY3at!9IY)s!!ico zEQ)AYBvn>b4IHGpB&uG=H8*a&iDU&eKBu*&rUoRV^RCEnps=+MD{kLz{P_liBj8UR z<A5HN%FW{rLj8XWQa5ZXba=Y;<&V z$oL=TTsq_~fM})?fQ+^e|25Iy*SF_X3lgp@GBrYr^36wfIU_+VCe!d<*K;^_K9)Y7+=Y58GHg Irg}vE7n?1V1poj5 diff --git a/fig/linear.png b/fig/linear.png deleted file mode 100644 index a0d1a95f64774062a62f1712b01105a920dd4272..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 26326 zcmbSzWmr{R)a@||6_6AV0qIs!T0o?`Te?9&x)nuQT1vXR8x%yOrMr~w?zr>3-~ImH zA9wpaC~)@LYpRCmDvi$G-HGf#b^q`iOH}zSIXbiQ&w%{UJV%x@ zhf4TssIj`xeY6qJRORJViceq-7B1F!!fj!Dhgm_JSzJT;pD%s*k_9y#wrXi+{k})? z_BJxcXQ3ewK3N9&_3&_nFjX&58GS?h$cXopiA@ z=hWjb3X6z*c>f+72Zt_j@A%kurlGcu;pU0%*i*l~dY9d&$$i@+g_8tliQEn*vrV3g zxfKI>^wl^tvO8UKeS+5oHAMCf4$hksj*FeqwmNow-}no#Z{PH7Y`pxFD$?50qO3mC zo5b7L(6H2-@wBXlT`~#1tB3anX#&>F)=YVHa31={{H}*F~*+%zbyE19lT0Y*R zrlwxYTT6JiF}6EaYS`Tz6d0H#n^fn1yd@DyeYiEPMTX_EJa^~L9SI2uCe4bM=)w;^ zkog53{%s3tX=z#NNhnum6#lHv=yi2b>+37j=yu4;##XG`7#|T~U~4lP6D@w5l!|n>?bY+rU9zr#tFn^GFn3~NLaWM( z+i64H$?50=3MP;9R(C~E+h46}n?|q8_$+e*g4j?J-o4X{h)U5{uguKNYwPNkmY4PF zotU0KFEt;`f|()}@F4S($HjZ{L>3kLZ9Z0#>e2T3^XHP1XQ}dLmX_=5>-jsw+XMl21In28XDr@ z;boR=O;lRq4U`(Thnkz4?_t1<9j=e6orv?kc;WZ)WAx+Y<5_PSzm4hoYIyTKn}C1- zJx|~6C)3^C(ymhZs)eZJ&f7EAe^PF+g_f7I$qd44C;P`mMk=|u)USm zV;o^dM#dtYdeyQ%J?~3VRE=_zkd{+15}tRoaE-IEu-LBrNkz|Hnwyg^>q`~!@9yrF zbTWf6hrMAgNRWdMo7HO(qeZjQ0`2yD82#B=2O3IBqwhX9{IHyzk0ThE^_mh-C!L|0 z<-X+EdS~08pC9^Rv9Pe@Dt8{x(bB$kaF{I77ZDf#4db*m+kCxV+-(2iv6NI-V&dad zd1moYUq<}e>H z8qAWZww(vO}cnZ_=wTM#46_7*y%Q9hDI ziBrO^eWSUzx7Q?}H-P;9)2B~B`}`c`_U)-g_v2q7#PD z_}yoq&pioT?nfK?y8nKBKv|4_hJ2&tm6aNZo)FNI1Uz{tC_bPGySuxyv6Vwc5b(M< zfza8lFc!_Awzj^0z1PJ8@fIGoHC|3bjvRCG*@Z4OOPbz@Bgd(Y0byawyDktcsH(5c;-9daVUaI%$Fb?Tyrw>K+89gy^Arm;A|j$` z^-c`FAH>-x|6PLaug^v1qpx;aG5x;GdS5qIs7T(`_ww>O-kOdZf@#t7D(d_2C5?9J zWav6rZE+z!ko6G_MrbqQq39qxj^ASp8dg@t8JDvI^Q=#I?&1F?-rwI3 z2@ZDQ)3vkPC73~>K9Vf@T>)XT{nxKfV!Z~JA138-g|5F~v{1<*f-%$6EArS23Hd_M zC@R{@S1XpRx;~n;_4@+*)H9Vn=WmH6@zD2{7K4S~;d}m%G5p7?kG7_Hvld}KumcvB zlf5~)xL9f-Ug4mTL&m&nnS)hD?dKt2{RT2}9?!hPuV6xBZp@f*9EReIloT>DvX^97 z-3eUV`Rmj)G_W47AiP1OnS$*`XsQoO@%Jq9^8WpW`~eZWdaXSbxe)*WSl_Ux!a_n0 zcXxO9_ULOn0U~tIzZFO>c@7J+jPKugxhWbsn`tkjhJLlpbUcS;Ok$$P_0?rW5(?%M zD_h&^Q!)Vo0ht8OXhEylCjR{}$S@tmhX)5!)6-PgXbw4L?C9II+HlAEP%ee{Sc=ds zEv?Cu6PGyYUlq?L>!FiF0|SaYuwrA&%gXLPAj&A=`gSVKI*vJvD;slzBS)?HTTA#O zDJdyoaSIFj{b#JK5Y=E2ayu+VZNwxbNTIr3Uo|#RF*Dl?=c&N!$Vp0ec65YSn;IF> z@|kzA@ir-?zYY zl<-UcySkh2+!TUzWzzk%KV1xS@7mVf$*HPEOA?tl=}u#?h40_LFCa*pGZaL?f=Zq& zmk)tIEI8O>_pc~GoQ06gOH^Ep;`q3@QgucpB_%_{e-WGA)oDXR%3@+-Spcn!A@2zZ z2?1V-i;LU)mVA96DEQve+&u2fmoG_4))p3$sIGepXyh3Xn==~~mmWxqi_5#*GLJVY zRY$iaQ)WRGmjBS#cWG#^aCOMX%bS3N8jrBC)BX&Ojj1>7J|rQTuCkuIxVV6?M=SlU zV`E=?OtLdGt;b4y(`Y~9;q}^`JVBq#_4|@7mkc{xmlhYkHktN)lcwtE=zypkqZSbx zD~4KHRduy?0{N1gn|o<#se8VeM@hkP7O~xU7#bE!C(QYc{yp>FUlvT9n+{Yqb0K3sB%9X579iGMo;7wf zUWr^t63P7T5F4sR{4p>|1um}8Kp%vrPHCF4R*mVU6x(;`yDfVm{%kF*1Dh z>ecCM!e={h&}(9}u((*L z*W5I)7RAQJ1%L&j*dA>9M95+>8|nG^lg-}V;o=o8yMN1q$04{mEcXVq8R+TF&dtqj z7nH#0BgYG}okLOaO%qI0?q^DRkT>=AB;8|~b=;0N;tC53TLQTA4o~HpYieA^%ZwL^ zL%8wl&HB^Q(w=6LxE-z;o0#BZVWk{&y{eski7W_q8fO|@*)-xJXo5W$+}+Os5G*e( zxw*PNHx+p$DhlAre03lb5F$Lnpw4k)EF6m!GA@H!QG@IL64VWw6O~FeCE|;3=n2`) z{=n_C4XzGbQ?*W;6P{j$i5!+A>gwtRkTC(LK(_uI8rtM_c?LIoU7ea{wj#6T+HgK2 zepg@LHca=d5_xPFOdd;eA1Sm~VLn)-U5kx}=lJheNb}WMJ`BM!*US#Pr7HLP0&1qHZUtJ%vF z34d&+^U4VBM$0vpbERl1)mf9bOHVLtcCw<2T<*4$`h98j$Beb&gE3mpj$yYLqGe}~ zS|!5{_!{SA4`XH6Tf7S3-Q%$d&or#5=EFNNoMAir3=O!rxF=_4F$Ecbx*%%#eSuMm z-Z+J>j}&UfZgd!wdYvv3oGR|EMjM;OH#sba`uh6D#Ebwklwzo?VCbT)ao*O2QNo*1 z1lV-C;CvcwETE^h$|oG3#m2^lgu3=GDJaq}&yQm_S|9&n;LeQr(ML@DK0ud$NXo{ zv-Dd(QH|EwFG^0=IpWQ{6ccNQnC*2HD&+Vh&CcJAmL*mGmKYz;O8e3aWLuxZw^OOh=4~Lmx zjq4sBt^};tt+cYXrm3OvoTRL*%--H!fb=4NrpZ%kup%-t(xXgFQ87ZDv8uXSjVJ6G zAKwLx6T3`(ZEbCRJploM_sNbB8P>CG`IrOv4OD0lNufM5>4_gM(n&C9*}Uxd{rh)U z*S}qty>IAy`}>1~gOGbAc}GP;vsNL3LoiXM#MaQ%dDAOi=DBQmFEq4`D#=;dIu5V${nOH!n zHW9`OMI{tH8X6j}U%zH%W=>Ad{i$tz*cL=!P&x+1ZAXX1>N}#G*I0fCL`whLU@QcJ zo#_4l&sR+jRN+$f2K&X%vg26EOguGdyzJ6q9qPyqTkRrq_9K7Uoe2(XnL%99T&Hde zEWh#baj2~6+^>Nr2xQ0#92^^Ej+T^~!IVq?+-4BcXi)OYYcAk!vr}LiAY~O^6KEgk zo4^lbw-JbttR*slMV?S41MqP_SV^6cL?B+W*$tme0R;n92*4?G2z4eVSwsvs;D*dz zrWQbMP_D!Cpf+Y`oaF)*h=Q59H@h#aa$1v{-Ey*~urI0JS%ssFry3Q>O)U2&!A6J6 z-PIMwdKK#Q(kBQ+PP~DE!NlR&^TJt^x>y==N~V9FvmICNG1BX!^`pm_MZHYIIyyQ~ zTtKYO(ED5xLwP*7LaRHE9B;ZGhz6;x9}sQ1So@ zfprAXL?(_^bVgTQy#}HdEV??!^;p09I2=O zYC8J+*C0L%NQfbw&qSynk%JX|!JXq|F@_=l#q8X7U*iUKGMPc5LlJ_YAal0!mOFA+ zmYp)W4rXtpe_pZ_|28OXI(w}$)4>Yc9~cwpiyzjLu;tZNLVWzC)zxvxv@FH6(USM> z-IGgvL2e5i8hkACkRYgy?}?nKiW(cy`9vJqP&Y#e9v)ulxK+qm0q_;sV>vd2QOQa5z9yc`W(|Ae;^BF^iV7t6EqYO{(zBo{DJmk# zD@+*~8Te;s+0(FgHda<1hb3vkWV3MEHS+a8kay6KxT@Qnn4 z$m75da$MS;?#4Tk;*C-ji01Na85!Y(Fw=B?4l`6~Ia*XgD(Y7pdrW7BPPTU=Q&Gd5OvDE9z?*pZ<( z3i{Iik1#eRJDWz&$jWMCaq%PWZG=2is(g*pbltBfx}UP}vqq|>-3}W)PRr_o@}3O2 z_FF@j1N{8_js$cDjNZ36UHz;kr(u<0z(#67Fi-|!U z`WBK0eR1vDORSp+Wm{ZP$L;Cu^vYPHF{hTR~ zfNVd1z5*y`)PXH1*!E zb8>RBwbk(Q>=5{f-o8E>zx$7#%|XzYie-jv1@wWWj0~0EZ4{I+Qo)(tUYp&&ZLp^S z74~#@YgbumKrQ9r;qg_#!cQk1flwLByzTbt^FjW!pMGwX2LEE0x>bO$V{BwcLv;iT zW?GkV8^&J?&#vhmhzQ5c*O#^zC%b-FTwGkj;;_KQ#lg(O*<^KT0H|hH( zgStAH9oF0|NWK6!5fTzYs4ys12XN2`une-4)J*ouJw-)DfPWO&0et-Y>!Zcj4=TML zBHuf3&AdI3JGe5*$SJ9*k(4Nv76dQA z12oN4pY!uAfsov{g>RQgi}jjiB_wutcHTU}$Hxb{EqZYkP(-oQH-V}%4}9*5q7v0~ z6JE^610y3>RcX;e$TgzCC>-4NmgnW0iEP6Z6Cf5=D)B`P+Ae ztK2)O&b7U0+mrCcYgB~%^x@{@sB~->ceA{mFRj@5$wIDDcGUJ065-TmkeC620UZqg zU}BOdgSJVP_BTcAz;>i z0UZ3Ps+^RRR+as5X=FB=0CgGnV}fdvLF&^mLbfcA^3`TEQH4GJRvV7H#w%Tq1d^|1hP^P_QEwnDZr-~W#6-+xHC~gNlk>T6Sxxw=gD!)N zJcF_Cst`}oIN7Rd+9i3s#Jqf4PUt$xz(C!UOp%emukn+LtXSGI9i4Ad~O;*>l*oy_S;)@10Tk5f5 zGBZ27+I;X=SC=Jp^l5kwEaq;?Mjs!aT8CxXug~=7TRsBmHZwB=v2nW5y*eO30va)k z2UsvuWA_iJHVhJ;gH}wzXK|X`C6>4ln&<;Ddd4ot4-Et&UH)m1Q1}jrG75K}6pZF) zkByd|?2%dd`X2tJVBDgKr6hqWHV}^iUPMyM64E3Ai>}pl9S8Z(wziL0_K-|tn6zXQ zUxZ_oK|M)KoUpUAgU_UiB@C4uu(~wDzY8?VKRqDkH2RGt{5wrF2;&Lg31H8S4J#%l zCf}EHE6D3)SglYPImz^r^$HA=GNVlsJx-lb!Mp^~%xP#Hj9E#h)}_EYX(e9*nF*jD z5C8@yCTtqR@^KcuCM%H98bq9&oIoUm_}NkU_us$8P9X-9qZ}IFg(3u@v=J#h_6>QAUsj_Nba&G;esf>m zJRltG;%f5(sU+-r_B*7e2So1x?M9G{Ssi_TNCAl|2}!EC0wE$zy*^pJ4WtC`3!&(2pF6Rn~RH3axz7GUA_*^`!5#ExbV%K zO2rn_5L~&;cPxG#svd7yIk=b(-_?;5a5}U)Z*LKuy~YLgPtvrwSgX2sW~NCY{WXBS zNE*4A4kO@Byss~hSNhXoegUFB#KQWneS2(X=3D#uF~SHWucQA_Um$Lxp!ma-^s`?A zX$JdDLrZHkU#)L^+!fw$R?mrWK5ddC@K=+Q_B&#N>7pA=`)QL`8sidyLHLk}Ct5_e2$pHwyNG&~E?i`Zb$*HR^LI z#)hGVr?f*wYQT2P)Nj6Iy}}i*yeV;stn5Olqr*?p z%lBe=O7@?S(mSGRg$^G)bm&}4EjIef522`942Ck&(N|QXv{4=QETps^ZlfN17T=;9 z>0cMTMK=AwkzAK^o|$7hnk_#-^5_$G+%uN_IZ1qf!{?s&wAAGAL{#tICP(=E3jh84 z{o6GcM$ehpb>r0d>C}j@ZPsJv5u2gToMJ(JwQM>xWP3f>dM`0C(ik1p!!K)o(bpME z=`U<<40;nD9*!RFDD-@eMn!f{sJFd~dMeeVCfCZDHg)wPMd^++OWb8cu->Ewm53@U z@{zBxl#Em#Ig)?FSZO&_?%$Hv)c)$|5+eQ8mfP^2R-ZVPp{f9U?qv^w-plJpuQc-C zIp?tR(;4;|Fwv+*D(tH#S|m~r*SrG|ALOuYd|fYgIpfDRtRh-3f=1`IOM5pTLAfM{dzrLwdIR`7?!{lr`0)EH@~(36nfoES)8I@}8VqnTF;m%EyN% zR+$rNy?Gxw7fOP=l0oqmg?v{Cx2|k1A4yo9iq$7%R|q*xfb2@ zH<6p#p`jzw`+nM5&O2vX@>ed`k~5X9Srp3_!%H^?^c>g-+RbMdH)2EdG9N#XS=%-fSO8A-stAi zNFGrYeJdY4ZEe1I8ikej;#UUQhoV`9*`JB~&ox!#gceP*t`8Fm#Eo{>Uq66>Mm~f& z&2Xll^8p@F5F_!=U%&Ec2Ie(6V?^2Z~|ep%O+ou@fTJ2?P4 zW;u$2I~!|Qwv#EAlt#?npkrG-1VByTeEZu)U13F)W8cvp&1=qvpKr_CQRKEJI~QZF zS!$)f#=5?_6VzV*wJEMJJ-fvs{~>Z#Rm5;u*`n&Md_!lrSk85t4NaLFya7PaQPZ1rn8r~&>fnxjWlnq8l3CiNw2|AQ>vRHG56KH6-r28ZDY8FKy6 zFWB9kUMF2e$LuvT9nK(QV(#W?P^Ip!gh5TWEr@t-`RFkPtOj};szLrDiRwxP4Rp!D z$N|o)mJu%2gbE@$b)x?!3+=`(>vjE5T$%6N3YALBOQyy0;opZ&48e#t=$q5fr0)vGQ}{@6Q*b1#VV$nLEE zO)H>S&n>_W(&Ky^%+%!lod^>d3_01!gD7$$?GCI3LknNtp%Y)sFx}E=sVuM-aO4ka zzrMP`aRb>LKW)5pgP5q%pX$pRle`+tq8FU>>vNL)+f8QzAC#XZ{z8sbj!4%0aDl10ngB)3KqcRBhbZ zSB$cOY}bxBqdyh#?pWY=BS%Yl++biaZ%EkRal(JUkWPH?U>4=*_-OS{$DrZQ?_N-P zX4r!-Jnw!7<&r0@zH(ESXVJeu^gdh>8<`oEHe16c}vF%U4Z%Rb1qvW z(xh*!c0RKypQ;SAWLt%PZ2KYuqU0WPvW>UIM4xZv>7>#ZEc>Hw!l0>)S|$svb#sUD z0_vDg-p-aK%N_2j`A_nSRU(lgjb7v(=cZ>s{OT{=p@u}UJJ+>ut704VJMft>>XVW* z%*=A=(TB8=iCccYWni_5Dq4_kMbgd`5oyqqI7!r`Q2a#XK_p$W8>}orG_B z>eMy!AG<5ct5VuOAHFBmscPmO#cVN<(Q%BIvx?kdcq{4!R%Rs!R;D&;llHnVUQ>5> z)jPc~9$z76N(^f!;FIkzo}i1Lxnj?i9mEG(C0yYV zU$ovH8~jK@Y<_xz-)!?YUPEt(WVg$&lz~Do!E9e}f#B+y%S!0SAQj!JtpCdM&%<)Y z^|~Fx7cU$iG;!ZCzQcX`!}Q~E@d~@8?dc?EXgJ~E*4*6NdABzT3jLt#X=`h%GY(Ic zNVJl}fGG!4FI3B~O`x2~vV?|gRU6|)C&iF@yvBV}us+jo-zyuMy1MKMCNJ=6gunj} z)5%i>QsZpN_jAAdOggH(POKVbl8HaXb8dUPcc$a{_Xmp%Xvh_6{1cauNIHOyCkI8X zy4zbXGmh@mm*!sb6u!%0Nqlu|VZL5C$NQ%cY0(iYkemVP!HYX}1dsM=rz5)i(Xu`MD&@Q%|oybi4VeLJ8kg z_m9ge@8IcC(E3BHKhZ_I^DZ`DSr27|KCDC=|kDEYHSAI8oD&v2jw0kbZdBo{hK~e3%w7C51^S`wHq9EzBxC2NehSfT=$J5PeI}s9&iw;D5|Qp$Uj@fl zyD;Bd>&Ue|F-ISG*B|t!!8>#y!r)T&7MAbu9hjpz;sP&vUM!0G&GuX-+VJ=6ItNeL zkJt2tyY74Vudtg-y(Ry%b_*FIs9BNWhQBw(_S~+g^13-X>t6CqPovxCLW*Y_0@C&R z46oi)A|;2DIs-yNyC6xXj1O-155D3E#-TRYe_?vYzQ+H$K0G^K%5P5?B9q5QamlmU zs6Fn2{OOvB$HGbjEuXbqN5e`FgM(3|2kdRKwrw`GW+YvB}HL+-^A#**3`^2 zvFg1mZV1xPpRlXs>*6@7q0sxlgK1SH$yc3J)~tIbR>&DVPUL0;#cE=ls413qHrMj& z+2sk5E6sj;-+VTIXl~-~cpH~u?6<$;BOD~vUjS)NJNgD9H$>Fu-YgVty0OmsRj18& z;nq6kyFsp1j>9^*%BaW|(%L1`2HRP*B?L|927bQ%OJ8Jc?WlGe4+&*=NC7dgb>1l~ zk!nrU8hTP1ZmBCZjVJUGnJTe_KTCgAdrL#cwqTHx;yPGLtXW5PljCCqSq3frix)3w zX;*+C1YS^^d9B$iJq zsmi8M{bg&c#^g$Tw}+CE^6S(#2;{y7@L5=KB5k%ns9H``(8Zq5DyGUmA|e89W0y`T z%W9%x6{>DQY4uFDj|}4|Eo76? zi%Fv#&8_VY>5%3~X!H@`1+{5vo|N523`bB>2?*|FoT&Jv$jIg2IUnb7^ZRlW?Q}kC zNIJo>k~r3%c*Ww`qTmG(Mx-y^`kXogEnIHW0}(KR-Fy$k_D+Teh`D-+h*?t-jf7Hb zjM1S9`x)I2HmzTAyRmU*^9Sng7POMQ5Epuoy|64dcmNh($9M0(`m>pI12?SQ;PO1I zotWS4-C_(1LS8l^qo(^-7hBb3Z+TgDy!ZE%$!Aqn%;hWTpO2a-535Y9EnD^fEj$Xz zHX1dPm6ZkgGa-SP{1qj(PLqc#SfxPKUxzB5nA7TOVxpC`wa%*JO+=K+Zasl3mz=mj z)8O{bhYq>sQkRPeDZRx%(?trA#HFTn`chb^3PgTwZEb#75ZQ%+u@(n;7{nR)V!+ZF!)cP`hv{;vihbQ#HwXE+td7UOSs27uuPR6TvdAjf25Z^~sN-a|ilQ6ZczkbKU`l3k&4Q&egm|aEnt3$V>2De zSCiAyN;u4wEW$*jWQ^zn6zItOs_fd;nz8Zyoy7HxTX=2*e$wvZNp3U{=nF%n%tcnC zwuwmiT;75>fhlpiYs3;ENJfSK4GH%#^4-vJH@IEG*XK1TPOxpT?^u z{^;7th5`&21S6o(?I}4D`K*WJN1e_zh+}uc0UwdmN5wPchx&ob3 z)k8)nR!P4Kqn&=UVBuSOI;km>eAsAskIsT&k#imTu*zoo4Ah%0kYB;SR@{80nXk$O z5*9R^s~jI44PtaOxZ3NTHX&!q#j~T0>fAy^GX%SRaj*y)uMzd|znghz=U{E*V&IHH zs8*)Hb(N|{IvU7=WsxNp`Y=8|-e#->j!3M6WDj~MPQWWT;Q-8UhB%QLAM_fujTwXV{L4lH%zTaBvwp;2AO&9-Owy{aw=oIhJNWbYj zm!0gT$P)nM-c#JEMs=)r6CQg+MXrSdXMg+(TSKGEz)4!o1Oaa<{Sv zQ-?eMZNIfoS!?tOl!|+|}2B$`S8iq#Mn z(Pfhb0J|{ZqQhaG*QjXs@3V7q+JMWB3eqJ`Cxk6CS#1kq2`my&b!)Vlas0pwc73srxuuPXSQJ?_HQo4{z4_N>h3mCB`jW)& z94z|A&v6vKxPFpp9-}J|OddRV0P=h&sUWj0_&2@5s0bEu z4Uis9o<&~%UT!m&QBE%oR5{tACjNfpU4KtRi`Me~{mu9+a3SJNh(3Kt{)#$M<+Tn% zUP)Z>FPl?0+lqkppS<;DsW@)z>o=jdbHXB6^gzS~2@#Cd)P5zB8$W8^tzswl6@#R> zsDgqR*0yU&2)1q}KHOJ}e;*(`abCvW6j; zh6Uezc{B+!!0nqtnFMG6mrgdzfzAo>@BL%*=kI>zkB)!{HaGnDcv$Ck9^*e}^m$-He%NrPg!cUHv(Sz)R zI$+k6q{R;YX{_gE^7zPktYTY&YyvWuV`lVC1jmP+nZ<^6u^yVjzZ$%>jDg)5C{r0c zqXtO_^LuZ-Xq6x6)sC21SmepmGL9=|%aY&;AVnbX%j>^+^9-!Fpd94BHA2V-U3`yh zIalk>E?A5or)50jeSM_$=rEhW6l+QRrAitfYGgzN*stwCFav++M^Sc}{GC;AaIk{N zOG8EF2zEtaOF>yuou5OY)P($TjUb_U=P!n-_RmvR5^Xiq3OR606x(~>a|^nTJY zo(ARY{2f*U7F9Gp3)kBl(Gbjc5;_>6h z9$>5nZC#~>?WT`Ke-t|?1oSLj8_SDSN?)jr4wc6HoO8>QYQ=?eI-{%}qThZG){bO8 zSJ3lf7Kx*>R=oL2Ys8F(ob@gQeajHP@TR-MEqZKNQ2G{Ep@gLT@YEb%s5JlQZsMlLf4? z26oiaQo9aO<8i&Sm3|6AK|uhY01835QhefP+M9TKx||HIHDWxx#nn|;FnEFGlGE%D z92&TS^abBsU5!FQd96y>J$8yRIy7Lka=+zj`<$6gtfeosvIq~wfih(c*00<*zJTCh zFh2-5u0^$^l_hdafGP<}9q3^nTfG=m3)Eq0{tl-=L!QC#+L;rAlFHD~5CRk!>_FI- zA`An4d1vSCsR%DG@9797BIo1(1tdk^6s{$xZ1aD1ho9tgn5Iy$V&$Pw3DHJ&fC6e_ zVNnPB7X&JBzI(2xSXD*n`GA`q#+F&9?inV;K~g|?Fd)UDs@mF#2?@Mj7cQ<{IST1; zN<&H0J5@fXRP8%h2z0fzr3WkE?3y#V1z2s3ST(4wr;Ja>TW(3!_V(23_~Tt%EB|{M z*nNLl;P)H7En2(hDfiIn8}5f(e#d#>wW*k^{4`u1SLN3g7$vp0)J(b=G!kQCjzEP2 zH!sq+=@61BB`XUD1NNA>!A$@Y5p4{vFk1@?qK6L^e$k|vYXT%oR8e*K&uzxo9$Q7^ z(`K-`wx+r?`^sF^;@8Yaw?g+7XCg9NY1$N&skAkslBZsCs5KXzxvvZbcV2zaiTF##O4>V1{9%~oQBt}Btj&n$kjnO+Xxj6I|J!oBjcZ@ z{qHr@u`%s&V=q4wyO~$0xGnIIkZ^TlW2)3pjDaCPA_$6dl_t}H{{Gde+I_IGfFD5x z%s5zB@>{8hl)Zp|-%Pi(EcjLkl73z51_>%jd!fhROG>Eg6-Cn@E8kG2UlekIA{^Yc z!s0Jq`oQwaP=hKB^!Tq20jEH~db>5nE&MxzN(v0@gd`-ew${OY0@S{z?I}W@4vDpR z8b*wMKHfa*iHrGs-|Y<{d1OBVax9gm5D@r2V#9b5s;Zq%3v zL1W!*#Q!;LL}sUnUGRzNsWk{MJ`SO~m==0iDj1fI~r z3)C^Qa2#zlS=&VjmbK@_FFcbGUlMkBd9NF}zw|j=$)QtZi0!jDb6pJ<>>U#{p ztyw&x7vwc;=d&ho7HNJSi``MfJ20E@*2}JKOa2dTpwJ5ds-VT^reh=IZ_)EIc}{Ng zgiNlShG^hQY@~w~BdaJarQ2LHL&&#^4+>=1Cg;zl>M7)VO&3d0v0{(- zTLzSi2(`Z1M)CO+k?}Lz_Ix^JQm&Zj@UVu=+U8f?_$@lrcvSzE8|(^zSi1Rxg3qqE zzo;g-j%M&q+IzkIK5FnsKKb_iK&BKpV24%E5y}|5lcpLdYUp?SzDA8RvML>waE+ol zP`>=&iR}kvh`bsJLY_M?O{6@`7W+Z`=wYQ44vu{>!IHR7R%h)BId@T!wW&ioiXzq=4uI^Oelwosi=r@=Z^xB7 zrFBUXf`EEX?!U)MS&Haj4Yl?nIiBZ=T^y}j9qn%y5<*Y`8O(trBY|^N6e>;EFlMqU zW2=)$f-X;VVUHMk`L6V2ailHWwV|Nt-VtZNqBA#0d(c=G9sN9M>Hm5G@X?ZOGtkm>RL8ZsFE8;_Jr?j{Bqm3d=Y&sM(6O?XO{P4=wlgCjss#7Y&y`sVEfE${dggB+sFCL!!5<@BNEad>c+RF&Y_*TK#~ zB^{L;%6iB*5P3?Gklgi&#EW}>w?UvMDR#<}A=Rim?U*~wI82aHr(U-a@20ZYSAiSy z{8N%y1h=!VNsporiP7Vrpt?I(RpS5YTn{HCgn__QHx}9E>gc&#dbl zilgb}@INf%#KBOg$V!sO?Z31-JJ_44h%}k;IumFvbMbH_xFc@}oOT`-p$t@aNsWX} zFI=lL3oFOFWwezTkiSN1KzV^X_uV>rG9GSYScNy0Ke{M)62SyYJLMrXy%x(v-Sq@- zO^~mW?q7t2|IFPa)AAZVxHp9k`Ri9W_O!2^PJey)C{ZuHLDJoR)%Ltf-dO<=e@6&4 zg)=+=t`+i6>Yh?n5MO%eW_VYHvFy;ay+ zZojSmj@W8$+P_47jTs#g1y9YH$^5U~4pL~>)^yO6MN2CMZcR}JDOx44Cw)}UeVE0f zot>iTUoiv7=W9i%h$gUeq!4{nEIU=;65Iy*}xA--LA)=gtDiOOb}y}ItA>hxcu51_M&l&odj3Ouz< zw&L>+2?7)kG#yo)MG^8(U>)tDUXh{kx!axi|KsW59oeeBcP@M*kL5Oy2&c4Z&UyhG zk4rssqC*BZdbE`+VHF@|VIt*K6$!_WX=R)|y}frWC&>kgYb%wZ$&{PWBx~)y&|{CK zDW437iNedr?y`ovC&<1igL1TkNB7a_`s2Akc)gp}_D+gP%QmM^8sl?r z`_(4Xu~3Z4r1jp(P7YQz@3e&CG+;x#-aIZeQSLJXRGNkhmq5R}Fxfy%> zmwilwli2F&IsD161k3rUm+%TNjYY8DF9k|=db?cM7Dw?GUm!e%!=HHgp`mNcD2So^La0Ow){-;R zhW_zXvot!dId)g2)fthUUjr>Oge>CEa_{Wh2b0@#Q$_QCr};>9kiSy_9nYd^?p$s> zwrX^Mqa?8*FQBopuIq+R9?TnuhLxhpLVu$yVPA#-1%KU1Uj1W4P9PkMXM-at4B5A| zpN6fEZvJ_@XTwB7@?U$n)UrZ{PV+5y#4Pi9VzOjaO^#IY+rvm{{HE%TDGmBxwbnfQ zAYoa5#rKd76`|+DB%JdL{)dRNH)}un`KQ(r)*cGanB1e0K0VzOyrIK*8nyjMFZpPV z84Hnj<2Jdnp@XUP`DAfvWT}s<`l$Mj^ES01^EKPPXIT}eUSs8rmyW(V>GB~GLFkKg zze|QkI|vB&PftFfAdEjY6Ua05vuX^Lt4%znV*9&_B!2VQpiLTKef^Vk8t%T94IGi6 zaSuaZn|E$r6b_!Q{$p0;LD_A;7Rzs>bi-ReXplO2wEryXkY|W_Std1{ZF5MnzHg5D zC}y9pFNBcaAjmddwK5o${2?88^7L|pc-euS9elh@sS?H-!EHc^>R)OFX#0@8zu)I@tl zPKnq@+ows2$+#<;;XH-!{CjOSmNpb5y}=Ot^>`Qb7)isLlwF-ieg-A zn+$uH>QaTy^)^7^3w+0X?ORxwh7M2&l!br)omTIV|eq&bMXxV(o zI#{ZU+D1DRQYqrWdosVyBj%&a^*{2eRv99_#PI4m#nEs6tlX{a9@ZfMo)^aPu7dvV z;O}Mga7@c~!7pVm+A8DGCJst>Efn)02xoL}w$V^Gd*J?XBhjR})bQ0M(U^`& zoWB=e&z)b-jPSXJPPfrY;$Lov8o1=>dSpoG*A2DEbQLE3pSI3C9P0ON|C2^d5~GAH zS+m8*k|K&sMCwDyk_u&Mv1cbskv&8tq%5h(o=Ayo5!oe@rED!U*2&&;&iDKKtTkmfFvc+G@^;*U23Zc=AvnwNVDPE_@sNG|uV*rWL1*zOuZOKy|oEc%-jQOMPb z+rn#G`L(PLYG@&pCBw@pAI42K zv=pD()Bk(-uTL*_PbSGgn#&MCuDF^0G_)b%JzLt?G%MpbpRj*j)FWE%K5+TT^F8~u z0v>dT9I*9AVp)6Ig`oB{T9%%MvXOqh(fu2hWqY$eE&Toby7Q%I%L~@GcgQ6IDk3@S ztfYw|nnot<0Rb`kh3Nt>U+7fXJafy}I{3oqSMZtbaAw*5(kIqhM!&Rp5x~H(jwocY zz4verBZJ8xtBbN&{dNf}9cS~07at^kSm9?VOZ+fH9%|%72l@tuw02l1M)he5u=oKL5-2lY>Br+rm!KB<~R$`#pcGy@lgWgQRgZJ9TBe z`@taITID_BorRY$<7#m6?s*for z586-MlZ*F~82|k|ouOZhF?gk0Jv{lQ)u*AdRoRcT49epbHLNKK%rS|#u0IJSv+ zqj!1u%lfPbPBkh7LIV#wWsxmn*LK6`UrjyPdc8&|dnvxx(zhITYka&ZkHu39#<@|( zAg8YPezUz#@?;8W?VG|%XijeW#&s&(u$GG7%*ZJ9A5y=v-M!{vDE;obj{7e?2xA*) z$6r@i#cv94;Q7k8I`&*^@WJJp+i$+YeD-#bj9bO@`fIe2xqwJ^n&L|0vX^p|fImi! z1EUt@SCM+l^oHN;l?KPjCoi*l<(M6fXI(TTNU2<`fKaceg5|gjIAap zMV8-Xw4Kwqhxjn+*AIvr2=c-Lg7bq5(7KjFaE zmiivt$Ei$#pn|fp#fY1FEm~e}u76#4mWNv^_Ro%cIj?yd^@R>hU3xn{f9jm!B$u)a z=c{`sr?xN?2t$q(b*8UqevY?G7fOZ-gr-y&72kQkm?>o(%xdvoK+EsvOhv?Qwu(g} z-b0Q35xLtyEnLxOI_4sEhmGl09{-X_@;~Uo6K-wNC|`ez*-|pIP;ZK2+3%7Tv};Sk z0sQ416QjgU7+=;ZJG?8jZ@rjf(s;7_XXUxoT~S%|8L%qRV4MM4Sx(vXhdpY!_bwka zi(Yw}K|S&QdC#t+EG)7Mn1|ODPu>=$5Y<`uR9ywfY1E(HzrtTKex@0_%vScz^9`hp zWIumC3&*18leb!ihTD^y->ERFI(&IqHR?RAdn3BISRqU!z=Mf*YH1+}ix*m3rTPQ%^c7D7s|B=| zdi=6G$E35rKN2t6)!pqdSiwhSUs#wd9n?)x-dogX@RS1M0HJ)hI3#6+IBs?*<_S8H z0`WT2EmItDgTa06;pWEI*a)X~adBML`CIPUm1%J1Jbo-XT7IG=GgDKF1J=4>J|f-K zxNqOS?vEeqR7fn1jg8-3UxkM=4XBUUpFckot+wWL^=cLVf&*G;esgkym6h#|AODbG zUNNfrO6~-SjR@jIQd-(qva!RJD{^vjJ3b!p*V`KQC^t8fa`IjMQ`(}8g81J5UUSkn&gzbi4p_QyTFw#@=)qBDbNO=53tM9fg`%m+IAAhD$5g?O zgzhXP20OU8-l{~M+a)H}3Q`u1u|a&QQ`xKv`}Fj1wA!~6O5T~XXSc1nj(ylsKHP8? zY$hxvbhScOJtY_`J8rd(!?&Wcd$+BVldPoVPuQ~>U9Os5yY~9Q12cG%O-=bybnEdB zFG@@O*A~YWxb16#x1gywSYppJ5H?cZ*QX*XdPIO+TU*<9xfreI;S}vW02J`^-E|2- z#Hkh`HJoi48X8_+{M6oFh1W7PFc8_bD+SauolJLES7t|HCO?gPckT?2j%q&XJb2&$ z1ST-AOzVoML0EDc*gz}zGz=x& zkw)g`(T+O>^eAagxFeYGwJM?Ip#DI!;2~bK7jZG=fep#o+1Z7K z)41lt6bcKk(sd8svh2J(RiA~a|1v;W`IHsPBgH)h4NjdxKm9x4E%;xJBI|9Q!qYHI z(>oJwZ70f~H}t`$gqMcS7K2Z}W8i}b$7n;|gr-GcV4#khf}OQ>e0;ncx))Ha`mN4? zqNI_j8Z#N`>GHTUBO@ad6B8F65_dck`%r5k7g8f3E&Z{h0~j08Zk+eSQw|maA1^O_ zTa%NM=#@wRs>H(aiorg5H0-ogR7AubQ`g0rQ5BEh_YxDOflxaxIvnpb zH}~gH!ri;*PbsJTo}7$)@rOoxfF@R18O}uC!vq$uErR15cW37_r4D>iSG0_5ZEbNh zfB5iWE2~En!kRWVHZ2bhMhIxz+2y39@O{2~@gfaSA`VVY;JLnS^B4)$NXI%YDw6m0 zT@4K-<(LY^tbm(_kOIro>{zp{y*-vyWK@&`R-LWwv7<*piP{@gs70iyYl+^mj;3bn zUx97vZ6R-%1SnuHDsd&v;d3Y$o96vwr zh6Nxidx)$7(1tj>j>uM_>3-I!N0z6YopFu(Q*<9HT}`)JhCc6y>k^!0E32#M`ANrU zqi+Z78eJfmnksO=I;sGios;5mz!DCE9aXXlEgCxJ2%FZ0r(wze=3It&h~SM5AMABC zyC)mML7}3)`GbiFPjJZI@Hz__nS55&h4Yw*uzdkr`8{79w-0g~;5V)^AJEqjih5Q4#&Tc^OT;1GYWiRks^~QCwgg~H|1h*CvRtPCa#>T$g^Lk|0R}y(7W50?D zT688Q2PGuJs?Ljui2+f8QRcF3ZD=@Md^zTeWmGtfy!Vom>G(n}=3W}in`p#Q`$}bG zWt|YhAzj30!m;^1MaKaxe&3tMpJUK8{4q9m(az2X4ZWN~Y}rsE;RmxwK|uk2b)n>D z8jV%~^3$bx)SR#s8L zGK!0h?da?bJo|+$h_;G$WKqxw0WxMMkaDS=X!(PBk>#&{j}l7rZBN%M3X)Y(>HGYd z+td|iJnl&MA04}LsNp9`nf^4`l+8=Xq9P(vXG@q4)!oRb8?b_u`}c3H35pYn zhqa=3W2A3FPzC!myz=^4aZRHL!$|#^P3Is<~-+R=3(TUp3#QVmrZ!pFgo|vvYFd zbTV=C!OVG$+83de4q}7(duy0egi3l_1;{Op9MzZ<{QUf`OCkJzQ#2a5W|-i(O9y=zv`u9yWR?zWv01bXmhY%0LfnlqAZ9nAZ3oM0<@;P6Fv;){6OtL^n*3wd#8kaE~?@RYNrKJga2R%ZToS*MV#|Mly zjiPvZQ$(d-V53mnxC=pCqWjyIb|ld!s9M3&nJ2|8%Vw=E89_jV5aNK z7rV=sLnE~gXX+;>B~3+&C>Bv)Bap(~sXyP})5Dcw^jVSbWRV&TdwS;NwPVLNcYC;6 zX!wn9&nCxeiy$Rw#sV2F^IaRQ*!{M5M$kKrDiovbwUn2h9x!j3rOe_#(UYS;ZwlOn z6h}tq_u9~vmfZ$|3VZk3+u7A#1j`7WW~UFrdRRdSg}8g)?JO-bva%#9Vn*J5_`rN^ zaM8!_(xoRe@2{N04D7W z5P)C?hZa!zd4|Mp13C_UPgtF|tKY_&NB17c#P!q@&eax$P;}5%7F~$y=syjOj69Nk z5;}lO19>LB6BAmBWAoqv=WXolT|GSuLsjdE^boM~pm(j6{4~ohGz(O*1NiD1ojTPC zVh047^xsNx{K8Dubc_T3(@H)O6Ggb7ztZOlt12BDd0aF_7klsp`9yQy`R$+AR{soQ z5TN=)7L;f9hI{aK21XbjQ*Tetr_Y}4N&Im0Cb1Y(y1$`8Tu`v8xmj9NbORnW0%6c` z(N4U{=g&#+tu9(wrA{K&Lz@k{1PDY+pDNda92-s+!SpYBCo4Pq=Z_!nt>p1$kMytL zW@lzv8yIwfE(yM6QgZTi)czU3j?wu9w4kCw_0Id1v1G?K8l*U9PM-$C0azyc{#V=S zpYPEl;%aJVclSm4L`ZxO^+ogU2U92Z-aQ~WOKm<%`W%jmXNw3O(Aa99{-3px&;>7)q$UJA~ja1yT$-ZEs;$SN2Z7@$4A z+N78Sh?3ZHaU8%`S8QyANFDwCzCdRY)gg9ZpSjV5Ee!#nM=D;Y?jJTOU>sy*o^<}e zTv5v8F_rOY+riC^Anf`I+sww zymk%_szS@$&w{{WB5<)Wxkb_c<7xcA^34C2TW?_!#NRSE&>wqUKaie&AIee}Br-h( zl>_4rEEkQ%m8g!R4*+ent~|jq1saAgGm^Cql>k1&cUNVa(c2PdWcy>He}8H+dVX}X~g{va-b6oAdh9-Zsc%eX&HO-<0l$aAaY=I56d z6mUgKvua}KKBYUlo{DLWip6u<0_a>6K+(~yJbv;}e?V>1(AfCOcew=RNJO2Nmlu=}2X?l8_#h=N z-cVDs{_G-3SPpmvQt;rRG0<3UUTlfB>?uwY4=QpVrpaz)AOP#;($u zq5=oHFdXR0DJ>R-sK(3^$H8>~aFTuDXm=>AHL(`Cq$0ehdMB>{~U%!!$?;X%?&!2BImE0Nz z2oH%E01*|6pDoPHP-!3mY|q4gC$=>Vl)tQs3co{#4goaOl=5xb6R=T?5*+HZnHhj@ zaiZ{@&CJ5$8v-92F|G3lxK%)?$W$JXlVbz$jXdA3#m^R|0Za%cNz8jIaC#aVv@wZ^ z>ZrwTH+%M`c}vvN&e-zPA)$wY($ul^=;@tc@v@7}!wI0FSdw%^yUdF=6`h$yJ2>W;XcDLB6_ zKmfH@oOC)8d1S~5{T0Zse*ZqQ@uqrxIO;_oRsLlUjS}+jp29#4Ay__kq}V$+loS=w zD;;H9D=QI|cPI4pSnqDT&PE(3-4H_M<8H<5f-eoYME{O}GiA=BC?l14TV%}~EG&w= z=WSe}6zau2ZEcki7bn>RHaj-E2oh6ucWGhaQ5_x16JH-6ggRuP?Y(qp6g03J8mZ6O znXK!=w}Z&X8K%+G(; z09hAVEE}=#`SZi|j^Ab%k>p`%QPK)>a+t5hhle*JOdWlc_TcFIh6VtPp%nwrRP!uS zX;ca3X0xC_fc0Cup>3a>oJobxA~4e;Tf+<_`M9`1G34gu)kv_hwcS0Ubc*2N6h#() z31$U9EH==wBXCida42vVigDL7_>O|(qF||?KZd-8jTrNW(9zr+sl7r~OTdDamd-6L z#RzqGb=}r}gvo0s5nT_n5(<-=4JTZ$UiC7KMTIgjU^cgW`c_EDMsEQnSHu8(PXQ%O z1Kh^i+Ehz-=dv$=$0BMsnEll^HV*k0c>p&T7qhPnf(nsg9gpa&+pE{FflPgznYnA( z@~d+hhMCXF6U92h`}@X5P@xd&`F*CUeyyD(4CP;^kl1lUhk+}twE37VQ@JwJY^x&@ z%XtRV)%wyVV)bTeQh>JgkvX3WS$MMm0frld+{Z}gj*Fgh54v}cYl0l2EmGlR9hvj{ zw}V|^Q6Knjjz2q&VIwe8El56i%^jd==rNHLV11#OfX>s3)vz$aJ6Kza{$>%3?%o8iPgV<|0AWEFlBUtbmQAG9UWz$ zJTdszGD=-2a_I4VqixK=4ct3>^N+F-v-0w~KYda}kkiQocoA_EL&h_3S6WI+TciW( zL2I7|q+v3d z0ZyK>Jxqfx#*I*sl#!|5*VEPIiYH{^ZVt?x!!rC*C8)Q0UHbo4qlt< z)I;uk`51yJPUxHdIF|38dwuSogoqXpERm#@&l{pLz#*I4F`Q#yazo!MLM9a)nJ{=b zkvHC)3?gOB!-q0`Q4S^ogMKuO{1@`<6=@0BI;aNTUkVHjXbiJC5=R^ z<}~-2ZuMWIn=D`|#%8J@C$|`J4S=tED6;Tf8?ddl-rt|`_%RLVj_DBi#2_&S zoff5WX=y3v_U%A(!lT1{br`Io%_P#)%uIMx)Nd;FFGR99>BO4<%elwa#s>U2DjJ$E zUc~EUnjsb)H1c~6`ZMY*2?X%kS}R!k9{S9LP3XJ0%z{;=r@B~MQzI-TbxT_W-}RuS zp>f`L=Y)xuHw7Aoh6Ez&mR4q4 z!LtqYi~fT%#q`oYf~54vk2(1H^)lM&1<6+@oJZv6Q;p4igN)2$w5=>GW~z78a&qn1 zQTOg0ZGOJ6cLImB$lM^$z3_x<*H*+>U9f$A=_;W9$3BcCeIQT<=c!1M?IT+5KkJ;k>{^$%l$|vSzW{#rB9T|aFQi7eyy*C1AIZsce==y6o zfk0LV3H$KyFh-J01b#DF-kNENKkU`3B^(T4G2x&P>*%x;ZFaWrZDp!vbHe6zvO=VyCrdb_C0MT?|Njqb|IZ|P*?)aj*33QjiwE%p!ck3K KjXcWvfd2u!&V>R1 diff --git a/fig/linear_single.png b/fig/linear_single.png deleted file mode 100644 index fd7ce3b5a86264d02d6414e876fe131308626569..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 23895 zcmaI8WmuJK)GfSJkWjh=MCmT2q`Rd-L`tMvx_DtEF_AnqGo4L8eqn{V#$`X+t#vF!2{EhAD zgTp(f+Zv`34{U}FG8NxE2-o=9X0_Wk^Fnu%m@=uV}#Kc_`j}+&n;W#Gk!Od0eKvnTSQEm)y-STO(y#my zZnLwuM~7rLtSKj`^jaItzINkg2V>3Kw|&1$Ot+`1hr)ckgem#$@FQE>8OepZ9H(4P0OUPn-G?CQ0r;=@%StsGRKx0NmMrP*XXW2-j2H)|p zKOE1>!zLSIV`EE7oE9DKYELvy-2D-0JND(|^z@0Y?$O$iWk(E6TU%RaXQzgShJeG= z>hF@prOvqO5q1s^Sgw_$W545foEGk$m9&5czcY6!g<1IPXxq`s>gm&`cL)icFV9b0 zR{BIechW8UKZ!h17;<%U`z}M9Z;$>;g8Sv%j|%%q*0O?13rowfT($daY1!G?c=tpG zMn@CQUX7HRD`zK;s^j9~y1Tn0V@gX)+oSJqPki6lnQwme>Q&UPSZ7z)M7>Yt>(|mR zUw#V?Zmo61AI1ub2{88kC+p^RkfW0Pk-n&bkuWn#;%@7k2m0A6w{Zc=Y5-#&OJ)OFt&?+zZ78$2OmHO!lY$lit2Rpm= zDoszafZ8cRM{jQ`ueGMS`oKE|<*n)3qb8UC z-Wg|pe*VVTS29erT-8(x?&pD1#eIE!uw$^hrMFz1ozE{Wh6V?pm0SI)_1JcpuIZd% zja9fO>YbIFJC?7N8x#}-hLx3_?d9pIFe!0za&qn3H5L|@XV0G1dmlJ^czmsG3VE)_ zFCt=~t6K@@J6K=mdol=LZEcJX9{dAGXl-p(RaKP^#f=wE?^aY+zIFR{PfrgoKmXQj zV`FBfX|JJ-tZZvbic)o0_Dnte=e*I<-cCkBA}B0uYi&JUN=7SE>p?%g{B1A`D;sxBQua&mG?%H)q9^S^$b&6JNes`qA@Qh@VM z74~>xY6?ziZ)bOU_?OL3nze=dv6&ftcPUs@PEHOE`^fOHE4ZLxjVl%oPH$)D10J5m z1Ts?6n`mhC3=H9|F9ZZCVUM+l8R~WQ^z;l2Qovhk-Tyx1;rVJlq#>K_~|)vt8mi#}ReT0%oZgQH$sU-$O*?(!SpC2JHdQ`gp((ReRG z&CJeT)8&qJUZL{x``kF7k68SL3Cb^ier-Q>6*Wi?tyHa7v z$&;ONOgOi1SGkFuZSri5Lip;A^1j1sr4Gk5Eo@lnKt;0@$<>f&9}H``x;%4~>WCm= z5#=a(P)eeW%hK-d~?0D{mR0k4^sH?l%wlG0huF86daXeT@ zN5`O}wXMxr8KNAc-vJ3}XZCcKVjP5>FWK3x#e35pv#}HqqZs`@FNGXF)zdSqc9yMp zS7O>uD8*@5Lx17){Q2`ArJInCuxJ7<4#+C6%QF)@%r>N&kI(v_sXV)J^ogB~EzTiM zS-rYI$Zeh8?^}x3-ZFty-zQOF=Ou-4J~H;FKe*p)CShS=U7Q^yPR>CJ$!6oeUFI+? zL`6k4P9hgYp`)&@KDqH(5FdHI=r8`3N|^t_gOax+Hn*gFe9pj^Qia@DMMQj$wx*{f z(;+=5>ef0fhDcCz^YWfAMvH?Ze*XNKl>O;*b8}e@?P9E2M9il$PdZM+mn@CVq%wved zux1}q(?xKs(2x*RXtnk0OBL2VY?xAB{PV|czA2bV?UO;Hf2xlvEScI6JWBWm2JU&| z)mdXqOw94|abO@~%jnamPo>EVL6C^xv>HNjsj#uI1ikmI>icc%C9U9C?CeA=`%=L4 zZen1#%pOZhO1{RxyWIHNC?zHJNz`X~d%NGS>}Y$|_;73Nt1%fi%C=zdaPaT~Am2bl z7r#7Sg!tgh)`4zfWOVOnAZg>SLgxP1XAxK@0|nFehdXpWf(y zaSG{6FQK=iW6qz5U9S{riyv?_?eU`Isj~9Md~@iaQk7*hn0|Bf;*VE1XlQ5vw^&?} zA?+tC+?<_-{Lei-J&$3h4)*tvQuALMFAH*WE3JoeAlDnC_V}Y8Ty4<40kXjKv|syM zs!GRMe+b)fgH=!bAyAkHa5zZH58>sA#lUpGd0e za*2$~XsX6-BlN!i2Qj}I*Hj2K@9-BkH+=z@{r>$MqL#`B?pOE^T~`N$j3{tkQ7_GY zw1E@$KMHtqhQFZ#!?+%GG>*_8ynqzKeCi< zZqiit83$Z2__V{e5lMyMP(Ep=vl+_4p`qvI{x;KY^yEpKTcT5bTYgc|k~dxSUBM=f z`Jfp5Qun{l#%q}v86#w9+1S{sZ;~JNq`+d|8aBG&W20RkckJBXccr3AP2kX1N;IhR zjKyD=pQpibPB1SlC=l}4V#mi^SX{K7q-*9j*qm+*Fs_NwUszhAKf8GPbt34Sg~iyD z&KMeLOd81SQ-t9%3v+YSM;C1J{Ft!WYfDQq8pF%I$s5y#z0~0Tiwo@|Bk|_rZ{FMn zRKUZ-Q!TgthMdQ2cG3WU)OV#;AX2AK)Bq+DF~>gq(+n)qx-U-ES{TvR1y!hXAn;~8vr&cy1!u(Z^D_KelgbAMH1 zw{cWtB{N!#771ABYXwJpOUp}fUr0!1i7r%&02kcIat^sOJ_VSzzl{nD`@n4y)X?B> zU@!&oz_K^V+}!*CmOx5OJnVDSFLw5romBa1DM<^$)Kr?6m)FmqKc75#Vt^Mv49L>x z$YO7I7XqT0sVR@oq22hOnVA{Lao}?#BqZObE5ChTOt`&xRG)hh-S^y8)& z2HuL5ZQMPOV$iO?YEpfUd!#>K)-M*fp}(B-p7$4%Z1D4MkIM$CT~^|l)ZhqaYCWPi zl&hT<+kR!r6A=FiIU@jY?> zly~nmpFCkSRR{)zchEolG zJ`npSCMF==146?2`WGNK1niYd0E;3fO-Pg%_$+-I{P5vUHCYm+bNu`F^tIo>o^b@N zrJ)`IGyz!x%C1f48#ivq%eQ~~_N}Vw(fFyY57ttfgwsXB;J=5Z-GCgPX=u=>3_<02 zKj8cyL|cI8fR6|HY#UCU9R-Pqh)SNaU%X*rU?3qTh8Xv9TROOkX$LBbwY9a5qRy!lcJ~dD=Pv}vqC~Z;fAe8)px5+7!7PnuY`ly#~k7= zTD$VAWpEQ2;3^Op^SufIxl--je^%*`8XNl$ydg<``_Id?t0cOK>ge*#${RE?U&fg@ z24`ol+M+1=*t8$L+neqbozH4>>C8Xz}lvB)BKe%fBpIuOIg_|nhjNFmCMT8sd}4+0UX~iN=izY zG=R=Z7gYsue9xSgl>U60@t&oJlm$V7Fx(7kFQ@>PXYN2K0etc0WSwm)$yE!-%Nn+H zFk6`~fHrTS^HUOT(6^7fV2+1}4c-SfP_0f&J{92HS@OS0CsGeGzO0atou79;gJ85uM*^uogW4uVIviM2Wf%VeawOJG0dwHcn4R#qS4;}78F z!S-A%TTdqd&6+c@+D+FSz#ggS>i4e16e2(80XXj9?-g*I@m*-aT1zt!8a=C^LH2y) zk=NJvfgQUzJ=i-sa#V14hML*-%&)C}0P2n;Avc@)NsZ$>wv&t=+(uiR*t7mo8-P1F zxwyn#mfviK4Z-oeG;N>3JQ^H6f78A2Rtu6-lJNd5=a+B3oeYkSG9v31qxqPan4pvd zcwBv%kfg#a2>2?KdHv^W4DeUSnjr`$TEuSa!})-SCPwFzC=5J?fX(>h@JCK`ShziQ zL*N!JuKy5rGO=#FL1SLZ?(QyB_}?98jT~x>04)rW>Y|)PN-8KbGt&U$y8*-0Yn$g@ zkZEVjt+njzHq#|vYieoD)_3H1W&re`sIb>JGU6P&(Vt48OO3Cv63vh9V8rgBt{#!R zc${NrZ?B@F!t)UIWuu=r`O zQ<|Ej9IOnedU|{P{QUOz_5x1Va+4~Zrgwv9J9p~550nlE03q7N@net-j*X3tjP!POy`#DyCLwX#T~Zt$nVOykyn_1Y z@y>jRo%^4zcwzTV&%;eUz-oY6Pu|M<@BGB5si^^)B`hi`zBb%^yk<7aZBCBNaiUz& zeI7~*@C7J;C$e%gA?dSmaRnT#$Ga*5XcSmFQ^7*J?(l3$*VwOh)LE|{QVlj*5S6g| z@VUst+jM7)!;e=f{^;rGjKEzzDSpOh(uBsv#dYgeBtUt{dEn%^kgp&yZTmm_9z`ht zWxzq>)x|bs1t_45)YV_^%t>NkgaTX}o(?Yu)CFOv*szwLpWnR+i3OAmum=5U;^Ka% zV7&+5ZO7KDwxP6m7Z-Qq`gJH(cx^|EV5dKR`0!HtDL^auMRV`r(CFw)o!1^545MmF z6=WSTzf&kq{jM&K)Y8PLAoLyoTio!s0$e%`D2u@2&i;E)?=+f;wz12(LNibd_T#1IV2QA$h7G<@Sl0vRRHaygg4%Eh5Fch=lmW{p zO@pJdyP@<*$? zt5TjdTEqZjvDpL`bNjwnim<`g%uF83zPnqYCV;oHHkd`qdLqfVY>bd_gsb9LCu;S0 z#RUcHPzmG-wxmP0fg~22`u7shQ8!ieM?jRDSX^0_2^v+IuvdD|o^}0&teU;0cQqv< z70k}g{#&S@ovxDQ%WF0vp=UKRw6VT>y#mfe3V?hP6UhWbQ_RQTzbCGK6~<%H^Sd!X z{N%`0(czv6uuAo6RYgL5>{>2=fXS&YE9^-XKI#|00sv;*Xyo1t)L^v;5NM}+{o>X7 zBu0J<0~yk^v3Xzy5c0n36uy-5Q;~mrcRnYo+u7N<#_x>3GHAc&A>Vf4%X>84rD~r< zVmF8?%F5zWN4hQ@?`60uWfKcT$0QqYk&u%sVgf{eGu1W4!!BC=*x$clQ*jWBCQ~kI zLF_fun+Y?K$?~h)+gz1=_V$0FZ0hDzR8jepqtgMYpK@>AzNO~OGlTPlz$GE1aX6ylr-tX z2k^|c-d+{=J`kwzfdEx^0ZAI0V+p&{q2#Il!BrvL8a7 z_VOh&3rlBTU&1tc`wTz@4of51ymh~*JPxfMhL!~z#5 zr$2<+l9G}s1Zh&v_H5(T{+d=&4s5HasAx9Z@ZmYcES)D$Dy)8et{^f3jtwIHf052| zL*3BO4+6*Wv1ho<3t%!)W#1E2fjJ|^$3*x(KHl8I0#Z)t@`);W2o?n7w{L+qba!># z9LkNJ((3gauxV(33JDz@9r%&bMo-u($fHo0FZrirXJu*Y>P}8hD$ky?cZ+%MPy>O= zOzgff+B-7x{qtv9QPJriKO|1ceSu4Kaw-AZcLIWc`9=f~(&*i9*Xo4jbTQ!4=9`W1Hh9u}gAKyPV$8zj^er>CdT zD;a8OSpvoe;Ne8A$JeMR6<1f+`o^Ev5W|!~>U1xqP0bRkYHIEYI%k#i>0U>q*We>5 zBxz$`Vyr{$22cP%{=(MQ%nz@21Y#XW5)*--z#&?{hLFgl!Tf)H&zHc5ie=QNms)So z*2b1P%5U>_GxzOg50dkN-(;zCCARbl=C($aTU7AM<&_o4ZuRpUiHV5rVl)JTH!iH*PnrJR5mbN>FE)YZu}@S$M;eJe1bN=Qvff#N5cN|=!t+p7rP zkyM??WsFPCQ>~IX<34>>b4cZU)|c8g@i2{}35i4kZQ-%```3>jKZb^QczK6^{0MCK zhDCTqL`QE6csn0f*>76mNh!FiF8q!ryR4qybJ~vbKZ@ELryU*|a&dJ%Kb&;bg;HT_ z3rtq$UgR}IpoQ&tKtsRxwq-?qyLdqI_@7>}(~~5esM3Fo)&$E-OH*}TJglr;Jw0}S zkp}<3m-yAWi;N5sIJW|wLIXp?>^)lRB)M&71cI5EoJ8g3(Zv|8Uz~FZ6y&dBV}A)d z)F}q-KtKQzi4;2+jI~s<>g9aXn>TOFyA!Cye2?poW@>>y1usqH(6@O0d>~O$=$DX#$2pDb{;P^ zeLWSXJ+hb!X4FD=Z+6Sb$ow83hoD0s)$*bQXl5&`JopYyzR{2=L(2lV-2c4FRS_Cr zuxk4a-6u~XS{LLBp0!$Snyv(?^YrsV+MvP5rGR#a2bk8S~I;Trus;fjXUoCZhcV#s0Ru}t;FH1 zrwJn?zwUi>IlN4`;zpKM+Fwk@8XDHR+rN)u--a_AWR4JW zo5S0>efFJ7$w#;=S?m{(cuPxWYu}v-iHIi4tuxE(Z-BjI)lu*7>9 z;N25jePK!t4YHUS zGpIk-*20O=5b9Xf)zurLev3;JLqC2O>Dbmf#fiZJ_-AGL9vXar{xLBS7VE2NEc}a}UcW>JA z!FDm-RdSw^$6-#rg~Rm1-_2pC)BUxms#@T#pFMqA=lPG8lk*FKz$CsE!F5F7bwF2K zqx>c_XLzx~hOganyPPO>1NQz-+8=hsvjtq9u7u^7?+P&gYFmIdC!nYek$ES^$Sa zJhM)^2ThvSwvL3DQV2xv!^+I(@BA*NUlG0ih(^+=>8tOCuA|}V;#^qaevopkZ~W_T zBq_&4DbcT(vj3w6Fz<#-9YMkIa$f3H;7Ws{Yt(gw6)BDEo9`P}vw1%+Tr)3-9T$Gd z@)V95QvF?@4omnP;{(jTEDk zg95JE(vJ%BLOaLA#01btcOn{D>o$h~pU@8Yp7lrxjZCq6L?2^_Pu01N^=e(V84S|RXLEYc~^-J5%mBj<1w?(7=U*RNo?JP+)c%+X7sSf)Z{@bnB# z<#86t@`^xYG*O|qv^ut7CIT@)eQ90P?&TfE=caN{D{Y=33rjzktC2nuGmXY2JS@`= z-BQ;>nOUB)4a=D%buk-lhN(>Pa2^eF@D~mEalG-v$-SbM$&eZ$15vG*bkqf~6>Fu{ za0m``YXA4mF^QU8su~;cuT=_kL|{O5Oixw5k4GMRIcmxG2e$@>W)LkYksN^vs34IYotjeBjJ?o zou)HZ;>OFwR&k3-P{%IXN>;j!F?e`WyX8@AEa~hBuPN%b)unTZKKlE=)1yMmtq)fC zS%W&J^e3!Vr4QeWrS*K;BRG)ru)2Z5NW<-AQtr;w)40#^t8{ zJNF7TZ~S)&e4?};&pZn$@3I&p>RUXpQAO~e7hcF+g+kIDp9vBYpLhr(O=5kXQ1)AR4Wu83VUTW zYL&oVr6SJtV*3s0_hH)6zP?#OVKOo@$~$*<43m;1!2WoR<9ScG!@gvVvo*`s95*>o zpq4T4I9{7*)|QZpMsV>pv7Hp$XW%k(ZOZ;poU5H8)m>)d#ljkv`EhiFmHRuT-*Dy` z#raf5QrG%Ejkcf;pjX-8+T?7s(JKA#CC;T<(x^ZqOF)-PCb+_<1!kGGFDvLMSd~!G z)QZ!=?Atbmg8LE4+cIfvRy;7UbiGGuE$nsDX}hEcWi1+#*(guh*`9M*F2v}`p8vd+ zqabN6jry6L&+Rh4B&@qEu6E(XOV{ANfdcF_8_jEt#-)|M!Nmu$LFcI3+<9%$x$s;_ zB((ky+ry#xS_&Lgq??l@kmMwp_s8jy{He9@Os$Y`6H50fX8MQk%4LaqxXgpU=;>MW{a~k z#kO&cNs-_?G!wpa5a|OSwk(y=eHpN=y+!&c1AVX#Wh6-kt8DI@ZkAOc_a*yjaG%DR zPZFEo79)ePe+fYiAT2fe6Vif=M)(tu!dMWHY1T?S!g() zMk*`)8Olh9S<6yx@5k-)W**`ZN9_3J=j=3HM=&Qm?K!NaCZ7qJSY~O#)Zhy-1s}mi z*~8bt!dfg+p^TsD%P7Cul`<|d{i z&HsH&TlVOK*k6uan_%K$V(g%poVE1ybSMVpqwoD$S_+e)1%3b;jAzHk`_~azK&Tg`TgMmR-S2yu>)Lf9TcdQ8A{`R3EByAP5N#j-nENLXH0zdRc(DASe@s8_fbs;0;9% zFq<5pKZ05gG#)&Be19^ZBLd~x2ul~l`~>6c|FV_;%rEEb-^lCk@4s43cC_eAVMz|q z1gZc86QFb2Q4_x?2jDz7s0qiDcP)wG*7iX3-v2S!YhrbMB94yRAyXMpJi@2gmO=si zKKC7?mg4|=yxk84jaw;7`dWOh5sv}e#*G5LFk=`o+vf{U2sF6&mU!4I;`K`)KcSRZ zyi9%nez@Mp1A6m7`-*w(%6Mg8L-2mAQ(AD*TX?QOMZrvLI#_3+wR2j=Uh9A14Rz#J zKUc#sEdzr&RAVnnfTADo;=n_s|I1D+xp7W^qbP6o6chc<-OPW)Zz5TknLGOXw+FLt z(PR}BZ349`e!kOendZk2Br%X!mS$$4@?oi0MFh6}%L=6O55D}Z_pR>MvmlAECQ=g} z9TFNDdHGO$=e^}#;9Usl)96r#&1fVFCmzS4PfF1x%3pA!X!6JAglF2v2*xp@vW3N1-MW5$G-@Xa*rRP6` zWFtwT_Q z7(2UN+Z%F7gv+FDt*rnMCG;tIRIf?2-u3QdZ&WkB!@6$&s^kH+niD>DaFd$YiHyTM z2vU+8?ty7k&?TJwdEhdnJ6yt`iBJ5)`~!f@i{r3yvi_-El8T>-G8v>1XI&t-P2e(~ z$&khXoznX3dxQHBBTTSP&hPorz5+*=!j_^UuEZ2So_h@*@o%vm)gZt?zb5fV`+?cA zicsbooVyGUTh@lsRk4Gb$6H3fGV!l-XU*6eXM|j=}Z`~YV+xHZN~+NJWfk^rekVl)!jZiK4C3SE=g2uNvU0TfUU(TWaKLb~Rue-siwFxlcG%c< zQcJ5StGx1^ag`pEH2tFNe}J#*5K4>`$a#bbk|I-vv1^C{332<$lf}!j>gEPUhtx%9 zLPx)g%$B9Wd_(altJj@DJN!EvSO{%JIk`49AKYb55%~!p!s&!8m9Ygu`SQ{)k+}he&#o!KeKkcwD;ho$6sW?W7=p$HGzOcRniduoo+hM1 zDGNL$s2V`16GDuJXwV+_NwCP(G|A0U&a=Y$gEO zJHZTQdvq4Iys*rG`xE86%Uq54Y)q04nz{VT7+k5NzkbcvN~r5RBD#;r3;b;J@Qe`> zPDm7y-p0o_qC4_H7P-2XgLELnBnnsz$Lm8(i1cco_w9#|=pGEwyvmdr^}c#c3KZVP za6XYH{tOjh<$)q9?>=9rw3%g^^K?=FD(N^#^3~}=KT=}5RCwl+$P)t7Bp6$^hoeZ{=R^fNqr<$71&^!Wt z0yMrsR~Us)h>s8L%c)FxJca}eM3StK{K5eBFMM0q(4dE4mMi^fkV>+$vOawL7%oH0 ziDEXP6BfZXc0+=QrGT-_Vel(!l^~&lq&i`%VJ2wj9igY?>w69qan>!S#~<+T-TRc7 zm|HY~ka#V#Tq@e9(Bq~sr;tU>93MoAs>Y!=0QO?x=$Mw0!frSNT8#vAEiElj#=d_F zNuu#}|3^T_e?L`~a_&e-;wQX+|Bc<&+?=7ZuBhk@eiQebhwIl7y+3+mt0Dvmf80kG zZ-9Q#vkE(}jZqFMOxb#WmOK9rL%!_xBV$1tqFGt&55%dBSPDc=@-$q68@$#mCW3B$mq;%>= z3{2e(vuwDXeYL^jd*6jVT~OmL67~aVw^q>p04=xV@ItSGz(d?^9XbkQ<>loj%^{Gb zivdYQRXHK77+I}%I}J}QZc;wdTzc~>W1t5N1B6bZa5umkLz~2La4`tj2pS|f-p`H> z5Gxj}xuYR`69?q?2Ht(K+t}Db&~nz+ zeouIaiRk)CxVuQVoGH9-?MR@BpTq;_>gRWXMZ|axo(rs@cWqQDJLUcR_wU^^($e*FBm$1wZy@RxmlcjDG{uidU%W-*4TyLR_VkdJ79>`S zAfs^>;4>S}OHS5zcRvLF>JRRj{Z!RIP|ST2bO8VWDl5H#mEpKonX z`Cfq@s_Q{qsK^vL^C1iu#>KYLbCV)^6O|1#}% zAnHXi?ckp#AC`A&bO+45KCC*tom)t^VUn)M%IZAID{=Jv{4*MqykK%eywg7ppt&vc z+1sLrtqMj0g!%XmpbK#0=55bK3fsikSV@idx zc$j7&sLW4avw+}7oW>Tb&{A5&+r~f`{`3utEMk356MMs7_2Ey|mu4~Qji2t%B6{Bj zpd8EBX0R8Gc0o3FC+D4d81q+J?1I&J{UDrblhycpH-W;QWd22xV(5$u#@ zx!4l<#2E7+Wra=>77fJW#M*qCH60C&2cS=OxJ4)b7Bv1MF3Y!R%s@p1edCDmaIe$- zdmb^Ccsp|k_d_RcddWLDgKMrB((Ch23FJb9COoH$odCZ= zIRgq#LMhP5+G*UnR6<9H89p|d?o(p?jfHCp>rEVUT!9Ir%h{`owB%$;8Z(GUQ|iFd zCo#;*4Frgq_v4UwJxdoR9`4Ueye+Ke_ZCVs3no);&mkx)q7-rIr<%)|Gy3 zX?7VP6lyAh$^(*j-h)On_Zj<6UBlqC8dx-MurIzp#E>$J-i1s;#2k@;{EKa#!=mVp z8?f5A4vdWN-`(sjO|;0@!!R3Bt!dt&X<(-$ir+C#9`v}ef;nuWr zLt14LN9XC&sDsOV4 zC=X_=W`#d)Vo2`uV%TIRs|V&#OEkkuv^8a9TJrE#mOcHo|5hZtCo`ID7;~O%2qMQg z!W|`_p&-ZHxe4dbx^_{m{Ltbq!}8xM@mrhIk$qpzgs$dxMsFQ++?M$Be3&_KT~Sq) zbC5qihdPw}+uUIAE#G)FRG%ABkPBkv5rJ6aiKcRD@w8}Xgf=DY-2rqEb#mJ}xm4c1 z+*)dp7eo|5<2(Jupwc*liMOl10LPUvR`+FDIeq(nlkP@BK##38f)(qvIYL{GPuf4y zydgS^%!4%R({znptL{qWVdi8_Bx~e%9#i*=T|W?29)BT_I6&QFbJT5jMegaon5p}8 zr2^@g1eYhX#vs&zxUT=*23Q4p!uiG9P#|<(v)X#t)zPJXDtEKCRhs+PrEw?^bVWd| z0mBB&*e)2?W(eOBT<0|=46%!}s7Wc{A7v~dl67XmL_}TZkP5U|cW11nNAi!+RLVyR zk!SqG7|@0t=vB24)N@M1?RhRxgJt0=!G@o1JUjOG=63jU}g80!0 z*H2RSrK#QLOx2Tni%aPJU5W=kU9d?+Dv(iwk!BV-@iwwO|ZZTp|YE|xei>cY-{sjZs6#za%U1`NH`-9Lo8Dvzc& zQd*`{yhS9DumvR09N-NKbVVI}21EEArc(P?@Nx#YipRSrUH%7w)ych=W6F=}_-Mfv z(`||8ICOZ-^m&Ia-ejfHgny!z!oHrz3~QN@Q@?rUgfbuGTY_g(6E?*!q`^=2iO z6iR)ZV|TAje5p+-Lmk*9J;p2{t$3%DBgsjW;lU`Q29b<{B;o*dq_3yC%o5RtNNbk* ztYYH`;3NIOGS_4ERG&=c-r)Hi@v zPZ*#@Q)g!nHN5+HBSPVaLTuTCQ>kmi(5{g%GGfrXubQT02DX*sflqzo+Aw8}H^Rsi z3v8<@rGOC$C)z84eccKHcXLVbpIHQ7cQ&u;7(v6rOlJWD%}S3bx|JE-@O;#jh|`TU zog6b=10R|G>!}oO8<3IK_bDYeWlBEc&Z1un9HhaNbdmj268U<~IVt6U;GjZ+2VX)O zeo7SopH%=G2hsh$@GT^!BmzZ9N4d~^Jb8p9f37I{iJD*Dm>FeSK{vy>%*1gs%Gf%7 zNlJZvVs-O6g64xfCdKE+QVm$SXQzsC6$B!8f%CW?Nc;?$e#uGCqb&WwXjyyM(}~Rx z%7Q?Po06F8o3aFF0Lo){F^;*9wyGp-duhf*Mou zJJd7>ln=hx>-JYn*NOPb$;$!>1efm1r8g0@YkBlbKot4RGx>(ZUx?(a>@c(QJM@;3 z%4yW&RXNN~rO11ay!^MLD@6phFZA!v?~GcZUzfOmt!ffG-QCdDx{QA6ak}D2nRxy& zl=kwJnT1zEzr)rXkuEe~iN?w<$Z_F@?cB5ZyYxE8wQen0M7lQ|YCbJBNJn5b8~Y6hfjgm>n?>!1EpdT z#PIbX{Nwg-^t4B5ef>=6o6l`uRpNY~R<;Y@3%V{b1YyQesX$Tv=3-)xk%EP5@cXYE z2P$~;2sWiRilT^g8B8hlip189YNlUvAN<8(G1gyyU->PU zoFV`*@P-;QBlZ`2c#k<3J&%8AkSp+kpqvM*%Y4(HB+6J z4Q9(#X7g9y!g!`Z`^NWL;4vSVA*b2{kNvH$uz65VgU zhwUAa{@qSUCU70WhonXZbbQ+3VU4DGE*n)ra{gP{F1y{s9Dz{5lFVCEVxZ?v{ikek z0S!)?dDY|b*@(fWaty@4ZA>W~29G8+M_b7`X36%1)iX3i)N5*OA`smG@_+nT@nG}M z%vWP^rC;-P*hy2JW*0*rT@>y78H9)BzQF-Z=syo6^1mKlY%{ zgPu2Ew;Z)9E_XYnLA^FrtoLWhhIKLV{1llMx?VTT0gS06enH)&$ChvHk=fS!v4K4no8PojeFuLlr`@L59 zqR;OIWEukD2A^M-^`3ZPRMjCPL*>lR@L}E5UoRFcghVhkrjCwnOm0O`fLP0ZyJd0VQn4}ZhyFFxPYB0r_mT6;;ZHBooWaxOkWQKe z@{AR=`}36+2!xJg346B(&Ot{{&nC1sK-76-3Gz~jx8&hAl7_BBhUv57F`GxE) zGOJC?8;H4L8qAY+!>raM6YDIcqtc7eitv)e=ciaB znKAbfyW*S2gJS4D+I;Oh)#KWjo>goXM@nq6lN$(i8qB6j4G0Za8z)Pg&P(>v#cPbE z_CJu~AWwXPk93rnM~WLPVIm~5X)rfpwIqWc-hmr&#%3eMcciq@6t+|r6&9q^G~6@A2R43hiY=$Z^U%?bV1NRl1= zNe$#2*=v%_sP~2U7Mq>vW7pZ|*?&UuT5O=v%2qF={vT=rl(jIu>EPh--7rF79@%)~ z#sj!538H*8d^s68)uj5oA5GaURnn2owU2KtsBO>w-P~k1q$x}RV8KaWLZ)?xjsx|{ zEqZgNbOS&0`=Gb^AqmaI$?0Dno`q$Ph-%MYESh-al7$$RnDuGq+0S`dp($kJ5}|u~ zJZ$ahjN!1{eS6p#Y8m^Wo#BsV=!Q&AEXR1=Z^?1#ignMbZ6o76z|7 z7U08bs#*#EL(1uV%eqjtusDwYjZR!UC{R=+RV;4)E`LZwlHJWQ%&BDSX#Z1L6f|?J z!}OT#(d72$&&Bgued_Z*SDCl`)5w(D)g=Zo3xaQrA2l+hW}D!5Qt$DlUH(n*YwEr5 z@e6TxyYq>jo;TZra1lMNI8quKv*lqt+KYa_+3JqP`Q`hyI${l8)`Q0-zGT_jFo&W0 z#bCY`+rOo)O-@E;#}Hi{p8o(-WyfEF?!yB$EboMDvwEr<8TrHbNkieBJWMdd5Wu2? zmLCkezOc8iKQGJ1b2QSw9A_dWrSNd&W@WX3wt%nhPdst)M$qu1F6q8Ka{(hy@c#Bh zV}BT+>F^*Cfk}dMAj3}JgFqV!yphe6eSr@2P!V;g<~G8L_kX^_16vww^W>qU2#h7j ze+OgY^%A1qyg@|(E!~mZFnR}%rVthq+BL+)gNGzoCsmY`%-7=IgRvhN8Z3`h zR4A*QEi7`fv!Q!9B=X=k@ba0jGLe`x&`;!5`AQV2$E4W*%#+AKH*9%M$2+drVdp-gq z1FbR;q&{`IIre9HnSz|WwY?o?!D_2IjEgkt;YToUpIcE;0aGs{(A_|B8oP$EyZc+y zKG55O;V`Y7$0gstQweI8asF_IOM(GFC%Gp@FmC(Vdzczx=I2j{43L(VZs^u1fQcw* zv20J*R>E)uv~L_M3HTfd;Ncqk>m%JTtpPJ*Kv34Xtl-X)u&6-?86H@W{_%A;aP6DR z%N8akKx(amM0(fottPx3_%gszAZ5%bFMq%7{JtPP{W*|PActE7Yxu^V93P(zGX~a) zQ{$jN1w&NS(1w;KkS?pFnMV|Q9gfZZ)=3kX!_%kkrB{0qehO7Ic3I4 zxr{c~*OSuHV2eEABnm*reGbDY(NEczYw^vAB3psS0$uaHhh`mMQOBI}`JZ6)8=ipz zbG{AmWD3+6S8Y_D7e4Tjiu8nAvv7T|>+{hYO4397FqaL|yuXW!%^nO>WZ0 z-h~NP*u0gA@3yqD9i5%|z_*u{YGyub2BQ^qS?+#x)Ct; zX9Vt2j2D!*evKz7XK`Txs9_N3wntGi8TOTK!ecd>o0{%YQGw1BTB)H!xoR!~D2g7) zMUj!o4|hVsqoeWg@N%uaVX&!G049!3;4uvFBmnr(UqeHSg-tnHPo9v%16Ih$Ru&cp zYdsv-c0qXwcWYs0b{ht!;4E%8gB7%Qc3Q(2o5+*NDiB597xVp)lq6))b7x#D0-ovu zPeFQ*zY7K{^ytycTQDgB&j_F-B|U_n>}okILT?X7fI+nQke~masCT)mU^6$o0wukj zs@@yU*D5P3gE?6+$BWI)O;B=!8kxhmA*H>PGI&2yRZUH;!mqz{6UF6;`Tm9*g%KJB z%AX-2AuyH$JBgFj3InGwhXuw0bKUPmKN_g2_Ca*Hb?cUV6vZFtuY>2kcp-)PfSWt- z%NL6~a@3xCH}4fD`ClC90+SDlDggn3@jq-&ie5T7K{rbo9$$bGZ(jXP^-|XwJNn_+ z)Zq9a=Kt&B%)_Bv`#AoDhrk&M2dgGV^lHNqj~WQ6FhT8|F(M9x{1; zd5krz9&REU7GyFrSrYj4+~*))Ws-?W8;6sa+mIZ|pqXPf=HSN!pxLe##G{ z;L3`MtMFzcjQNgV)ji>c2tp<&B_!nj`6nW`m4gGSfglJdW*;mchh{^}Yr0-i08k}( z?cnrp;&ncKx~9B*9#$$tIg1k~O7JtbMc~=9tZRChAoTb4Dr)*GuKOntZU#2(&4(}6 zDmn%RG6is^;AsEZH|G{U=0D50gJxc6{_aFa|I`kLS2c_e7*_cXyBpCcU&rp@Je^Gw z5)pyhRczmGLqqTWO66_amboE`#kyb+AwdMJ;N*QYtn~J6(;YkVYHMxe$-Z=HP>~Ss z9^FFnf|+V>Q_r3?OTpt$*3B_q4h-D9e%;c}?iX@2)H86_V)Pk04&k z&C6?W(g5>dq`t9IiXK_l`x&n=GjkjZjR?hdtEo8+7iYWOZ}0yY{=PJ=j)_^u_`7$5 zFJ2h^+2uA=9wzeTT1pCEH%7hjI3heV{|3l4t@{P0zs{bl%g=9m^-7u*xha{0l!<)^ zvo=9soNHy({kGcAlU*{46o>hk&xL%fs>_#6VAi#^?y0oXt-?F`&t$1lJDDT2cCD1O zG<;|qC+7@hT#QW9j(T~C83gXY+y4G1J0@7SCwII*TZiq;s^NR6mR4jo(_1 zFC)r3*?OMXnouqi=;d{@XNgOaSpHcoc|JSGBFy~20T`_)8zPx`A60WgdOu5O*y^)d z7S%`s`K_lB17Dpk_LKhl(%0gzAbjL7C1?o$_o)d?WTeX1=rY!(?oG|z-u+V~6G$aV zD)j>QcahA*TYI|sQ};H{E<=}NW)}bP)oI-2O7z{Ts{LoBH`KpnJPH1nwaWfFDfy}g zHPzMR=%zh=TCPT`nfQ)CQ^9)TA+Q%5Y-~8LTQ(o-(Z&qV+1on^P#l7RO_T#$07wTW z{Y6L5H@ggiidJ7QL->4MI*I)(p=J27r1TItE2XF%Y~VMJFked2@w*fi zAK$96&(3ZDyQNWsE|$?bc@NsD+FFdOSax>zDk}pl`R8AbJ!7+HZHDX?_N}ub#-+DeCH#CvY3#*4E6LxTt<Fu8H`UkD(msLt5jVNl%WE3p#_agCK+`1c z*TA$*`GRWcQWOdw@e=z5@89<;mkr?Q`9~dFb6qSj4^JLGbW-u8ir~gDV@Hb#x9;rV zIWE-&h2f|qe|TbM=I>?qe}`KvV;>i-=PR7v1`Weo_7fPLPpXvd-huIUeCxKLMIV5YFap;PkkDJW+BybDCM1qD;ImvhbaZv&zc}Ih0GUeR zfE16cjd?st^Kf)bj2=J>C|cl@8txdMW1|`g4i1KwYxen@i3!0-rcfgy_x!*5v=A|o z`ryp>p=V*@?_X>0?mh|mo96RVCr_ey!-~u_`ZMyv1?R#%@L8EJ6cG7?vgj-;K#!4W6gr_|KG zzCKOynE0SAQ&UsOy7=%w#sr&)nO6!S5T^QVb2`(p9P=>F|OeiXkw)3 zrW5sF4a(oW4 z>AhJzsT|BsxkT{NAfMrOqDTXwp#L^2bGANX}k4Jm}g*>FXo+2Vm zCy4i-KFv%|FDF>RC=RC+!kc--eMrXQcFdvLf@HR(MP!|fm;i#D8xT^*kE@ZRC8ea! z=uvy(Sn%*E1p+^;=3h;Jb!jeU6x;Pfa zrp3g^r>CagKRLagf_#D68M!0RST3=tQ+#TAy78SMO+i%KC@O=KV4M$glsyDGI4k67 z#xWw28hO<5~5G9$faOrtj{jMHya4ZXRz-A9J6Hh>Yy(?|<}OFBt4fz*7+YPk4C^ zfUV@-NriLED11^^SXdb3nme{to(R<-GqIH=Br@~!1b&sCnkm+#gnld{r&y*4({H)hM?)MdiL~bobk%{izWbqU^a}v zfenDeCgdMSM@PN%w( ziO^w%x}Wl+XK`ChH@8cjAxDoNZ|SB8?gAEP@gJbdyPD^-+#UTBd0^~k)$d09`PU)k-wCPy2~ClwS-KwqMGpaQP~0Xlk|rc`ukh?HWwP{|-uJVXzD z4rayQt_tf^RaJery<{x^VEI)js2~a?0R(sS*ZP*xH~_+vKq%d(-XY>P8Wb7NZcOX0`CN%fWR|n%KE&auEeItA_`xxo^odlq}ya6^F&wL4dD-J}E+}Lc86rhwGXljb!xZ1*7 zprQi0a8*qWutalOUw6@lb}6W-v7Y@#BUwFyUlrA+(-mX+{=U9Mjw_%!C?kuoW%JFI z0PC6bp`$fJDuKulm7nVt3F6`82eeVm>1p-AJHtM!Eh&6SF3}jta$w-9q1-A0f;$`4 z7s#n0;MFctXL}t(BHNbXa+#mUwYW#3!opaAJYf%;n~$J3&{zT?5mt1~O;LwwiN@dz zON)!+#3lH{geg?8V9LzNwsdt_;5qQqiU@1R#l%3F>?F?L`}%UDOBvP`QW;&E#b7X8 zTt@%-rwA;USDJC1lieQLLDed*c#|kjP@F-;iZU8~6RUh-9K9u7PbS;nS(>Nxf19_=qIo>K}pqsyTz{-$7>Kf zmseG7hdwytEmNQ=pFxtD+KmdBkJ-;S{J&BczlpF8=aJ=B%lVT3UoB63CuoyamLXm| RFa;6Bo?R@%J4~nZ{|3(M9|QmZ From e2778af8b0623154e5987fb69894136a716c39e4 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 5 Jun 2025 21:08:11 -0400 Subject: [PATCH 24/76] Reverting documentation for PR --- README.md | 26 +---- src/kernel.jl | 200 +++++++++++++++------------------- src/modules/ExactTracking.jl | 44 ++------ src/modules/LinearTracking.jl | 141 +++--------------------- src/types.jl | 114 +------------------ 5 files changed, 119 insertions(+), 406 deletions(-) diff --git a/README.md b/README.md index 55946acb..2a3c61f0 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # BeamTracking -[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://bmad-sim.github.io/BeamTracking.jl/stable/) +[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://bmad-sim.github.io/BeamTracking.jl/) [![Build Status](https://github.com/bmad-sim/BeamTracking.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/bmad-sim/BeamTracking.jl/actions/workflows/CI.yml?query=branch%3Amain) This package provides universally polymorphic and fully portable, parallelizable routines for simulating charged particle beams both on the CPU and, using [`KernelAbstractions.jl`](https://github.com/JuliaGPU/KernelAbstractions.jl), various GPU backends including NVIDIA CUDA, Apple Metal, Intel oneAPI, and AMD ROCm. @@ -12,29 +12,9 @@ import Pkg; Pkg.develop(url="https://github.com/bmad-sim/BeamTracking.jl.git"); # This package! Replace bmad-sim with your username if working on a fork ``` +If working on your own fork, replace `bmad-sim` in the above `develop` url with your Github username. + In your `~/.julia/dev/` directory, you will now see the directory `BeamTracking`. This is the Github repo where you can do your work and push changes. See the [development documentation](https://bmad-sim.github.io/BeamTracking.jl/dev/) for more details. -## Core Components - -### Data Structures - -- `Bunch`: The main data structure representing a particle bunch - - Supports both AoS and SoA memory layouts - - Contains species information and reference magnetic rigidity (Brho_ref) - - Stores particle coordinates in a matrix format - -### Tracking Methods - -1. **Linear Tracking** (`LinearTracking.jl`) -2. **Exact Tracking** (`ExactTracking.jl`) - -### Performance Features - -- SIMD vectorization support -- Automatic multithreading for large particle numbers -- Optimized memory layouts (AoS/SoA) -- Efficient kernel launching system -- GPU acceleration support. Compatible with KernelAbstractions.jl -- Seamless CPU/GPU code sharing through unified kernel interface diff --git a/src/kernel.jl b/src/kernel.jl index 3badc67c..789cb91c 100644 --- a/src/kernel.jl +++ b/src/kernel.jl @@ -1,148 +1,110 @@ -# Get the register size for SIMD operations from VectorizationBase + const REGISTER_SIZE = VectorizationBase.register_size() +const XI = 1 +const PXI = 2 +const YI = 3 +const PYI = 4 +const ZI = 5 +const PZI = 6 + +# Generic function to launch a kernel on the bunch coordinates matrix +# Matrix v should ALWAYS be in SoA whether for real or as a view via tranpose(v) """ - launch!(f!::F, v::V, args...; groupsize, multithread_threshold, use_KA, use_explicit_SIMD) + launch!(f!::F, v, v0, work, args...; simd_lane_width, multithread_threshold) -Launch a kernel function on particle coordinates with automatic optimization for both CPU and GPU backends. +General purpose function to launch a kernel `f!`. The syntax for a kernel `f!` must +ALWAYS be the following: -# Arguments -- `f!`: Kernel function to execute. The kernel function `f!` must be of the form `f!(i, v, work, args...)` -- `v`: Input/output matrix of particle coordinates (always in SoA format) -- `args...`: Additional arguments for the kernel function +## Arguments +- `i` -- Particle index +- `v` -- Input/output matrix as an SoA or SoA view ALWAYS! (use transpose if AoS) +- `work` -- A Vector of temporary vectors (columns of v) to run the kernel `f!` +- `args...` -- Any further arguments to run the kernel -# Keyword Arguments -- `groupsize`: Number of threads per workgroup for GPU execution. If nothing, uses default based on register size for CPU -- `multithread_threshold`: Particle count threshold for enabling multithreading (default: 1750 * nthreads) -- `use_KA`: Whether to use KernelAbstractions.jl for execution (default: true for GPU, false for CPU with no groupsize) -- `use_explicit_SIMD`: Whether to use explicit SIMD vectorization (default: false) +## Keyword Arguments +- `simd_lane_width` -- The number of SIMD lanes to use. Default is `REGISTER_SIZE/sizeof(eltype(A))` +- `multithread_threshold` -- Number of particles at which multithreading is used. Default is `1e6`` """ @inline function launch!( f!::F, v::V, args...; - groupsize::Union{Nothing,Integer}=nothing, + groupsize::Union{Nothing,Integer}=nothing, #backend isa CPU ? floor(Int,REGISTER_SIZE/sizeof(eltype(v))) : 256 multithread_threshold::Integer=Threads.nthreads() > 1 ? 1750*Threads.nthreads() : typemax(Int), use_KA::Bool=!(get_backend(v) isa CPU && isnothing(groupsize)), use_explicit_SIMD::Bool=false ) where {F<:Function,V} - # Error handling - # Cannot use both KA and explicit SIMD if use_KA && use_explicit_SIMD error("Cannot use both KernelAbstractions (KA) and explicit SIMD") end N_particle = size(v, 1) backend = get_backend(v) - - # GPU execution path - if use_KA - if !(backend isa GPU) - error("For GPU parallelized kernel launching, KernelAbstractions (KA) must be used") - end - - kernel! = isnothing(groupsize) ? f!(backend) : f!(backend, groupsize) - kernel!(v, args...; ndrange=N_particle) - KernelAbstractions.synchronize(backend) - return v + if !use_KA && backend isa GPU + error("For GPU parallelized kernel launching, KernelAbstractions (KA) must be used") end - # CPU execution path - if use_explicit_SIMD && V <: SIMD.FastContiguousArray && eltype(V) <: SIMD.ScalarTypes && VectorizationBase.pick_vector_width(eltype(V)) > 1 - execute_simd_cpu!(f!, v, N_particle, multithread_threshold, args...) - else - execute_standard_cpu!(f!, v, N_particle, multithread_threshold, args...) - end - - return v -end - -# Helper functions for CPU execution paths -@inline function execute_simd_cpu!(f!, v, N_particle, multithread_threshold, args...) - # Get the SIMD lane width - simd_lane_width = VectorizationBase.pick_vector_width(eltype(v)) - lane = VecRange{Int(simd_lane_width)}(0) - # Calculate the number of SIMD-aligned particles - rmn = rem(N_particle, simd_lane_width) - N_SIMD = N_particle - rmn - - # Multithreaded SIMD - if N_particle >= multithread_threshold - Threads.@threads for i in 1:simd_lane_width:N_SIMD - @assert last(i) <= N_particle "Out of bounds!" - f!(lane+i, v, args...) - end - # Single-threaded SIMD - else - for i in 1:simd_lane_width:N_SIMD - @assert last(i) <= N_particle "Out of bounds!" - f!(lane+i, v, args...) - end - end - - # Process remaining particles - for i in N_SIMD+1:N_particle - @assert last(i) <= N_particle "Out of bounds!" - f!(i, v, args...) - end -end - -@inline function execute_standard_cpu!(f!, v, N_particle, multithread_threshold, args...) - # Multithreaded execution - if N_particle >= multithread_threshold - Threads.@threads for i in 1:N_particle - @assert last(i) <= N_particle "Out of bounds!" - f!(i, v, args...) + if !use_KA + if use_explicit_SIMD && V <: SIMD.FastContiguousArray && eltype(V) <: SIMD.ScalarTypes && VectorizationBase.pick_vector_width(eltype(V)) > 1 # do SIMD + simd_lane_width = VectorizationBase.pick_vector_width(eltype(V)) + lane = VecRange{Int(simd_lane_width)}(0) + rmn = rem(N_particle, simd_lane_width) + N_SIMD = N_particle - rmn + if N_particle >= multithread_threshold + Threads.@threads for i in 1:simd_lane_width:N_SIMD + @assert last(i) <= N_particle "Out of bounds!" # Use last because VecRange SIMD + f!(lane+i, v, args...) + end + else + for i in 1:simd_lane_width:N_SIMD + @assert last(i) <= N_particle "Out of bounds!" # Use last because VecRange SIMD + f!(lane+i, v, args...) + end + end + # Do the remainder + for i in N_SIMD+1:N_particle + @assert last(i) <= N_particle "Out of bounds!" + f!(i, v, args...) + end + else + if N_particle >= multithread_threshold + Threads.@threads for i in 1:N_particle + @assert last(i) <= N_particle "Out of bounds!" + f!(i, v, args...) + end + else + @simd for i in 1:N_particle + @assert last(i) <= N_particle "Out of bounds!" + f!(i, v, args...) + end + end end - # Single-threaded execution with automatic vectorization else - @simd for i in 1:N_particle - @assert last(i) <= N_particle "Out of bounds!" - f!(i, v, args...) + if isnothing(groupsize) + kernel! = f!(backend) + else + kernel! = f!(backend, groupsize) end + kernel!(v, args...; ndrange=N_particle) + KernelAbstractions.synchronize(backend) end + return v end -# TODO: collective effects -# May need to overload runkernel! for collective effects +# collective effects +# each threads corresponds to many particles +# go through each element, each thread loops through each +# particle and does stuff with it -""" - runkernel!(f!::F, i, v, args...; kwargs...) - -Execute a kernel either on a specific particle or a bunch of particles. - -# Arguments -- `f!`: Kernel function to execute -- `i`: Particle index or nothing for a bunch - If i is nothing, launches the kernel for a bunch with automatic optimization - If i is an index, executes the kernel directly for that specific particle -- `v`: Input/output matrix of particle coordinates -- `args...`: Additional arguments for the kernel function -- `kwargs...`: Keyword arguments passed to launch! when executing in batch mode -""" -# When running kernel on a bunch, no index is provided, launch the kernel with automatic optimization +# Call launch! @inline runkernel!(f!::F, i::Nothing, v, args...; kwargs...) where {F} =launch!(f!, v, args...; kwargs...) -# When running kernel on a specific particle, execute the kernel directly for particle at that index -@inline runkernel!(f!::F, i, v, args...; kwargs...) where {F} = f!(i, v, args...) - - -""" - @makekernel fcn -Macro to create a kernel function that can be executed on both CPU and GPU backends. -Transforms a regular function into a form compatible with KernelAbstractions.jl. +# Call kernel directly +@inline runkernel!(f!::F, i, v, args...; kwargs...) where {F} = f!(i, v, args...) -# Arguments -- `fcn`: Function definition to be transformed into a kernel -# Implementation Details -- Creates two versions of the function: - 1. A kernel version compatible with KernelAbstractions.jl - 2. The original function for direct CPU execution -- Handles const arguments appropriately for GPU execution -- Supports only positional arguments (no keyword arguments or default values) -""" macro makekernel(fcn) fcn.head == :function || error("@makekernel must wrap a function definition") body = esc(fcn.args[2]) @@ -187,4 +149,20 @@ macro makekernel(fcn) $(body) end end -end \ No newline at end of file +end + +#= + +for particle in particles + for ele in ring + + end +end + +for ele in ring + # do a bunch pre pro + for particle in particle + + end +end + =# \ No newline at end of file diff --git a/src/modules/ExactTracking.jl b/src/modules/ExactTracking.jl index d08ccff4..4a34ec30 100644 --- a/src/modules/ExactTracking.jl +++ b/src/modules/ExactTracking.jl @@ -1,13 +1,12 @@ -""" - ExactTracking +#= -Module implementing exact particle tracking through drifts and handling of misalignments. -""" +Exact tracking methods -# Define the Exact tracking method +=# +# Define the Exact tracking method, and number of columns in the work matrix +# (equal to number of temporaries needed for a single particle) struct Exact end -# Number of temporaries needed for a single particle (number of columns in work matrix) MAX_TEMPS(::Exact) = 1 module ExactTracking @@ -28,22 +27,9 @@ const TRACKING_METHOD = Exact end =# -""" - misalign!(i, v, work, x_offset, y_offset, sgn) - -Apply misalignment offsets to particle coordinates. - -# Arguments -- `i`: Particle index -- `v`: Coordinate matrix -- `work`: Work matrix -- `x_offset`: Horizontal offset -- `y_offset`: Vertical offset -- `sgn`: Sign (-1 for entering, 1 for exiting) -""" -# TODO: handle rotational misalignments +# Misalignments (TO-DO: rotational misalignments) @makekernel function misalign!(i, v, work, x_offset, y_offset, sgn) #x_rot, y_rot, tilt, - ##@assert sgn == -1 || sgn == 1 "Incorrect value for sgn (use -1 if entering, 1 if exiting)" + #@assert sgn == -1 || sgn == 1 "Incorrect value for sgn (use -1 if entering, 1 if exiting)" @inbounds begin @FastGTPSA! v[i,XI] += sgn*x_offset @FastGTPSA! v[i,YI] += sgn*y_offset @@ -51,22 +37,8 @@ Apply misalignment offsets to particle coordinates. return v end -""" - exact_drift!(i, v, work, L, tilde_m, gamsqr_0, beta_0) - -Track a particle through a drift space using exact equations of motion. - -# Arguments -- `i`: Particle index -- `v`: Coordinate matrix -- `work`: Work matrix -- `L`: Drift length -- `tilde_m`: Normalized mass -- `gamsqr_0`: Square of reference gamma -- `beta_0`: Reference beta -""" @makekernel function exact_drift!(i, v, work, L, tilde_m, gamsqr_0, beta_0) - ##@assert size(work, 2) >= 1 && size(work, 1) == N_particle "Size of work matrix must be at least ($N_particle, 1) for exact_drift!" + #@assert size(work, 2) >= 1 && size(work, 1) == N_particle "Size of work matrix must be at least ($N_particle, 1) for exact_drift!" @inbounds begin @FastGTPSA! begin work[i,1] = sqrt((1.0 + v[i,PZI])^2 - (v[i,PXI]^2 + v[i,PYI]^2)) # P_s v[i,XI] = v[i,XI] + v[i,PXI] * L / work[i,1] diff --git a/src/modules/LinearTracking.jl b/src/modules/LinearTracking.jl index 01399cef..3cad249c 100644 --- a/src/modules/LinearTracking.jl +++ b/src/modules/LinearTracking.jl @@ -1,15 +1,11 @@ -""" - LinearTracking - -Module implementing linear particle tracking methods. +#= -This module provides functions for linear particle tracking through elements, -including drifts, quadrupoles, solenoids, and bends, using first-order approximations. -""" +Linear tracking methods expanded around "zero orbit". -# Define the Linear tracking method +=# +# Define the Linear tracking method, and number of rows in the work matrix +# (equal to number of temporaries needed for a single particle) struct Linear end -# Number of temporaries needed for a single particle (number of columns in work matrix) MAX_TEMPS(::Linear) = 5 module LinearTracking @@ -17,18 +13,8 @@ using ..GTPSA, ..BeamTracking, ..StaticArrays, ..KernelAbstractions using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, @makekernel const TRACKING_METHOD = Linear -""" - linear_drift!(i, v, work, L, r56) - -Track a particle through a drift space using linear approximation. - -# Arguments -- `i`: Particle index -- `v`: Coordinate matrix -- `work`: Work matrix -- `L`: Drift length -- `r56`: Longitudinal dispersion -""" +# Maybe get rid of inline here and put in function-wise launch! ? +# Drift kernel @makekernel function linear_drift!(i, v, work, L, r56) @inbounds begin @FastGTPSA! begin v[i,XI] += v[i,PXI] * L @@ -47,26 +33,11 @@ end [ t[1:2] t[3:4] 1 r56 ] =# -""" - linear_coast_uncoupled!(i, v, work, mx, my, r56, d, t) - -Track a particle through an uncoupled element - -# Arguments -- `i`: Particle index -- `v`: Coordinate matrix -- `work`: Work matrix -- `mx`: 2x2 horizontal transfer matrix -- `my`: 2x2 vertical transfer matrix -- `r56`: Momentum compaction term -- `d`: Dispersion vector (optional) -- `t`: Path length terms (optional) -""" @makekernel function linear_coast_uncoupled!(i, v, work, mx::AbstractMatrix, my::AbstractMatrix, r56, d::Union{AbstractArray,Nothing}, t::Union{AbstractArray,Nothing}) - ##@assert size(work, 2) >= 1 && size(work, 1) >= size(v, 1) "Size of work matrix must be at least ($(size(v, 1)), 1) for linear_coast_uncoupled!" - ##@assert size(mx) == (2,2) "Size of matrix mx must be (2,2) for linear_coast_uncoupled!. Received $(size(mx))" - ##@assert size(my) == (2,2) "Size of matrix my must be (2,2) for linear_coast_uncoupled!. Received $(size(my))" - ##@assert isnothing(d) || length(d) == 4 "The dispersion vector d must be either `nothing` or of length 4 for linear_coast_uncoupled!. Received $d" + #@assert size(work, 2) >= 1 && size(work, 1) >= size(v, 1) "Size of work matrix must be at least ($(size(v, 1)), 1) for linear_coast_uncoupled!" + #@assert size(mx) == (2,2) "Size of matrix mx must be (2,2) for linear_coast_uncoupled!. Received $(size(mx))" + #@assert size(my) == (2,2) "Size of matrix my must be (2,2) for linear_coast_uncoupled!. Received $(size(my))" + #@assert isnothing(d) || length(d) == 4 "The dispersion vector d must be either `nothing` or of length 4 for linear_coast_uncoupled!. Received $d" if !isnothing(t) @inbounds begin @FastGTPSA! begin v[i,ZI] += t[XI] * v[i,XI] + t[PXI] * v[i,PXI] + t[YI] * v[i,YI] + t[PYI] * v[i,PYI] @@ -92,20 +63,6 @@ Track a particle through an uncoupled element return v end -""" - linear_coast!(i, v, work, mxy, r56, d, t) - -Track a particle through a coupled element - -# Arguments -- `i`: Particle index -- `v`: Coordinate matrix -- `work`: Work matrix -- `mxy`: 4x4 coupled transfer matrix -- `r56`: Momentum compaction term -- `d`: Dispersion vector (optional) -- `t`: Path length terms (optional) -""" @makekernel function linear_coast!(i, v, work, mxy::AbstractMatrix, r56, d::Union{AbstractArray,Nothing}, t::Union{AbstractArray,Nothing}) #@assert size(work, 2) >= 3 && size(work, 1) >= size(v, 1) "Size of work matrix must be at least ($(size(v, 1)), 3) for linear_coast!" #@assert size(mxy) == (4,4) "Size of matrix mxy must be (4,4) for linear_coast!. Received $(size(mxy))" @@ -136,24 +93,9 @@ Track a particle through a coupled element return v end -""" - linear_6D!(i, v, work, m) - -Track a particle using a full 6D transfer matrix. - -# Arguments -- `i`: Particle index -- `v`: Coordinate matrix -- `work`: Work matrix (must be at least size (N_particle, 5)) -- `m`: 6x6 transfer matrix - -# Notes -- Handles full 6D coupled motion -- Uses work matrix for temporary calculations -""" @makekernel function linear_6D!(i, v, work, m::AbstractMatrix) - ##@assert size(work, 2) >= 5 && size(work, 1) >= size(v, 1) "Size of work matrix must be at least ($(size(v, 1)), 5) for linear_6D!" - ##@assert size(m) == (6,6) "Size of matrix m must be (6,6) for linear_6D!. Received $(size(m))" + #@assert size(work, 2) >= 5 && size(work, 1) >= size(v, 1) "Size of work matrix must be at least ($(size(v, 1)), 5) for linear_6D!" + #@assert size(m) == (6,6) "Size of matrix m must be (6,6) for linear_6D!. Received $(size(m))" @inbounds begin @FastGTPSA! begin work[i,1]= v[i,XI] work[i,2]= v[i,PXI] @@ -170,18 +112,6 @@ Track a particle using a full 6D transfer matrix. end # Utility functions to create a linear matrix -""" - linear_quad_matrices(K1, L) - -Generate transfer matrices for a thick quadrupole. - -# Arguments -- `K1`: Quadrupole strength, focusing and defocusing matrices based on K1 sign -- `L`: Quadrupole length - -# Returns -- `mx, my`: Horizontal and vertical transfer matrices -""" function linear_quad_matrices(K1, L) sqrtk = sqrt(abs(K1)) w = sqrtk*L @@ -199,17 +129,6 @@ function linear_quad_matrices(K1, L) end end -""" - linear_thin_quad_matrices(K1L) - -Generate transfer matrices for a thin quadrupole. - -# Arguments -- `K1L`: Integrated quadrupole strength - -# Returns -- `mx, my`: Horizontal and vertical transfer matrices -""" function linear_thin_quad_matrices(K1L) mx = SA[1 0; -K1L 1] @@ -219,21 +138,7 @@ function linear_thin_quad_matrices(K1L) return mx, my end -""" - linear_solenoid_matrix(Ks, L) - -Generate transfer matrix for a solenoid. - -# Arguments -- `Ks`: Solenoid strength -- `L`: Solenoid length - -# Returns -- 4x4 transfer matrix for coupled horizontal and vertical motion - -# Notes -- Based on Bmad manual "Solenoid Tracking" section -""" +# From the Bmad manual "Solenoid Tracking" section, linearized function linear_solenoid_matrix(Ks, L) s, c = sincos(Ks*L) @@ -244,24 +149,6 @@ function linear_solenoid_matrix(Ks, L) end -""" - linear_bend_matrices(K0, L, gamma_0, e1, e2) - -Generate transfer matrices for a bending magnet. - -# Arguments -- `K0`: Bending strength -- `L`: Bend length -- `gamma_0`: Reference gamma -- `e1`: Entrance edge angle (optional) -- `e2`: Exit edge angle (optional) - -# Returns -- `mx, my`: Horizontal and vertical transfer matrices -- `r56`: Momentum compaction term -- `d`: Dispersion vector -- `t`: Path length terms -""" function linear_bend_matrices(K0, L, gamma_0, e1=nothing, e2=nothing) theta = K0*L s, c = sincos(theta) diff --git a/src/types.jl b/src/types.jl index 20a2cfb6..74e03f24 100644 --- a/src/types.jl +++ b/src/types.jl @@ -1,75 +1,22 @@ -""" - MemoryLayout - -Abstract type for memory layout strategies. Two implementations are provided: -- `AoS`: Array of Structures -- `SoA`: Structure of Arrays -""" abstract type MemoryLayout end struct AoS <: MemoryLayout end struct SoA <: MemoryLayout end -""" - Bunch{A<:MemoryLayout,S,T} - -Structure representing a particle bunch. - -# Fields -- `species::Species`: Particle species (e.g., ELECTRON, PROTON) -- `Brho_ref::S`: Reference magnetic rigidity -- `v::T`: Matrix of particle coordinates - First index is particle, second is coordinate (x, px, y, py, z, pz) - px, py are normalized momenta, pz is momentum deviation -""" mutable struct Bunch{A<:MemoryLayout,S,T} - species::Species # Species - Brho_ref::S # Reference magnetic rigidity, used fornormalization of phase space coordinates - const v::T # Matrix of particle coordinates + species::Species # Species + Brho_ref::S # Defines normalization of phase space coordinates + const v::T # Matrix of particle coordinates function Bunch{A}(species, Brho_ref, v) where {A} return new{A,typeof(Brho_ref),typeof(v)}(species, Brho_ref, v) end end -# Constants for coordinate indexing -const XI = 1 -const PXI = 2 -const YI = 3 -const PYI = 4 -const ZI = 5 -const PZI = 6 - -""" - soaview(bunch::Bunch{A}) where {A} - -Get a Structure of Arrays view of the particle coordinates. -""" +# Index particle i coordinate x as (i,1) , px as (i,2), etc soaview(bunch::Bunch{A}) where {A} = A == AoS ? transpose(bunch.v) : bunch.v - -""" - aosview(bunch::Bunch{A}) where {A} - -Get an Array of Structures view of the particle coordinates. -""" aosview(bunch::Bunch{A}) where {A} = A == AoS ? bunch.v : transpose(bunch.v) - -""" - get_N_particle(bunch::Bunch{A}) where {A} - -Get the number of particles in the bunch. -""" get_N_particle(bunch::Bunch{A}) where {A} = A == AoS ? size(bunch.v, 2) : size(bunch.v, 1) -""" - setproperty!(bunch::Bunch{A,S}, key::Symbol, value) where {A,S} - -Update bunch properties, handling special cases for Brho_ref and species changes. -Automatically adjusts particle momenta when Brho_ref or species changes. - -# Arguments -- `bunch`: The particle bunch to modify -- `key`: Property to update (:Brho_ref or :species) -- `value`: New value for the property -""" +# Update momenta for change to Brho_ref or change to species function setproperty!(bunch::Bunch{A,S}, key::Symbol, value) where {A,S} if key == :Brho_ref if value == bunch.Brho_ref @@ -92,20 +39,6 @@ function setproperty!(bunch::Bunch{A,S}, key::Symbol, value) where {A,S} end end -""" - Bunch(N::Integer; mem=SoA, Brho_ref=NaN, species=ELECTRON) - -Create a new bunch with N particles. - -# Arguments -- `N`: Number of particles -- `mem`: Memory layout (SoA or AoS) -- `Brho_ref`: Reference magnetic rigidity -- `species`: Particle species - -# Returns -A new `Bunch` instance with randomly initialized coordinates -""" function Bunch(N::Integer; mem=SoA, Brho_ref=NaN, species=ELECTRON) if mem == SoA return Bunch{mem}(species, Brho_ref, rand(N,6)) @@ -116,20 +49,6 @@ function Bunch(N::Integer; mem=SoA, Brho_ref=NaN, species=ELECTRON) end end -""" - Bunch(v::AbstractArray; mem=SoA, Brho_ref=NaN, species=ELECTRON) - -Create a new bunch from existing coordinates. - -# Arguments -- `v`: Matrix of particle coordinates -- `mem`: Memory layout (SoA or AoS) -- `Brho_ref`: Reference magnetic rigidity -- `species`: Particle species - -# Returns -A new `Bunch` instance with the provided coordinates -""" function Bunch(v::AbstractArray; mem=SoA, Brho_ref=NaN, species=ELECTRON) if mem == SoA size(v, 2) == 6 || error("For SoA the number of columns must be equal to 6") @@ -141,17 +60,6 @@ function Bunch(v::AbstractArray; mem=SoA, Brho_ref=NaN, species=ELECTRON) return Bunch{mem}(species, Brho_ref, v) end -""" - ParticleView{S,T} - -View into a single particle within a bunch. - -# Fields -- `species::Species`: Particle species -- `Brho_ref::S`: Reference magnetic rigidity -- `index::Int`: Particle index -- `v::T`: View of particle coordinates -""" struct ParticleView{S,T} species::Species Brho_ref::S @@ -159,18 +67,6 @@ struct ParticleView{S,T} v::T end -""" - ParticleView(bunch::Bunch{A}, i=1) where {A} - -Create a view of a single particle in the bunch. - -# Arguments -- `bunch`: The particle bunch -- `i`: Index of the particle to view (default: 1) - -# Returns -A `ParticleView` instance for the specified particle -""" function ParticleView(bunch::Bunch{A}, i=1) where {A} v = aosview(bunch) return ParticleView(bunch.species, bunch.Brho_ref, i, view(v, :, i)) From 210fef88ce2745a8cf484cf6afa0c53ad3a9b9a3 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 6 Jun 2025 00:59:01 -0400 Subject: [PATCH 25/76] optimize solver_params to minimize memory allocation --- Project.toml | 2 ++ src/modules/FieldTracking.jl | 42 ++++++++++++------------------------ test/KernelEvaluation.jl | 26 ++++++++++++++-------- 3 files changed, 33 insertions(+), 37 deletions(-) diff --git a/Project.toml b/Project.toml index c36f2122..d109bd3f 100644 --- a/Project.toml +++ b/Project.toml @@ -4,6 +4,7 @@ authors = ["mattsignorelli and contributors"] version = "0.1.0" [deps] +BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c" OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" @@ -21,6 +22,7 @@ BeamTrackingBeamlinesExt = "Beamlines" [compat] Beamlines = "0.2.1" +BenchmarkTools = "1.6.0" GTPSA = "1.4.2" KernelAbstractions = "0.9.34" OrdinaryDiffEq = "6.98.0" diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index edc7c11a..5f7d956b 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -13,10 +13,10 @@ MAX_TEMPS(::Field) = 0 module FieldTracking using ..GTPSA, ..BeamTracking, ..StaticArrays using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, @makekernel -using SciMLBase, OrdinaryDiffEq const TRACKING_METHOD = Field # EVOLVE-BLOCK-START +using SciMLBase, OrdinaryDiffEq """ field_system!(du, u, p, t) @@ -26,24 +26,17 @@ Define the ODE system for particle motion in an electromagnetic field. - `du`: Vector of derivatives - `u`: State vector [x, px, y, py, z, pz] - `p`: Parameters tuple containing (field_func, params) +- `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. + Return value should be [px, Ex, py, Ey, pz, Ez]. - `t`: Time variable """ function field_system!(du, u, p, t) - x, px, y, py, z, pz = u field_func, params = p - field = field_func(x, y, z, params) - - # Equations of motion - du[1] = px # dx/dt = px - du[2] = field[1] # dpx/dt = Ex - du[3] = py # dy/dt = py - du[4] = field[2] # dpy/dt = Ey - du[5] = pz # dz/dt = pz - du[6] = field[3] # dpz/dt = Ez + du .= field_func(u, t, params) end """ - field_track!(i, v, work, L, field_func, params, solver) + field_track!(i, v, work, L, field_func, field_params, solver, solver_params) Track a particle through a drift space with arbitrary field using DifferentialEquations.jl. @@ -53,28 +46,21 @@ Track a particle through a drift space with arbitrary field using DifferentialEq - `work`: Work matrix - `L`: Drift length - `field_func`: Function that returns the field at a given position (x, y, z) -- `params`: Additional parameters for the field function +- `field_params`: Additional parameters for the field function - `solver`: ODE solver to use +- `solver_params`: Additional parameters for the solver """ -@makekernel function field_track!(i, v, work, L, field_func, params, solver) +@makekernel function field_track!(i, v, work, L, field_func, field_params, solver, solver_params) @inbounds begin - # Initial state vector [x, px, y, py, z, pz] - u0 = [v[i,XI], v[i,PXI], v[i,YI], v[i,PYI], v[i,ZI], v[i,PZI]] + # Initial state vector + u0 = view(v, i, :) # Set up and solve the ODE - prob = ODEProblem(field_system!, u0, (0.0, L), (field_func, params)) - sol = solve(prob, solver, reltol=1e-8, abstol=1e-8) + prob = ODEProblem(field_system!, u0, (0.0, L), (field_func, field_params)) + sol = solve(prob, solver; reltol=1e-8, abstol=1e-8, solver_params...) - # Update final coordinates - final_state = sol.u[end] - @FastGTPSA! begin - v[i,XI] = final_state[1] - v[i,PXI] = final_state[2] - v[i,YI] = final_state[3] - v[i,PYI] = final_state[4] - v[i,ZI] = final_state[5] - v[i,PZI] = final_state[6] - end + # Update final coordinates by assigning each component + u0 .= sol.u[end] end return v end diff --git a/test/KernelEvaluation.jl b/test/KernelEvaluation.jl index c84de934..9780a7b2 100644 --- a/test/KernelEvaluation.jl +++ b/test/KernelEvaluation.jl @@ -1,10 +1,10 @@ using BeamTracking using BeamTracking: get_N_particle, runkernel!, MAX_TEMPS, soaview using BenchmarkTools -using DifferentialEquations: Tsit5 +using SciMLBase, OrdinaryDiffEq """ - evaluate_kernel_performance(bunch, kernel, args...; n_runs=10, kwargs...) + evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) Evaluate the performance of any tracking kernel and return a dictionary of metrics. @@ -13,13 +13,12 @@ Evaluate the performance of any tracking kernel and return a dictionary of metri - `kernel`: The kernel function to evaluate - `args...`: Arguments to pass to the kernel - `n_runs`: Number of runs for performance evaluation (default: 10) -- `kwargs...`: Additional keyword arguments to pass to runkernel! # Returns A dictionary containing the following metrics: -- `min_time`: Minimum tracking time per particle (in nanoseconds) -- `min_memory`: Minimum memory allocation per particle (in bytes) -- `min_allocs`: Minimum number of allocations per particle +- `min_time`: Minimum tracking time (in nanoseconds) +- `min_memory`: Minimum memory allocation (in bytes) +- `min_allocs`: Minimum number of allocations - `success`: Boolean whether the tracking was successful """ @@ -57,12 +56,12 @@ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) end -function evaluate_field_track_performance(; n_runs=10, n_particles=1000, solver=Tsit5()) +function evaluate_field_track_performance(; n_runs=10, n_particles=1000, solver=Tsit5(), solver_params=(save_everystep=false,save_start=false,save_end=true,dense=false,calck=false)) bunch = Bunch(n_particles) L = 1.0 - field_func = (x, y, z, params) -> [0.0, 0.0, 0.0] + field_func = (u, t, params) -> [u[2], 0.0, u[4], 0.0, u[6], 0.0] params = nothing - return evaluate_kernel_performance(bunch, FieldTracking.field_track!, L, field_func, params, solver; n_runs=n_runs) + return evaluate_kernel_performance(bunch, FieldTracking.field_track!, L, field_func, params, solver, solver_params; n_runs=n_runs) end function evaluate_linear_track_performance(;n_runs=10, n_particles=1000) @@ -72,3 +71,12 @@ function evaluate_linear_track_performance(;n_runs=10, n_particles=1000) r56 = 1.0 return evaluate_kernel_performance(bunch, LinearTracking.linear_drift!, L, r56; n_runs=n_runs) end + +function evaluate_rk4_track_performance(;n_runs=10, n_particles=1000) + bunch = Bunch(n_particles) + t_span = (0.0, 1.0) + field_func = (u, t, params) -> [u[2], 0.0, u[4], 0.0, u[6], 0.0] + params = nothing + return evaluate_kernel_performance(bunch, RungeKuttaTracking.rk4_track!, t_span, field_func, params, 10; n_runs=n_runs) +end + From e99164a265be5c318996b71cd1f4047f4d33cd87 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 6 Jun 2025 20:43:04 -0400 Subject: [PATCH 26/76] new benchmark environment --- Project.toml | 3 - benchmark/KernelEvaluation.jl | 83 ++ benchmark/Manifest.toml | 1587 +++++++++++++++++++++++++++++++++ benchmark/Project.toml | 6 + 4 files changed, 1676 insertions(+), 3 deletions(-) create mode 100644 benchmark/KernelEvaluation.jl create mode 100644 benchmark/Manifest.toml create mode 100644 benchmark/Project.toml diff --git a/Project.toml b/Project.toml index d109bd3f..a2566da3 100644 --- a/Project.toml +++ b/Project.toml @@ -4,10 +4,8 @@ authors = ["mattsignorelli and contributors"] version = "0.1.0" [deps] -BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c" -OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" ReferenceFrameRotations = "74f56ac7-18b3-5285-802d-d4bd4f104033" SIMD = "fdea26ae-647d-5447-a871-4b548cad5224" SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462" @@ -25,7 +23,6 @@ Beamlines = "0.2.1" BenchmarkTools = "1.6.0" GTPSA = "1.4.2" KernelAbstractions = "0.9.34" -OrdinaryDiffEq = "6.98.0" ReferenceFrameRotations = "3" SIMD = "3.7.1" SciMLBase = "2.96.0" diff --git a/benchmark/KernelEvaluation.jl b/benchmark/KernelEvaluation.jl new file mode 100644 index 00000000..e65b3225 --- /dev/null +++ b/benchmark/KernelEvaluation.jl @@ -0,0 +1,83 @@ +using BeamTracking +using BeamTracking: get_N_particle, runkernel!, MAX_TEMPS, soaview +using BenchmarkTools +using SciMLBase, OrdinaryDiffEq +using StaticArrays + +""" + evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) + +Evaluate the performance of any tracking kernel and return a dictionary of metrics. + +# Arguments +- `bunch`: Initial particle bunch +- `kernel`: The kernel function to evaluate +- `args...`: Arguments to pass to the kernel +- `n_runs`: Number of runs for performance evaluation (default: 10) + +# Returns +A dictionary containing the following metrics: +- `min_time`: Minimum tracking time (in nanoseconds) +- `min_memory`: Minimum memory allocation (in bytes) +- `min_allocs`: Minimum number of allocations +- `success`: Boolean whether the tracking was successful + +""" +function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) + n_particles = get_N_particle(bunch) + + # Get the tracking method from the kernel's module + tracking_method = parentmodule(kernel).TRACKING_METHOD() + n_temps = MAX_TEMPS(tracking_method) + work = zeros(eltype(bunch.v), n_particles, n_temps) + v = soaview(bunch) + try + # Benchmark the tracking with specified sample size and time budget + result = @benchmark begin + runkernel!($kernel, nothing, $v, $work, $args...) + end samples=n_runs seconds=10 + + metrics = Dict( + "min_time" => time(minimum(result)), + "min_memory" => memory(minimum(result)), + "min_allocs" => allocs(minimum(result)), + "success" => true + ) + + return metrics + catch e + @warn "Tracking failed: $e" + return Dict( + "min_time" => NaN, + "min_memory" => NaN, + "min_allocs" => NaN, + "success" => false + ) + end +end + + +function evaluate_field_track_performance(; n_runs=10, n_particles=1000, solver=Tsit5(), solver_params=(save_everystep=false,save_start=false,save_end=true,dense=false,calck=false)) + bunch = Bunch(n_particles) + L = 1.0 + field_func = (u, t, params) -> SVector(u[2], 0.0, u[4], 0.0, u[6], 0.0) + params = nothing + return evaluate_kernel_performance(bunch, FieldTracking.field_track!, L, field_func, params, solver, solver_params; n_runs=n_runs) +end + +function evaluate_linear_track_performance(;n_runs=10, n_particles=1000) + # suggest good default values for bunch, L, r56 + bunch = Bunch(n_particles) + L = 1.0 + r56 = 1.0 + return evaluate_kernel_performance(bunch, LinearTracking.linear_drift!, L, r56; n_runs=n_runs) +end + +function evaluate_rk4_track_performance(;n_runs=10, n_particles=1000) + bunch = Bunch(n_particles) + t_span = (0.0, 1.0) + field_func = (u, t, params) -> SVector(u[2], 0.0, u[4], 0.0, u[6], 0.0) + params = nothing + return evaluate_kernel_performance(bunch, RungeKuttaTracking.rk4_track!, t_span, field_func, params, 10; n_runs=n_runs) +end + diff --git a/benchmark/Manifest.toml b/benchmark/Manifest.toml new file mode 100644 index 00000000..814ed8a3 --- /dev/null +++ b/benchmark/Manifest.toml @@ -0,0 +1,1587 @@ +# This file is machine-generated - editing it directly is not advised + +julia_version = "1.11.1" +manifest_format = "2.0" +project_hash = "4689147201f62689a207ca27d4978fa80f84fbcf" + +[[deps.ADTypes]] +git-tree-sha1 = "e2478490447631aedba0823d4d7a80b2cc8cdb32" +uuid = "47edcb42-4c32-4615-8424-f2b9edc5f35b" +version = "1.14.0" +weakdeps = ["ChainRulesCore", "ConstructionBase", "EnzymeCore"] + + [deps.ADTypes.extensions] + ADTypesChainRulesCoreExt = "ChainRulesCore" + ADTypesConstructionBaseExt = "ConstructionBase" + ADTypesEnzymeCoreExt = "EnzymeCore" + +[[deps.Accessors]] +deps = ["CompositionsBase", "ConstructionBase", "Dates", "InverseFunctions", "MacroTools"] +git-tree-sha1 = "3b86719127f50670efe356bc11073d84b4ed7a5d" +uuid = "7d9f7c33-5ae7-4f3b-8dc6-eff91059b697" +version = "0.1.42" + + [deps.Accessors.extensions] + AxisKeysExt = "AxisKeys" + IntervalSetsExt = "IntervalSets" + LinearAlgebraExt = "LinearAlgebra" + StaticArraysExt = "StaticArrays" + StructArraysExt = "StructArrays" + TestExt = "Test" + UnitfulExt = "Unitful" + + [deps.Accessors.weakdeps] + AxisKeys = "94b1ba4f-4ee9-5380-92f1-94cde586c3c5" + IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953" + LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" + Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" + Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d" + +[[deps.Adapt]] +deps = ["LinearAlgebra", "Requires"] +git-tree-sha1 = "f7817e2e585aa6d924fd714df1e2a84be7896c60" +uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" +version = "4.3.0" +weakdeps = ["SparseArrays", "StaticArrays"] + + [deps.Adapt.extensions] + AdaptSparseArraysExt = "SparseArrays" + AdaptStaticArraysExt = "StaticArrays" + +[[deps.ArgTools]] +uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" +version = "1.1.2" + +[[deps.ArrayInterface]] +deps = ["Adapt", "LinearAlgebra"] +git-tree-sha1 = "9606d7832795cbef89e06a550475be300364a8aa" +uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9" +version = "7.19.0" + + [deps.ArrayInterface.extensions] + ArrayInterfaceBandedMatricesExt = "BandedMatrices" + ArrayInterfaceBlockBandedMatricesExt = "BlockBandedMatrices" + ArrayInterfaceCUDAExt = "CUDA" + ArrayInterfaceCUDSSExt = "CUDSS" + ArrayInterfaceChainRulesCoreExt = "ChainRulesCore" + ArrayInterfaceChainRulesExt = "ChainRules" + ArrayInterfaceGPUArraysCoreExt = "GPUArraysCore" + ArrayInterfaceReverseDiffExt = "ReverseDiff" + ArrayInterfaceSparseArraysExt = "SparseArrays" + ArrayInterfaceStaticArraysCoreExt = "StaticArraysCore" + ArrayInterfaceTrackerExt = "Tracker" + + [deps.ArrayInterface.weakdeps] + BandedMatrices = "aae01518-5342-5314-be14-df237901396f" + BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0" + CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" + CUDSS = "45b445bb-4962-46a0-9369-b4df9d0f772e" + ChainRules = "082447d4-558c-5d27-93f4-14fc19e9eca2" + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + StaticArraysCore = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + +[[deps.ArrayLayouts]] +deps = ["FillArrays", "LinearAlgebra"] +git-tree-sha1 = "4e25216b8fea1908a0ce0f5d87368587899f75be" +uuid = "4c555306-a7a7-4459-81d9-ec55ddd5c99a" +version = "1.11.1" +weakdeps = ["SparseArrays"] + + [deps.ArrayLayouts.extensions] + ArrayLayoutsSparseArraysExt = "SparseArrays" + +[[deps.Artifacts]] +uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" +version = "1.11.0" + +[[deps.Atomix]] +deps = ["UnsafeAtomics"] +git-tree-sha1 = "b5bb4dc6248fde467be2a863eb8452993e74d402" +uuid = "a9b6321e-bd34-4604-b9c9-b65b8de01458" +version = "1.1.1" + + [deps.Atomix.extensions] + AtomixCUDAExt = "CUDA" + AtomixMetalExt = "Metal" + AtomixOpenCLExt = "OpenCL" + AtomixoneAPIExt = "oneAPI" + + [deps.Atomix.weakdeps] + CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" + Metal = "dde4c033-4e86-420c-a63e-0dd931031962" + OpenCL = "08131aa3-fb12-5dee-8b74-c09406e224a2" + oneAPI = "8f75cd03-7ff8-4ecb-9b8f-daf728133b1b" + +[[deps.Base64]] +uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" +version = "1.11.0" + +[[deps.BeamTracking]] +deps = ["GTPSA", "KernelAbstractions", "ReferenceFrameRotations", "SIMD", "SciMLBase", "StaticArrays", "VectorizationBase"] +path = ".." +uuid = "8ef5c10a-4ca3-437f-8af5-b84d8af36df0" +version = "0.1.0" + + [deps.BeamTracking.extensions] + BeamTrackingBeamlinesExt = "Beamlines" + + [deps.BeamTracking.weakdeps] + Beamlines = "5bb90b03-0719-46b8-8ce4-1ef3afd3cd4b" + +[[deps.BenchmarkTools]] +deps = ["Compat", "JSON", "Logging", "Printf", "Profile", "Statistics", "UUIDs"] +git-tree-sha1 = "e38fbc49a620f5d0b660d7f543db1009fe0f8336" +uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" +version = "1.6.0" + +[[deps.BitTwiddlingConvenienceFunctions]] +deps = ["Static"] +git-tree-sha1 = "f21cfd4950cb9f0587d5067e69405ad2acd27b87" +uuid = "62783981-4cbd-42fc-bca8-16325de8dc4b" +version = "0.1.6" + +[[deps.BracketingNonlinearSolve]] +deps = ["CommonSolve", "ConcreteStructs", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase"] +git-tree-sha1 = "a9014924595b7a2c1dd14aac516e38fa10ada656" +uuid = "70df07ce-3d50-431d-a3e7-ca6ddb60ac1e" +version = "1.3.0" +weakdeps = ["ChainRulesCore", "ForwardDiff"] + + [deps.BracketingNonlinearSolve.extensions] + BracketingNonlinearSolveChainRulesCoreExt = ["ChainRulesCore", "ForwardDiff"] + BracketingNonlinearSolveForwardDiffExt = "ForwardDiff" + +[[deps.CPUSummary]] +deps = ["CpuId", "IfElse", "PrecompileTools", "Static"] +git-tree-sha1 = "5a97e67919535d6841172016c9530fd69494e5ec" +uuid = "2a0fbf3d-bb9c-48f3-b0a9-814d99fd7ab9" +version = "0.2.6" + +[[deps.ChainRulesCore]] +deps = ["Compat", "LinearAlgebra"] +git-tree-sha1 = "1713c74e00545bfe14605d2a2be1712de8fbcb58" +uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" +version = "1.25.1" +weakdeps = ["SparseArrays"] + + [deps.ChainRulesCore.extensions] + ChainRulesCoreSparseArraysExt = "SparseArrays" + +[[deps.CloseOpenIntervals]] +deps = ["Static", "StaticArrayInterface"] +git-tree-sha1 = "05ba0d07cd4fd8b7a39541e31a7b0254704ea581" +uuid = "fb6a15b2-703c-40df-9091-08a04967cfa9" +version = "0.1.13" + +[[deps.CommonSolve]] +git-tree-sha1 = "0eee5eb66b1cf62cd6ad1b460238e60e4b09400c" +uuid = "38540f10-b2f7-11e9-35d8-d573e4eb0ff2" +version = "0.2.4" + +[[deps.CommonSubexpressions]] +deps = ["MacroTools"] +git-tree-sha1 = "cda2cfaebb4be89c9084adaca7dd7333369715c5" +uuid = "bbf7d656-a473-5ed7-a52c-81e309532950" +version = "0.3.1" + +[[deps.CommonWorldInvalidations]] +git-tree-sha1 = "ae52d1c52048455e85a387fbee9be553ec2b68d0" +uuid = "f70d9fcc-98c5-4d4a-abd7-e4cdeebd8ca8" +version = "1.0.0" + +[[deps.Compat]] +deps = ["TOML", "UUIDs"] +git-tree-sha1 = "8ae8d32e09f0dcf42a36b90d4e17f5dd2e4c4215" +uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" +version = "4.16.0" +weakdeps = ["Dates", "LinearAlgebra"] + + [deps.Compat.extensions] + CompatLinearAlgebraExt = "LinearAlgebra" + +[[deps.CompilerSupportLibraries_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" +version = "1.1.1+0" + +[[deps.CompositionsBase]] +git-tree-sha1 = "802bb88cd69dfd1509f6670416bd4434015693ad" +uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b" +version = "0.1.2" +weakdeps = ["InverseFunctions"] + + [deps.CompositionsBase.extensions] + CompositionsBaseInverseFunctionsExt = "InverseFunctions" + +[[deps.ConcreteStructs]] +git-tree-sha1 = "f749037478283d372048690eb3b5f92a79432b34" +uuid = "2569d6c7-a4a2-43d3-a901-331e8e4be471" +version = "0.2.3" + +[[deps.ConstructionBase]] +git-tree-sha1 = "76219f1ed5771adbb096743bff43fb5fdd4c1157" +uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" +version = "1.5.8" + + [deps.ConstructionBase.extensions] + ConstructionBaseIntervalSetsExt = "IntervalSets" + ConstructionBaseLinearAlgebraExt = "LinearAlgebra" + ConstructionBaseStaticArraysExt = "StaticArrays" + + [deps.ConstructionBase.weakdeps] + IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953" + LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + +[[deps.CpuId]] +deps = ["Markdown"] +git-tree-sha1 = "fcbb72b032692610bfbdb15018ac16a36cf2e406" +uuid = "adafc99b-e345-5852-983c-f28acb93d879" +version = "0.3.1" + +[[deps.Crayons]] +git-tree-sha1 = "249fe38abf76d48563e2f4556bebd215aa317e15" +uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f" +version = "4.1.1" + +[[deps.DataAPI]] +git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe" +uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" +version = "1.16.0" + +[[deps.DataStructures]] +deps = ["Compat", "InteractiveUtils", "OrderedCollections"] +git-tree-sha1 = "4e1fe97fdaed23e9dc21d4d664bea76b65fc50a0" +uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" +version = "0.18.22" + +[[deps.DataValueInterfaces]] +git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" +uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" +version = "1.0.0" + +[[deps.Dates]] +deps = ["Printf"] +uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" +version = "1.11.0" + +[[deps.DiffEqBase]] +deps = ["ArrayInterface", "ConcreteStructs", "DataStructures", "DocStringExtensions", "EnumX", "EnzymeCore", "FastBroadcast", "FastClosures", "FastPower", "FunctionWrappers", "FunctionWrappersWrappers", "LinearAlgebra", "Logging", "Markdown", "MuladdMacro", "Parameters", "PrecompileTools", "Printf", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "Setfield", "Static", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface", "TruncatedStacktraces"] +git-tree-sha1 = "a0e5b5669df9465bc3dd32ea4a8ddeefbc0f7b5c" +uuid = "2b5f629d-d688-5b77-993f-72d75c75574e" +version = "6.175.0" + + [deps.DiffEqBase.extensions] + DiffEqBaseCUDAExt = "CUDA" + DiffEqBaseChainRulesCoreExt = "ChainRulesCore" + DiffEqBaseDistributionsExt = "Distributions" + DiffEqBaseEnzymeExt = ["ChainRulesCore", "Enzyme"] + DiffEqBaseForwardDiffExt = ["ForwardDiff"] + DiffEqBaseGTPSAExt = "GTPSA" + DiffEqBaseGeneralizedGeneratedExt = "GeneralizedGenerated" + DiffEqBaseMPIExt = "MPI" + DiffEqBaseMeasurementsExt = "Measurements" + DiffEqBaseMonteCarloMeasurementsExt = "MonteCarloMeasurements" + DiffEqBaseMooncakeExt = "Mooncake" + DiffEqBaseReverseDiffExt = "ReverseDiff" + DiffEqBaseSparseArraysExt = "SparseArrays" + DiffEqBaseTrackerExt = "Tracker" + DiffEqBaseUnitfulExt = "Unitful" + + [deps.DiffEqBase.weakdeps] + CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f" + Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" + ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" + GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" + GeneralizedGenerated = "6b9d7cbe-bcb9-11e9-073f-15a7a543e2eb" + MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195" + Measurements = "eff96d63-e80a-5855-80a2-b1b0885c5ab7" + MonteCarloMeasurements = "0987c9cc-fe09-11e8-30f0-b96dd679fdca" + Mooncake = "da2b9cff-9c12-43a0-ae48-6db2b0edb7d6" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d" + +[[deps.DiffResults]] +deps = ["StaticArraysCore"] +git-tree-sha1 = "782dd5f4561f5d267313f23853baaaa4c52ea621" +uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" +version = "1.1.0" + +[[deps.DiffRules]] +deps = ["IrrationalConstants", "LogExpFunctions", "NaNMath", "Random", "SpecialFunctions"] +git-tree-sha1 = "23163d55f885173722d1e4cf0f6110cdbaf7e272" +uuid = "b552c78f-8df3-52c6-915a-8e097449b14b" +version = "1.15.1" + +[[deps.DifferentiationInterface]] +deps = ["ADTypes", "LinearAlgebra"] +git-tree-sha1 = "c8d85ecfcbaef899308706bebdd8b00107f3fb43" +uuid = "a0c0ee7d-e4b9-4e03-894e-1c5f64a51d63" +version = "0.6.54" + + [deps.DifferentiationInterface.extensions] + DifferentiationInterfaceChainRulesCoreExt = "ChainRulesCore" + DifferentiationInterfaceDiffractorExt = "Diffractor" + DifferentiationInterfaceEnzymeExt = ["EnzymeCore", "Enzyme"] + DifferentiationInterfaceFastDifferentiationExt = "FastDifferentiation" + DifferentiationInterfaceFiniteDiffExt = "FiniteDiff" + DifferentiationInterfaceFiniteDifferencesExt = "FiniteDifferences" + DifferentiationInterfaceForwardDiffExt = ["ForwardDiff", "DiffResults"] + DifferentiationInterfaceGPUArraysCoreExt = "GPUArraysCore" + DifferentiationInterfaceGTPSAExt = "GTPSA" + DifferentiationInterfaceMooncakeExt = "Mooncake" + DifferentiationInterfacePolyesterForwardDiffExt = ["PolyesterForwardDiff", "ForwardDiff", "DiffResults"] + DifferentiationInterfaceReverseDiffExt = ["ReverseDiff", "DiffResults"] + DifferentiationInterfaceSparseArraysExt = "SparseArrays" + DifferentiationInterfaceSparseConnectivityTracerExt = "SparseConnectivityTracer" + DifferentiationInterfaceSparseMatrixColoringsExt = "SparseMatrixColorings" + DifferentiationInterfaceStaticArraysExt = "StaticArrays" + DifferentiationInterfaceSymbolicsExt = "Symbolics" + DifferentiationInterfaceTrackerExt = "Tracker" + DifferentiationInterfaceZygoteExt = ["Zygote", "ForwardDiff"] + + [deps.DifferentiationInterface.weakdeps] + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" + Diffractor = "9f5e2b26-1114-432f-b630-d3fe2085c51c" + Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" + EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" + FastDifferentiation = "eb9bf01b-bf85-4b60-bf87-ee5de06c00be" + FiniteDiff = "6a86dc24-6348-571c-b903-95158fe2bd41" + FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000" + ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" + GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527" + GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" + Mooncake = "da2b9cff-9c12-43a0-ae48-6db2b0edb7d6" + PolyesterForwardDiff = "98d1487c-24ca-40b6-b7ab-df2af84e126b" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + SparseConnectivityTracer = "9f842d2f-2579-4b1d-911e-f412cf18a3f5" + SparseMatrixColorings = "0a514795-09f3-496d-8182-132a7b665d35" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" + +[[deps.Distributed]] +deps = ["Random", "Serialization", "Sockets"] +uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" +version = "1.11.0" + +[[deps.DocStringExtensions]] +git-tree-sha1 = "e7b7e6f178525d17c720ab9c081e4ef04429f860" +uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" +version = "0.9.4" + +[[deps.Downloads]] +deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] +uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" +version = "1.6.0" + +[[deps.EnumX]] +git-tree-sha1 = "bddad79635af6aec424f53ed8aad5d7555dc6f00" +uuid = "4e289a0a-7415-4d19-859d-a7e5c4648b56" +version = "1.0.5" + +[[deps.EnzymeCore]] +git-tree-sha1 = "7d7822a643c33bbff4eab9c87ca8459d7c688db0" +uuid = "f151be2c-9106-41f4-ab19-57ee4f262869" +version = "0.8.11" +weakdeps = ["Adapt"] + + [deps.EnzymeCore.extensions] + AdaptExt = "Adapt" + +[[deps.ExponentialUtilities]] +deps = ["Adapt", "ArrayInterface", "GPUArraysCore", "GenericSchur", "LinearAlgebra", "PrecompileTools", "Printf", "SparseArrays", "libblastrampoline_jll"] +git-tree-sha1 = "cae251c76f353e32d32d76fae2fea655eab652af" +uuid = "d4d017d3-3776-5f7e-afef-a10c40355c18" +version = "1.27.0" +weakdeps = ["StaticArrays"] + + [deps.ExponentialUtilities.extensions] + ExponentialUtilitiesStaticArraysExt = "StaticArrays" + +[[deps.ExprTools]] +git-tree-sha1 = "27415f162e6028e81c72b82ef756bf321213b6ec" +uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04" +version = "0.1.10" + +[[deps.ExproniconLite]] +git-tree-sha1 = "c13f0b150373771b0fdc1713c97860f8df12e6c2" +uuid = "55351af7-c7e9-48d6-89ff-24e801d99491" +version = "0.10.14" + +[[deps.FastBroadcast]] +deps = ["ArrayInterface", "LinearAlgebra", "Polyester", "Static", "StaticArrayInterface", "StrideArraysCore"] +git-tree-sha1 = "ab1b34570bcdf272899062e1a56285a53ecaae08" +uuid = "7034ab61-46d4-4ed7-9d0f-46aef9175898" +version = "0.3.5" + +[[deps.FastClosures]] +git-tree-sha1 = "acebe244d53ee1b461970f8910c235b259e772ef" +uuid = "9aa1b823-49e4-5ca5-8b0f-3971ec8bab6a" +version = "0.3.2" + +[[deps.FastGaussQuadrature]] +deps = ["LinearAlgebra", "SpecialFunctions", "StaticArrays"] +git-tree-sha1 = "fd923962364b645f3719855c88f7074413a6ad92" +uuid = "442a2c76-b920-505d-bb47-c5924d526838" +version = "1.0.2" + +[[deps.FastPower]] +git-tree-sha1 = "df32f07f373f06260cd6af5371385b5ef85dd762" +uuid = "a4df4552-cc26-4903-aec0-212e50a0e84b" +version = "1.1.2" + + [deps.FastPower.extensions] + FastPowerEnzymeExt = "Enzyme" + FastPowerForwardDiffExt = "ForwardDiff" + FastPowerMeasurementsExt = "Measurements" + FastPowerMonteCarloMeasurementsExt = "MonteCarloMeasurements" + FastPowerReverseDiffExt = "ReverseDiff" + FastPowerTrackerExt = "Tracker" + + [deps.FastPower.weakdeps] + Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" + ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" + Measurements = "eff96d63-e80a-5855-80a2-b1b0885c5ab7" + MonteCarloMeasurements = "0987c9cc-fe09-11e8-30f0-b96dd679fdca" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + +[[deps.FileWatching]] +uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" +version = "1.11.0" + +[[deps.FillArrays]] +deps = ["LinearAlgebra"] +git-tree-sha1 = "6a70198746448456524cb442b8af316927ff3e1a" +uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" +version = "1.13.0" + + [deps.FillArrays.extensions] + FillArraysPDMatsExt = "PDMats" + FillArraysSparseArraysExt = "SparseArrays" + FillArraysStatisticsExt = "Statistics" + + [deps.FillArrays.weakdeps] + PDMats = "90014a1f-27ba-587c-ab20-58faa44d9150" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" + +[[deps.FiniteDiff]] +deps = ["ArrayInterface", "LinearAlgebra", "Setfield"] +git-tree-sha1 = "f089ab1f834470c525562030c8cfde4025d5e915" +uuid = "6a86dc24-6348-571c-b903-95158fe2bd41" +version = "2.27.0" + + [deps.FiniteDiff.extensions] + FiniteDiffBandedMatricesExt = "BandedMatrices" + FiniteDiffBlockBandedMatricesExt = "BlockBandedMatrices" + FiniteDiffSparseArraysExt = "SparseArrays" + FiniteDiffStaticArraysExt = "StaticArrays" + + [deps.FiniteDiff.weakdeps] + BandedMatrices = "aae01518-5342-5314-be14-df237901396f" + BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + +[[deps.ForwardDiff]] +deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions"] +git-tree-sha1 = "910febccb28d493032495b7009dce7d7f7aee554" +uuid = "f6369f11-7733-5829-9624-2563aa707210" +version = "1.0.1" +weakdeps = ["StaticArrays"] + + [deps.ForwardDiff.extensions] + ForwardDiffStaticArraysExt = "StaticArrays" + +[[deps.FunctionWrappers]] +git-tree-sha1 = "d62485945ce5ae9c0c48f124a84998d755bae00e" +uuid = "069b7b12-0de2-55c6-9aab-29f3d0a68a2e" +version = "1.1.3" + +[[deps.FunctionWrappersWrappers]] +deps = ["FunctionWrappers"] +git-tree-sha1 = "b104d487b34566608f8b4e1c39fb0b10aa279ff8" +uuid = "77dc65aa-8811-40c2-897b-53d922fa7daf" +version = "0.1.3" + +[[deps.Future]] +deps = ["Random"] +uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820" +version = "1.11.0" + +[[deps.GPUArraysCore]] +deps = ["Adapt"] +git-tree-sha1 = "83cf05ab16a73219e5f6bd1bdfa9848fa24ac627" +uuid = "46192b85-c4d5-4398-a991-12ede77f4527" +version = "0.2.0" + +[[deps.GTPSA]] +deps = ["GTPSA_jll", "LinearAlgebra", "MacroTools", "PrettyTables", "Printf", "SpecialFunctions"] +git-tree-sha1 = "951f4c6f4f2e23ebf1d185905d7a8429f3ea9440" +uuid = "b27dd330-f138-47c5-815b-40db9dd9b6e8" +version = "1.4.3" + +[[deps.GTPSA_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "OpenBLAS32_jll"] +git-tree-sha1 = "421653d4ac27de5b1e34dd674169e8ac29c4adf5" +uuid = "a4739e29-4b97-5c0b-bbcf-46f08034c990" +version = "1.6.1+0" + +[[deps.GenericSchur]] +deps = ["LinearAlgebra", "Printf"] +git-tree-sha1 = "f88e0ba1f6b42121a7c1dfe93a9687d8e164c91b" +uuid = "c145ed77-6b09-5dd9-b285-bf645a82121e" +version = "0.5.5" + +[[deps.HostCPUFeatures]] +deps = ["BitTwiddlingConvenienceFunctions", "IfElse", "Libdl", "Static"] +git-tree-sha1 = "8e070b599339d622e9a081d17230d74a5c473293" +uuid = "3e5b6fbb-0976-4d2c-9146-d79de83f2fb0" +version = "0.1.17" + +[[deps.IfElse]] +git-tree-sha1 = "debdd00ffef04665ccbb3e150747a77560e8fad1" +uuid = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173" +version = "0.1.1" + +[[deps.IntelOpenMP_jll]] +deps = ["Artifacts", "JLLWrappers", "LazyArtifacts", "Libdl"] +git-tree-sha1 = "0f14a5456bdc6b9731a5682f439a672750a09e48" +uuid = "1d5cc7b8-4909-519e-a0f8-d0f5ad9712d0" +version = "2025.0.4+0" + +[[deps.InteractiveUtils]] +deps = ["Markdown"] +uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" +version = "1.11.0" + +[[deps.InverseFunctions]] +git-tree-sha1 = "a779299d77cd080bf77b97535acecd73e1c5e5cb" +uuid = "3587e190-3f89-42d0-90ee-14403ec27112" +version = "0.1.17" + + [deps.InverseFunctions.extensions] + InverseFunctionsDatesExt = "Dates" + InverseFunctionsTestExt = "Test" + + [deps.InverseFunctions.weakdeps] + Dates = "ade2ca70-3891-5945-98fb-dc099432e06a" + Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" + +[[deps.IrrationalConstants]] +git-tree-sha1 = "e2222959fbc6c19554dc15174c81bf7bf3aa691c" +uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" +version = "0.2.4" + +[[deps.IteratorInterfaceExtensions]] +git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" +uuid = "82899510-4779-5014-852e-03e436cf321d" +version = "1.0.0" + +[[deps.JLLWrappers]] +deps = ["Artifacts", "Preferences"] +git-tree-sha1 = "a007feb38b422fbdab534406aeca1b86823cb4d6" +uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" +version = "1.7.0" + +[[deps.JSON]] +deps = ["Dates", "Mmap", "Parsers", "Unicode"] +git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a" +uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" +version = "0.21.4" + +[[deps.Jieko]] +deps = ["ExproniconLite"] +git-tree-sha1 = "2f05ed29618da60c06a87e9c033982d4f71d0b6c" +uuid = "ae98c720-c025-4a4a-838c-29b094483192" +version = "0.2.1" + +[[deps.KernelAbstractions]] +deps = ["Adapt", "Atomix", "InteractiveUtils", "MacroTools", "PrecompileTools", "Requires", "StaticArrays", "UUIDs"] +git-tree-sha1 = "80d268b2f4e396edc5ea004d1e0f569231c71e9e" +uuid = "63c18a36-062a-441e-b654-da1e3ab1ce7c" +version = "0.9.34" +weakdeps = ["EnzymeCore", "LinearAlgebra", "SparseArrays"] + + [deps.KernelAbstractions.extensions] + EnzymeExt = "EnzymeCore" + LinearAlgebraExt = "LinearAlgebra" + SparseArraysExt = "SparseArrays" + +[[deps.Krylov]] +deps = ["LinearAlgebra", "Printf", "SparseArrays"] +git-tree-sha1 = "b94257a1a8737099ca40bc7271a8b374033473ed" +uuid = "ba0b0d4f-ebba-5204-a429-3ac8c609bfb7" +version = "0.10.1" + +[[deps.LaTeXStrings]] +git-tree-sha1 = "dda21b8cbd6a6c40d9d02a73230f9d70fed6918c" +uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" +version = "1.4.0" + +[[deps.LayoutPointers]] +deps = ["ArrayInterface", "LinearAlgebra", "ManualMemory", "SIMDTypes", "Static", "StaticArrayInterface"] +git-tree-sha1 = "a9eaadb366f5493a5654e843864c13d8b107548c" +uuid = "10f19ff3-798f-405d-979b-55457f8fc047" +version = "0.1.17" + +[[deps.LazyArrays]] +deps = ["ArrayLayouts", "FillArrays", "LinearAlgebra", "MacroTools", "SparseArrays"] +git-tree-sha1 = "866ce84b15e54d758c11946aacd4e5df0e60b7a3" +uuid = "5078a376-72f3-5289-bfd5-ec5146d43c02" +version = "2.6.1" + + [deps.LazyArrays.extensions] + LazyArraysBandedMatricesExt = "BandedMatrices" + LazyArraysBlockArraysExt = "BlockArrays" + LazyArraysBlockBandedMatricesExt = "BlockBandedMatrices" + LazyArraysStaticArraysExt = "StaticArrays" + + [deps.LazyArrays.weakdeps] + BandedMatrices = "aae01518-5342-5314-be14-df237901396f" + BlockArrays = "8e7c35d0-a365-5155-bbbb-fb81a777f24e" + BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + +[[deps.LazyArtifacts]] +deps = ["Artifacts", "Pkg"] +uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3" +version = "1.11.0" + +[[deps.LibCURL]] +deps = ["LibCURL_jll", "MozillaCACerts_jll"] +uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" +version = "0.6.4" + +[[deps.LibCURL_jll]] +deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] +uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" +version = "8.6.0+0" + +[[deps.LibGit2]] +deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"] +uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" +version = "1.11.0" + +[[deps.LibGit2_jll]] +deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"] +uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5" +version = "1.7.2+0" + +[[deps.LibSSH2_jll]] +deps = ["Artifacts", "Libdl", "MbedTLS_jll"] +uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" +version = "1.11.0+1" + +[[deps.Libdl]] +uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" +version = "1.11.0" + +[[deps.LineSearch]] +deps = ["ADTypes", "CommonSolve", "ConcreteStructs", "FastClosures", "LinearAlgebra", "MaybeInplace", "SciMLBase", "SciMLJacobianOperators", "StaticArraysCore"] +git-tree-sha1 = "97d502765cc5cf3a722120f50da03c2474efce04" +uuid = "87fe0de2-c867-4266-b59a-2f0a94fc965b" +version = "0.1.4" +weakdeps = ["LineSearches"] + + [deps.LineSearch.extensions] + LineSearchLineSearchesExt = "LineSearches" + +[[deps.LineSearches]] +deps = ["LinearAlgebra", "NLSolversBase", "NaNMath", "Parameters", "Printf"] +git-tree-sha1 = "e4c3be53733db1051cc15ecf573b1042b3a712a1" +uuid = "d3d80556-e9d4-5f37-9878-2ab0fcc64255" +version = "7.3.0" + +[[deps.LinearAlgebra]] +deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] +uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" +version = "1.11.0" + +[[deps.LinearSolve]] +deps = ["ArrayInterface", "ChainRulesCore", "ConcreteStructs", "DocStringExtensions", "EnumX", "GPUArraysCore", "InteractiveUtils", "Krylov", "LazyArrays", "Libdl", "LinearAlgebra", "MKL_jll", "Markdown", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "Setfield", "StaticArraysCore", "UnPack"] +git-tree-sha1 = "c0d1a91a50af6778863d320761f807f641f74935" +uuid = "7ed4a6bd-45f5-4d41-b270-4a48e9bafcae" +version = "3.17.0" + + [deps.LinearSolve.extensions] + LinearSolveBandedMatricesExt = "BandedMatrices" + LinearSolveBlockDiagonalsExt = "BlockDiagonals" + LinearSolveCUDAExt = "CUDA" + LinearSolveCUDSSExt = "CUDSS" + LinearSolveEnzymeExt = "EnzymeCore" + LinearSolveFastAlmostBandedMatricesExt = "FastAlmostBandedMatrices" + LinearSolveFastLapackInterfaceExt = "FastLapackInterface" + LinearSolveHYPREExt = "HYPRE" + LinearSolveIterativeSolversExt = "IterativeSolvers" + LinearSolveKernelAbstractionsExt = "KernelAbstractions" + LinearSolveKrylovKitExt = "KrylovKit" + LinearSolveMetalExt = "Metal" + LinearSolvePardisoExt = ["Pardiso", "SparseArrays"] + LinearSolveRecursiveFactorizationExt = "RecursiveFactorization" + LinearSolveSparseArraysExt = "SparseArrays" + LinearSolveSparspakExt = ["SparseArrays", "Sparspak"] + + [deps.LinearSolve.weakdeps] + BandedMatrices = "aae01518-5342-5314-be14-df237901396f" + BlockDiagonals = "0a1fb500-61f7-11e9-3c65-f5ef3456f9f0" + CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" + CUDSS = "45b445bb-4962-46a0-9369-b4df9d0f772e" + EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" + FastAlmostBandedMatrices = "9d29842c-ecb8-4973-b1e9-a27b1157504e" + FastLapackInterface = "29a986be-02c6-4525-aec4-84b980013641" + HYPRE = "b5ffcf37-a2bd-41ab-a3da-4bd9bc8ad771" + IterativeSolvers = "42fd0dbc-a981-5370-80f2-aaf504508153" + KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c" + KrylovKit = "0b1a1467-8014-51b9-945f-bf0ae24f4b77" + Metal = "dde4c033-4e86-420c-a63e-0dd931031962" + Pardiso = "46dd5b70-b6fb-5a00-ae2d-e8fea33afaf2" + RecursiveFactorization = "f2c3362d-daeb-58d1-803e-2bc74f2840b4" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + Sparspak = "e56a9233-b9d6-4f03-8d0f-1825330902ac" + +[[deps.LogExpFunctions]] +deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] +git-tree-sha1 = "13ca9e2586b89836fd20cccf56e57e2b9ae7f38f" +uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" +version = "0.3.29" + + [deps.LogExpFunctions.extensions] + LogExpFunctionsChainRulesCoreExt = "ChainRulesCore" + LogExpFunctionsChangesOfVariablesExt = "ChangesOfVariables" + LogExpFunctionsInverseFunctionsExt = "InverseFunctions" + + [deps.LogExpFunctions.weakdeps] + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + ChangesOfVariables = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" + InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" + +[[deps.Logging]] +uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" +version = "1.11.0" + +[[deps.MKL_jll]] +deps = ["Artifacts", "IntelOpenMP_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "oneTBB_jll"] +git-tree-sha1 = "5de60bc6cb3899cd318d80d627560fae2e2d99ae" +uuid = "856f044c-d86e-5d09-b602-aeab76dc8ba7" +version = "2025.0.1+1" + +[[deps.MacroTools]] +git-tree-sha1 = "1e0228a030642014fe5cfe68c2c0a818f9e3f522" +uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" +version = "0.5.16" + +[[deps.ManualMemory]] +git-tree-sha1 = "bcaef4fc7a0cfe2cba636d84cda54b5e4e4ca3cd" +uuid = "d125e4d3-2237-4719-b19c-fa641b8a4667" +version = "0.1.8" + +[[deps.Markdown]] +deps = ["Base64"] +uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" +version = "1.11.0" + +[[deps.MaybeInplace]] +deps = ["ArrayInterface", "LinearAlgebra", "MacroTools"] +git-tree-sha1 = "54e2fdc38130c05b42be423e90da3bade29b74bd" +uuid = "bb5d69b7-63fc-4a16-80bd-7e42200c7bdb" +version = "0.1.4" +weakdeps = ["SparseArrays"] + + [deps.MaybeInplace.extensions] + MaybeInplaceSparseArraysExt = "SparseArrays" + +[[deps.MbedTLS_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" +version = "2.28.6+0" + +[[deps.Mmap]] +uuid = "a63ad114-7e13-5084-954f-fe012c677804" +version = "1.11.0" + +[[deps.Moshi]] +deps = ["ExproniconLite", "Jieko"] +git-tree-sha1 = "453de0fc2be3d11b9b93ca4d0fddd91196dcf1ed" +uuid = "2e0e35c7-a2e4-4343-998d-7ef72827ed2d" +version = "0.3.5" + +[[deps.MozillaCACerts_jll]] +uuid = "14a3606d-f60d-562e-9121-12d972cd8159" +version = "2023.12.12" + +[[deps.MuladdMacro]] +git-tree-sha1 = "cac9cc5499c25554cba55cd3c30543cff5ca4fab" +uuid = "46d2c3a1-f734-5fdb-9937-b9b9aeba4221" +version = "0.2.4" + +[[deps.NLSolversBase]] +deps = ["ADTypes", "DifferentiationInterface", "Distributed", "FiniteDiff", "ForwardDiff"] +git-tree-sha1 = "b14c7be6046e7d48e9063a0053f95ee0fc954176" +uuid = "d41bc354-129a-5804-8e4c-c37616107c6c" +version = "7.9.1" + +[[deps.NaNMath]] +deps = ["OpenLibm_jll"] +git-tree-sha1 = "9b8215b1ee9e78a293f99797cd31375471b2bcae" +uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" +version = "1.1.3" + +[[deps.NetworkOptions]] +uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" +version = "1.2.0" + +[[deps.NonlinearSolve]] +deps = ["ADTypes", "ArrayInterface", "BracketingNonlinearSolve", "CommonSolve", "ConcreteStructs", "DiffEqBase", "DifferentiationInterface", "FastClosures", "FiniteDiff", "ForwardDiff", "LineSearch", "LinearAlgebra", "LinearSolve", "NonlinearSolveBase", "NonlinearSolveFirstOrder", "NonlinearSolveQuasiNewton", "NonlinearSolveSpectralMethods", "PrecompileTools", "Preferences", "Reexport", "SciMLBase", "SimpleNonlinearSolve", "SparseArrays", "SparseMatrixColorings", "StaticArraysCore", "SymbolicIndexingInterface"] +git-tree-sha1 = "aeb6fb02e63b4d4f90337ed90ce54ceb4c0efe77" +uuid = "8913a72c-1f9b-4ce2-8d82-65094dcecaec" +version = "4.9.0" + + [deps.NonlinearSolve.extensions] + NonlinearSolveFastLevenbergMarquardtExt = "FastLevenbergMarquardt" + NonlinearSolveFixedPointAccelerationExt = "FixedPointAcceleration" + NonlinearSolveLeastSquaresOptimExt = "LeastSquaresOptim" + NonlinearSolveMINPACKExt = "MINPACK" + NonlinearSolveNLSolversExt = "NLSolvers" + NonlinearSolveNLsolveExt = ["NLsolve", "LineSearches"] + NonlinearSolvePETScExt = ["PETSc", "MPI"] + NonlinearSolveSIAMFANLEquationsExt = "SIAMFANLEquations" + NonlinearSolveSpeedMappingExt = "SpeedMapping" + NonlinearSolveSundialsExt = "Sundials" + + [deps.NonlinearSolve.weakdeps] + FastLevenbergMarquardt = "7a0df574-e128-4d35-8cbd-3d84502bf7ce" + FixedPointAcceleration = "817d07cb-a79a-5c30-9a31-890123675176" + LeastSquaresOptim = "0fc2ff8b-aaa3-5acd-a817-1944a5e08891" + LineSearches = "d3d80556-e9d4-5f37-9878-2ab0fcc64255" + MINPACK = "4854310b-de5a-5eb6-a2a5-c1dee2bd17f9" + MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195" + NLSolvers = "337daf1e-9722-11e9-073e-8b9effe078ba" + NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" + PETSc = "ace2c81b-2b5f-4b1e-a30d-d662738edfe0" + SIAMFANLEquations = "084e46ad-d928-497d-ad5e-07fa361a48c4" + SpeedMapping = "f1835b91-879b-4a3f-a438-e4baacf14412" + Sundials = "c3572dad-4567-51f8-b174-8c6c989267f4" + +[[deps.NonlinearSolveBase]] +deps = ["ADTypes", "Adapt", "ArrayInterface", "CommonSolve", "Compat", "ConcreteStructs", "DifferentiationInterface", "EnzymeCore", "FastClosures", "LinearAlgebra", "Markdown", "MaybeInplace", "Preferences", "Printf", "RecursiveArrayTools", "SciMLBase", "SciMLJacobianOperators", "SciMLOperators", "StaticArraysCore", "SymbolicIndexingInterface", "TimerOutputs"] +git-tree-sha1 = "404d71dd057759f4d590191a643113485c4a482a" +uuid = "be0214bd-f91f-a760-ac4e-3421ce2b2da0" +version = "1.12.0" + + [deps.NonlinearSolveBase.extensions] + NonlinearSolveBaseBandedMatricesExt = "BandedMatrices" + NonlinearSolveBaseDiffEqBaseExt = "DiffEqBase" + NonlinearSolveBaseForwardDiffExt = "ForwardDiff" + NonlinearSolveBaseLineSearchExt = "LineSearch" + NonlinearSolveBaseLinearSolveExt = "LinearSolve" + NonlinearSolveBaseSparseArraysExt = "SparseArrays" + NonlinearSolveBaseSparseMatrixColoringsExt = "SparseMatrixColorings" + + [deps.NonlinearSolveBase.weakdeps] + BandedMatrices = "aae01518-5342-5314-be14-df237901396f" + DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e" + ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" + LineSearch = "87fe0de2-c867-4266-b59a-2f0a94fc965b" + LinearSolve = "7ed4a6bd-45f5-4d41-b270-4a48e9bafcae" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + SparseMatrixColorings = "0a514795-09f3-496d-8182-132a7b665d35" + +[[deps.NonlinearSolveFirstOrder]] +deps = ["ADTypes", "ArrayInterface", "CommonSolve", "ConcreteStructs", "DiffEqBase", "FiniteDiff", "ForwardDiff", "LineSearch", "LinearAlgebra", "LinearSolve", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase", "SciMLJacobianOperators", "Setfield", "StaticArraysCore"] +git-tree-sha1 = "9c8cd0a986518ba317af263549b48e34ac8f776d" +uuid = "5959db7a-ea39-4486-b5fe-2dd0bf03d60d" +version = "1.5.0" + +[[deps.NonlinearSolveQuasiNewton]] +deps = ["ArrayInterface", "CommonSolve", "ConcreteStructs", "DiffEqBase", "LinearAlgebra", "LinearSolve", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase", "SciMLOperators", "StaticArraysCore"] +git-tree-sha1 = "e3888bdbab6e0bfadbc3164ef4595e40e7b7e954" +uuid = "9a2c21bd-3a47-402d-9113-8faf9a0ee114" +version = "1.6.0" +weakdeps = ["ForwardDiff"] + + [deps.NonlinearSolveQuasiNewton.extensions] + NonlinearSolveQuasiNewtonForwardDiffExt = "ForwardDiff" + +[[deps.NonlinearSolveSpectralMethods]] +deps = ["CommonSolve", "ConcreteStructs", "DiffEqBase", "LineSearch", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase"] +git-tree-sha1 = "3398222199e4b9ca0b5840907fb509f28f1a2fdc" +uuid = "26075421-4e9a-44e1-8bd1-420ed7ad02b2" +version = "1.2.0" +weakdeps = ["ForwardDiff"] + + [deps.NonlinearSolveSpectralMethods.extensions] + NonlinearSolveSpectralMethodsForwardDiffExt = "ForwardDiff" + +[[deps.OpenBLAS32_jll]] +deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl"] +git-tree-sha1 = "ece4587683695fe4c5f20e990da0ed7e83c351e7" +uuid = "656ef2d0-ae68-5445-9ca0-591084a874a2" +version = "0.3.29+0" + +[[deps.OpenBLAS_jll]] +deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] +uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" +version = "0.3.27+1" + +[[deps.OpenLibm_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "05823500-19ac-5b8b-9628-191a04bc5112" +version = "0.8.1+2" + +[[deps.OpenSpecFun_jll]] +deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl"] +git-tree-sha1 = "1346c9208249809840c91b26703912dff463d335" +uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" +version = "0.5.6+0" + +[[deps.OrderedCollections]] +git-tree-sha1 = "05868e21324cede2207c6f0f466b4bfef6d5e7ee" +uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" +version = "1.8.1" + +[[deps.OrdinaryDiffEq]] +deps = ["ADTypes", "Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DocStringExtensions", "EnumX", "ExponentialUtilities", "FastBroadcast", "FastClosures", "FillArrays", "FiniteDiff", "ForwardDiff", "FunctionWrappersWrappers", "InteractiveUtils", "LineSearches", "LinearAlgebra", "LinearSolve", "Logging", "MacroTools", "MuladdMacro", "NonlinearSolve", "OrdinaryDiffEqAdamsBashforthMoulton", "OrdinaryDiffEqBDF", "OrdinaryDiffEqCore", "OrdinaryDiffEqDefault", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqExplicitRK", "OrdinaryDiffEqExponentialRK", "OrdinaryDiffEqExtrapolation", "OrdinaryDiffEqFIRK", "OrdinaryDiffEqFeagin", "OrdinaryDiffEqFunctionMap", "OrdinaryDiffEqHighOrderRK", "OrdinaryDiffEqIMEXMultistep", "OrdinaryDiffEqLinear", "OrdinaryDiffEqLowOrderRK", "OrdinaryDiffEqLowStorageRK", "OrdinaryDiffEqNonlinearSolve", "OrdinaryDiffEqNordsieck", "OrdinaryDiffEqPDIRK", "OrdinaryDiffEqPRK", "OrdinaryDiffEqQPRK", "OrdinaryDiffEqRKN", "OrdinaryDiffEqRosenbrock", "OrdinaryDiffEqSDIRK", "OrdinaryDiffEqSSPRK", "OrdinaryDiffEqStabilizedIRK", "OrdinaryDiffEqStabilizedRK", "OrdinaryDiffEqSymplecticRK", "OrdinaryDiffEqTsit5", "OrdinaryDiffEqVerner", "Polyester", "PreallocationTools", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "SimpleNonlinearSolve", "SimpleUnPack", "SparseArrays", "Static", "StaticArrayInterface", "StaticArrays", "TruncatedStacktraces"] +git-tree-sha1 = "1c2b2df870944e0dc01454fd87479847c55fa26c" +uuid = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" +version = "6.98.0" + +[[deps.OrdinaryDiffEqAdamsBashforthMoulton]] +deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqLowOrderRK", "Polyester", "RecursiveArrayTools", "Reexport", "Static"] +git-tree-sha1 = "82f78099ecf4e0fa53545811318520d87e7fe0b8" +uuid = "89bda076-bce5-4f1c-845f-551c83cdda9a" +version = "1.2.0" + +[[deps.OrdinaryDiffEqBDF]] +deps = ["ADTypes", "ArrayInterface", "DiffEqBase", "FastBroadcast", "LinearAlgebra", "MacroTools", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "OrdinaryDiffEqSDIRK", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "StaticArrays", "TruncatedStacktraces"] +git-tree-sha1 = "9124a686af119063bb4d3a8f87044a8f312fcad9" +uuid = "6ad6398a-0878-4a85-9266-38940aa047c8" +version = "1.6.0" + +[[deps.OrdinaryDiffEqCore]] +deps = ["ADTypes", "Accessors", "Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DocStringExtensions", "EnumX", "FastBroadcast", "FastClosures", "FastPower", "FillArrays", "FunctionWrappersWrappers", "InteractiveUtils", "LinearAlgebra", "Logging", "MacroTools", "MuladdMacro", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "SimpleUnPack", "Static", "StaticArrayInterface", "StaticArraysCore", "SymbolicIndexingInterface", "TruncatedStacktraces"] +git-tree-sha1 = "d29adfeb720dd7c251b216d91c4bd4fe67c087df" +uuid = "bbf590c4-e513-4bbe-9b18-05decba2e5d8" +version = "1.26.0" +weakdeps = ["EnzymeCore"] + + [deps.OrdinaryDiffEqCore.extensions] + OrdinaryDiffEqCoreEnzymeCoreExt = "EnzymeCore" + +[[deps.OrdinaryDiffEqDefault]] +deps = ["ADTypes", "DiffEqBase", "EnumX", "LinearAlgebra", "LinearSolve", "OrdinaryDiffEqBDF", "OrdinaryDiffEqCore", "OrdinaryDiffEqRosenbrock", "OrdinaryDiffEqTsit5", "OrdinaryDiffEqVerner", "PrecompileTools", "Preferences", "Reexport"] +git-tree-sha1 = "8eeed32442874d1bdcc2192a874a73f1a9a07e31" +uuid = "50262376-6c5a-4cf5-baba-aaf4f84d72d7" +version = "1.4.0" + +[[deps.OrdinaryDiffEqDifferentiation]] +deps = ["ADTypes", "ArrayInterface", "ConcreteStructs", "ConstructionBase", "DiffEqBase", "DifferentiationInterface", "FastBroadcast", "FiniteDiff", "ForwardDiff", "FunctionWrappersWrappers", "LinearAlgebra", "LinearSolve", "OrdinaryDiffEqCore", "SciMLBase", "SciMLOperators", "SparseArrays", "SparseMatrixColorings", "StaticArrayInterface", "StaticArrays"] +git-tree-sha1 = "efecf0c4cc44e16251b0e718f08b0876b2a82b80" +uuid = "4302a76b-040a-498a-8c04-15b101fed76b" +version = "1.10.0" + +[[deps.OrdinaryDiffEqExplicitRK]] +deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "TruncatedStacktraces"] +git-tree-sha1 = "4dbce3f9e6974567082ce5176e21aab0224a69e9" +uuid = "9286f039-9fbf-40e8-bf65-aa933bdc4db0" +version = "1.1.0" + +[[deps.OrdinaryDiffEqExponentialRK]] +deps = ["ADTypes", "DiffEqBase", "ExponentialUtilities", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqSDIRK", "OrdinaryDiffEqVerner", "RecursiveArrayTools", "Reexport", "SciMLBase"] +git-tree-sha1 = "8d2ab84d7fabdfde995e5f567361f238069497f5" +uuid = "e0540318-69ee-4070-8777-9e2de6de23de" +version = "1.4.0" + +[[deps.OrdinaryDiffEqExtrapolation]] +deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "FastPower", "LinearSolve", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "Polyester", "RecursiveArrayTools", "Reexport"] +git-tree-sha1 = "80a636aac325c546b04e3bf20f0c80eaa0173dd4" +uuid = "becaefa8-8ca2-5cf9-886d-c06f3d2bd2c4" +version = "1.5.0" + +[[deps.OrdinaryDiffEqFIRK]] +deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "FastGaussQuadrature", "FastPower", "LinearAlgebra", "LinearSolve", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "Polyester", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators"] +git-tree-sha1 = "0da8ec3491821262a3d2828e6370e76b51a770a3" +uuid = "5960d6e9-dd7a-4743-88e7-cf307b64f125" +version = "1.12.0" + +[[deps.OrdinaryDiffEqFeagin]] +deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "RecursiveArrayTools", "Reexport", "Static"] +git-tree-sha1 = "a7cc74d3433db98e59dc3d58bc28174c6c290adf" +uuid = "101fe9f7-ebb6-4678-b671-3a81e7194747" +version = "1.1.0" + +[[deps.OrdinaryDiffEqFunctionMap]] +deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "SciMLBase", "Static"] +git-tree-sha1 = "925a91583d1ab84f1f0fea121be1abf1179c5926" +uuid = "d3585ca7-f5d3-4ba6-8057-292ed1abd90f" +version = "1.1.1" + +[[deps.OrdinaryDiffEqHighOrderRK]] +deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "Static"] +git-tree-sha1 = "103e017ff186ac39d731904045781c9bacfca2b0" +uuid = "d28bc4f8-55e1-4f49-af69-84c1a99f0f58" +version = "1.1.0" + +[[deps.OrdinaryDiffEqIMEXMultistep]] +deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "Reexport"] +git-tree-sha1 = "095bab73a3ff185e9ef971fc42ecc93c7824e589" +uuid = "9f002381-b378-40b7-97a6-27a27c83f129" +version = "1.3.0" + +[[deps.OrdinaryDiffEqLinear]] +deps = ["DiffEqBase", "ExponentialUtilities", "LinearAlgebra", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators"] +git-tree-sha1 = "940cef72ec8799d869ff1ba3dcf47cf7758e51cf" +uuid = "521117fe-8c41-49f8-b3b6-30780b3f0fb5" +version = "1.3.0" + +[[deps.OrdinaryDiffEqLowOrderRK]] +deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "SciMLBase", "Static"] +git-tree-sha1 = "d4bb32e09d6b68ce2eb45fb81001eab46f60717a" +uuid = "1344f307-1e59-4825-a18e-ace9aa3fa4c6" +version = "1.2.0" + +[[deps.OrdinaryDiffEqLowStorageRK]] +deps = ["Adapt", "DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "Static", "StaticArrays"] +git-tree-sha1 = "52ec7081e65291fa5c19749312df0818db2fa1bc" +uuid = "b0944070-b475-4768-8dec-fb6eb410534d" +version = "1.3.0" + +[[deps.OrdinaryDiffEqNonlinearSolve]] +deps = ["ADTypes", "ArrayInterface", "DiffEqBase", "FastBroadcast", "FastClosures", "ForwardDiff", "LinearAlgebra", "LinearSolve", "MuladdMacro", "NonlinearSolve", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "PreallocationTools", "RecursiveArrayTools", "SciMLBase", "SciMLOperators", "SciMLStructures", "SimpleNonlinearSolve", "StaticArrays"] +git-tree-sha1 = "ffdb0f5207b0e30f8b1edf99b3b9546d9c48ccaf" +uuid = "127b3ac7-2247-4354-8eb6-78cf4e7c58e8" +version = "1.10.0" + +[[deps.OrdinaryDiffEqNordsieck]] +deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqTsit5", "Polyester", "RecursiveArrayTools", "Reexport", "Static"] +git-tree-sha1 = "ef44754f10e0dfb9bb55ded382afed44cd94ab57" +uuid = "c9986a66-5c92-4813-8696-a7ec84c806c8" +version = "1.1.0" + +[[deps.OrdinaryDiffEqPDIRK]] +deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "Polyester", "Reexport", "StaticArrays"] +git-tree-sha1 = "ab9897e4bc8e3cf8e15f1cf61dbdd15d6a2341d7" +uuid = "5dd0a6cf-3d4b-4314-aa06-06d4e299bc89" +version = "1.3.1" + +[[deps.OrdinaryDiffEqPRK]] +deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "Reexport"] +git-tree-sha1 = "da525d277962a1b76102c79f30cb0c31e13fe5b9" +uuid = "5b33eab2-c0f1-4480-b2c3-94bc1e80bda1" +version = "1.1.0" + +[[deps.OrdinaryDiffEqQPRK]] +deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "Static"] +git-tree-sha1 = "332f9d17d0229218f66a73492162267359ba85e9" +uuid = "04162be5-8125-4266-98ed-640baecc6514" +version = "1.1.0" + +[[deps.OrdinaryDiffEqRKN]] +deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "RecursiveArrayTools", "Reexport"] +git-tree-sha1 = "41c09d9c20877546490f907d8dffdd52690dd65f" +uuid = "af6ede74-add8-4cfd-b1df-9a4dbb109d7a" +version = "1.1.0" + +[[deps.OrdinaryDiffEqRosenbrock]] +deps = ["ADTypes", "DiffEqBase", "DifferentiationInterface", "FastBroadcast", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "LinearSolve", "MacroTools", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "Static"] +git-tree-sha1 = "1ce0096d920e95773220e818f29bf4b37ea2bb78" +uuid = "43230ef6-c299-4910-a778-202eb28ce4ce" +version = "1.11.0" + +[[deps.OrdinaryDiffEqSDIRK]] +deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "LinearAlgebra", "MacroTools", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "RecursiveArrayTools", "Reexport", "SciMLBase", "TruncatedStacktraces"] +git-tree-sha1 = "b3a7e3a2f355d837c823b435630f035aef446b45" +uuid = "2d112036-d095-4a1e-ab9a-08536f3ecdbf" +version = "1.3.0" + +[[deps.OrdinaryDiffEqSSPRK]] +deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "Static", "StaticArrays"] +git-tree-sha1 = "651756c030df7a1d49ad484288937f8c398e8a08" +uuid = "669c94d9-1f4b-4b64-b377-1aa079aa2388" +version = "1.3.0" + +[[deps.OrdinaryDiffEqStabilizedIRK]] +deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "RecursiveArrayTools", "Reexport", "StaticArrays"] +git-tree-sha1 = "111c23b68ad644b47e38242af920d5805c7bedb1" +uuid = "e3e12d00-db14-5390-b879-ac3dd2ef6296" +version = "1.3.0" + +[[deps.OrdinaryDiffEqStabilizedRK]] +deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "StaticArrays"] +git-tree-sha1 = "1b0d894c880e25f7d0b022d7257638cf8ce5b311" +uuid = "358294b1-0aab-51c3-aafe-ad5ab194a2ad" +version = "1.1.0" + +[[deps.OrdinaryDiffEqSymplecticRK]] +deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "RecursiveArrayTools", "Reexport"] +git-tree-sha1 = "a13d59a2d6cfb6a3332a7782638ca6e1cb6ca688" +uuid = "fa646aed-7ef9-47eb-84c4-9443fc8cbfa8" +version = "1.3.0" + +[[deps.OrdinaryDiffEqTsit5]] +deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "Static", "TruncatedStacktraces"] +git-tree-sha1 = "96552f7d4619fabab4038a29ed37dd55e9eb513a" +uuid = "b1df2697-797e-41e3-8120-5422d3b24e4a" +version = "1.1.0" + +[[deps.OrdinaryDiffEqVerner]] +deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "Static", "TruncatedStacktraces"] +git-tree-sha1 = "08f2d3be30874b6e2e937a06b501fb9811f7d8bd" +uuid = "79d7bb75-1356-48c1-b8c0-6832512096c2" +version = "1.2.0" + +[[deps.Parameters]] +deps = ["OrderedCollections", "UnPack"] +git-tree-sha1 = "34c0e9ad262e5f7fc75b10a9952ca7692cfc5fbe" +uuid = "d96e819e-fc66-5662-9728-84c9c7592b0a" +version = "0.12.3" + +[[deps.Parsers]] +deps = ["Dates", "PrecompileTools", "UUIDs"] +git-tree-sha1 = "7d2f8f21da5db6a806faf7b9b292296da42b2810" +uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" +version = "2.8.3" + +[[deps.Pkg]] +deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "Random", "SHA", "TOML", "Tar", "UUIDs", "p7zip_jll"] +uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" +version = "1.11.0" + + [deps.Pkg.extensions] + REPLExt = "REPL" + + [deps.Pkg.weakdeps] + REPL = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" + +[[deps.Polyester]] +deps = ["ArrayInterface", "BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "ManualMemory", "PolyesterWeave", "Static", "StaticArrayInterface", "StrideArraysCore", "ThreadingUtilities"] +git-tree-sha1 = "6f7cd22a802094d239824c57d94c8e2d0f7cfc7d" +uuid = "f517fe37-dbe3-4b94-8317-1923a5111588" +version = "0.7.18" + +[[deps.PolyesterWeave]] +deps = ["BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "Static", "ThreadingUtilities"] +git-tree-sha1 = "645bed98cd47f72f67316fd42fc47dee771aefcd" +uuid = "1d0040c9-8b98-4ee7-8388-3f51789ca0ad" +version = "0.2.2" + +[[deps.PreallocationTools]] +deps = ["Adapt", "ArrayInterface", "ForwardDiff"] +git-tree-sha1 = "6d98eace73d82e47f5b16c393de198836d9f790a" +uuid = "d236fae5-4411-538c-8e31-a6e3d9e00b46" +version = "0.4.27" + + [deps.PreallocationTools.extensions] + PreallocationToolsReverseDiffExt = "ReverseDiff" + PreallocationToolsSparseConnectivityTracerExt = "SparseConnectivityTracer" + + [deps.PreallocationTools.weakdeps] + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + SparseConnectivityTracer = "9f842d2f-2579-4b1d-911e-f412cf18a3f5" + +[[deps.PrecompileTools]] +deps = ["Preferences"] +git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f" +uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" +version = "1.2.1" + +[[deps.Preferences]] +deps = ["TOML"] +git-tree-sha1 = "9306f6085165d270f7e3db02af26a400d580f5c6" +uuid = "21216c6a-2e73-6563-6e65-726566657250" +version = "1.4.3" + +[[deps.PrettyTables]] +deps = ["Crayons", "LaTeXStrings", "Markdown", "PrecompileTools", "Printf", "Reexport", "StringManipulation", "Tables"] +git-tree-sha1 = "1101cd475833706e4d0e7b122218257178f48f34" +uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d" +version = "2.4.0" + +[[deps.Printf]] +deps = ["Unicode"] +uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" +version = "1.11.0" + +[[deps.Profile]] +uuid = "9abbd945-dff8-562f-b5e8-e1ebf5ef1b79" +version = "1.11.0" + +[[deps.Random]] +deps = ["SHA"] +uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" +version = "1.11.0" + +[[deps.RecipesBase]] +deps = ["PrecompileTools"] +git-tree-sha1 = "5c3d09cc4f31f5fc6af001c250bf1278733100ff" +uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" +version = "1.3.4" + +[[deps.RecursiveArrayTools]] +deps = ["Adapt", "ArrayInterface", "DocStringExtensions", "GPUArraysCore", "IteratorInterfaceExtensions", "LinearAlgebra", "RecipesBase", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface", "Tables"] +git-tree-sha1 = "2e154f7d7e38db1af0a14ec751aba33360c3bef9" +uuid = "731186ca-8d62-57ce-b412-fbd966d074cd" +version = "3.33.0" + + [deps.RecursiveArrayTools.extensions] + RecursiveArrayToolsFastBroadcastExt = "FastBroadcast" + RecursiveArrayToolsForwardDiffExt = "ForwardDiff" + RecursiveArrayToolsMeasurementsExt = "Measurements" + RecursiveArrayToolsMonteCarloMeasurementsExt = "MonteCarloMeasurements" + RecursiveArrayToolsReverseDiffExt = ["ReverseDiff", "Zygote"] + RecursiveArrayToolsSparseArraysExt = ["SparseArrays"] + RecursiveArrayToolsStructArraysExt = "StructArrays" + RecursiveArrayToolsTrackerExt = "Tracker" + RecursiveArrayToolsZygoteExt = "Zygote" + + [deps.RecursiveArrayTools.weakdeps] + FastBroadcast = "7034ab61-46d4-4ed7-9d0f-46aef9175898" + ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" + Measurements = "eff96d63-e80a-5855-80a2-b1b0885c5ab7" + MonteCarloMeasurements = "0987c9cc-fe09-11e8-30f0-b96dd679fdca" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" + +[[deps.Reexport]] +git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" +uuid = "189a3867-3050-52da-a836-e630ba90ab69" +version = "1.2.2" + +[[deps.ReferenceFrameRotations]] +deps = ["Crayons", "LinearAlgebra", "Printf", "Random", "StaticArrays"] +git-tree-sha1 = "c1fadb2e94fa53c8bb8b937118e87d388012eaf6" +uuid = "74f56ac7-18b3-5285-802d-d4bd4f104033" +version = "3.0.2" + +[[deps.Requires]] +deps = ["UUIDs"] +git-tree-sha1 = "62389eeff14780bfe55195b7204c0d8738436d64" +uuid = "ae029012-a4dd-5104-9daa-d747884805df" +version = "1.3.1" + +[[deps.RuntimeGeneratedFunctions]] +deps = ["ExprTools", "SHA", "Serialization"] +git-tree-sha1 = "86a8a8b783481e1ea6b9c91dd949cb32191f8ab4" +uuid = "7e49a35a-f44a-4d26-94aa-eba1b4ca6b47" +version = "0.5.15" + +[[deps.SHA]] +uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" +version = "0.7.0" + +[[deps.SIMD]] +deps = ["PrecompileTools"] +git-tree-sha1 = "fea870727142270bdf7624ad675901a1ee3b4c87" +uuid = "fdea26ae-647d-5447-a871-4b548cad5224" +version = "3.7.1" + +[[deps.SIMDTypes]] +git-tree-sha1 = "330289636fb8107c5f32088d2741e9fd7a061a5c" +uuid = "94e857df-77ce-4151-89e5-788b33177be4" +version = "0.1.0" + +[[deps.SciMLBase]] +deps = ["ADTypes", "Accessors", "Adapt", "ArrayInterface", "CommonSolve", "ConstructionBase", "Distributed", "DocStringExtensions", "EnumX", "FunctionWrappersWrappers", "IteratorInterfaceExtensions", "LinearAlgebra", "Logging", "Markdown", "Moshi", "PrecompileTools", "Preferences", "Printf", "RecipesBase", "RecursiveArrayTools", "Reexport", "RuntimeGeneratedFunctions", "SciMLOperators", "SciMLStructures", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface"] +git-tree-sha1 = "9efabb3d79f9076710f41af77017e42d8fa780d9" +uuid = "0bca4576-84f4-4d90-8ffe-ffa030f20462" +version = "2.97.0" + + [deps.SciMLBase.extensions] + SciMLBaseChainRulesCoreExt = "ChainRulesCore" + SciMLBaseMLStyleExt = "MLStyle" + SciMLBaseMakieExt = "Makie" + SciMLBasePartialFunctionsExt = "PartialFunctions" + SciMLBasePyCallExt = "PyCall" + SciMLBasePythonCallExt = "PythonCall" + SciMLBaseRCallExt = "RCall" + SciMLBaseZygoteExt = ["Zygote", "ChainRulesCore"] + + [deps.SciMLBase.weakdeps] + ChainRules = "082447d4-558c-5d27-93f4-14fc19e9eca2" + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + MLStyle = "d8e11817-5142-5d16-987a-aa16d5891078" + Makie = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a" + PartialFunctions = "570af359-4316-4cb7-8c74-252c00c2016b" + PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0" + PythonCall = "6099a3de-0909-46bc-b1f4-468b9a2dfc0d" + RCall = "6f49c342-dc21-5d91-9882-a32aef131414" + Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" + +[[deps.SciMLJacobianOperators]] +deps = ["ADTypes", "ArrayInterface", "ConcreteStructs", "ConstructionBase", "DifferentiationInterface", "FastClosures", "LinearAlgebra", "SciMLBase", "SciMLOperators"] +git-tree-sha1 = "7da1216346ad79499d08d7e2a3dbf297dc80c829" +uuid = "19f34311-ddf3-4b8b-af20-060888a46c0e" +version = "0.1.6" + +[[deps.SciMLOperators]] +deps = ["Accessors", "ArrayInterface", "DocStringExtensions", "LinearAlgebra", "MacroTools"] +git-tree-sha1 = "3249fe77f322fe539e935ecb388c8290cd38a3fc" +uuid = "c0aeaf25-5076-4817-a8d5-81caf7dfa961" +version = "1.3.1" +weakdeps = ["SparseArrays", "StaticArraysCore"] + + [deps.SciMLOperators.extensions] + SciMLOperatorsSparseArraysExt = "SparseArrays" + SciMLOperatorsStaticArraysCoreExt = "StaticArraysCore" + +[[deps.SciMLStructures]] +deps = ["ArrayInterface"] +git-tree-sha1 = "566c4ed301ccb2a44cbd5a27da5f885e0ed1d5df" +uuid = "53ae85a6-f571-4167-b2af-e1d143709226" +version = "1.7.0" + +[[deps.Serialization]] +uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" +version = "1.11.0" + +[[deps.Setfield]] +deps = ["ConstructionBase", "Future", "MacroTools", "StaticArraysCore"] +git-tree-sha1 = "c5391c6ace3bc430ca630251d02ea9687169ca68" +uuid = "efcf1570-3423-57d1-acb7-fd33fddbac46" +version = "1.1.2" + +[[deps.SimpleNonlinearSolve]] +deps = ["ADTypes", "ArrayInterface", "BracketingNonlinearSolve", "CommonSolve", "ConcreteStructs", "DifferentiationInterface", "FastClosures", "FiniteDiff", "ForwardDiff", "LineSearch", "LinearAlgebra", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase", "Setfield", "StaticArraysCore"] +git-tree-sha1 = "7aaa5fe4617271b64fce0466d187f2a72edbd81a" +uuid = "727e6d20-b764-4bd8-a329-72de5adea6c7" +version = "2.5.0" + + [deps.SimpleNonlinearSolve.extensions] + SimpleNonlinearSolveChainRulesCoreExt = "ChainRulesCore" + SimpleNonlinearSolveDiffEqBaseExt = "DiffEqBase" + SimpleNonlinearSolveReverseDiffExt = "ReverseDiff" + SimpleNonlinearSolveTrackerExt = "Tracker" + + [deps.SimpleNonlinearSolve.weakdeps] + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + +[[deps.SimpleUnPack]] +git-tree-sha1 = "58e6353e72cde29b90a69527e56df1b5c3d8c437" +uuid = "ce78b400-467f-4804-87d8-8f486da07d0a" +version = "1.1.0" + +[[deps.Sockets]] +uuid = "6462fe0b-24de-5631-8697-dd941f90decc" +version = "1.11.0" + +[[deps.SparseArrays]] +deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"] +uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" +version = "1.11.0" + +[[deps.SparseMatrixColorings]] +deps = ["ADTypes", "DocStringExtensions", "LinearAlgebra", "PrecompileTools", "Random", "SparseArrays"] +git-tree-sha1 = "ab958b4fec46d1f1d057bb8e2a99bfdb90744646" +uuid = "0a514795-09f3-496d-8182-132a7b665d35" +version = "0.4.20" + + [deps.SparseMatrixColorings.extensions] + SparseMatrixColoringsCliqueTreesExt = "CliqueTrees" + SparseMatrixColoringsColorsExt = "Colors" + + [deps.SparseMatrixColorings.weakdeps] + CliqueTrees = "60701a23-6482-424a-84db-faee86b9b1f8" + Colors = "5ae59095-9a9b-59fe-a467-6f913c188581" + +[[deps.SpecialFunctions]] +deps = ["IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] +git-tree-sha1 = "41852b8679f78c8d8961eeadc8f62cef861a52e3" +uuid = "276daf66-3868-5448-9aa4-cd146d93841b" +version = "2.5.1" +weakdeps = ["ChainRulesCore"] + + [deps.SpecialFunctions.extensions] + SpecialFunctionsChainRulesCoreExt = "ChainRulesCore" + +[[deps.Static]] +deps = ["CommonWorldInvalidations", "IfElse", "PrecompileTools"] +git-tree-sha1 = "f737d444cb0ad07e61b3c1bef8eb91203c321eff" +uuid = "aedffcd0-7271-4cad-89d0-dc628f76c6d3" +version = "1.2.0" + +[[deps.StaticArrayInterface]] +deps = ["ArrayInterface", "Compat", "IfElse", "LinearAlgebra", "PrecompileTools", "Static"] +git-tree-sha1 = "96381d50f1ce85f2663584c8e886a6ca97e60554" +uuid = "0d7ed370-da01-4f52-bd93-41d350b8b718" +version = "1.8.0" + + [deps.StaticArrayInterface.extensions] + StaticArrayInterfaceOffsetArraysExt = "OffsetArrays" + StaticArrayInterfaceStaticArraysExt = "StaticArrays" + + [deps.StaticArrayInterface.weakdeps] + OffsetArrays = "6fe1bfb0-de20-5000-8ca7-80f57d26f881" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + +[[deps.StaticArrays]] +deps = ["LinearAlgebra", "PrecompileTools", "Random", "StaticArraysCore"] +git-tree-sha1 = "0feb6b9031bd5c51f9072393eb5ab3efd31bf9e4" +uuid = "90137ffa-7385-5640-81b9-e52037218182" +version = "1.9.13" +weakdeps = ["ChainRulesCore", "Statistics"] + + [deps.StaticArrays.extensions] + StaticArraysChainRulesCoreExt = "ChainRulesCore" + StaticArraysStatisticsExt = "Statistics" + +[[deps.StaticArraysCore]] +git-tree-sha1 = "192954ef1208c7019899fbf8049e717f92959682" +uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" +version = "1.4.3" + +[[deps.Statistics]] +deps = ["LinearAlgebra"] +git-tree-sha1 = "ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0" +uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" +version = "1.11.1" +weakdeps = ["SparseArrays"] + + [deps.Statistics.extensions] + SparseArraysExt = ["SparseArrays"] + +[[deps.StrideArraysCore]] +deps = ["ArrayInterface", "CloseOpenIntervals", "IfElse", "LayoutPointers", "LinearAlgebra", "ManualMemory", "SIMDTypes", "Static", "StaticArrayInterface", "ThreadingUtilities"] +git-tree-sha1 = "f35f6ab602df8413a50c4a25ca14de821e8605fb" +uuid = "7792a7ef-975c-4747-a70f-980b88e8d1da" +version = "0.5.7" + +[[deps.StringManipulation]] +deps = ["PrecompileTools"] +git-tree-sha1 = "725421ae8e530ec29bcbdddbe91ff8053421d023" +uuid = "892a3eda-7b42-436c-8928-eab12a02cf0e" +version = "0.4.1" + +[[deps.SuiteSparse_jll]] +deps = ["Artifacts", "Libdl", "libblastrampoline_jll"] +uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c" +version = "7.7.0+0" + +[[deps.SymbolicIndexingInterface]] +deps = ["Accessors", "ArrayInterface", "PrettyTables", "RuntimeGeneratedFunctions", "StaticArraysCore"] +git-tree-sha1 = "b6a641e38efa01355aa721246dd246e10c7dcd4d" +uuid = "2efcf032-c050-4f8e-a9bb-153293bab1f5" +version = "0.3.40" + +[[deps.TOML]] +deps = ["Dates"] +uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" +version = "1.0.3" + +[[deps.TableTraits]] +deps = ["IteratorInterfaceExtensions"] +git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" +uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" +version = "1.0.1" + +[[deps.Tables]] +deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "OrderedCollections", "TableTraits"] +git-tree-sha1 = "f2c1efbc8f3a609aadf318094f8fc5204bdaf344" +uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" +version = "1.12.1" + +[[deps.Tar]] +deps = ["ArgTools", "SHA"] +uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" +version = "1.10.0" + +[[deps.ThreadingUtilities]] +deps = ["ManualMemory"] +git-tree-sha1 = "2d529b6b22791f3e22e7ec5c60b9016e78f5f6bf" +uuid = "8290d209-cae3-49c0-8002-c8c24d57dab5" +version = "0.5.4" + +[[deps.TimerOutputs]] +deps = ["ExprTools", "Printf"] +git-tree-sha1 = "3748bd928e68c7c346b52125cf41fff0de6937d0" +uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f" +version = "0.5.29" + + [deps.TimerOutputs.extensions] + FlameGraphsExt = "FlameGraphs" + + [deps.TimerOutputs.weakdeps] + FlameGraphs = "08572546-2f56-4bcf-ba4e-bab62c3a3f89" + +[[deps.TruncatedStacktraces]] +deps = ["InteractiveUtils", "MacroTools", "Preferences"] +git-tree-sha1 = "ea3e54c2bdde39062abf5a9758a23735558705e1" +uuid = "781d530d-4396-4725-bb49-402e4bee1e77" +version = "1.4.0" + +[[deps.UUIDs]] +deps = ["Random", "SHA"] +uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" +version = "1.11.0" + +[[deps.UnPack]] +git-tree-sha1 = "387c1f73762231e86e0c9c5443ce3b4a0a9a0c2b" +uuid = "3a884ed6-31ef-47d7-9d2a-63182c4928ed" +version = "1.0.2" + +[[deps.Unicode]] +uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" +version = "1.11.0" + +[[deps.UnsafeAtomics]] +git-tree-sha1 = "b13c4edda90890e5b04ba24e20a310fbe6f249ff" +uuid = "013be700-e6cd-48c3-b4a1-df204f14c38f" +version = "0.3.0" + + [deps.UnsafeAtomics.extensions] + UnsafeAtomicsLLVM = ["LLVM"] + + [deps.UnsafeAtomics.weakdeps] + LLVM = "929cbde3-209d-540e-8aea-75f648917ca0" + +[[deps.VectorizationBase]] +deps = ["ArrayInterface", "CPUSummary", "HostCPUFeatures", "IfElse", "LayoutPointers", "Libdl", "LinearAlgebra", "SIMDTypes", "Static", "StaticArrayInterface"] +git-tree-sha1 = "4ab62a49f1d8d9548a1c8d1a75e5f55cf196f64e" +uuid = "3d5dd08c-fd9d-11e8-17fa-ed2836048c2f" +version = "0.21.71" + +[[deps.Zlib_jll]] +deps = ["Libdl"] +uuid = "83775a58-1f1d-513f-b197-d71354ab007a" +version = "1.2.13+1" + +[[deps.libblastrampoline_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" +version = "5.11.0+0" + +[[deps.nghttp2_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" +version = "1.59.0+0" + +[[deps.oneTBB_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl"] +git-tree-sha1 = "d5a767a3bb77135a99e433afe0eb14cd7f6914c3" +uuid = "1317d2d5-d96f-522e-a858-c73665f53c3e" +version = "2022.0.0+0" + +[[deps.p7zip_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" +version = "17.4.0+2" diff --git a/benchmark/Project.toml b/benchmark/Project.toml new file mode 100644 index 00000000..6a07a740 --- /dev/null +++ b/benchmark/Project.toml @@ -0,0 +1,6 @@ +[deps] +BeamTracking = "8ef5c10a-4ca3-437f-8af5-b84d8af36df0" +BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" +OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" +SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462" +StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" From 7cb31ef758a776b50af4570fa63b65dc0dde0ba4 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 6 Jun 2025 20:43:30 -0400 Subject: [PATCH 27/76] reduce RK4 memory allocation to 0 --- src/BeamTracking.jl | 2 +- src/modules/FieldTracking.jl | 8 +++----- src/modules/RungeKuttaTracking.jl | 26 +++++++++++++------------- 3 files changed, 17 insertions(+), 19 deletions(-) diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index d04ef2a7..04ab9e4a 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -2,7 +2,7 @@ BeamTracking A high-performance particle beam tracking package for accelerator physics simulations. -Provides both linear and exact tracking methods with optimized memory layouts and parallel processing. +Currently provides both linear, exact, field tracking, and Runge-Kutta tracking methods. """ module BeamTracking using GTPSA, diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index 5f7d956b..51c0e2ce 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -11,12 +11,11 @@ struct Field end MAX_TEMPS(::Field) = 0 module FieldTracking -using ..GTPSA, ..BeamTracking, ..StaticArrays -using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, @makekernel +using ..BeamTracking +using ..BeamTracking: @makekernel +using SciMLBase const TRACKING_METHOD = Field -# EVOLVE-BLOCK-START -using SciMLBase, OrdinaryDiffEq """ field_system!(du, u, p, t) @@ -64,6 +63,5 @@ Track a particle through a drift space with arbitrary field using DifferentialEq end return v end -# EVOLVE-BLOCK-END end \ No newline at end of file diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index af94cfff..90bb35cb 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -33,22 +33,22 @@ Perform a single 4th order Runge-Kutta step. """ function rk4_step!(i, u, work, t, h, field_func, params) # Get views into work matrix for RK4 stages - k1 = view(work, i, 1:6) # First 6 elements for stage 1 - k2 = view(work, i, 7:12) # Next 6 elements for stage 2 - k3 = view(work, i, 13:18) # Next 6 elements for stage 3 - k4 = view(work, i, 19:24) # Last 6 elements for stage 4 + k1 = view(work, i, 1:6) + k2 = view(work, i, 7:12) + k3 = view(work, i, 13:18) + k4 = view(work, i, 19:24) - # Stage 1 + # Intermediate stages k1 .= field_func(u, 0.0, params) + + k2 .= u .+ (h/2) .* k1 + k2 .= field_func(k2, h/2, params) + + k3 .= u .+ (h/2) .* k2 + k3 .= field_func(k3, h/2, params) - # Stage 2 - k2 .= field_func(u .+ (h/2) .* k1, h/2, params) - - # Stage 3 - k3 .= field_func(u .+ (h/2) .* k2, h/2, params) - - # Stage 4 - k4 .= field_func(u .+ h .* k3, h, params) + k4 .= u .+ h .* k3 + k4 .= field_func(k4, h, params) # Final update u .+= (h/6) .* (k1 .+ 2 .* k2 .+ 2 .* k3 .+ k4) From 41fa1e3027d68bd623f3f6c4dcb807e31fdc312e Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 6 Jun 2025 20:44:51 -0400 Subject: [PATCH 28/76] clean up dependency --- Project.toml | 1 - 1 file changed, 1 deletion(-) diff --git a/Project.toml b/Project.toml index a2566da3..3dbefd09 100644 --- a/Project.toml +++ b/Project.toml @@ -20,7 +20,6 @@ BeamTrackingBeamlinesExt = "Beamlines" [compat] Beamlines = "0.2.1" -BenchmarkTools = "1.6.0" GTPSA = "1.4.2" KernelAbstractions = "0.9.34" ReferenceFrameRotations = "3" From 79b5381a8e62bf3c4247d05d4c88f1544a9b0b0c Mon Sep 17 00:00:00 2001 From: ndwang Date: Sun, 15 Jun 2025 23:11:20 -0400 Subject: [PATCH 29/76] Changing kernel interface to new requirements --- src/modules/FieldTracking.jl | 12 +++++------- src/modules/RungeKuttaTracking.jl | 13 ++++++------- 2 files changed, 11 insertions(+), 14 deletions(-) diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index 51c0e2ce..72557257 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -12,7 +12,7 @@ MAX_TEMPS(::Field) = 0 module FieldTracking using ..BeamTracking -using ..BeamTracking: @makekernel +using ..BeamTracking: @makekernel, BunchView using SciMLBase const TRACKING_METHOD = Field @@ -35,24 +35,23 @@ function field_system!(du, u, p, t) end """ - field_track!(i, v, work, L, field_func, field_params, solver, solver_params) + field_track!(i, b, L, field_func, field_params, solver, solver_params) Track a particle through a drift space with arbitrary field using DifferentialEquations.jl. # Arguments - `i`: Particle index -- `v`: Coordinate matrix -- `work`: Work matrix +- `b`: BunchView containing particle coordinates - `L`: Drift length - `field_func`: Function that returns the field at a given position (x, y, z) - `field_params`: Additional parameters for the field function - `solver`: ODE solver to use - `solver_params`: Additional parameters for the solver """ -@makekernel function field_track!(i, v, work, L, field_func, field_params, solver, solver_params) +@makekernel function field_track!(i, b::BunchView, L, field_func, field_params, solver, solver_params) @inbounds begin # Initial state vector - u0 = view(v, i, :) + u0 = view(b.v, i, :) # Set up and solve the ODE prob = ODEProblem(field_system!, u0, (0.0, L), (field_func, field_params)) @@ -61,7 +60,6 @@ Track a particle through a drift space with arbitrary field using DifferentialEq # Update final coordinates by assigning each component u0 .= sol.u[end] end - return v end end \ No newline at end of file diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index 90bb35cb..a0630f0e 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -12,12 +12,12 @@ MAX_TEMPS(::RungeKutta) = 24 # Number of RK4 stages module RungeKuttaTracking using ..BeamTracking -using ..BeamTracking: @makekernel +using ..BeamTracking: @makekernel, BunchView const TRACKING_METHOD = RungeKutta """ - rk4_step!(u, h, field_func, params, work, i) + rk4_step!(i, u, work, t, h, field_func, params) Perform a single 4th order Runge-Kutta step. @@ -55,13 +55,13 @@ function rk4_step!(i, u, work, t, h, field_func, params) end """ - rk4_track!(i, v, work, L, field_func, params, n_steps) + rk4_track!(i, b, work, t_span, field_func, params, n_steps) Track a particle through a drift space with arbitrary field using 4th order Runge-Kutta. # Arguments - `i`: Particle index -- `v`: Coordinate matrix +- `b`: BunchView containing particle coordinates - `work`: Work matrix (n_particles × 24) - `t_span`: Time span [t_start, t_end] - `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. @@ -69,10 +69,10 @@ Track a particle through a drift space with arbitrary field using 4th order Rung - `params`: Additional parameters for the field function - `n_steps`: Number of integration steps """ -@makekernel function rk4_track!(i, v, work, t_span, field_func, params, n_steps) +@makekernel function rk4_track!(i, b::BunchView, work, t_span, field_func, params, n_steps) @inbounds begin # Create a view of the particle coordinates - u = view(v, i, :) + u = view(b.v, i, :) # Integration step size h = (t_span[2] - t_span[1]) / n_steps @@ -84,7 +84,6 @@ Track a particle through a drift space with arbitrary field using 4th order Rung t += h end end - return v end end \ No newline at end of file From 7b3f85b97faf7a4850d8f20511ad9ceb9f6684d1 Mon Sep 17 00:00:00 2001 From: ndwang Date: Mon, 16 Jun 2025 14:07:27 -0400 Subject: [PATCH 30/76] Update benchmark tools to new interface --- benchmark/KernelEvaluation.jl | 20 ++++----- benchmark/Manifest.toml | 58 ++++++++++++++----------- test/KernelEvaluation.jl | 82 ----------------------------------- 3 files changed, 40 insertions(+), 120 deletions(-) delete mode 100644 test/KernelEvaluation.jl diff --git a/benchmark/KernelEvaluation.jl b/benchmark/KernelEvaluation.jl index e65b3225..6adaecde 100644 --- a/benchmark/KernelEvaluation.jl +++ b/benchmark/KernelEvaluation.jl @@ -1,5 +1,5 @@ using BeamTracking -using BeamTracking: get_N_particle, runkernel!, MAX_TEMPS, soaview +using BeamTracking: get_N_particle, runkernels!, MAX_TEMPS, KernelCall, KernelChain, BunchView using BenchmarkTools using SciMLBase, OrdinaryDiffEq using StaticArrays @@ -24,17 +24,13 @@ A dictionary containing the following metrics: """ function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) - n_particles = get_N_particle(bunch) - - # Get the tracking method from the kernel's module - tracking_method = parentmodule(kernel).TRACKING_METHOD() - n_temps = MAX_TEMPS(tracking_method) - work = zeros(eltype(bunch.v), n_particles, n_temps) - v = soaview(bunch) try + # Create kernel chain + kc = (KernelCall(kernel, args),) + # Benchmark the tracking with specified sample size and time budget result = @benchmark begin - runkernel!($kernel, nothing, $v, $work, $args...) + runkernels!(nothing, $bunch, $kc) end samples=n_runs seconds=10 metrics = Dict( @@ -62,7 +58,7 @@ function evaluate_field_track_performance(; n_runs=10, n_particles=1000, solver= L = 1.0 field_func = (u, t, params) -> SVector(u[2], 0.0, u[4], 0.0, u[6], 0.0) params = nothing - return evaluate_kernel_performance(bunch, FieldTracking.field_track!, L, field_func, params, solver, solver_params; n_runs=n_runs) + return evaluate_kernel_performance(BunchView(bunch), FieldTracking.field_track!, L, field_func, params, solver, solver_params; n_runs=n_runs) end function evaluate_linear_track_performance(;n_runs=10, n_particles=1000) @@ -70,7 +66,7 @@ function evaluate_linear_track_performance(;n_runs=10, n_particles=1000) bunch = Bunch(n_particles) L = 1.0 r56 = 1.0 - return evaluate_kernel_performance(bunch, LinearTracking.linear_drift!, L, r56; n_runs=n_runs) + return evaluate_kernel_performance(BunchView(bunch), LinearTracking.linear_drift!, L, r56; n_runs=n_runs) end function evaluate_rk4_track_performance(;n_runs=10, n_particles=1000) @@ -78,6 +74,6 @@ function evaluate_rk4_track_performance(;n_runs=10, n_particles=1000) t_span = (0.0, 1.0) field_func = (u, t, params) -> SVector(u[2], 0.0, u[4], 0.0, u[6], 0.0) params = nothing - return evaluate_kernel_performance(bunch, RungeKuttaTracking.rk4_track!, t_span, field_func, params, 10; n_runs=n_runs) + return evaluate_kernel_performance(BunchView(bunch), RungeKuttaTracking.rk4_track!, t_span, field_func, params, 10; n_runs=n_runs) end diff --git a/benchmark/Manifest.toml b/benchmark/Manifest.toml index 814ed8a3..4952d3fb 100644 --- a/benchmark/Manifest.toml +++ b/benchmark/Manifest.toml @@ -123,10 +123,10 @@ uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" version = "1.11.0" [[deps.BeamTracking]] -deps = ["GTPSA", "KernelAbstractions", "ReferenceFrameRotations", "SIMD", "SciMLBase", "StaticArrays", "VectorizationBase"] +deps = ["Accessors", "Adapt", "EnumX", "GTPSA", "KernelAbstractions", "MacroTools", "ReferenceFrameRotations", "SIMD", "SciMLBase", "StaticArrays", "Unrolled", "VectorizationBase"] path = ".." uuid = "8ef5c10a-4ca3-437f-8af5-b84d8af36df0" -version = "0.1.0" +version = "0.2.0" [deps.BeamTracking.extensions] BeamTrackingBeamlinesExt = "Beamlines" @@ -225,9 +225,9 @@ uuid = "2569d6c7-a4a2-43d3-a901-331e8e4be471" version = "0.2.3" [[deps.ConstructionBase]] -git-tree-sha1 = "76219f1ed5771adbb096743bff43fb5fdd4c1157" +git-tree-sha1 = "b4b092499347b18a015186eae3042f72267106cb" uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" -version = "1.5.8" +version = "1.6.0" [deps.ConstructionBase.extensions] ConstructionBaseIntervalSetsExt = "IntervalSets" @@ -273,9 +273,9 @@ version = "1.11.0" [[deps.DiffEqBase]] deps = ["ArrayInterface", "ConcreteStructs", "DataStructures", "DocStringExtensions", "EnumX", "EnzymeCore", "FastBroadcast", "FastClosures", "FastPower", "FunctionWrappers", "FunctionWrappersWrappers", "LinearAlgebra", "Logging", "Markdown", "MuladdMacro", "Parameters", "PrecompileTools", "Printf", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "Setfield", "Static", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface", "TruncatedStacktraces"] -git-tree-sha1 = "a0e5b5669df9465bc3dd32ea4a8ddeefbc0f7b5c" +git-tree-sha1 = "2d87d7bd165c1ca0d11923a9fabe90a9d71e88a6" uuid = "2b5f629d-d688-5b77-993f-72d75c75574e" -version = "6.175.0" +version = "6.176.0" [deps.DiffEqBase.extensions] DiffEqBaseCUDAExt = "CUDA" @@ -325,9 +325,9 @@ version = "1.15.1" [[deps.DifferentiationInterface]] deps = ["ADTypes", "LinearAlgebra"] -git-tree-sha1 = "c8d85ecfcbaef899308706bebdd8b00107f3fb43" +git-tree-sha1 = "210933c93f39f832d92f9efbbe69a49c453db36d" uuid = "a0c0ee7d-e4b9-4e03-894e-1c5f64a51d63" -version = "0.6.54" +version = "0.7.1" [deps.DifferentiationInterface.extensions] DifferentiationInterfaceChainRulesCoreExt = "ChainRulesCore" @@ -379,9 +379,9 @@ uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" version = "1.11.0" [[deps.DocStringExtensions]] -git-tree-sha1 = "e7b7e6f178525d17c720ab9c081e4ef04429f860" +git-tree-sha1 = "7442a5dfe1ebb773c29cc2962a8980f47221d76c" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" -version = "0.9.4" +version = "0.9.5" [[deps.Downloads]] deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] @@ -394,9 +394,9 @@ uuid = "4e289a0a-7415-4d19-859d-a7e5c4648b56" version = "1.0.5" [[deps.EnzymeCore]] -git-tree-sha1 = "7d7822a643c33bbff4eab9c87ca8459d7c688db0" +git-tree-sha1 = "8272a687bca7b5c601c0c24fc0c71bff10aafdfd" uuid = "f151be2c-9106-41f4-ab19-57ee4f262869" -version = "0.8.11" +version = "0.8.12" weakdeps = ["Adapt"] [deps.EnzymeCore.extensions] @@ -532,9 +532,9 @@ version = "0.2.0" [[deps.GTPSA]] deps = ["GTPSA_jll", "LinearAlgebra", "MacroTools", "PrettyTables", "Printf", "SpecialFunctions"] -git-tree-sha1 = "951f4c6f4f2e23ebf1d185905d7a8429f3ea9440" +git-tree-sha1 = "47f4ed0fa5b6d4474abea5f58301d2eee41e6fba" uuid = "b27dd330-f138-47c5-815b-40db9dd9b6e8" -version = "1.4.3" +version = "1.4.7" [[deps.GTPSA_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "OpenBLAS32_jll"] @@ -613,9 +613,9 @@ version = "0.2.1" [[deps.KernelAbstractions]] deps = ["Adapt", "Atomix", "InteractiveUtils", "MacroTools", "PrecompileTools", "Requires", "StaticArrays", "UUIDs"] -git-tree-sha1 = "80d268b2f4e396edc5ea004d1e0f569231c71e9e" +git-tree-sha1 = "602c0e9efadafb8abfe8281c3fbf9cf6f406fc03" uuid = "63c18a36-062a-441e-b654-da1e3ab1ce7c" -version = "0.9.34" +version = "0.9.35" weakdeps = ["EnzymeCore", "LinearAlgebra", "SparseArrays"] [deps.KernelAbstractions.extensions] @@ -704,9 +704,9 @@ weakdeps = ["LineSearches"] [[deps.LineSearches]] deps = ["LinearAlgebra", "NLSolversBase", "NaNMath", "Parameters", "Printf"] -git-tree-sha1 = "e4c3be53733db1051cc15ecf573b1042b3a712a1" +git-tree-sha1 = "4adee99b7262ad2a1a4bbbc59d993d24e55ea96f" uuid = "d3d80556-e9d4-5f37-9878-2ab0fcc64255" -version = "7.3.0" +version = "7.4.0" [[deps.LinearAlgebra]] deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] @@ -832,9 +832,9 @@ version = "0.2.4" [[deps.NLSolversBase]] deps = ["ADTypes", "DifferentiationInterface", "Distributed", "FiniteDiff", "ForwardDiff"] -git-tree-sha1 = "b14c7be6046e7d48e9063a0053f95ee0fc954176" +git-tree-sha1 = "25a6638571a902ecfb1ae2a18fc1575f86b1d4df" uuid = "d41bc354-129a-5804-8e4c-c37616107c6c" -version = "7.9.1" +version = "7.10.0" [[deps.NaNMath]] deps = ["OpenLibm_jll"] @@ -975,9 +975,9 @@ version = "1.6.0" [[deps.OrdinaryDiffEqCore]] deps = ["ADTypes", "Accessors", "Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DocStringExtensions", "EnumX", "FastBroadcast", "FastClosures", "FastPower", "FillArrays", "FunctionWrappersWrappers", "InteractiveUtils", "LinearAlgebra", "Logging", "MacroTools", "MuladdMacro", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "SimpleUnPack", "Static", "StaticArrayInterface", "StaticArraysCore", "SymbolicIndexingInterface", "TruncatedStacktraces"] -git-tree-sha1 = "d29adfeb720dd7c251b216d91c4bd4fe67c087df" +git-tree-sha1 = "08dac9c6672a4548439048089bac293759a897fd" uuid = "bbf590c4-e513-4bbe-9b18-05decba2e5d8" -version = "1.26.0" +version = "1.26.1" weakdeps = ["EnzymeCore"] [deps.OrdinaryDiffEqCore.extensions] @@ -1300,9 +1300,9 @@ version = "0.1.0" [[deps.SciMLBase]] deps = ["ADTypes", "Accessors", "Adapt", "ArrayInterface", "CommonSolve", "ConstructionBase", "Distributed", "DocStringExtensions", "EnumX", "FunctionWrappersWrappers", "IteratorInterfaceExtensions", "LinearAlgebra", "Logging", "Markdown", "Moshi", "PrecompileTools", "Preferences", "Printf", "RecipesBase", "RecursiveArrayTools", "Reexport", "RuntimeGeneratedFunctions", "SciMLOperators", "SciMLStructures", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface"] -git-tree-sha1 = "9efabb3d79f9076710f41af77017e42d8fa780d9" +git-tree-sha1 = "04bbcdc8d1f7d6f667f75fbcc68728231e21fabe" uuid = "0bca4576-84f4-4d90-8ffe-ffa030f20462" -version = "2.97.0" +version = "2.101.0" [deps.SciMLBase.extensions] SciMLBaseChainRulesCoreExt = "ChainRulesCore" @@ -1507,9 +1507,9 @@ version = "1.10.0" [[deps.ThreadingUtilities]] deps = ["ManualMemory"] -git-tree-sha1 = "2d529b6b22791f3e22e7ec5c60b9016e78f5f6bf" +git-tree-sha1 = "d969183d3d244b6c33796b5ed01ab97328f2db85" uuid = "8290d209-cae3-49c0-8002-c8c24d57dab5" -version = "0.5.4" +version = "0.5.5" [[deps.TimerOutputs]] deps = ["ExprTools", "Printf"] @@ -1543,6 +1543,12 @@ version = "1.0.2" uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" version = "1.11.0" +[[deps.Unrolled]] +deps = ["MacroTools"] +git-tree-sha1 = "6cc9d682755680e0f0be87c56392b7651efc2c7b" +uuid = "9602ed7d-8fef-5bc8-8597-8f21381861e8" +version = "0.1.5" + [[deps.UnsafeAtomics]] git-tree-sha1 = "b13c4edda90890e5b04ba24e20a310fbe6f249ff" uuid = "013be700-e6cd-48c3-b4a1-df204f14c38f" diff --git a/test/KernelEvaluation.jl b/test/KernelEvaluation.jl deleted file mode 100644 index 9780a7b2..00000000 --- a/test/KernelEvaluation.jl +++ /dev/null @@ -1,82 +0,0 @@ -using BeamTracking -using BeamTracking: get_N_particle, runkernel!, MAX_TEMPS, soaview -using BenchmarkTools -using SciMLBase, OrdinaryDiffEq - -""" - evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) - -Evaluate the performance of any tracking kernel and return a dictionary of metrics. - -# Arguments -- `bunch`: Initial particle bunch -- `kernel`: The kernel function to evaluate -- `args...`: Arguments to pass to the kernel -- `n_runs`: Number of runs for performance evaluation (default: 10) - -# Returns -A dictionary containing the following metrics: -- `min_time`: Minimum tracking time (in nanoseconds) -- `min_memory`: Minimum memory allocation (in bytes) -- `min_allocs`: Minimum number of allocations -- `success`: Boolean whether the tracking was successful - -""" -function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) - n_particles = get_N_particle(bunch) - - # Get the tracking method from the kernel's module - tracking_method = parentmodule(kernel).TRACKING_METHOD() - n_temps = MAX_TEMPS(tracking_method) - work = zeros(eltype(bunch.v), n_particles, n_temps) - v = soaview(bunch) - try - # Benchmark the tracking with specified sample size and time budget - result = @benchmark begin - runkernel!($kernel, nothing, $v, $work, $args...) - end samples=n_runs seconds=10 - - metrics = Dict( - "min_time" => time(minimum(result)), - "min_memory" => memory(minimum(result)), - "min_allocs" => allocs(minimum(result)), - "success" => true - ) - - return metrics - catch e - @warn "Tracking failed: $e" - return Dict( - "min_time" => NaN, - "min_memory" => NaN, - "min_allocs" => NaN, - "success" => false - ) - end -end - - -function evaluate_field_track_performance(; n_runs=10, n_particles=1000, solver=Tsit5(), solver_params=(save_everystep=false,save_start=false,save_end=true,dense=false,calck=false)) - bunch = Bunch(n_particles) - L = 1.0 - field_func = (u, t, params) -> [u[2], 0.0, u[4], 0.0, u[6], 0.0] - params = nothing - return evaluate_kernel_performance(bunch, FieldTracking.field_track!, L, field_func, params, solver, solver_params; n_runs=n_runs) -end - -function evaluate_linear_track_performance(;n_runs=10, n_particles=1000) - # suggest good default values for bunch, L, r56 - bunch = Bunch(n_particles) - L = 1.0 - r56 = 1.0 - return evaluate_kernel_performance(bunch, LinearTracking.linear_drift!, L, r56; n_runs=n_runs) -end - -function evaluate_rk4_track_performance(;n_runs=10, n_particles=1000) - bunch = Bunch(n_particles) - t_span = (0.0, 1.0) - field_func = (u, t, params) -> [u[2], 0.0, u[4], 0.0, u[6], 0.0] - params = nothing - return evaluate_kernel_performance(bunch, RungeKuttaTracking.rk4_track!, t_span, field_func, params, 10; n_runs=n_runs) -end - From 8512bdb311a0d98f7f1d359ac6ef5bca824c0dc1 Mon Sep 17 00:00:00 2001 From: ndwang Date: Mon, 16 Jun 2025 14:12:07 -0400 Subject: [PATCH 31/76] rk4 is now faster without work arrays --- src/modules/FieldTracking.jl | 11 +++----- src/modules/RungeKuttaTracking.jl | 42 ++++++++----------------------- 2 files changed, 14 insertions(+), 39 deletions(-) diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index 72557257..cd2de15f 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -1,15 +1,10 @@ +struct Field end + """ FieldTracking Module implementing particle tracking through arbitrary electromagnetic fields using DifferentialEquations.jl. """ - -# Define the Field tracking method -struct Field end - -# Number of temporaries needed for a single particle -MAX_TEMPS(::Field) = 0 - module FieldTracking using ..BeamTracking using ..BeamTracking: @makekernel, BunchView @@ -49,7 +44,7 @@ Track a particle through a drift space with arbitrary field using DifferentialEq - `solver_params`: Additional parameters for the solver """ @makekernel function field_track!(i, b::BunchView, L, field_func, field_params, solver, solver_params) - @inbounds begin + begin # Initial state vector u0 = view(b.v, i, :) diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index a0630f0e..b1f788bd 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -1,15 +1,10 @@ +struct RungeKutta end + """ RungeKuttaFieldTracking Module implementing particle tracking through arbitrary electromagnetic fields using a 4th order Runge-Kutta method. """ - -# Define the RungeKutta tracking method -struct RungeKutta end - -# Number of temporaries needed for a single particle -MAX_TEMPS(::RungeKutta) = 24 # Number of RK4 stages - module RungeKuttaTracking using ..BeamTracking using ..BeamTracking: @makekernel, BunchView @@ -17,38 +12,24 @@ using ..BeamTracking: @makekernel, BunchView const TRACKING_METHOD = RungeKutta """ - rk4_step!(i, u, work, t, h, field_func, params) + rk4_step!(u, t, h, field_func, params) Perform a single 4th order Runge-Kutta step. # Arguments -- `i`: Particle index - `u`: State vector [x, px, y, py, z, pz] -- `work`: Work matrix (n_particles × 24) - `t`: Current time - `h`: Step size - `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. Return value should be [px, Ex, py, Ey, pz, Ez]. - `params`: Additional parameters for the field function """ -function rk4_step!(i, u, work, t, h, field_func, params) - # Get views into work matrix for RK4 stages - k1 = view(work, i, 1:6) - k2 = view(work, i, 7:12) - k3 = view(work, i, 13:18) - k4 = view(work, i, 19:24) - +function rk4_step!(u, t, h, field_func, params) # Intermediate stages - k1 .= field_func(u, 0.0, params) - - k2 .= u .+ (h/2) .* k1 - k2 .= field_func(k2, h/2, params) - - k3 .= u .+ (h/2) .* k2 - k3 .= field_func(k3, h/2, params) - - k4 .= u .+ h .* k3 - k4 .= field_func(k4, h, params) + k1 = field_func(u, 0.0, params) + k2 = field_func(u .+ (h/2) .* k1, h/2, params) + k3 = field_func(u .+ (h/2) .* k2, h/2, params) + k4 = field_func(u .+ h .* k3, h, params) # Final update u .+= (h/6) .* (k1 .+ 2 .* k2 .+ 2 .* k3 .+ k4) @@ -62,15 +43,14 @@ Track a particle through a drift space with arbitrary field using 4th order Rung # Arguments - `i`: Particle index - `b`: BunchView containing particle coordinates -- `work`: Work matrix (n_particles × 24) - `t_span`: Time span [t_start, t_end] - `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. Return value should be [px, Ex, py, Ey, pz, Ez]. - `params`: Additional parameters for the field function - `n_steps`: Number of integration steps """ -@makekernel function rk4_track!(i, b::BunchView, work, t_span, field_func, params, n_steps) - @inbounds begin +@makekernel function rk4_track!(i, b::BunchView, t_span, field_func, params, n_steps) + begin # Create a view of the particle coordinates u = view(b.v, i, :) @@ -80,7 +60,7 @@ Track a particle through a drift space with arbitrary field using 4th order Rung t = t_span[1] # Perform integration steps for _ in 1:n_steps - rk4_step!(i, u, work, t, h, field_func, params) + rk4_step!(u, t, h, field_func, params) t += h end end From eac47c06c286ea61a376e793e9dda8c4f7ae5e64 Mon Sep 17 00:00:00 2001 From: ndwang Date: Mon, 16 Jun 2025 14:20:57 -0400 Subject: [PATCH 32/76] remove default tolerance --- src/modules/FieldTracking.jl | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index cd2de15f..fd8174a5 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -50,7 +50,7 @@ Track a particle through a drift space with arbitrary field using DifferentialEq # Set up and solve the ODE prob = ODEProblem(field_system!, u0, (0.0, L), (field_func, field_params)) - sol = solve(prob, solver; reltol=1e-8, abstol=1e-8, solver_params...) + sol = solve(prob, solver; solver_params...) # Update final coordinates by assigning each component u0 .= sol.u[end] From bb553786ac877f24ae5b2e2ac734d447095ec31e Mon Sep 17 00:00:00 2001 From: ndwang Date: Mon, 16 Jun 2025 16:07:26 -0400 Subject: [PATCH 33/76] update FieldTracking tests --- Project.toml | 3 ++- benchmark/Manifest.toml | 2 +- test/FieldTracking.jl | 21 ++++++++++----------- test/runtests.jl | 4 +++- 4 files changed, 16 insertions(+), 14 deletions(-) diff --git a/Project.toml b/Project.toml index a0b3256a..0aafcf9a 100644 --- a/Project.toml +++ b/Project.toml @@ -47,6 +47,7 @@ GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" JET = "c3a54625-cd67-489e-a8e7-0a5a0ff4e31b" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" +OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" [targets] -test = ["Test", "Distributions", "JET", "GTPSA", "BenchmarkTools", "Beamlines", "StaticArrays"] +test = ["Test", "Distributions", "JET", "GTPSA", "BenchmarkTools", "Beamlines", "StaticArrays", "OrdinaryDiffEq"] diff --git a/benchmark/Manifest.toml b/benchmark/Manifest.toml index 4952d3fb..b40dee02 100644 --- a/benchmark/Manifest.toml +++ b/benchmark/Manifest.toml @@ -2,7 +2,7 @@ julia_version = "1.11.1" manifest_format = "2.0" -project_hash = "4689147201f62689a207ca27d4978fa80f84fbcf" +project_hash = "9a9cf90c80239fef8cec42fa4b410b6a6f723f74" [[deps.ADTypes]] git-tree-sha1 = "e2478490447631aedba0823d4d7a80b2cc8cdb32" diff --git a/test/FieldTracking.jl b/test/FieldTracking.jl index 3e59d1a4..92722992 100644 --- a/test/FieldTracking.jl +++ b/test/FieldTracking.jl @@ -1,9 +1,10 @@ + @testset "FieldTracking" begin + # Define a simple uniform electric field in x-direction + function uniform_field(u, t, params) + return SVector(u[2], 1.0, u[4], 0.0, u[6], 0.0) + end @testset "FieldSystem!" begin - # Define a simple uniform electric field in x-direction - function uniform_field(x, y, z, params) - return SVector(1.0, 0.0, 0.0) - end # Test initial conditions du = zeros(6) @@ -18,13 +19,12 @@ # Test field_track! with uniform field @testset "Uniform Field Tracking" begin # Create a single particle - bunch = Bunch(1) - work = zeros(eltype(bunch.v), get_N_particle(bunch), MAX_TEMPS(ele.tracking_method)) + bunch = Bunch(zeros(1,6)) L = 1.0 solver = Tsit5() # Track the particle - FieldTracking.field_track!(1, soaview(bunch), work, L, uniform_field, nothing, solver) + FieldTracking.field_track!(1, BunchView(bunch), L, uniform_field, nothing, solver, (save_everystep=false,save_start=false,save_end=true,dense=false,calck=false)) # Verify final position and momentum @test isapprox(bunch.v[1,1], 0.5, rtol=1e-5) # x = x0 + 0.5*t^2 @@ -37,12 +37,11 @@ bunch = Bunch(zeros(3,6)) bunch.v[2,1] = 1.0 bunch.v[3,2] = 1.0 - work = zeros(eltype(bunch.v), get_N_particle(bunch), MAX_TEMPS(ele.tracking_method)) L = 1.0 - solver = Tsit5() - + solver = RK4() + kc = (KernelCall(FieldTracking.field_track!, (L, uniform_field, nothing, solver, (save_everystep=false,save_start=false,save_end=true,dense=false,calck=false))),) # Track all particles - runkernel!(FieldTracking.field_track!, nothing, soaview(bunch), work, L, uniform_field, nothing, solver) + BeamTracking.runkernels!(nothing, BunchView(bunch), kc) # Verify final positions and momenta @test isapprox(bunch.v[1,1], 0.5, rtol=1e-5) diff --git a/test/runtests.jl b/test/runtests.jl index 553ae443..e07f16d1 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -4,7 +4,8 @@ using Test, JET, BenchmarkTools, GTPSA, - StaticArrays + StaticArrays, + OrdinaryDiffEq using BeamTracking: BunchView, KernelCall BenchmarkTools.DEFAULT_PARAMETERS.gctrial = false @@ -143,3 +144,4 @@ end include("LinearTracking.jl") include("ExactTracking.jl") include("BeamlinesExt.jl") +include("FieldTracking.jl") \ No newline at end of file From b67daedf96bd90721685f871a918211b82460850 Mon Sep 17 00:00:00 2001 From: lixing Date: Tue, 26 Aug 2025 11:01:18 +0800 Subject: [PATCH 34/76] fixed edits --- .vscode/settings.json | 3 +++ src/modules/FieldTracking.jl | 23 +++++++++++----------- src/modules/RungeKuttaTracking.jl | 32 +++++++++++++++---------------- 3 files changed, 29 insertions(+), 29 deletions(-) create mode 100644 .vscode/settings.json diff --git a/.vscode/settings.json b/.vscode/settings.json new file mode 100644 index 00000000..be4f27e7 --- /dev/null +++ b/.vscode/settings.json @@ -0,0 +1,3 @@ +{ + "julia.environmentPath": "/Users/lihao/.julia/dev/BeamTracking" +} diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index fd8174a5..92353da6 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -8,7 +8,7 @@ Module implementing particle tracking through arbitrary electromagnetic fields u module FieldTracking using ..BeamTracking using ..BeamTracking: @makekernel, BunchView -using SciMLBase +using ..SciMLBase const TRACKING_METHOD = Field """ @@ -44,17 +44,16 @@ Track a particle through a drift space with arbitrary field using DifferentialEq - `solver_params`: Additional parameters for the solver """ @makekernel function field_track!(i, b::BunchView, L, field_func, field_params, solver, solver_params) - begin - # Initial state vector - u0 = view(b.v, i, :) - - # Set up and solve the ODE - prob = ODEProblem(field_system!, u0, (0.0, L), (field_func, field_params)) - sol = solve(prob, solver; solver_params...) - - # Update final coordinates by assigning each component - u0 .= sol.u[end] - end + # Initial state vector + u0 = view(b.v, i, :) + + # Set up and solve the ODE + prob = ODEProblem(field_system!, u0, (0.0, L), (field_func, field_params)) + sol = solve(prob, solver; solver_params...) + + # Update final coordinates by assigning each component + u0 .= sol.u[end] + end end \ No newline at end of file diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index b1f788bd..0981a300 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -27,12 +27,12 @@ Perform a single 4th order Runge-Kutta step. function rk4_step!(u, t, h, field_func, params) # Intermediate stages k1 = field_func(u, 0.0, params) - k2 = field_func(u .+ (h/2) .* k1, h/2, params) - k3 = field_func(u .+ (h/2) .* k2, h/2, params) + k2 = field_func(u .+ (h / 2) .* k1, h / 2, params) + k3 = field_func(u .+ (h / 2) .* k2, h / 2, params) k4 = field_func(u .+ h .* k3, h, params) - + # Final update - u .+= (h/6) .* (k1 .+ 2 .* k2 .+ 2 .* k3 .+ k4) + u .+= (h / 6) .* (k1 .+ 2 .* k2 .+ 2 .* k3 .+ k4) end """ @@ -50,20 +50,18 @@ Track a particle through a drift space with arbitrary field using 4th order Rung - `n_steps`: Number of integration steps """ @makekernel function rk4_track!(i, b::BunchView, t_span, field_func, params, n_steps) - begin - # Create a view of the particle coordinates - u = view(b.v, i, :) - - # Integration step size - h = (t_span[2] - t_span[1]) / n_steps + # Create a view of the particle coordinates + u = view(b.v, i, :) + + # Integration step size + h = (t_span[2] - t_span[1]) / n_steps - t = t_span[1] - # Perform integration steps - for _ in 1:n_steps - rk4_step!(u, t, h, field_func, params) - t += h - end + t = t_span[1] + # Perform integration steps + for _ in 1:n_steps + rk4_step!(u, t, h, field_func, params) + t += h end end -end \ No newline at end of file +end \ No newline at end of file From 75ed7f24afee45ee93d3ab9f355fa05415ba80f6 Mon Sep 17 00:00:00 2001 From: lixing Date: Tue, 26 Aug 2025 13:03:36 +0800 Subject: [PATCH 35/76] updated to 2 tab size --- src/BeamTracking.jl | 18 +- src/modules/FieldTracking.jl | 18 +- src/modules/RungeKuttaTracking.jl | 34 +- test/FieldTracking.jl | 104 +- test/bmad_maps/drift.jl | 472 +- test/bmad_maps/patch.jl | 4930 ++++++------- test/bmad_maps/patch_norot.jl | 478 +- test/lattices/esr.jl | 11075 ++++++++++++++-------------- 8 files changed, 8565 insertions(+), 8564 deletions(-) diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index 344ad23e..fbb619e0 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -6,15 +6,15 @@ Currently provides both linear, exact, field tracking, and Runge-Kutta tracking """ module BeamTracking using GTPSA, - ReferenceFrameRotations, - StaticArrays, - SIMD, - VectorizationBase, - EnumX, - Unrolled, - MacroTools, - Adapt, - Accessors + ReferenceFrameRotations, + StaticArrays, + SIMD, + VectorizationBase, + EnumX, + Unrolled, + MacroTools, + Adapt, + Accessors using KernelAbstractions diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index 92353da6..70eaef77 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -25,8 +25,8 @@ Define the ODE system for particle motion in an electromagnetic field. - `t`: Time variable """ function field_system!(du, u, p, t) - field_func, params = p - du .= field_func(u, t, params) + field_func, params = p + du .= field_func(u, t, params) end """ @@ -44,15 +44,15 @@ Track a particle through a drift space with arbitrary field using DifferentialEq - `solver_params`: Additional parameters for the solver """ @makekernel function field_track!(i, b::BunchView, L, field_func, field_params, solver, solver_params) - # Initial state vector - u0 = view(b.v, i, :) + # Initial state vector + u0 = view(b.v, i, :) - # Set up and solve the ODE - prob = ODEProblem(field_system!, u0, (0.0, L), (field_func, field_params)) - sol = solve(prob, solver; solver_params...) + # Set up and solve the ODE + prob = ODEProblem(field_system!, u0, (0.0, L), (field_func, field_params)) + sol = solve(prob, solver; solver_params...) - # Update final coordinates by assigning each component - u0 .= sol.u[end] + # Update final coordinates by assigning each component + u0 .= sol.u[end] end diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index 0981a300..6ec86120 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -25,14 +25,14 @@ Perform a single 4th order Runge-Kutta step. - `params`: Additional parameters for the field function """ function rk4_step!(u, t, h, field_func, params) - # Intermediate stages - k1 = field_func(u, 0.0, params) - k2 = field_func(u .+ (h / 2) .* k1, h / 2, params) - k3 = field_func(u .+ (h / 2) .* k2, h / 2, params) - k4 = field_func(u .+ h .* k3, h, params) + # Intermediate stages + k1 = field_func(u, 0.0, params) + k2 = field_func(u .+ (h / 2) .* k1, h / 2, params) + k3 = field_func(u .+ (h / 2) .* k2, h / 2, params) + k4 = field_func(u .+ h .* k3, h, params) - # Final update - u .+= (h / 6) .* (k1 .+ 2 .* k2 .+ 2 .* k3 .+ k4) + # Final update + u .+= (h / 6) .* (k1 .+ 2 .* k2 .+ 2 .* k3 .+ k4) end """ @@ -50,18 +50,18 @@ Track a particle through a drift space with arbitrary field using 4th order Rung - `n_steps`: Number of integration steps """ @makekernel function rk4_track!(i, b::BunchView, t_span, field_func, params, n_steps) - # Create a view of the particle coordinates - u = view(b.v, i, :) + # Create a view of the particle coordinates + u = view(b.v, i, :) - # Integration step size - h = (t_span[2] - t_span[1]) / n_steps + # Integration step size + h = (t_span[2] - t_span[1]) / n_steps - t = t_span[1] - # Perform integration steps - for _ in 1:n_steps - rk4_step!(u, t, h, field_func, params) - t += h - end + t = t_span[1] + # Perform integration steps + for _ in 1:n_steps + rk4_step!(u, t, h, field_func, params) + t += h + end end end \ No newline at end of file diff --git a/test/FieldTracking.jl b/test/FieldTracking.jl index 92722992..29e16072 100644 --- a/test/FieldTracking.jl +++ b/test/FieldTracking.jl @@ -1,54 +1,54 @@ @testset "FieldTracking" begin - # Define a simple uniform electric field in x-direction - function uniform_field(u, t, params) - return SVector(u[2], 1.0, u[4], 0.0, u[6], 0.0) - end - @testset "FieldSystem!" begin - - # Test initial conditions - du = zeros(6) - u = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] - p = (uniform_field, nothing) - t = 0.0 - - # Call field_system! - FieldTracking.field_system!(du, u, p, t) - end - - # Test field_track! with uniform field - @testset "Uniform Field Tracking" begin - # Create a single particle - bunch = Bunch(zeros(1,6)) - L = 1.0 - solver = Tsit5() - - # Track the particle - FieldTracking.field_track!(1, BunchView(bunch), L, uniform_field, nothing, solver, (save_everystep=false,save_start=false,save_end=true,dense=false,calck=false)) - - # Verify final position and momentum - @test isapprox(bunch.v[1,1], 0.5, rtol=1e-5) # x = x0 + 0.5*t^2 - @test isapprox(bunch.v[1,2], 1.0, rtol=1e-5) # px = t - end - - # Test field_track! with multiple particles - @testset "Multiple Particle Tracking" begin - # Create multiple particles - bunch = Bunch(zeros(3,6)) - bunch.v[2,1] = 1.0 - bunch.v[3,2] = 1.0 - L = 1.0 - solver = RK4() - kc = (KernelCall(FieldTracking.field_track!, (L, uniform_field, nothing, solver, (save_everystep=false,save_start=false,save_end=true,dense=false,calck=false))),) - # Track all particles - BeamTracking.runkernels!(nothing, BunchView(bunch), kc) - - # Verify final positions and momenta - @test isapprox(bunch.v[1,1], 0.5, rtol=1e-5) - @test isapprox(bunch.v[2,1], 1.5, rtol=1e-5) - @test isapprox(bunch.v[3,1], 1.5, rtol=1e-5) - @test isapprox(bunch.v[1,2], 1.0, rtol=1e-5) - @test isapprox(bunch.v[2,2], 1.0, rtol=1e-5) - @test isapprox(bunch.v[3,2], 2.0, rtol=1e-5) - end -end \ No newline at end of file + # Define a simple uniform electric field in x-direction + function uniform_field(u, t, params) + return SVector(u[2], 1.0, u[4], 0.0, u[6], 0.0) + end + @testset "FieldSystem!" begin + + # Test initial conditions + du = zeros(6) + u = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] + p = (uniform_field, nothing) + t = 0.0 + + # Call field_system! + FieldTracking.field_system!(du, u, p, t) + end + + # Test field_track! with uniform field + @testset "Uniform Field Tracking" begin + # Create a single particle + bunch = Bunch(zeros(1, 6)) + L = 1.0 + solver = Tsit5() + + # Track the particle + FieldTracking.field_track!(1, BunchView(bunch), L, uniform_field, nothing, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) + + # Verify final position and momentum + @test isapprox(bunch.v[1, 1], 0.5, rtol=1e-5) # x = x0 + 0.5*t^2 + @test isapprox(bunch.v[1, 2], 1.0, rtol=1e-5) # px = t + end + + # Test field_track! with multiple particles + @testset "Multiple Particle Tracking" begin + # Create multiple particles + bunch = Bunch(zeros(3, 6)) + bunch.v[2, 1] = 1.0 + bunch.v[3, 2] = 1.0 + L = 1.0 + solver = RK4() + kc = (KernelCall(FieldTracking.field_track!, (L, uniform_field, nothing, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false))),) + # Track all particles + BeamTracking.runkernels!(nothing, BunchView(bunch), kc) + + # Verify final positions and momenta + @test isapprox(bunch.v[1, 1], 0.5, rtol=1e-5) + @test isapprox(bunch.v[2, 1], 1.5, rtol=1e-5) + @test isapprox(bunch.v[3, 1], 1.5, rtol=1e-5) + @test isapprox(bunch.v[1, 2], 1.0, rtol=1e-5) + @test isapprox(bunch.v[2, 2], 1.0, rtol=1e-5) + @test isapprox(bunch.v[3, 2], 2.0, rtol=1e-5) + end +end \ No newline at end of file diff --git a/test/bmad_maps/drift.jl b/test/bmad_maps/drift.jl index 746a96c7..0082bab4 100644 --- a/test/bmad_maps/drift.jl +++ b/test/bmad_maps/drift.jl @@ -11,239 +11,239 @@ using GTPSA d_z = Descriptor(6, 10) v_z = zeros(TPS64{d_z}, 6) -v_z[1][[1,0,0,0,0,0]] = 1.0000000000000000E+00 -v_z[1][[0,1,0,0,0,0]] = 1.0000000000000000E+00 -v_z[1][[0,1,0,0,0,1]] = -1.0000000000000000E+00 -v_z[1][[0,3,0,0,0,0]] = 5.0000000000000000E-01 -v_z[1][[0,1,0,2,0,0]] = 5.0000000000000000E-01 -v_z[1][[0,1,0,0,0,2]] = 1.0000000000000000E+00 -v_z[1][[0,3,0,0,0,1]] = -1.5000000000000000E+00 -v_z[1][[0,1,0,2,0,1]] = -1.5000000000000000E+00 -v_z[1][[0,1,0,0,0,3]] = -1.0000000000000002E+00 -v_z[1][[0,5,0,0,0,0]] = 3.7500000000000000E-01 -v_z[1][[0,3,0,2,0,0]] = 7.5000000000000000E-01 -v_z[1][[0,1,0,4,0,0]] = 3.7500000000000000E-01 -v_z[1][[0,3,0,0,0,2]] = 3.0000000000000000E+00 -v_z[1][[0,1,0,2,0,2]] = 3.0000000000000000E+00 -v_z[1][[0,1,0,0,0,4]] = 1.0000000000000004E+00 -v_z[1][[0,5,0,0,0,1]] = -1.8750000000000000E+00 -v_z[1][[0,3,0,2,0,1]] = -3.7500000000000000E+00 -v_z[1][[0,1,0,4,0,1]] = -1.8750000000000000E+00 -v_z[1][[0,3,0,0,0,3]] = -5.0000000000000000E+00 -v_z[1][[0,1,0,2,0,3]] = -5.0000000000000000E+00 -v_z[1][[0,1,0,0,0,5]] = -1.0000000000000007E+00 -v_z[1][[0,7,0,0,0,0]] = 3.1250000000000000E-01 -v_z[1][[0,5,0,2,0,0]] = 9.3750000000000000E-01 -v_z[1][[0,3,0,4,0,0]] = 9.3750000000000000E-01 -v_z[1][[0,1,0,6,0,0]] = 3.1250000000000000E-01 -v_z[1][[0,5,0,0,0,2]] = 5.6250000000000000E+00 -v_z[1][[0,3,0,2,0,2]] = 1.1250000000000000E+01 -v_z[1][[0,1,0,4,0,2]] = 5.6250000000000000E+00 -v_z[1][[0,3,0,0,0,4]] = 7.5000000000000009E+00 -v_z[1][[0,1,0,2,0,4]] = 7.5000000000000009E+00 -v_z[1][[0,1,0,0,0,6]] = 1.0000000000000011E+00 -v_z[1][[0,7,0,0,0,1]] = -2.1875000000000000E+00 -v_z[1][[0,5,0,2,0,1]] = -6.5625000000000000E+00 -v_z[1][[0,3,0,4,0,1]] = -6.5625000000000000E+00 -v_z[1][[0,1,0,6,0,1]] = -2.1875000000000000E+00 -v_z[1][[0,5,0,0,0,3]] = -1.3125000000000000E+01 -v_z[1][[0,3,0,2,0,3]] = -2.6250000000000000E+01 -v_z[1][[0,1,0,4,0,3]] = -1.3125000000000000E+01 -v_z[1][[0,3,0,0,0,5]] = -1.0500000000000002E+01 -v_z[1][[0,1,0,2,0,5]] = -1.0500000000000002E+01 -v_z[1][[0,1,0,0,0,7]] = -1.0000000000000016E+00 -v_z[1][[0,9,0,0,0,0]] = 2.7343750000000000E-01 -v_z[1][[0,7,0,2,0,0]] = 1.0937500000000000E+00 -v_z[1][[0,5,0,4,0,0]] = 1.6406250000000000E+00 -v_z[1][[0,3,0,6,0,0]] = 1.0937500000000000E+00 -v_z[1][[0,1,0,8,0,0]] = 2.7343750000000000E-01 -v_z[1][[0,7,0,0,0,2]] = 8.7500000000000000E+00 -v_z[1][[0,5,0,2,0,2]] = 2.6250000000000000E+01 -v_z[1][[0,3,0,4,0,2]] = 2.6250000000000000E+01 -v_z[1][[0,1,0,6,0,2]] = 8.7500000000000000E+00 -v_z[1][[0,5,0,0,0,4]] = 2.6250000000000000E+01 -v_z[1][[0,3,0,2,0,4]] = 5.2500000000000000E+01 -v_z[1][[0,1,0,4,0,4]] = 2.6250000000000000E+01 -v_z[1][[0,3,0,0,0,6]] = 1.4000000000000004E+01 -v_z[1][[0,1,0,2,0,6]] = 1.4000000000000004E+01 -v_z[1][[0,1,0,0,0,8]] = 1.0000000000000011E+00 -v_z[1][[0,9,0,0,0,1]] = -2.4609375000000000E+00 -v_z[1][[0,7,0,2,0,1]] = -9.8437500000000000E+00 -v_z[1][[0,5,0,4,0,1]] = -1.4765625000000000E+01 -v_z[1][[0,3,0,6,0,1]] = -9.8437500000000000E+00 -v_z[1][[0,1,0,8,0,1]] = -2.4609375000000000E+00 -v_z[1][[0,7,0,0,0,3]] = -2.6250000000000000E+01 -v_z[1][[0,5,0,2,0,3]] = -7.8750000000000000E+01 -v_z[1][[0,3,0,4,0,3]] = -7.8750000000000000E+01 -v_z[1][[0,1,0,6,0,3]] = -2.6250000000000000E+01 -v_z[1][[0,5,0,0,0,5]] = -4.7250000000000000E+01 -v_z[1][[0,3,0,2,0,5]] = -9.4500000000000000E+01 -v_z[1][[0,1,0,4,0,5]] = -4.7250000000000000E+01 -v_z[1][[0,3,0,0,0,7]] = -1.8000000000000007E+01 -v_z[1][[0,1,0,2,0,7]] = -1.8000000000000007E+01 -v_z[1][[0,1,0,0,0,9]] = -1.0000000000000007E+00 -v_z[2][[0,1,0,0,0,0]] = 1.0000000000000000E+00 -v_z[3][[0,0,1,0,0,0]] = 1.0000000000000000E+00 -v_z[3][[0,0,0,1,0,0]] = 1.0000000000000000E+00 -v_z[3][[0,0,0,1,0,1]] = -1.0000000000000000E+00 -v_z[3][[0,2,0,1,0,0]] = 5.0000000000000000E-01 -v_z[3][[0,0,0,3,0,0]] = 5.0000000000000000E-01 -v_z[3][[0,0,0,1,0,2]] = 1.0000000000000000E+00 -v_z[3][[0,2,0,1,0,1]] = -1.5000000000000000E+00 -v_z[3][[0,0,0,3,0,1]] = -1.5000000000000000E+00 -v_z[3][[0,0,0,1,0,3]] = -1.0000000000000002E+00 -v_z[3][[0,4,0,1,0,0]] = 3.7500000000000000E-01 -v_z[3][[0,2,0,3,0,0]] = 7.5000000000000000E-01 -v_z[3][[0,0,0,5,0,0]] = 3.7500000000000000E-01 -v_z[3][[0,2,0,1,0,2]] = 3.0000000000000000E+00 -v_z[3][[0,0,0,3,0,2]] = 3.0000000000000000E+00 -v_z[3][[0,0,0,1,0,4]] = 1.0000000000000004E+00 -v_z[3][[0,4,0,1,0,1]] = -1.8750000000000000E+00 -v_z[3][[0,2,0,3,0,1]] = -3.7500000000000000E+00 -v_z[3][[0,0,0,5,0,1]] = -1.8750000000000000E+00 -v_z[3][[0,2,0,1,0,3]] = -5.0000000000000000E+00 -v_z[3][[0,0,0,3,0,3]] = -5.0000000000000000E+00 -v_z[3][[0,0,0,1,0,5]] = -1.0000000000000007E+00 -v_z[3][[0,6,0,1,0,0]] = 3.1250000000000000E-01 -v_z[3][[0,4,0,3,0,0]] = 9.3750000000000000E-01 -v_z[3][[0,2,0,5,0,0]] = 9.3750000000000000E-01 -v_z[3][[0,0,0,7,0,0]] = 3.1250000000000000E-01 -v_z[3][[0,4,0,1,0,2]] = 5.6250000000000000E+00 -v_z[3][[0,2,0,3,0,2]] = 1.1250000000000000E+01 -v_z[3][[0,0,0,5,0,2]] = 5.6250000000000000E+00 -v_z[3][[0,2,0,1,0,4]] = 7.5000000000000009E+00 -v_z[3][[0,0,0,3,0,4]] = 7.5000000000000009E+00 -v_z[3][[0,0,0,1,0,6]] = 1.0000000000000011E+00 -v_z[3][[0,6,0,1,0,1]] = -2.1875000000000000E+00 -v_z[3][[0,4,0,3,0,1]] = -6.5625000000000000E+00 -v_z[3][[0,2,0,5,0,1]] = -6.5625000000000000E+00 -v_z[3][[0,0,0,7,0,1]] = -2.1875000000000000E+00 -v_z[3][[0,4,0,1,0,3]] = -1.3125000000000000E+01 -v_z[3][[0,2,0,3,0,3]] = -2.6250000000000000E+01 -v_z[3][[0,0,0,5,0,3]] = -1.3125000000000000E+01 -v_z[3][[0,2,0,1,0,5]] = -1.0500000000000002E+01 -v_z[3][[0,0,0,3,0,5]] = -1.0500000000000002E+01 -v_z[3][[0,0,0,1,0,7]] = -1.0000000000000016E+00 -v_z[3][[0,8,0,1,0,0]] = 2.7343750000000000E-01 -v_z[3][[0,6,0,3,0,0]] = 1.0937500000000000E+00 -v_z[3][[0,4,0,5,0,0]] = 1.6406250000000000E+00 -v_z[3][[0,2,0,7,0,0]] = 1.0937500000000000E+00 -v_z[3][[0,0,0,9,0,0]] = 2.7343750000000000E-01 -v_z[3][[0,6,0,1,0,2]] = 8.7500000000000000E+00 -v_z[3][[0,4,0,3,0,2]] = 2.6250000000000000E+01 -v_z[3][[0,2,0,5,0,2]] = 2.6250000000000000E+01 -v_z[3][[0,0,0,7,0,2]] = 8.7500000000000000E+00 -v_z[3][[0,4,0,1,0,4]] = 2.6250000000000000E+01 -v_z[3][[0,2,0,3,0,4]] = 5.2500000000000000E+01 -v_z[3][[0,0,0,5,0,4]] = 2.6250000000000000E+01 -v_z[3][[0,2,0,1,0,6]] = 1.4000000000000004E+01 -v_z[3][[0,0,0,3,0,6]] = 1.4000000000000004E+01 -v_z[3][[0,0,0,1,0,8]] = 1.0000000000000011E+00 -v_z[3][[0,8,0,1,0,1]] = -2.4609375000000000E+00 -v_z[3][[0,6,0,3,0,1]] = -9.8437500000000000E+00 -v_z[3][[0,4,0,5,0,1]] = -1.4765625000000000E+01 -v_z[3][[0,2,0,7,0,1]] = -9.8437500000000000E+00 -v_z[3][[0,0,0,9,0,1]] = -2.4609375000000000E+00 -v_z[3][[0,6,0,1,0,3]] = -2.6250000000000000E+01 -v_z[3][[0,4,0,3,0,3]] = -7.8750000000000000E+01 -v_z[3][[0,2,0,5,0,3]] = -7.8750000000000000E+01 -v_z[3][[0,0,0,7,0,3]] = -2.6250000000000000E+01 -v_z[3][[0,4,0,1,0,5]] = -4.7250000000000000E+01 -v_z[3][[0,2,0,3,0,5]] = -9.4500000000000000E+01 -v_z[3][[0,0,0,5,0,5]] = -4.7250000000000000E+01 -v_z[3][[0,2,0,1,0,7]] = -1.8000000000000007E+01 -v_z[3][[0,0,0,3,0,7]] = -1.8000000000000007E+01 -v_z[3][[0,0,0,1,0,9]] = -1.0000000000000007E+00 -v_z[4][[0,0,0,1,0,0]] = 1.0000000000000000E+00 -v_z[5][[0,0,0,0,1,0]] = 1.0000000000000000E+00 -v_z[5][[0,0,0,0,0,1]] = 2.6043986254701483E-03 -v_z[5][[0,2,0,0,0,0]] = -5.0000000000000000E-01 -v_z[5][[0,0,0,2,0,0]] = -5.0000000000000000E-01 -v_z[5][[0,0,0,0,0,2]] = -3.8964235999048476E-03 -v_z[5][[0,2,0,0,0,1]] = 1.0000000000000000E+00 -v_z[5][[0,0,0,2,0,1]] = 1.0000000000000000E+00 -v_z[5][[0,0,0,0,0,3]] = 5.1783183994265885E-03 -v_z[5][[0,4,0,0,0,0]] = -3.7499999999999989E-01 -v_z[5][[0,2,0,2,0,0]] = -7.4999999999999978E-01 -v_z[5][[0,0,0,4,0,0]] = -3.7499999999999989E-01 -v_z[5][[0,2,0,0,0,2]] = -1.5000000000000004E+00 -v_z[5][[0,0,0,2,0,2]] = -1.5000000000000004E+00 -v_z[5][[0,0,0,0,0,4]] = -6.4476054832588265E-03 -v_z[5][[0,4,0,0,0,1]] = 1.4999999999999998E+00 -v_z[5][[0,2,0,2,0,1]] = 2.9999999999999996E+00 -v_z[5][[0,0,0,4,0,1]] = 1.4999999999999998E+00 -v_z[5][[0,2,0,0,0,3]] = 2.0000000000000000E+00 -v_z[5][[0,0,0,2,0,3]] = 2.0000000000000000E+00 -v_z[5][[0,0,0,0,0,5]] = 7.7018400315425131E-03 -v_z[5][[0,6,0,0,0,0]] = -3.1250000000000000E-01 -v_z[5][[0,4,0,2,0,0]] = -9.3749999999999989E-01 -v_z[5][[0,2,0,4,0,0]] = -9.3750000000000000E-01 -v_z[5][[0,0,0,6,0,0]] = -3.1250000000000000E-01 -v_z[5][[0,4,0,0,0,2]] = -3.7500000000000000E+00 -v_z[5][[0,2,0,2,0,2]] = -7.5000000000000000E+00 -v_z[5][[0,0,0,4,0,2]] = -3.7500000000000000E+00 -v_z[5][[0,2,0,0,0,4]] = -2.5000000000000000E+00 -v_z[5][[0,0,0,2,0,4]] = -2.5000000000000000E+00 -v_z[5][[0,0,0,0,0,6]] = -8.9386151661894897E-03 -v_z[5][[0,6,0,0,0,1]] = 1.8750000000000007E+00 -v_z[5][[0,4,0,2,0,1]] = 5.6249999999999982E+00 -v_z[5][[0,2,0,4,0,1]] = 5.6250000000000000E+00 -v_z[5][[0,0,0,6,0,1]] = 1.8750000000000007E+00 -v_z[5][[0,4,0,0,0,3]] = 7.5000000000000018E+00 -v_z[5][[0,2,0,2,0,3]] = 1.5000000000000004E+01 -v_z[5][[0,0,0,4,0,3]] = 7.5000000000000018E+00 -v_z[5][[0,2,0,0,0,5]] = 3.0000000000000009E+00 -v_z[5][[0,0,0,2,0,5]] = 3.0000000000000009E+00 -v_z[5][[0,0,0,0,0,7]] = 1.0155567073438281E-02 -v_z[5][[0,8,0,0,0,0]] = -2.7343750000000006E-01 -v_z[5][[0,6,0,2,0,0]] = -1.0937500000000002E+00 -v_z[5][[0,4,0,4,0,0]] = -1.6406250000000000E+00 -v_z[5][[0,2,0,6,0,0]] = -1.0937500000000002E+00 -v_z[5][[0,0,0,8,0,0]] = -2.7343750000000006E-01 -v_z[5][[0,6,0,0,0,2]] = -6.5625000000000009E+00 -v_z[5][[0,4,0,2,0,2]] = -1.9687500000000000E+01 -v_z[5][[0,2,0,4,0,2]] = -1.9687500000000000E+01 -v_z[5][[0,0,0,6,0,2]] = -6.5625000000000027E+00 -v_z[5][[0,4,0,0,0,4]] = -1.3125000000000004E+01 -v_z[5][[0,2,0,2,0,4]] = -2.6250000000000007E+01 -v_z[5][[0,0,0,4,0,4]] = -1.3125000000000004E+01 -v_z[5][[0,2,0,0,0,6]] = -3.5000000000000067E+00 -v_z[5][[0,0,0,2,0,6]] = -3.5000000000000067E+00 -v_z[5][[0,0,0,0,0,8]] = -1.1350380016698304E-02 -v_z[5][[0,8,0,0,0,1]] = 2.1875000000000000E+00 -v_z[5][[0,6,0,2,0,1]] = 8.7499999999999982E+00 -v_z[5][[0,4,0,4,0,1]] = 1.3125000000000002E+01 -v_z[5][[0,2,0,6,0,1]] = 8.7499999999999982E+00 -v_z[5][[0,0,0,8,0,1]] = 2.1874999999999996E+00 -v_z[5][[0,6,0,0,0,3]] = 1.7500000000000000E+01 -v_z[5][[0,4,0,2,0,3]] = 5.2499999999999986E+01 -v_z[5][[0,2,0,4,0,3]] = 5.2500000000000007E+01 -v_z[5][[0,0,0,6,0,3]] = 1.7500000000000004E+01 -v_z[5][[0,4,0,0,0,5]] = 2.1000000000000004E+01 -v_z[5][[0,2,0,2,0,5]] = 4.1999999999999993E+01 -v_z[5][[0,0,0,4,0,5]] = 2.1000000000000004E+01 -v_z[5][[0,2,0,0,0,7]] = 4.0000000000000018E+00 -v_z[5][[0,0,0,2,0,7]] = 4.0000000000000018E+00 -v_z[5][[0,0,0,0,0,9]] = 1.2520791228544791E-02 -v_z[5][[0,10,0,0,0,0]] = -2.4609375000000000E-01 -v_z[5][[0,8,0,2,0,0]] = -1.2304687500000000E+00 -v_z[5][[0,6,0,4,0,0]] = -2.4609374999999996E+00 -v_z[5][[0,4,0,6,0,0]] = -2.4609374999999996E+00 -v_z[5][[0,2,0,8,0,0]] = -1.2304687499999998E+00 -v_z[5][[0,0,0,10,0,0]] = -2.4609375000000000E-01 -v_z[5][[0,8,0,0,0,2]] = -9.8437499999999982E+00 -v_z[5][[0,6,0,2,0,2]] = -3.9375000000000000E+01 -v_z[5][[0,4,0,4,0,2]] = -5.9062500000000000E+01 -v_z[5][[0,2,0,6,0,2]] = -3.9375000000000000E+01 -v_z[5][[0,0,0,8,0,2]] = -9.8437500000000000E+00 -v_z[5][[0,6,0,0,0,4]] = -3.9375000000000007E+01 -v_z[5][[0,4,0,2,0,4]] = -1.1812499999999999E+02 -v_z[5][[0,2,0,4,0,4]] = -1.1812499999999999E+02 -v_z[5][[0,0,0,6,0,4]] = -3.9375000000000007E+01 -v_z[5][[0,4,0,0,0,6]] = -3.1500000000000014E+01 -v_z[5][[0,2,0,2,0,6]] = -6.3000000000000028E+01 -v_z[5][[0,0,0,4,0,6]] = -3.1500000000000014E+01 -v_z[5][[0,2,0,0,0,8]] = -4.5000000000000062E+00 -v_z[5][[0,0,0,2,0,8]] = -4.5000000000000062E+00 -v_z[5][[0,0,0,0,0,10]] = -1.3664595671042536E-02 -v_z[6][[0,0,0,0,0,1]] = 1.0000000000000000E+00 \ No newline at end of file +v_z[1][[1, 0, 0, 0, 0, 0]] = 1.0000000000000000E+00 +v_z[1][[0, 1, 0, 0, 0, 0]] = 1.0000000000000000E+00 +v_z[1][[0, 1, 0, 0, 0, 1]] = -1.0000000000000000E+00 +v_z[1][[0, 3, 0, 0, 0, 0]] = 5.0000000000000000E-01 +v_z[1][[0, 1, 0, 2, 0, 0]] = 5.0000000000000000E-01 +v_z[1][[0, 1, 0, 0, 0, 2]] = 1.0000000000000000E+00 +v_z[1][[0, 3, 0, 0, 0, 1]] = -1.5000000000000000E+00 +v_z[1][[0, 1, 0, 2, 0, 1]] = -1.5000000000000000E+00 +v_z[1][[0, 1, 0, 0, 0, 3]] = -1.0000000000000002E+00 +v_z[1][[0, 5, 0, 0, 0, 0]] = 3.7500000000000000E-01 +v_z[1][[0, 3, 0, 2, 0, 0]] = 7.5000000000000000E-01 +v_z[1][[0, 1, 0, 4, 0, 0]] = 3.7500000000000000E-01 +v_z[1][[0, 3, 0, 0, 0, 2]] = 3.0000000000000000E+00 +v_z[1][[0, 1, 0, 2, 0, 2]] = 3.0000000000000000E+00 +v_z[1][[0, 1, 0, 0, 0, 4]] = 1.0000000000000004E+00 +v_z[1][[0, 5, 0, 0, 0, 1]] = -1.8750000000000000E+00 +v_z[1][[0, 3, 0, 2, 0, 1]] = -3.7500000000000000E+00 +v_z[1][[0, 1, 0, 4, 0, 1]] = -1.8750000000000000E+00 +v_z[1][[0, 3, 0, 0, 0, 3]] = -5.0000000000000000E+00 +v_z[1][[0, 1, 0, 2, 0, 3]] = -5.0000000000000000E+00 +v_z[1][[0, 1, 0, 0, 0, 5]] = -1.0000000000000007E+00 +v_z[1][[0, 7, 0, 0, 0, 0]] = 3.1250000000000000E-01 +v_z[1][[0, 5, 0, 2, 0, 0]] = 9.3750000000000000E-01 +v_z[1][[0, 3, 0, 4, 0, 0]] = 9.3750000000000000E-01 +v_z[1][[0, 1, 0, 6, 0, 0]] = 3.1250000000000000E-01 +v_z[1][[0, 5, 0, 0, 0, 2]] = 5.6250000000000000E+00 +v_z[1][[0, 3, 0, 2, 0, 2]] = 1.1250000000000000E+01 +v_z[1][[0, 1, 0, 4, 0, 2]] = 5.6250000000000000E+00 +v_z[1][[0, 3, 0, 0, 0, 4]] = 7.5000000000000009E+00 +v_z[1][[0, 1, 0, 2, 0, 4]] = 7.5000000000000009E+00 +v_z[1][[0, 1, 0, 0, 0, 6]] = 1.0000000000000011E+00 +v_z[1][[0, 7, 0, 0, 0, 1]] = -2.1875000000000000E+00 +v_z[1][[0, 5, 0, 2, 0, 1]] = -6.5625000000000000E+00 +v_z[1][[0, 3, 0, 4, 0, 1]] = -6.5625000000000000E+00 +v_z[1][[0, 1, 0, 6, 0, 1]] = -2.1875000000000000E+00 +v_z[1][[0, 5, 0, 0, 0, 3]] = -1.3125000000000000E+01 +v_z[1][[0, 3, 0, 2, 0, 3]] = -2.6250000000000000E+01 +v_z[1][[0, 1, 0, 4, 0, 3]] = -1.3125000000000000E+01 +v_z[1][[0, 3, 0, 0, 0, 5]] = -1.0500000000000002E+01 +v_z[1][[0, 1, 0, 2, 0, 5]] = -1.0500000000000002E+01 +v_z[1][[0, 1, 0, 0, 0, 7]] = -1.0000000000000016E+00 +v_z[1][[0, 9, 0, 0, 0, 0]] = 2.7343750000000000E-01 +v_z[1][[0, 7, 0, 2, 0, 0]] = 1.0937500000000000E+00 +v_z[1][[0, 5, 0, 4, 0, 0]] = 1.6406250000000000E+00 +v_z[1][[0, 3, 0, 6, 0, 0]] = 1.0937500000000000E+00 +v_z[1][[0, 1, 0, 8, 0, 0]] = 2.7343750000000000E-01 +v_z[1][[0, 7, 0, 0, 0, 2]] = 8.7500000000000000E+00 +v_z[1][[0, 5, 0, 2, 0, 2]] = 2.6250000000000000E+01 +v_z[1][[0, 3, 0, 4, 0, 2]] = 2.6250000000000000E+01 +v_z[1][[0, 1, 0, 6, 0, 2]] = 8.7500000000000000E+00 +v_z[1][[0, 5, 0, 0, 0, 4]] = 2.6250000000000000E+01 +v_z[1][[0, 3, 0, 2, 0, 4]] = 5.2500000000000000E+01 +v_z[1][[0, 1, 0, 4, 0, 4]] = 2.6250000000000000E+01 +v_z[1][[0, 3, 0, 0, 0, 6]] = 1.4000000000000004E+01 +v_z[1][[0, 1, 0, 2, 0, 6]] = 1.4000000000000004E+01 +v_z[1][[0, 1, 0, 0, 0, 8]] = 1.0000000000000011E+00 +v_z[1][[0, 9, 0, 0, 0, 1]] = -2.4609375000000000E+00 +v_z[1][[0, 7, 0, 2, 0, 1]] = -9.8437500000000000E+00 +v_z[1][[0, 5, 0, 4, 0, 1]] = -1.4765625000000000E+01 +v_z[1][[0, 3, 0, 6, 0, 1]] = -9.8437500000000000E+00 +v_z[1][[0, 1, 0, 8, 0, 1]] = -2.4609375000000000E+00 +v_z[1][[0, 7, 0, 0, 0, 3]] = -2.6250000000000000E+01 +v_z[1][[0, 5, 0, 2, 0, 3]] = -7.8750000000000000E+01 +v_z[1][[0, 3, 0, 4, 0, 3]] = -7.8750000000000000E+01 +v_z[1][[0, 1, 0, 6, 0, 3]] = -2.6250000000000000E+01 +v_z[1][[0, 5, 0, 0, 0, 5]] = -4.7250000000000000E+01 +v_z[1][[0, 3, 0, 2, 0, 5]] = -9.4500000000000000E+01 +v_z[1][[0, 1, 0, 4, 0, 5]] = -4.7250000000000000E+01 +v_z[1][[0, 3, 0, 0, 0, 7]] = -1.8000000000000007E+01 +v_z[1][[0, 1, 0, 2, 0, 7]] = -1.8000000000000007E+01 +v_z[1][[0, 1, 0, 0, 0, 9]] = -1.0000000000000007E+00 +v_z[2][[0, 1, 0, 0, 0, 0]] = 1.0000000000000000E+00 +v_z[3][[0, 0, 1, 0, 0, 0]] = 1.0000000000000000E+00 +v_z[3][[0, 0, 0, 1, 0, 0]] = 1.0000000000000000E+00 +v_z[3][[0, 0, 0, 1, 0, 1]] = -1.0000000000000000E+00 +v_z[3][[0, 2, 0, 1, 0, 0]] = 5.0000000000000000E-01 +v_z[3][[0, 0, 0, 3, 0, 0]] = 5.0000000000000000E-01 +v_z[3][[0, 0, 0, 1, 0, 2]] = 1.0000000000000000E+00 +v_z[3][[0, 2, 0, 1, 0, 1]] = -1.5000000000000000E+00 +v_z[3][[0, 0, 0, 3, 0, 1]] = -1.5000000000000000E+00 +v_z[3][[0, 0, 0, 1, 0, 3]] = -1.0000000000000002E+00 +v_z[3][[0, 4, 0, 1, 0, 0]] = 3.7500000000000000E-01 +v_z[3][[0, 2, 0, 3, 0, 0]] = 7.5000000000000000E-01 +v_z[3][[0, 0, 0, 5, 0, 0]] = 3.7500000000000000E-01 +v_z[3][[0, 2, 0, 1, 0, 2]] = 3.0000000000000000E+00 +v_z[3][[0, 0, 0, 3, 0, 2]] = 3.0000000000000000E+00 +v_z[3][[0, 0, 0, 1, 0, 4]] = 1.0000000000000004E+00 +v_z[3][[0, 4, 0, 1, 0, 1]] = -1.8750000000000000E+00 +v_z[3][[0, 2, 0, 3, 0, 1]] = -3.7500000000000000E+00 +v_z[3][[0, 0, 0, 5, 0, 1]] = -1.8750000000000000E+00 +v_z[3][[0, 2, 0, 1, 0, 3]] = -5.0000000000000000E+00 +v_z[3][[0, 0, 0, 3, 0, 3]] = -5.0000000000000000E+00 +v_z[3][[0, 0, 0, 1, 0, 5]] = -1.0000000000000007E+00 +v_z[3][[0, 6, 0, 1, 0, 0]] = 3.1250000000000000E-01 +v_z[3][[0, 4, 0, 3, 0, 0]] = 9.3750000000000000E-01 +v_z[3][[0, 2, 0, 5, 0, 0]] = 9.3750000000000000E-01 +v_z[3][[0, 0, 0, 7, 0, 0]] = 3.1250000000000000E-01 +v_z[3][[0, 4, 0, 1, 0, 2]] = 5.6250000000000000E+00 +v_z[3][[0, 2, 0, 3, 0, 2]] = 1.1250000000000000E+01 +v_z[3][[0, 0, 0, 5, 0, 2]] = 5.6250000000000000E+00 +v_z[3][[0, 2, 0, 1, 0, 4]] = 7.5000000000000009E+00 +v_z[3][[0, 0, 0, 3, 0, 4]] = 7.5000000000000009E+00 +v_z[3][[0, 0, 0, 1, 0, 6]] = 1.0000000000000011E+00 +v_z[3][[0, 6, 0, 1, 0, 1]] = -2.1875000000000000E+00 +v_z[3][[0, 4, 0, 3, 0, 1]] = -6.5625000000000000E+00 +v_z[3][[0, 2, 0, 5, 0, 1]] = -6.5625000000000000E+00 +v_z[3][[0, 0, 0, 7, 0, 1]] = -2.1875000000000000E+00 +v_z[3][[0, 4, 0, 1, 0, 3]] = -1.3125000000000000E+01 +v_z[3][[0, 2, 0, 3, 0, 3]] = -2.6250000000000000E+01 +v_z[3][[0, 0, 0, 5, 0, 3]] = -1.3125000000000000E+01 +v_z[3][[0, 2, 0, 1, 0, 5]] = -1.0500000000000002E+01 +v_z[3][[0, 0, 0, 3, 0, 5]] = -1.0500000000000002E+01 +v_z[3][[0, 0, 0, 1, 0, 7]] = -1.0000000000000016E+00 +v_z[3][[0, 8, 0, 1, 0, 0]] = 2.7343750000000000E-01 +v_z[3][[0, 6, 0, 3, 0, 0]] = 1.0937500000000000E+00 +v_z[3][[0, 4, 0, 5, 0, 0]] = 1.6406250000000000E+00 +v_z[3][[0, 2, 0, 7, 0, 0]] = 1.0937500000000000E+00 +v_z[3][[0, 0, 0, 9, 0, 0]] = 2.7343750000000000E-01 +v_z[3][[0, 6, 0, 1, 0, 2]] = 8.7500000000000000E+00 +v_z[3][[0, 4, 0, 3, 0, 2]] = 2.6250000000000000E+01 +v_z[3][[0, 2, 0, 5, 0, 2]] = 2.6250000000000000E+01 +v_z[3][[0, 0, 0, 7, 0, 2]] = 8.7500000000000000E+00 +v_z[3][[0, 4, 0, 1, 0, 4]] = 2.6250000000000000E+01 +v_z[3][[0, 2, 0, 3, 0, 4]] = 5.2500000000000000E+01 +v_z[3][[0, 0, 0, 5, 0, 4]] = 2.6250000000000000E+01 +v_z[3][[0, 2, 0, 1, 0, 6]] = 1.4000000000000004E+01 +v_z[3][[0, 0, 0, 3, 0, 6]] = 1.4000000000000004E+01 +v_z[3][[0, 0, 0, 1, 0, 8]] = 1.0000000000000011E+00 +v_z[3][[0, 8, 0, 1, 0, 1]] = -2.4609375000000000E+00 +v_z[3][[0, 6, 0, 3, 0, 1]] = -9.8437500000000000E+00 +v_z[3][[0, 4, 0, 5, 0, 1]] = -1.4765625000000000E+01 +v_z[3][[0, 2, 0, 7, 0, 1]] = -9.8437500000000000E+00 +v_z[3][[0, 0, 0, 9, 0, 1]] = -2.4609375000000000E+00 +v_z[3][[0, 6, 0, 1, 0, 3]] = -2.6250000000000000E+01 +v_z[3][[0, 4, 0, 3, 0, 3]] = -7.8750000000000000E+01 +v_z[3][[0, 2, 0, 5, 0, 3]] = -7.8750000000000000E+01 +v_z[3][[0, 0, 0, 7, 0, 3]] = -2.6250000000000000E+01 +v_z[3][[0, 4, 0, 1, 0, 5]] = -4.7250000000000000E+01 +v_z[3][[0, 2, 0, 3, 0, 5]] = -9.4500000000000000E+01 +v_z[3][[0, 0, 0, 5, 0, 5]] = -4.7250000000000000E+01 +v_z[3][[0, 2, 0, 1, 0, 7]] = -1.8000000000000007E+01 +v_z[3][[0, 0, 0, 3, 0, 7]] = -1.8000000000000007E+01 +v_z[3][[0, 0, 0, 1, 0, 9]] = -1.0000000000000007E+00 +v_z[4][[0, 0, 0, 1, 0, 0]] = 1.0000000000000000E+00 +v_z[5][[0, 0, 0, 0, 1, 0]] = 1.0000000000000000E+00 +v_z[5][[0, 0, 0, 0, 0, 1]] = 2.6043986254701483E-03 +v_z[5][[0, 2, 0, 0, 0, 0]] = -5.0000000000000000E-01 +v_z[5][[0, 0, 0, 2, 0, 0]] = -5.0000000000000000E-01 +v_z[5][[0, 0, 0, 0, 0, 2]] = -3.8964235999048476E-03 +v_z[5][[0, 2, 0, 0, 0, 1]] = 1.0000000000000000E+00 +v_z[5][[0, 0, 0, 2, 0, 1]] = 1.0000000000000000E+00 +v_z[5][[0, 0, 0, 0, 0, 3]] = 5.1783183994265885E-03 +v_z[5][[0, 4, 0, 0, 0, 0]] = -3.7499999999999989E-01 +v_z[5][[0, 2, 0, 2, 0, 0]] = -7.4999999999999978E-01 +v_z[5][[0, 0, 0, 4, 0, 0]] = -3.7499999999999989E-01 +v_z[5][[0, 2, 0, 0, 0, 2]] = -1.5000000000000004E+00 +v_z[5][[0, 0, 0, 2, 0, 2]] = -1.5000000000000004E+00 +v_z[5][[0, 0, 0, 0, 0, 4]] = -6.4476054832588265E-03 +v_z[5][[0, 4, 0, 0, 0, 1]] = 1.4999999999999998E+00 +v_z[5][[0, 2, 0, 2, 0, 1]] = 2.9999999999999996E+00 +v_z[5][[0, 0, 0, 4, 0, 1]] = 1.4999999999999998E+00 +v_z[5][[0, 2, 0, 0, 0, 3]] = 2.0000000000000000E+00 +v_z[5][[0, 0, 0, 2, 0, 3]] = 2.0000000000000000E+00 +v_z[5][[0, 0, 0, 0, 0, 5]] = 7.7018400315425131E-03 +v_z[5][[0, 6, 0, 0, 0, 0]] = -3.1250000000000000E-01 +v_z[5][[0, 4, 0, 2, 0, 0]] = -9.3749999999999989E-01 +v_z[5][[0, 2, 0, 4, 0, 0]] = -9.3750000000000000E-01 +v_z[5][[0, 0, 0, 6, 0, 0]] = -3.1250000000000000E-01 +v_z[5][[0, 4, 0, 0, 0, 2]] = -3.7500000000000000E+00 +v_z[5][[0, 2, 0, 2, 0, 2]] = -7.5000000000000000E+00 +v_z[5][[0, 0, 0, 4, 0, 2]] = -3.7500000000000000E+00 +v_z[5][[0, 2, 0, 0, 0, 4]] = -2.5000000000000000E+00 +v_z[5][[0, 0, 0, 2, 0, 4]] = -2.5000000000000000E+00 +v_z[5][[0, 0, 0, 0, 0, 6]] = -8.9386151661894897E-03 +v_z[5][[0, 6, 0, 0, 0, 1]] = 1.8750000000000007E+00 +v_z[5][[0, 4, 0, 2, 0, 1]] = 5.6249999999999982E+00 +v_z[5][[0, 2, 0, 4, 0, 1]] = 5.6250000000000000E+00 +v_z[5][[0, 0, 0, 6, 0, 1]] = 1.8750000000000007E+00 +v_z[5][[0, 4, 0, 0, 0, 3]] = 7.5000000000000018E+00 +v_z[5][[0, 2, 0, 2, 0, 3]] = 1.5000000000000004E+01 +v_z[5][[0, 0, 0, 4, 0, 3]] = 7.5000000000000018E+00 +v_z[5][[0, 2, 0, 0, 0, 5]] = 3.0000000000000009E+00 +v_z[5][[0, 0, 0, 2, 0, 5]] = 3.0000000000000009E+00 +v_z[5][[0, 0, 0, 0, 0, 7]] = 1.0155567073438281E-02 +v_z[5][[0, 8, 0, 0, 0, 0]] = -2.7343750000000006E-01 +v_z[5][[0, 6, 0, 2, 0, 0]] = -1.0937500000000002E+00 +v_z[5][[0, 4, 0, 4, 0, 0]] = -1.6406250000000000E+00 +v_z[5][[0, 2, 0, 6, 0, 0]] = -1.0937500000000002E+00 +v_z[5][[0, 0, 0, 8, 0, 0]] = -2.7343750000000006E-01 +v_z[5][[0, 6, 0, 0, 0, 2]] = -6.5625000000000009E+00 +v_z[5][[0, 4, 0, 2, 0, 2]] = -1.9687500000000000E+01 +v_z[5][[0, 2, 0, 4, 0, 2]] = -1.9687500000000000E+01 +v_z[5][[0, 0, 0, 6, 0, 2]] = -6.5625000000000027E+00 +v_z[5][[0, 4, 0, 0, 0, 4]] = -1.3125000000000004E+01 +v_z[5][[0, 2, 0, 2, 0, 4]] = -2.6250000000000007E+01 +v_z[5][[0, 0, 0, 4, 0, 4]] = -1.3125000000000004E+01 +v_z[5][[0, 2, 0, 0, 0, 6]] = -3.5000000000000067E+00 +v_z[5][[0, 0, 0, 2, 0, 6]] = -3.5000000000000067E+00 +v_z[5][[0, 0, 0, 0, 0, 8]] = -1.1350380016698304E-02 +v_z[5][[0, 8, 0, 0, 0, 1]] = 2.1875000000000000E+00 +v_z[5][[0, 6, 0, 2, 0, 1]] = 8.7499999999999982E+00 +v_z[5][[0, 4, 0, 4, 0, 1]] = 1.3125000000000002E+01 +v_z[5][[0, 2, 0, 6, 0, 1]] = 8.7499999999999982E+00 +v_z[5][[0, 0, 0, 8, 0, 1]] = 2.1874999999999996E+00 +v_z[5][[0, 6, 0, 0, 0, 3]] = 1.7500000000000000E+01 +v_z[5][[0, 4, 0, 2, 0, 3]] = 5.2499999999999986E+01 +v_z[5][[0, 2, 0, 4, 0, 3]] = 5.2500000000000007E+01 +v_z[5][[0, 0, 0, 6, 0, 3]] = 1.7500000000000004E+01 +v_z[5][[0, 4, 0, 0, 0, 5]] = 2.1000000000000004E+01 +v_z[5][[0, 2, 0, 2, 0, 5]] = 4.1999999999999993E+01 +v_z[5][[0, 0, 0, 4, 0, 5]] = 2.1000000000000004E+01 +v_z[5][[0, 2, 0, 0, 0, 7]] = 4.0000000000000018E+00 +v_z[5][[0, 0, 0, 2, 0, 7]] = 4.0000000000000018E+00 +v_z[5][[0, 0, 0, 0, 0, 9]] = 1.2520791228544791E-02 +v_z[5][[0, 10, 0, 0, 0, 0]] = -2.4609375000000000E-01 +v_z[5][[0, 8, 0, 2, 0, 0]] = -1.2304687500000000E+00 +v_z[5][[0, 6, 0, 4, 0, 0]] = -2.4609374999999996E+00 +v_z[5][[0, 4, 0, 6, 0, 0]] = -2.4609374999999996E+00 +v_z[5][[0, 2, 0, 8, 0, 0]] = -1.2304687499999998E+00 +v_z[5][[0, 0, 0, 10, 0, 0]] = -2.4609375000000000E-01 +v_z[5][[0, 8, 0, 0, 0, 2]] = -9.8437499999999982E+00 +v_z[5][[0, 6, 0, 2, 0, 2]] = -3.9375000000000000E+01 +v_z[5][[0, 4, 0, 4, 0, 2]] = -5.9062500000000000E+01 +v_z[5][[0, 2, 0, 6, 0, 2]] = -3.9375000000000000E+01 +v_z[5][[0, 0, 0, 8, 0, 2]] = -9.8437500000000000E+00 +v_z[5][[0, 6, 0, 0, 0, 4]] = -3.9375000000000007E+01 +v_z[5][[0, 4, 0, 2, 0, 4]] = -1.1812499999999999E+02 +v_z[5][[0, 2, 0, 4, 0, 4]] = -1.1812499999999999E+02 +v_z[5][[0, 0, 0, 6, 0, 4]] = -3.9375000000000007E+01 +v_z[5][[0, 4, 0, 0, 0, 6]] = -3.1500000000000014E+01 +v_z[5][[0, 2, 0, 2, 0, 6]] = -6.3000000000000028E+01 +v_z[5][[0, 0, 0, 4, 0, 6]] = -3.1500000000000014E+01 +v_z[5][[0, 2, 0, 0, 0, 8]] = -4.5000000000000062E+00 +v_z[5][[0, 0, 0, 2, 0, 8]] = -4.5000000000000062E+00 +v_z[5][[0, 0, 0, 0, 0, 10]] = -1.3664595671042536E-02 +v_z[6][[0, 0, 0, 0, 0, 1]] = 1.0000000000000000E+00 \ No newline at end of file diff --git a/test/bmad_maps/patch.jl b/test/bmad_maps/patch.jl index 61b71bbc..5ba5f0f9 100644 --- a/test/bmad_maps/patch.jl +++ b/test/bmad_maps/patch.jl @@ -10,2470 +10,2470 @@ using GTPSA d_z = Descriptor(6, 10) v_z = zeros(TPS64{d_z}, 6) -v_z[1][[0,0,0,0,0,0]] = -1.0743571132816715E+01 -v_z[1][[1,0,0,0,0,0]] = 7.8517557231785995E-01 -v_z[1][[0,1,0,0,0,0]] = -5.6094891908376905E+00 -v_z[1][[0,0,1,0,0,0]] = 3.0577399960603300E+00 -v_z[1][[0,0,0,1,0,0]] = -2.1845253547124880E+01 -v_z[1][[1,1,0,0,0,0]] = 2.2849095286856108E-01 -v_z[1][[0,2,0,0,0,0]] = -1.6323960850395909E+00 -v_z[1][[0,1,1,0,0,0]] = 2.7644031914573355E+00 -v_z[1][[1,0,0,1,0,0]] = 8.8982127049833493E-01 -v_z[1][[0,1,0,1,0,0]] = -2.6106686635351355E+01 -v_z[1][[0,0,1,1,0,0]] = 1.0765523663456493E+01 -v_z[1][[0,0,0,2,0,0]] = -7.6911573351163469E+01 -v_z[1][[0,1,0,0,0,1]] = 5.6094891908376896E+00 -v_z[1][[0,0,0,1,0,1]] = 2.1845253547124884E+01 -v_z[1][[0,0,0,0,0,2]] = -4.9498895237805478E-15 -v_z[1][[1,2,0,0,0,0]] = 6.6492281960152180E-02 -v_z[1][[0,3,0,0,0,0]] = -3.2797819629575895E+00 -v_z[1][[0,2,1,0,0,0]] = 8.0445844419784474E-01 -v_z[1][[1,1,0,1,0,0]] = 1.0634019431387043E+00 -v_z[1][[0,2,0,1,0,0]] = -2.4267085035079237E+01 -v_z[1][[0,1,1,1,0,0]] = 1.2865593532298867E+01 -v_z[1][[1,0,0,2,0,0]] = 3.1328340395648699E+00 -v_z[1][[0,1,0,2,0,0]] = -1.1710148241909523E+02 -v_z[1][[0,0,1,2,0,0]] = 3.7902666641953118E+01 -v_z[1][[0,0,0,3,0,0]] = -2.8170868574928659E+02 -v_z[1][[1,1,0,0,0,1]] = -2.2849095286856108E-01 -v_z[1][[0,2,0,0,0,1]] = 3.2647921700791822E+00 -v_z[1][[0,1,1,0,0,1]] = -2.7644031914573355E+00 -v_z[1][[1,0,0,1,0,1]] = -8.8982127049833482E-01 -v_z[1][[0,1,0,1,0,1]] = 5.2213373270702689E+01 -v_z[1][[0,0,1,1,0,1]] = -1.0765523663456493E+01 -v_z[1][[0,0,0,2,0,1]] = 1.5382314670232694E+02 -v_z[1][[1,0,0,0,0,2]] = 1.7252404443511759E-16 -v_z[1][[0,1,0,0,0,2]] = -5.6094891908376958E+00 -v_z[1][[0,0,0,1,0,2]] = -2.1845253547124926E+01 -v_z[1][[0,0,0,0,0,3]] = 7.2438811879117269E-15 -v_z[1][[1,3,0,0,0,0]] = 1.3359514216398530E-01 -v_z[1][[0,4,0,0,0,0]] = -1.7706349001324773E+00 -v_z[1][[0,3,1,0,0,0]] = 1.6163039837019832E+00 -v_z[1][[1,2,0,1,0,0]] = 9.8846957260641899E-01 -v_z[1][[0,3,0,1,0,0]] = -3.1662492180468746E+01 -v_z[1][[0,2,1,1,0,0]] = 1.1959022477111088E+01 -v_z[1][[1,1,0,2,0,0]] = 4.7698869522671110E+00 -v_z[1][[0,2,0,2,0,0]] = -1.5878746625757370E+02 -v_z[1][[0,1,1,2,0,0]] = 5.7708589982217148E+01 -v_z[1][[1,0,0,3,0,0]] = 1.1474821298049745E+01 -v_z[1][[0,1,0,3,0,0]] = -5.0731680673172895E+02 -v_z[1][[0,0,1,3,0,0]] = 1.3882839657103938E+02 -v_z[1][[0,0,0,4,0,0]] = -1.0302803128101277E+03 -v_z[1][[1,2,0,0,0,1]] = -1.3298456392030442E-01 -v_z[1][[0,3,0,0,0,1]] = 9.8393458888727636E+00 -v_z[1][[0,2,1,0,0,1]] = -1.6089168883956895E+00 -v_z[1][[1,1,0,1,0,1]] = -2.1268038862774086E+00 -v_z[1][[0,2,0,1,0,1]] = 7.2801255105237701E+01 -v_z[1][[0,1,1,1,0,1]] = -2.5731187064597734E+01 -v_z[1][[1,0,0,2,0,1]] = -6.2656680791297408E+00 -v_z[1][[0,1,0,2,0,1]] = 3.5130444725728557E+02 -v_z[1][[0,0,1,2,0,1]] = -7.5805333283906236E+01 -v_z[1][[0,0,0,3,0,1]] = 8.4512605724785942E+02 -v_z[1][[1,1,0,0,0,2]] = 2.2849095286856136E-01 -v_z[1][[0,2,0,0,0,2]] = -4.8971882551187793E+00 -v_z[1][[0,1,1,0,0,2]] = 2.7644031914573364E+00 -v_z[1][[1,0,0,1,0,2]] = 8.8982127049833626E-01 -v_z[1][[0,1,0,1,0,2]] = -7.8320059906054126E+01 -v_z[1][[0,0,1,1,0,2]] = 1.0765523663456493E+01 -v_z[1][[0,0,0,2,0,2]] = -2.3073472005349069E+02 -v_z[1][[1,0,0,0,0,3]] = -2.5229488262226576E-16 -v_z[1][[0,1,0,0,0,3]] = 5.6094891908377065E+00 -v_z[1][[0,0,0,1,0,3]] = 2.1845253547124972E+01 -v_z[1][[0,0,0,0,0,4]] = -2.1914628912378018E-15 -v_z[1][[1,4,0,0,0,0]] = 7.2123154488721586E-02 -v_z[1][[0,5,0,0,0,0]] = -2.8563428489539713E+00 -v_z[1][[0,4,1,0,0,0]] = 8.7258368851603418E-01 -v_z[1][[1,3,0,1,0,0]] = 1.2897062036103688E+00 -v_z[1][[0,4,0,1,0,0]] = -3.0312134940176684E+01 -v_z[1][[0,3,1,1,0,0]] = 1.5603540974130993E+01 -v_z[1][[1,2,0,2,0,0]] = 6.4678793798262815E+00 -v_z[1][[0,3,0,2,0,0]] = -2.1927671023173218E+02 -v_z[1][[0,2,1,2,0,0]] = 7.8251791482694642E+01 -v_z[1][[1,1,0,3,0,0]] = 2.0664501995244535E+01 -v_z[1][[0,2,0,3,0,0]] = -8.6513175313332124E+02 -v_z[1][[0,1,1,3,0,0]] = 2.5000996559540562E+02 -v_z[1][[1,0,0,4,0,0]] = 4.1966339961972288E+01 -v_z[1][[0,1,0,4,0,0]] = -2.1452031308196892E+03 -v_z[1][[0,0,1,4,0,0]] = 5.0773075549908083E+02 -v_z[1][[0,0,0,5,0,0]] = -3.7709395496087236E+03 -v_z[1][[1,3,0,0,0,1]] = -4.0078542649195592E-01 -v_z[1][[0,4,0,0,0,1]] = 7.0825396005299108E+00 -v_z[1][[0,3,1,0,0,1]] = -4.8489119511059497E+00 -v_z[1][[1,2,0,1,0,1]] = -2.9654087178192570E+00 -v_z[1][[0,3,0,1,0,1]] = 1.2664996872187503E+02 -v_z[1][[0,2,1,1,0,1]] = -3.5877067431333259E+01 -v_z[1][[1,1,0,2,0,1]] = -1.4309660856801329E+01 -v_z[1][[0,2,0,2,0,1]] = 6.3514986503029456E+02 -v_z[1][[0,1,1,2,0,1]] = -1.7312576994665142E+02 -v_z[1][[1,0,0,3,0,1]] = -3.4424463894149241E+01 -v_z[1][[0,1,0,3,0,1]] = 2.0292672269269158E+03 -v_z[1][[0,0,1,3,0,1]] = -4.1648518971311813E+02 -v_z[1][[0,0,0,4,0,1]] = 4.1211212512405100E+03 -v_z[1][[1,2,0,0,0,2]] = 1.9947684588045703E-01 -v_z[1][[0,3,0,0,0,2]] = -1.9678691777745545E+01 -v_z[1][[0,2,1,0,0,2]] = 2.4133753325935352E+00 -v_z[1][[1,1,0,1,0,2]] = 3.1902058294161142E+00 -v_z[1][[0,2,0,1,0,2]] = -1.4560251021047560E+02 -v_z[1][[0,1,1,1,0,2]] = 3.8596780596896608E+01 -v_z[1][[1,0,0,2,0,2]] = 9.3985021186946263E+00 -v_z[1][[0,1,0,2,0,2]] = -7.0260889451457183E+02 -v_z[1][[0,0,1,2,0,2]] = 1.1370799992585935E+02 -v_z[1][[0,0,0,3,0,2]] = -1.6902521144957207E+03 -v_z[1][[1,1,0,0,0,3]] = -2.2849095286856169E-01 -v_z[1][[0,2,0,0,0,3]] = 6.5295843401583813E+00 -v_z[1][[0,1,1,0,0,3]] = -2.7644031914573377E+00 -v_z[1][[1,0,0,1,0,3]] = -8.8982127049834037E-01 -v_z[1][[0,1,0,1,0,3]] = 1.0442674654140562E+02 -v_z[1][[0,0,1,1,0,3]] = -1.0765523663456497E+01 -v_z[1][[0,0,0,2,0,3]] = 3.0764629340465484E+02 -v_z[1][[1,0,0,0,0,4]] = 1.7995354337663871E-16 -v_z[1][[0,1,0,0,0,4]] = -5.6094891908377145E+00 -v_z[1][[0,0,0,1,0,4]] = -2.1845253547125086E+01 -v_z[1][[0,0,0,0,0,5]] = 1.0133244271832888E-14 -v_z[1][[1,5,0,0,0,0]] = 1.1634722468897954E-01 -v_z[1][[0,6,0,0,0,0]] = -1.9205804144593430E+00 -v_z[1][[0,5,1,0,0,0]] = 1.4076296466426661E+00 -v_z[1][[1,4,0,1,0,0]] = 1.2347021912929459E+00 -v_z[1][[0,5,0,1,0,0]] = -3.7972056469390871E+01 -v_z[1][[0,4,1,1,0,0]] = 1.4938073631620018E+01 -v_z[1][[1,3,0,2,0,0]] = 8.9317837610896316E+00 -v_z[1][[0,4,0,2,0,0]] = -2.6083328263844919E+02 -v_z[1][[0,3,1,2,0,0]] = 1.0806139684999448E+02 -v_z[1][[1,2,0,3,0,0]] = 3.5239354583863886E+01 -v_z[1][[0,3,0,3,0,0]] = -1.2997924605510857E+03 -v_z[1][[0,2,1,3,0,0]] = 4.2634416397470272E+02 -v_z[1][[1,1,0,4,0,0]] = 8.7380417500084576E+01 -v_z[1][[0,2,0,4,0,0]] = -4.2841417630260339E+03 -v_z[1][[0,1,1,4,0,0]] = 1.0571740455170743E+03 -v_z[1][[1,0,0,5,0,0]] = 1.5360143171452651E+02 -v_z[1][[0,1,0,5,0,0]] = -8.9070022963532228E+03 -v_z[1][[0,0,1,5,0,0]] = 1.8583505504846444E+03 -v_z[1][[0,0,0,6,0,0]] = -1.3801271729517675E+04 -v_z[1][[1,4,0,0,0,1]] = -2.8849261795488618E-01 -v_z[1][[0,5,0,0,0,1]] = 1.4281714244769860E+01 -v_z[1][[0,4,1,0,0,1]] = -3.4903347540641367E+00 -v_z[1][[1,3,0,1,0,1]] = -5.1588248144414752E+00 -v_z[1][[0,4,0,1,0,1]] = 1.5156067470088342E+02 -v_z[1][[0,3,1,1,0,1]] = -6.2414163896523974E+01 -v_z[1][[1,2,0,2,0,1]] = -2.5871517519305122E+01 -v_z[1][[0,3,0,2,0,1]] = 1.0963835511586608E+03 -v_z[1][[0,2,1,2,0,1]] = -3.1300716593077857E+02 -v_z[1][[1,1,0,3,0,1]] = -8.2658007980978155E+01 -v_z[1][[0,2,0,3,0,1]] = 4.3256587656666061E+03 -v_z[1][[0,1,1,3,0,1]] = -1.0000398623816225E+03 -v_z[1][[1,0,0,4,0,1]] = -1.6786535984788921E+02 -v_z[1][[0,1,0,4,0,1]] = 1.0726015654098443E+04 -v_z[1][[0,0,1,4,0,1]] = -2.0309230219963233E+03 -v_z[1][[0,0,0,5,0,1]] = 1.8854697748043611E+04 -v_z[1][[1,3,0,0,0,2]] = 8.0157085298391229E-01 -v_z[1][[0,4,0,0,0,2]] = -1.7706349001324774E+01 -v_z[1][[0,3,1,0,0,2]] = 9.6978239022119030E+00 -v_z[1][[1,2,0,1,0,2]] = 5.9308174356385166E+00 -v_z[1][[0,3,0,1,0,2]] = -3.1662492180468769E+02 -v_z[1][[0,2,1,1,0,2]] = 7.1754134862666533E+01 -v_z[1][[1,1,0,2,0,2]] = 2.8619321713602684E+01 -v_z[1][[0,2,0,2,0,2]] = -1.5878746625757381E+03 -v_z[1][[0,1,1,2,0,2]] = 3.4625153989330295E+02 -v_z[1][[1,0,0,3,0,2]] = 6.8848927788298582E+01 -v_z[1][[0,1,0,3,0,2]] = -5.0731680673172923E+03 -v_z[1][[0,0,1,3,0,2]] = 8.3297037942623626E+02 -v_z[1][[0,0,0,4,0,2]] = -1.0302803128101286E+04 -v_z[1][[1,2,0,0,0,3]] = -2.6596912784060939E-01 -v_z[1][[0,3,0,0,0,3]] = 3.2797819629575940E+01 -v_z[1][[0,2,1,0,0,3]] = -3.2178337767913816E+00 -v_z[1][[1,1,0,1,0,3]] = -4.2536077725548260E+00 -v_z[1][[0,2,0,1,0,3]] = 2.4267085035079293E+02 -v_z[1][[0,1,1,1,0,3]] = -5.1462374129195510E+01 -v_z[1][[1,0,0,2,0,3]] = -1.2531336158259528E+01 -v_z[1][[0,1,0,2,0,3]] = 1.1710148241909549E+03 -v_z[1][[0,0,1,2,0,3]] = -1.5161066656781253E+02 -v_z[1][[0,0,0,3,0,3]] = 2.8170868574928732E+03 -v_z[1][[1,1,0,0,0,4]] = 2.2849095286856194E-01 -v_z[1][[0,2,0,0,0,4]] = -8.1619804251980028E+00 -v_z[1][[0,1,1,0,0,4]] = 2.7644031914573390E+00 -v_z[1][[1,0,0,1,0,4]] = 8.8982127049834014E-01 -v_z[1][[0,1,0,1,0,4]] = -1.3053343317675740E+02 -v_z[1][[0,0,1,1,0,4]] = 1.0765523663456500E+01 -v_z[1][[0,0,0,2,0,4]] = -3.8455786675581987E+02 -v_z[1][[1,0,0,0,0,5]] = -3.6545995587257747E-16 -v_z[1][[0,1,0,0,0,5]] = 5.6094891908377296E+00 -v_z[1][[0,0,0,1,0,5]] = 2.1845253547125168E+01 -v_z[1][[0,0,0,0,0,6]] = 2.5324787872032580E-15 -v_z[1][[1,6,0,0,0,0]] = 7.8230875224305413E-02 -v_z[1][[0,7,0,0,0,0]] = -2.7476380359339938E+00 -v_z[1][[0,6,1,0,0,0]] = 9.4647809213249023E-01 -v_z[1][[1,5,0,1,0,0]] = 1.5467132692298293E+00 -v_z[1][[0,6,0,1,0,0]] = -3.7366759410493245E+01 -v_z[1][[0,5,1,1,0,0]] = 1.8712947029408021E+01 -v_z[1][[1,4,0,2,0,0]] = 1.0624504881342686E+01 -v_z[1][[0,5,0,2,0,0]] = -3.3716997537060104E+02 -v_z[1][[0,4,1,2,0,0]] = 1.2854082331449248E+02 -v_z[1][[1,3,0,3,0,0]] = 5.2944360482551922E+01 -v_z[1][[0,4,0,3,0,0]] = -1.7896734887206335E+03 -v_z[1][[0,3,1,3,0,0]] = 6.4054859612681048E+02 -v_z[1][[1,2,0,4,0,0]] = 1.7450566359173794E+02 -v_z[1][[0,3,0,4,0,0]] = -7.0359269934403610E+03 -v_z[1][[0,2,1,4,0,0]] = 2.1112608937207301E+03 -v_z[1][[1,1,0,5,0,0]] = 3.6280833649173564E+02 -v_z[1][[0,2,0,5,0,0]] = -2.0070956906228679E+04 -v_z[1][[0,1,1,5,0,0]] = 4.3894452305165114E+03 -v_z[1][[1,0,0,6,0,0]] = 5.6216629019022321E+02 -v_z[1][[0,1,0,6,0,0]] = -3.6463131674050994E+04 -v_z[1][[0,0,1,6,0,0]] = 6.8013821432375980E+03 -v_z[1][[0,0,0,7,0,0]] = -5.0512811010502097E+04 -v_z[1][[1,5,0,0,0,1]] = -5.8173612344489756E-01 -v_z[1][[0,6,0,0,0,1]] = 1.1523482486756066E+01 -v_z[1][[0,5,1,0,0,1]] = -7.0381482332133309E+00 -v_z[1][[1,4,0,1,0,1]] = -6.1735109564647281E+00 -v_z[1][[0,5,0,1,0,1]] = 2.2783233881634521E+02 -v_z[1][[0,4,1,1,0,1]] = -7.4690368158100085E+01 -v_z[1][[1,3,0,2,0,1]] = -4.4658918805448153E+01 -v_z[1][[0,4,0,2,0,1]] = 1.5649996958306951E+03 -v_z[1][[0,3,1,2,0,1]] = -5.4030698424997240E+02 -v_z[1][[1,2,0,3,0,1]] = -1.7619677291931936E+02 -v_z[1][[0,3,0,3,0,1]] = 7.7987547633065133E+03 -v_z[1][[0,2,1,3,0,1]] = -2.1317208198735134E+03 -v_z[1][[1,1,0,4,0,1]] = -4.3690208750042302E+02 -v_z[1][[0,2,0,4,0,1]] = 2.5704850578156180E+04 -v_z[1][[0,1,1,4,0,1]] = -5.2858702275853702E+03 -v_z[1][[1,0,0,5,0,1]] = -7.6800715857263299E+02 -v_z[1][[0,1,0,5,0,1]] = 5.3442013778119312E+04 -v_z[1][[0,0,1,5,0,1]] = -9.2917527524232228E+03 -v_z[1][[0,0,0,6,0,1]] = 8.2807630377105990E+04 -v_z[1][[1,4,0,0,0,2]] = 7.2123154488721619E-01 -v_z[1][[0,5,0,0,0,2]] = -4.2845142734309590E+01 -v_z[1][[0,4,1,0,0,2]] = 8.7258368851603443E+00 -v_z[1][[1,3,0,1,0,2]] = 1.2897062036103693E+01 -v_z[1][[0,4,0,1,0,2]] = -4.5468202410265036E+02 -v_z[1][[0,3,1,1,0,2]] = 1.5603540974130999E+02 -v_z[1][[1,2,0,2,0,2]] = 6.4678793798262845E+01 -v_z[1][[0,3,0,2,0,2]] = -3.2891506534759856E+03 -v_z[1][[0,2,1,2,0,2]] = 7.8251791482694648E+02 -v_z[1][[1,1,0,3,0,2]] = 2.0664501995244555E+02 -v_z[1][[0,2,0,3,0,2]] = -1.2976976296999819E+04 -v_z[1][[0,1,1,3,0,2]] = 2.5000996559540572E+03 -v_z[1][[1,0,0,4,0,2]] = 4.1966339961972352E+02 -v_z[1][[0,1,0,4,0,2]] = -3.2178046962295371E+04 -v_z[1][[0,0,1,4,0,2]] = 5.0773075549908081E+03 -v_z[1][[0,0,0,5,0,2]] = -5.6564093244130869E+04 -v_z[1][[1,3,0,0,0,3]] = -1.3359514216398545E+00 -v_z[1][[0,4,0,0,0,3]] = 3.5412698002649620E+01 -v_z[1][[0,3,1,0,0,3]] = -1.6163039837019838E+01 -v_z[1][[1,2,0,1,0,3]] = -9.8846957260642085E+00 -v_z[1][[0,3,0,1,0,3]] = 6.3324984360937572E+02 -v_z[1][[0,2,1,1,0,3]] = -1.1959022477111094E+02 -v_z[1][[1,1,0,2,0,3]] = -4.7698869522671203E+01 -v_z[1][[0,2,0,2,0,3]] = 3.1757493251514816E+03 -v_z[1][[0,1,1,2,0,3]] = -5.7708589982217177E+02 -v_z[1][[1,0,0,3,0,3]] = -1.1474821298049781E+02 -v_z[1][[0,1,0,3,0,3]] = 1.0146336134634608E+04 -v_z[1][[0,0,1,3,0,3]] = -1.3882839657103939E+03 -v_z[1][[0,0,0,4,0,3]] = 2.0605606256202624E+04 -v_z[1][[1,2,0,0,0,4]] = 3.3246140980076244E-01 -v_z[1][[0,3,0,0,0,4]] = -4.9196729444363939E+01 -v_z[1][[0,2,1,0,0,4]] = 4.0222922209892298E+00 -v_z[1][[1,1,0,1,0,4]] = 5.3170097156935370E+00 -v_z[1][[0,2,0,1,0,4]] = -3.6400627552618982E+02 -v_z[1][[0,1,1,1,0,4]] = 6.4327967661494412E+01 -v_z[1][[1,0,0,2,0,4]] = 1.5664170197824404E+01 -v_z[1][[0,1,0,2,0,4]] = -1.7565222362864388E+03 -v_z[1][[0,0,1,2,0,4]] = 1.8951333320976568E+02 -v_z[1][[0,0,0,3,0,4]] = -4.2256302862393295E+03 -v_z[1][[1,1,0,0,0,5]] = -2.2849095286856244E-01 -v_z[1][[0,2,0,0,0,5]] = 9.7943765102376030E+00 -v_z[1][[0,1,1,0,0,5]] = -2.7644031914573408E+00 -v_z[1][[1,0,0,1,0,5]] = -8.8982127049834159E-01 -v_z[1][[0,1,0,1,0,5]] = 1.5664011981210950E+02 -v_z[1][[0,0,1,1,0,5]] = -1.0765523663456502E+01 -v_z[1][[0,0,0,2,0,5]] = 4.6146944010698581E+02 -v_z[1][[1,0,0,0,0,6]] = -1.9661215073453894E-16 -v_z[1][[0,1,0,0,0,6]] = -5.6094891908377260E+00 -v_z[1][[0,0,0,1,0,6]] = -2.1845253547125431E+01 -v_z[1][[0,0,0,0,0,7]] = 1.5946520037479239E-14 -v_z[1][[1,7,0,0,0,0]] = 1.1191935871699366E-01 -v_z[1][[0,8,0,0,0,0]] = -2.0832240052022275E+00 -v_z[1][[0,7,1,0,0,0]] = 1.3540590055707442E+00 -v_z[1][[1,6,0,1,0,0]] = 1.5220577440918279E+00 -v_z[1][[0,7,0,1,0,0]] = -4.5123199662931391E+01 -v_z[1][[0,6,1,1,0,0]] = 1.8414651576030682E+01 -v_z[1][[1,5,0,2,0,0]] = 1.3733922346607343E+01 -v_z[1][[0,6,0,2,0,0]] = -3.8645846339874373E+02 -v_z[1][[0,5,1,2,0,0]] = 1.6616018397904998E+02 -v_z[1][[1,4,0,3,0,0]] = 7.2898652060743814E+01 -v_z[1][[0,5,0,3,0,0]] = -2.4530031517954440E+03 -v_z[1][[0,4,1,3,0,0]] = 8.8196606421254023E+02 -v_z[1][[1,3,0,4,0,0]] = 2.8659394970769853E+02 -v_z[1][[0,4,0,4,0,0]] = -1.0804400560350688E+04 -v_z[1][[0,3,1,4,0,0]] = 3.4673636714188424E+03 -v_z[1][[1,2,0,5,0,0]] = 8.1754896256483153E+02 -v_z[1][[0,3,0,5,0,0]] = -3.5851558885893253E+04 -v_z[1][[0,2,1,5,0,0]] = 9.8911354384649439E+03 -v_z[1][[1,1,0,6,0,0]] = 1.4852503351613470E+03 -v_z[1][[0,2,0,6,0,0]] = -9.0610372101529851E+04 -v_z[1][[0,1,1,6,0,0]] = 1.7969336269497562E+04 -v_z[1][[1,0,0,7,0,0]] = 2.0575349960047552E+03 -v_z[1][[0,1,0,7,0,0]] = -1.4759548695862401E+05 -v_z[1][[0,0,1,7,0,0]] = 2.4893135759132612E+04 -v_z[1][[0,0,0,8,0,0]] = -1.8487696890223675E+05 -v_z[1][[1,6,0,0,0,1]] = -4.6938525134583198E-01 -v_z[1][[0,7,0,0,0,1]] = 1.9233466251537962E+01 -v_z[1][[0,6,1,0,0,1]] = -5.6788685527949418E+00 -v_z[1][[1,5,0,1,0,1]] = -9.2802796153789728E+00 -v_z[1][[0,6,0,1,0,1]] = 2.6156731587345263E+02 -v_z[1][[0,5,1,1,0,1]] = -1.1227768217644811E+02 -v_z[1][[1,4,0,2,0,1]] = -6.3747029288056098E+01 -v_z[1][[0,5,0,2,0,1]] = 2.3601898275942071E+03 -v_z[1][[0,4,1,2,0,1]] = -7.7124493988695508E+02 -v_z[1][[1,3,0,3,0,1]] = -3.1766616289531157E+02 -v_z[1][[0,4,0,3,0,1]] = 1.2527714421044437E+04 -v_z[1][[0,3,1,3,0,1]] = -3.8432915767608638E+03 -v_z[1][[1,2,0,4,0,1]] = -1.0470339815504274E+03 -v_z[1][[0,3,0,4,0,1]] = 4.9251488954082532E+04 -v_z[1][[0,2,1,4,0,1]] = -1.2667565362324382E+04 -v_z[1][[1,1,0,5,0,1]] = -2.1768500189504139E+03 -v_z[1][[0,2,0,5,0,1]] = 1.4049669834360076E+05 -v_z[1][[0,1,1,5,0,1]] = -2.6336671383099070E+04 -v_z[1][[1,0,0,6,0,1]] = -3.3729977411413406E+03 -v_z[1][[0,1,0,6,0,1]] = 2.5524192171835635E+05 -v_z[1][[0,0,1,6,0,1]] = -4.0808292859425601E+04 -v_z[1][[0,0,0,7,0,1]] = 3.5358967707351438E+05 -v_z[1][[1,5,0,0,0,2]] = 1.7452083703346930E+00 -v_z[1][[0,6,0,0,0,2]] = -4.0332188703646253E+01 -v_z[1][[0,5,1,0,0,2]] = 2.1114444699639993E+01 -v_z[1][[1,4,0,1,0,2]] = 1.8520532869394195E+01 -v_z[1][[0,5,0,1,0,2]] = -7.9741318585720887E+02 -v_z[1][[0,4,1,1,0,2]] = 2.2407110447430031E+02 -v_z[1][[1,3,0,2,0,2]] = 1.3397675641634453E+02 -v_z[1][[0,4,0,2,0,2]] = -5.4774989354074351E+03 -v_z[1][[0,3,1,2,0,2]] = 1.6209209527499174E+03 -v_z[1][[1,2,0,3,0,2]] = 5.2859031875795847E+02 -v_z[1][[0,3,0,3,0,2]] = -2.7295641671572812E+04 -v_z[1][[0,2,1,3,0,2]] = 6.3951624596205411E+03 -v_z[1][[1,1,0,4,0,2]] = 1.3107062625012702E+03 -v_z[1][[0,2,0,4,0,2]] = -8.9966977023546744E+04 -v_z[1][[0,1,1,4,0,2]] = 1.5857610682756118E+04 -v_z[1][[1,0,0,5,0,2]] = 2.3040214757179019E+03 -v_z[1][[0,1,0,5,0,2]] = -1.8704704822341783E+05 -v_z[1][[0,0,1,5,0,2]] = 2.7875258257269670E+04 -v_z[1][[0,0,0,6,0,2]] = -2.8982670631987107E+05 -v_z[1][[1,4,0,0,0,3]] = -1.4424630897744335E+00 -v_z[1][[0,5,0,0,0,3]] = 9.9971999713389096E+01 -v_z[1][[0,4,1,0,0,3]] = -1.7451673770320696E+01 -v_z[1][[1,3,0,1,0,3]] = -2.5794124072207403E+01 -v_z[1][[0,4,0,1,0,3]] = 1.0609247229061857E+03 -v_z[1][[0,3,1,1,0,3]] = -3.1207081948261998E+02 -v_z[1][[1,2,0,2,0,3]] = -1.2935758759652580E+02 -v_z[1][[0,3,0,2,0,3]] = 7.6746848581106406E+03 -v_z[1][[0,2,1,2,0,3]] = -1.5650358296538934E+03 -v_z[1][[1,1,0,3,0,3]] = -4.1329003990489161E+02 -v_z[1][[0,2,0,3,0,3]] = 3.0279611359666287E+04 -v_z[1][[0,1,1,3,0,3]] = -5.0001993119081171E+03 -v_z[1][[1,0,0,4,0,3]] = -8.3932679923944943E+02 -v_z[1][[0,1,0,4,0,3]] = 7.5082109578689327E+04 -v_z[1][[0,0,1,4,0,3]] = -1.0154615109981616E+04 -v_z[1][[0,0,0,5,0,3]] = 1.3198288423630554E+05 -v_z[1][[1,3,0,0,0,4]] = 2.0039271324597836E+00 -v_z[1][[0,4,0,0,0,4]] = -6.1972221504636806E+01 -v_z[1][[0,3,1,0,0,4]] = 2.4244559755529764E+01 -v_z[1][[1,2,0,1,0,4]] = 1.4827043589096323E+01 -v_z[1][[0,3,0,1,0,4]] = -1.1081872263164094E+03 -v_z[1][[0,2,1,1,0,4]] = 1.7938533715666648E+02 -v_z[1][[1,1,0,2,0,4]] = 7.1548304284006861E+01 -v_z[1][[0,2,0,2,0,4]] = -5.5575613190151034E+03 -v_z[1][[0,1,1,2,0,4]] = 8.6562884973325822E+02 -v_z[1][[1,0,0,3,0,4]] = 1.7212231947074685E+02 -v_z[1][[0,1,0,3,0,4]] = -1.7756088235610612E+04 -v_z[1][[0,0,1,3,0,4]] = 2.0824259485655912E+03 -v_z[1][[0,0,0,4,0,4]] = -3.6059810948354745E+04 -v_z[1][[1,2,0,0,0,5]] = -3.9895369176091355E-01 -v_z[1][[0,3,0,0,0,5]] = 6.8875421222109537E+01 -v_z[1][[0,2,1,0,0,5]] = -4.8267506651870802E+00 -v_z[1][[1,1,0,1,0,5]] = -6.3804116588322533E+00 -v_z[1][[0,2,0,1,0,5]] = 5.0960878573666753E+02 -v_z[1][[0,1,1,1,0,5]] = -7.7193561193793329E+01 -v_z[1][[1,0,0,2,0,5]] = -1.8797004237389270E+01 -v_z[1][[0,1,0,2,0,5]] = 2.4591311308010258E+03 -v_z[1][[0,0,1,2,0,5]] = -2.2741599985171885E+02 -v_z[1][[0,0,0,3,0,5]] = 5.9158824007350695E+03 -v_z[1][[1,1,0,0,0,6]] = 2.2849095286856230E-01 -v_z[1][[0,2,0,0,0,6]] = -1.1426772595277267E+01 -v_z[1][[0,1,1,0,0,6]] = 2.7644031914573413E+00 -v_z[1][[1,0,0,1,0,6]] = 8.8982127049834292E-01 -v_z[1][[0,1,0,1,0,6]] = -1.8274680644746192E+02 -v_z[1][[0,0,1,1,0,6]] = 1.0765523663456506E+01 -v_z[1][[0,0,0,2,0,6]] = -5.3838101345815335E+02 -v_z[1][[1,0,0,0,0,7]] = -3.5990708675327733E-16 -v_z[1][[0,1,0,0,0,7]] = 5.6094891908377402E+00 -v_z[1][[0,0,0,1,0,7]] = 2.1845253547125790E+01 -v_z[1][[0,0,0,0,0,8]] = -8.2423875839205964E-14 -v_z[1][[1,8,0,0,0,0]] = 8.4855825868208237E-02 -v_z[1][[0,9,0,0,0,0]] = -2.7612000018433696E+00 -v_z[1][[0,8,1,0,0,0]] = 1.0266302140144778E+00 -v_z[1][[1,7,0,1,0,0]] = 1.8380003128095692E+00 -v_z[1][[0,8,0,1,0,0]] = -4.5308051167958354E+01 -v_z[1][[0,7,1,1,0,0]] = 2.2237090207913706E+01 -v_z[1][[1,6,0,2,0,0]] = 1.5741587075402254E+01 -v_z[1][[0,7,0,2,0,0]] = -4.7822186351533998E+02 -v_z[1][[0,6,1,2,0,0]] = 1.9044996313214227E+02 -v_z[1][[1,5,0,3,0,0]] = 9.9918015433349197E+01 -v_z[1][[0,6,0,3,0,0]] = -3.1292707353125975E+03 -v_z[1][[0,5,1,3,0,0]] = 1.2088604703177236E+03 -v_z[1][[1,4,0,4,0,0]] = 4.4009493471177905E+02 -v_z[1][[0,5,0,4,0,0]] = -1.5814308036943294E+04 -v_z[1][[0,4,1,4,0,0]] = 5.3244989650040734E+03 -v_z[1][[1,3,0,5,0,0]] = 1.4603391811577299E+03 -v_z[1][[0,4,0,5,0,0]] = -6.0156812934494854E+04 -v_z[1][[0,3,1,5,0,0]] = 1.7667948084250267E+04 -v_z[1][[1,2,0,6,0,0]] = 3.6908263046606335E+03 -v_z[1][[0,3,0,6,0,0]] = -1.7492866377259529E+05 -v_z[1][[0,2,1,6,0,0]] = 4.4653549243972564E+04 -v_z[1][[1,1,0,7,0,0]] = 6.0119972259432416E+03 -v_z[1][[0,2,0,7,0,0]] = -3.9836775127209508E+05 -v_z[1][[0,1,1,7,0,0]] = 7.2736290473568399E+04 -v_z[1][[1,0,0,8,0,0]] = 7.5305813686065876E+03 -v_z[1][[0,1,0,8,0,0]] = -5.9195371108016104E+05 -v_z[1][[0,0,1,8,0,0]] = 9.1108916600650991E+04 -v_z[1][[0,0,0,9,0,0]] = -6.7665094900912954E+05 -v_z[1][[1,7,0,0,0,1]] = -7.8343551101895492E-01 -v_z[1][[0,8,0,0,0,1]] = 1.6665792041617824E+01 -v_z[1][[0,7,1,0,0,1]] = -9.4784130389952068E+00 -v_z[1][[1,6,0,1,0,1]] = -1.0654404208642791E+01 -v_z[1][[0,7,0,1,0,1]] = 3.6098559730345130E+02 -v_z[1][[0,6,1,1,0,1]] = -1.2890256103221478E+02 -v_z[1][[1,5,0,2,0,1]] = -9.6137456426251376E+01 -v_z[1][[0,6,0,2,0,1]] = 3.0916677071899503E+03 -v_z[1][[0,5,1,2,0,1]] = -1.1631212878533497E+03 -v_z[1][[1,4,0,3,0,1]] = -5.1029056442520653E+02 -v_z[1][[0,5,0,3,0,1]] = 1.9624025214363552E+04 -v_z[1][[0,4,1,3,0,1]] = -6.1737624494877809E+03 -v_z[1][[1,3,0,4,0,1]] = -2.0061576479538899E+03 -v_z[1][[0,4,0,4,0,1]] = 8.6435204482805566E+04 -v_z[1][[0,3,1,4,0,1]] = -2.4271545699931896E+04 -v_z[1][[1,2,0,5,0,1]] = -5.7228427379538189E+03 -v_z[1][[0,3,0,5,0,1]] = 2.8681247108714626E+05 -v_z[1][[0,2,1,5,0,1]] = -6.9237948069254620E+04 -v_z[1][[1,1,0,6,0,1]] = -1.0396752346129429E+04 -v_z[1][[0,2,0,6,0,1]] = 7.2488297681223776E+05 -v_z[1][[0,1,1,6,0,1]] = -1.2578535388648296E+05 -v_z[1][[1,0,0,7,0,1]] = -1.4402744972033288E+04 -v_z[1][[0,1,0,7,0,1]] = 1.1807638956689870E+06 -v_z[1][[0,0,1,7,0,1]] = -1.7425195031392833E+05 -v_z[1][[0,0,0,8,0,1]] = 1.4790157512178964E+06 -v_z[1][[1,6,0,0,0,2]] = 1.6428483797104128E+00 -v_z[1][[0,7,0,0,0,2]] = -7.6933865006151876E+01 -v_z[1][[0,6,1,0,0,2]] = 1.9876039934782295E+01 -v_z[1][[1,5,0,1,0,2]] = 3.2480978653826412E+01 -v_z[1][[0,6,0,1,0,2]] = -1.0462692634938119E+03 -v_z[1][[0,5,1,1,0,2]] = 3.9297188761756843E+02 -v_z[1][[1,4,0,2,0,2]] = 2.2311460250819641E+02 -v_z[1][[0,5,0,2,0,2]] = -9.4407593103768377E+03 -v_z[1][[0,4,1,2,0,2]] = 2.6993572896043424E+03 -v_z[1][[1,3,0,3,0,2]] = 1.1118315701335907E+03 -v_z[1][[0,4,0,3,0,2]] = -5.0110857684177783E+04 -v_z[1][[0,3,1,3,0,2]] = 1.3451520518663019E+04 -v_z[1][[1,2,0,4,0,2]] = 3.6646189354264975E+03 -v_z[1][[0,3,0,4,0,2]] = -1.9700595581633024E+05 -v_z[1][[0,2,1,4,0,2]] = 4.4336478768135341E+04 -v_z[1][[1,1,0,5,0,2]] = 7.6189750663264549E+03 -v_z[1][[0,2,0,5,0,2]] = -5.6198679337440373E+05 -v_z[1][[0,1,1,5,0,2]] = 9.2178349840846771E+04 -v_z[1][[1,0,0,6,0,2]] = 1.1805492093994690E+04 -v_z[1][[0,1,0,6,0,2]] = -1.0209676868734277E+06 -v_z[1][[0,0,1,6,0,2]] = 1.4282902500798958E+05 -v_z[1][[0,0,0,7,0,2]] = -1.4143587082940557E+06 -v_z[1][[1,5,0,0,0,3]] = -4.0721528641142868E+00 -v_z[1][[0,6,0,0,0,3]] = 1.0755250320972337E+02 -v_z[1][[0,5,1,0,0,3]] = -4.9267037632493320E+01 -v_z[1][[1,4,0,1,0,3]] = -4.3214576695253143E+01 -v_z[1][[0,5,0,1,0,3]] = 2.1264351622858931E+03 -v_z[1][[0,4,1,1,0,3]] = -5.2283257710670091E+02 -v_z[1][[1,3,0,2,0,3]] = -3.1261243163813737E+02 -v_z[1][[0,4,0,2,0,3]] = 1.4606663827753182E+04 -v_z[1][[0,3,1,2,0,3]] = -3.7821488897498075E+03 -v_z[1][[1,2,0,3,0,3]] = -1.2333774104352374E+03 -v_z[1][[0,3,0,3,0,3]] = 7.2788377790860919E+04 -v_z[1][[0,2,1,3,0,3]] = -1.4922045739114597E+04 -v_z[1][[1,1,0,4,0,3]] = -3.0583146125029680E+03 -v_z[1][[0,2,0,4,0,3]] = 2.3991193872945820E+05 -v_z[1][[0,1,1,4,0,3]] = -3.7001091593097619E+04 -v_z[1][[1,0,0,5,0,3]] = -5.3760501100084657E+03 -v_z[1][[0,1,0,5,0,3]] = 4.9879212859578017E+05 -v_z[1][[0,0,1,5,0,3]] = -6.5042269266962554E+04 -v_z[1][[0,0,0,6,0,3]] = 7.7287121685299347E+05 -v_z[1][[1,4,0,0,0,4]] = 2.5243104071052573E+00 -v_z[1][[0,5,0,0,0,4]] = -1.9994399942677828E+02 -v_z[1][[0,4,1,0,0,4]] = 3.0540429098061225E+01 -v_z[1][[1,3,0,1,0,4]] = 4.5139717126362982E+01 -v_z[1][[0,4,0,1,0,4]] = -2.1218494458123719E+03 -v_z[1][[0,3,1,1,0,4]] = 5.4612393409458514E+02 -v_z[1][[1,2,0,2,0,4]] = 2.2637577829392040E+02 -v_z[1][[0,3,0,2,0,4]] = -1.5349369716221308E+04 -v_z[1][[0,2,1,2,0,4]] = 2.7388127018943142E+03 -v_z[1][[1,1,0,3,0,4]] = 7.2325756983356086E+02 -v_z[1][[0,2,0,3,0,4]] = -6.0559222719332793E+04 -v_z[1][[0,1,1,3,0,4]] = 8.7503487958392088E+03 -v_z[1][[1,0,0,4,0,4]] = 1.4688218986690388E+03 -v_z[1][[0,1,0,4,0,4]] = -1.5016421915737938E+05 -v_z[1][[0,0,1,4,0,4]] = 1.7770576442467827E+04 -v_z[1][[0,0,0,5,0,4]] = -2.6396576847261144E+05 -v_z[1][[1,3,0,0,0,5]] = -2.8054979854436963E+00 -v_z[1][[0,4,0,0,0,5]] = 9.9155554407418990E+01 -v_z[1][[0,3,1,0,0,5]] = -3.3942383657741672E+01 -v_z[1][[1,2,0,1,0,5]] = -2.0757861024734858E+01 -v_z[1][[0,3,0,1,0,5]] = 1.7730995621062582E+03 -v_z[1][[0,2,1,1,0,5]] = -2.5113947201933317E+02 -v_z[1][[1,1,0,2,0,5]] = -1.0016762599760965E+02 -v_z[1][[0,2,0,2,0,5]] = 8.8920981104242019E+03 -v_z[1][[0,1,1,2,0,5]] = -1.2118803896265617E+03 -v_z[1][[1,0,0,3,0,5]] = -2.4097124725904555E+02 -v_z[1][[0,1,0,3,0,5]] = 2.8409741176977197E+04 -v_z[1][[0,0,1,3,0,5]] = -2.9153963279918280E+03 -v_z[1][[0,0,0,4,0,5]] = 5.7695697517368113E+04 -v_z[1][[1,2,0,0,0,6]] = 4.6544597372106977E-01 -v_z[1][[0,3,0,0,0,6]] = -9.1833894962812934E+01 -v_z[1][[0,2,1,0,0,6]] = 5.6312091093849297E+00 -v_z[1][[1,1,0,1,0,6]] = 7.4438136019709695E+00 -v_z[1][[0,2,0,1,0,6]] = -6.7947838098222655E+02 -v_z[1][[0,1,1,1,0,6]] = 9.0059154726092231E+01 -v_z[1][[1,0,0,2,0,6]] = 2.1929838276954115E+01 -v_z[1][[0,1,0,2,0,6]] = -3.2788415077347163E+03 -v_z[1][[0,0,1,2,0,6]] = 2.6531866649367197E+02 -v_z[1][[0,0,0,3,0,6]] = -7.8878432009800608E+03 -v_z[1][[1,1,0,0,0,7]] = -2.2849095286856286E-01 -v_z[1][[0,2,0,0,0,7]] = 1.3059168680317033E+01 -v_z[1][[0,1,1,0,0,7]] = -2.7644031914573435E+00 -v_z[1][[1,0,0,1,0,7]] = -8.8982127049835447E-01 -v_z[1][[0,1,0,1,0,7]] = 2.0885349308281579E+02 -v_z[1][[0,0,1,1,0,7]] = -1.0765523663456511E+01 -v_z[1][[0,0,0,2,0,7]] = 6.1529258680933174E+02 -v_z[1][[1,0,0,0,0,8]] = 2.6545721163057274E-15 -v_z[1][[0,1,0,0,0,8]] = -5.6094891908377855E+00 -v_z[1][[0,0,0,1,0,8]] = -2.1845253547126898E+01 -v_z[1][[0,0,0,0,0,9]] = 1.2471094400677167E-13 -v_z[1][[1,9,0,0,0,0]] = 1.1247177737901123E-01 -v_z[1][[0,10,0,0,0,0]] = -2.2596410039266686E+00 -v_z[1][[0,9,1,0,0,0]] = 1.3607424558042447E+00 -v_z[1][[1,8,0,1,0,0]] = 1.8455298569598280E+00 -v_z[1][[0,9,0,1,0,0]] = -5.3213210385579700E+01 -v_z[1][[0,8,1,1,0,0]] = 2.2328186575703683E+01 -v_z[1][[1,7,0,2,0,0]] = 1.9479379594077045E+01 -v_z[1][[0,8,0,2,0,0]] = -5.3955441054869914E+02 -v_z[1][[0,7,1,2,0,0]] = 2.3567173422595815E+02 -v_z[1][[1,6,0,3,0,0]] = 1.2746437826516340E+02 -v_z[1][[0,7,0,3,0,0]] = -4.0570879629263409E+03 -v_z[1][[0,6,1,3,0,0]] = 1.5421307918306879E+03 -v_z[1][[1,5,0,4,0,0]] = 6.4416316519873885E+02 -v_z[1][[0,6,0,4,0,0]] = -2.1922719542534251E+04 -v_z[1][[0,5,1,4,0,0]] = 7.7934232727324215E+03 -v_z[1][[1,4,0,5,0,0]] = 2.4503634896720137E+03 -v_z[1][[0,5,0,5,0,0]] = -9.3886683721892274E+04 -v_z[1][[0,4,1,5,0,0]] = 2.9645780570473809E+04 -v_z[1][[1,3,0,6,0,0]] = 7.1253577125541015E+03 -v_z[1][[0,4,0,6,0,0]] = -3.1647966648642858E+05 -v_z[1][[0,3,1,6,0,0]] = 8.6206308624352911E+04 -v_z[1][[1,2,0,7,0,0]] = 1.6226687312088872E+04 -v_z[1][[0,3,0,7,0,0]] = -8.2602067719102546E+05 -v_z[1][[0,2,1,7,0,0]] = 1.9631895980635393E+05 -v_z[1][[1,1,0,8,0,0]] = 2.4112011432289764E+04 -v_z[1][[0,2,0,8,0,0]] = -1.7167582646948544E+06 -v_z[1][[0,1,1,8,0,0]] = 2.9171973996808793E+05 -v_z[1][[1,0,0,9,0,0]] = 2.7561978433087799E+04 -v_z[1][[0,1,0,9,0,0]] = -2.3559716966320458E+06 -v_z[1][[0,0,1,9,0,0]] = 3.3345924723389174E+05 -v_z[1][[0,0,0,10,0,0]] = -2.4765466763020824E+06 -v_z[1][[1,8,0,0,0,1]] = -6.7884660694566534E-01 -v_z[1][[0,9,0,0,0,1]] = 2.4850800016590341E+01 -v_z[1][[0,8,1,0,0,1]] = -8.2130417121158210E+00 -v_z[1][[1,7,0,1,0,1]] = -1.4704002502476541E+01 -v_z[1][[0,8,0,1,0,1]] = 4.0777246051162541E+02 -v_z[1][[0,7,1,1,0,1]] = -1.7789672166330962E+02 -v_z[1][[1,6,0,2,0,1]] = -1.2593269660321801E+02 -v_z[1][[0,7,0,2,0,1]] = 4.3039967716380579E+03 -v_z[1][[0,6,1,2,0,1]] = -1.5235997050571380E+03 -v_z[1][[1,5,0,3,0,1]] = -7.9934412346679335E+02 -v_z[1][[0,6,0,3,0,1]] = 2.8163436617813404E+04 -v_z[1][[0,5,1,3,0,1]] = -9.6708837625417873E+03 -v_z[1][[1,4,0,4,0,1]] = -3.5207594776942324E+03 -v_z[1][[0,5,0,4,0,1]] = 1.4232877233248961E+05 -v_z[1][[0,4,1,4,0,1]] = -4.2595991720032580E+04 -v_z[1][[1,3,0,5,0,1]] = -1.1682713449261839E+04 -v_z[1][[0,4,0,5,0,1]] = 5.4141131641045364E+05 -v_z[1][[0,3,1,5,0,1]] = -1.4134358467400214E+05 -v_z[1][[1,2,0,6,0,1]] = -2.9526610437285046E+04 -v_z[1][[0,3,0,6,0,1]] = 1.5743579739533577E+06 -v_z[1][[0,2,1,6,0,1]] = -3.5722839395178051E+05 -v_z[1][[1,1,0,7,0,1]] = -4.8095977807545940E+04 -v_z[1][[0,2,0,7,0,1]] = 3.5853097614488462E+06 -v_z[1][[0,1,1,7,0,1]] = -5.8189032378854731E+05 -v_z[1][[1,0,0,8,0,1]] = -6.0244650948852519E+04 -v_z[1][[0,1,0,8,0,1]] = 5.3275833997214325E+06 -v_z[1][[0,0,1,8,0,1]] = -7.2887133280520805E+05 -v_z[1][[0,0,0,9,0,1]] = 6.0898585410821931E+06 -v_z[1][[1,7,0,0,0,2]] = 3.1337420440758201E+00 -v_z[1][[0,8,0,0,0,2]] = -7.4996064187280240E+01 -v_z[1][[0,7,1,0,0,2]] = 3.7913652155980827E+01 -v_z[1][[1,6,0,1,0,2]] = 4.2617616834571180E+01 -v_z[1][[0,7,0,1,0,2]] = -1.6244351878655318E+03 -v_z[1][[0,6,1,1,0,2]] = 5.1561024412885899E+02 -v_z[1][[1,5,0,2,0,2]] = 3.8454982570500556E+02 -v_z[1][[0,6,0,2,0,2]] = -1.3912504682354780E+04 -v_z[1][[0,5,1,2,0,2]] = 4.6524851514133989E+03 -v_z[1][[1,4,0,3,0,2]] = 2.0411622577008268E+03 -v_z[1][[0,5,0,3,0,2]] = -8.8308113464636030E+04 -v_z[1][[0,4,1,3,0,2]] = 2.4695049797951127E+04 -v_z[1][[1,3,0,4,0,2]] = 8.0246305918155631E+03 -v_z[1][[0,4,0,4,0,2]] = -3.8895842017262551E+05 -v_z[1][[0,3,1,4,0,2]] = 9.7086182799727598E+04 -v_z[1][[1,2,0,5,0,2]] = 2.2891370951815297E+04 -v_z[1][[0,3,0,5,0,2]] = -1.2906561198921569E+06 -v_z[1][[0,2,1,5,0,2]] = 2.7695179227701848E+05 -v_z[1][[1,1,0,6,0,2]] = 4.1587009384517740E+04 -v_z[1][[0,2,0,6,0,2]] = -3.2619733956550742E+06 -v_z[1][[0,1,1,6,0,2]] = 5.0314141554593190E+05 -v_z[1][[1,0,0,7,0,2]] = 5.7610979888132882E+04 -v_z[1][[0,1,0,7,0,2]] = -5.3134375305104563E+06 -v_z[1][[0,0,1,7,0,2]] = 6.9700780125571333E+05 -v_z[1][[0,0,0,8,0,2]] = -6.6555708804804888E+06 -v_z[1][[1,6,0,0,0,3]] = -4.3809290125611042E+00 -v_z[1][[0,7,0,0,0,3]] = 2.3080159501845574E+02 -v_z[1][[0,6,1,0,0,3]] = -5.3002773159419462E+01 -v_z[1][[1,5,0,1,0,3]] = -8.6615943076870508E+01 -v_z[1][[0,6,0,1,0,3]] = 3.1388077904814377E+03 -v_z[1][[0,5,1,1,0,3]] = -1.0479250336468494E+03 -v_z[1][[1,4,0,2,0,3]] = -5.9497227335519096E+02 -v_z[1][[0,5,0,2,0,3]] = 2.8322277931130528E+04 -v_z[1][[0,4,1,2,0,3]] = -7.1982861056115817E+03 -v_z[1][[1,3,0,3,0,3]] = -2.9648841870229107E+03 -v_z[1][[0,4,0,3,0,3]] = 1.5033257305253352E+05 -v_z[1][[0,3,1,3,0,3]] = -3.5870721383101394E+04 -v_z[1][[1,2,0,4,0,3]] = -9.7723171611373255E+03 -v_z[1][[0,3,0,4,0,3]] = 5.9101786744899151E+05 -v_z[1][[0,2,1,4,0,3]] = -1.1823061004836092E+05 -v_z[1][[1,1,0,5,0,3]] = -2.0317266843537262E+04 -v_z[1][[0,2,0,5,0,3]] = 1.6859603801232090E+06 -v_z[1][[0,1,1,5,0,3]] = -2.4580893290892494E+05 -v_z[1][[1,0,0,6,0,3]] = -3.1481312250652813E+04 -v_z[1][[0,1,0,6,0,3]] = 3.0629030606202735E+06 -v_z[1][[0,0,1,6,0,3]] = -3.8087740002130548E+05 -v_z[1][[0,0,0,7,0,3]] = 4.2430761248822017E+06 -v_z[1][[1,5,0,0,0,4]] = 8.1443057282285736E+00 -v_z[1][[0,6,0,0,0,4]] = -2.4199313222187786E+02 -v_z[1][[0,5,1,0,0,4]] = 9.8534075264986654E+01 -v_z[1][[1,4,0,1,0,4]] = 8.6429153390506343E+01 -v_z[1][[0,5,0,1,0,4]] = -4.7844791151432619E+03 -v_z[1][[0,4,1,1,0,4]] = 1.0456651542134018E+03 -v_z[1][[1,3,0,2,0,4]] = 6.2522486327627530E+02 -v_z[1][[0,4,0,2,0,4]] = -3.2864993612444705E+04 -v_z[1][[0,3,1,2,0,4]] = 7.5642977794996186E+03 -v_z[1][[1,2,0,3,0,4]] = 2.4667548208704789E+03 -v_z[1][[0,3,0,3,0,4]] = -1.6377385002943737E+05 -v_z[1][[0,2,1,3,0,4]] = 2.9844091478229209E+04 -v_z[1][[1,1,0,4,0,4]] = 6.1166292250059450E+03 -v_z[1][[0,2,0,4,0,4]] = -5.3980186214128311E+05 -v_z[1][[0,1,1,4,0,4]] = 7.4002183186195296E+04 -v_z[1][[1,0,0,5,0,4]] = 1.0752100220016966E+04 -v_z[1][[0,1,0,5,0,4]] = -1.1222822893405126E+06 -v_z[1][[0,0,1,5,0,4]] = 1.3008453853392515E+05 -v_z[1][[0,0,0,6,0,4]] = -1.7389602379192240E+06 -v_z[1][[1,4,0,0,0,5]] = -4.0388966513684164E+00 -v_z[1][[0,5,0,0,0,5]] = 3.5989919896820101E+02 -v_z[1][[0,4,1,0,0,5]] = -4.8864686556897972E+01 -v_z[1][[1,3,0,1,0,5]] = -7.2223547402180813E+01 -v_z[1][[0,4,0,1,0,5]] = 3.8193290024622829E+03 -v_z[1][[0,3,1,1,0,5]] = -8.7379829455133643E+02 -v_z[1][[1,2,0,2,0,5]] = -3.6220124527027258E+02 -v_z[1][[0,3,0,2,0,5]] = 2.7628865489198437E+04 -v_z[1][[0,2,1,2,0,5]] = -4.3821003230309043E+03 -v_z[1][[1,1,0,3,0,5]] = -1.1572121117336978E+03 -v_z[1][[0,2,0,3,0,5]] = 1.0900660089479947E+05 -v_z[1][[0,1,1,3,0,5]] = -1.4000558073342732E+04 -v_z[1][[1,0,0,4,0,5]] = -2.3501150378704615E+03 -v_z[1][[0,1,0,4,0,5]] = 2.7029559448328731E+05 -v_z[1][[0,0,1,4,0,5]] = -2.8432922307948531E+04 -v_z[1][[0,0,0,5,0,5]] = 4.7513838325070945E+05 -v_z[1][[1,3,0,0,0,6]] = 3.7406639805915991E+00 -v_z[1][[0,4,0,0,0,6]] = -1.4873333161112899E+02 -v_z[1][[0,3,1,0,0,6]] = 4.5256511543655577E+01 -v_z[1][[1,2,0,1,0,6]] = 2.7677148032979854E+01 -v_z[1][[0,3,0,1,0,6]] = -2.6596493431593990E+03 -v_z[1][[0,2,1,1,0,6]] = 3.3485262935911101E+02 -v_z[1][[1,1,0,2,0,6]] = 1.3355683466347955E+02 -v_z[1][[0,2,0,2,0,6]] = -1.3338147165636381E+04 -v_z[1][[0,1,1,2,0,6]] = 1.6158405195020823E+03 -v_z[1][[1,0,0,3,0,6]] = 3.2129499634539292E+02 -v_z[1][[0,1,0,3,0,6]] = -4.2614611765465932E+04 -v_z[1][[0,0,1,3,0,6]] = 3.8871951039891046E+03 -v_z[1][[0,0,0,4,0,6]] = -8.6543546276051464E+04 -v_z[1][[1,2,0,0,0,7]] = -5.3193825568122666E-01 -v_z[1][[0,3,0,0,0,7]] = 1.1807215066647414E+02 -v_z[1][[0,2,1,0,0,7]] = -6.4356675535827828E+00 -v_z[1][[1,1,0,1,0,7]] = -8.5072155451097018E+00 -v_z[1][[0,2,0,1,0,7]] = 8.7361506126286884E+02 -v_z[1][[0,1,1,1,0,7]] = -1.0292474825839125E+02 -v_z[1][[1,0,0,2,0,7]] = -2.5062672316519023E+01 -v_z[1][[0,1,0,2,0,7]] = 4.2156533670875087E+03 -v_z[1][[0,0,1,2,0,7]] = -3.0322133313562523E+02 -v_z[1][[0,0,0,3,0,7]] = 1.0141512686974531E+04 -v_z[1][[1,1,0,0,0,8]] = 2.2849095286856613E-01 -v_z[1][[0,2,0,0,0,8]] = -1.4691564765356519E+01 -v_z[1][[0,1,1,0,0,8]] = 2.7644031914573519E+00 -v_z[1][[1,0,0,1,0,8]] = 8.8982127049838522E-01 -v_z[1][[0,1,0,1,0,8]] = -2.3496017971816880E+02 -v_z[1][[0,0,1,1,0,8]] = 1.0765523663456506E+01 -v_z[1][[0,0,0,2,0,8]] = -6.9220416016051286E+02 -v_z[1][[1,0,0,0,0,9]] = -3.7212339881573755E-15 -v_z[1][[0,1,0,0,0,9]] = 5.6094891908377535E+00 -v_z[1][[0,0,0,1,0,9]] = 2.1845253547128063E+01 -v_z[1][[0,0,0,0,0,10]] = -1.4466546441382276E-13 -v_z[2][[0,0,0,0,0,0]] = 8.1555963638229567E-01 -v_z[2][[0,1,0,0,0,0]] = 5.4784266868711706E-01 -v_z[2][[0,0,0,1,0,0]] = 1.8636225441262336E-01 -v_z[2][[0,0,0,0,0,1]] = 8.1555963638229567E-01 -v_z[2][[0,2,0,0,0,0]] = -4.0777981819114784E-01 -v_z[2][[0,0,0,2,0,0]] = -4.0777981819114784E-01 -v_z[2][[0,0,0,1,0,1]] = -4.8360018722269390E-18 -v_z[2][[0,0,0,0,0,2]] = -5.3075002763572164E-17 -v_z[2][[0,2,0,1,0,0]] = 2.4180009361134695E-18 -v_z[2][[0,0,0,3,0,0]] = -1.1606404493344653E-16 -v_z[2][[0,2,0,0,0,1]] = 4.0777981819114784E-01 -v_z[2][[0,0,0,2,0,1]] = 4.0777981819114789E-01 -v_z[2][[0,0,0,1,0,2]] = -2.9016011233361634E-17 -v_z[2][[0,0,0,0,0,3]] = 5.1866002295515430E-17 -v_z[2][[0,4,0,0,0,0]] = -1.0194495454778696E-01 -v_z[2][[0,2,0,2,0,0]] = -2.0388990909557395E-01 -v_z[2][[0,0,0,4,0,0]] = -1.0194495454778749E-01 -v_z[2][[0,0,0,3,0,1]] = 4.6425617973378614E-16 -v_z[2][[0,2,0,0,0,2]] = -4.0777981819114784E-01 -v_z[2][[0,0,0,2,0,2]] = -4.0777981819114806E-01 -v_z[2][[0,0,0,1,0,3]] = 3.8688014977815512E-17 -v_z[2][[0,0,0,0,0,4]] = -8.5596997570179838E-17 -v_z[2][[0,2,0,3,0,0]] = -2.3212808986689307E-16 -v_z[2][[0,0,0,5,0,0]] = -1.2380164792900964E-15 -v_z[2][[0,4,0,0,0,1]] = 3.0583486364336088E-01 -v_z[2][[0,2,0,2,0,1]] = 6.1166972728672198E-01 -v_z[2][[0,0,0,4,0,1]] = 3.0583486364336304E-01 -v_z[2][[0,2,0,1,0,2]] = -1.9344007488907756E-17 -v_z[2][[0,0,0,3,0,2]] = -1.2380164792900964E-15 -v_z[2][[0,2,0,0,0,3]] = 4.0777981819114795E-01 -v_z[2][[0,0,0,2,0,3]] = 4.0777981819114817E-01 -v_z[2][[0,0,0,1,0,4]] = 3.8688014977815512E-17 -v_z[2][[0,0,0,0,0,5]] = 7.2540028083404084E-18 -v_z[2][[0,6,0,0,0,0]] = -5.0972477273893479E-02 -v_z[2][[0,4,0,2,0,0]] = -1.5291743182168044E-01 -v_z[2][[0,2,0,4,0,0]] = -1.5291743182168091E-01 -v_z[2][[0,0,0,6,0,0]] = -5.0972477273898385E-02 -v_z[2][[0,4,0,1,0,1]] = -3.8688014977815512E-17 -v_z[2][[0,4,0,0,0,2]] = -6.1166972728672175E-01 -v_z[2][[0,2,0,2,0,2]] = -1.2233394545734440E+00 -v_z[2][[0,0,0,4,0,2]] = -6.1166972728672608E-01 -v_z[2][[0,0,0,3,0,3]] = 2.4760329585801927E-15 -v_z[2][[0,2,0,0,0,4]] = -4.0777981819114806E-01 -v_z[2][[0,0,0,2,0,4]] = -4.0777981819114767E-01 -v_z[2][[0,0,0,1,0,5]] = -3.8688014977815512E-17 -v_z[2][[0,0,0,0,0,6]] = -1.5668598952367885E-16 -v_z[2][[0,0,0,7,0,0]] = -1.9808263668641542E-14 -v_z[2][[0,6,0,0,0,1]] = 2.5486238636946740E-01 -v_z[2][[0,4,0,2,0,1]] = 7.6458715910840203E-01 -v_z[2][[0,2,0,4,0,1]] = 7.6458715910840636E-01 -v_z[2][[0,0,0,6,0,1]] = 2.5486238636950181E-01 -v_z[2][[0,4,0,1,0,2]] = 7.7376029955631023E-17 -v_z[2][[0,2,0,3,0,2]] = 4.9520659171603855E-15 -v_z[2][[0,4,0,0,0,3]] = 1.0194495454778696E+00 -v_z[2][[0,2,0,2,0,3]] = 2.0388990909557396E+00 -v_z[2][[0,0,0,4,0,3]] = 1.0194495454779280E+00 -v_z[2][[0,2,0,1,0,4]] = 1.5475205991126205E-16 -v_z[2][[0,2,0,0,0,5]] = 4.0777981819114850E-01 -v_z[2][[0,0,0,2,0,5]] = 4.0777981819114567E-01 -v_z[2][[0,0,0,0,0,7]] = 2.4180009361134692E-17 -v_z[2][[0,8,0,0,0,0]] = -3.1857798296183425E-02 -v_z[2][[0,6,0,2,0,0]] = -1.2743119318473370E-01 -v_z[2][[0,4,0,4,0,0]] = -1.9114678977710037E-01 -v_z[2][[0,2,0,6,0,0]] = -1.2743119318475091E-01 -v_z[2][[0,0,0,8,0,0]] = -3.1857798296663124E-02 -v_z[2][[0,6,0,1,0,1]] = -5.8032022466723267E-17 -v_z[2][[0,4,0,3,0,1]] = -1.2380164792900964E-15 -v_z[2][[0,2,0,5,0,1]] = -7.9233054674566168E-14 -v_z[2][[0,0,0,7,0,1]] = -3.1693221869826467E-13 -v_z[2][[0,6,0,0,0,2]] = -7.6458715910840214E-01 -v_z[2][[0,4,0,2,0,2]] = -2.2937614773252069E+00 -v_z[2][[0,2,0,4,0,2]] = -2.2937614773251997E+00 -v_z[2][[0,0,0,6,0,2]] = -7.6458715910787156E-01 -v_z[2][[0,4,0,1,0,3]] = -1.5475205991126205E-16 -v_z[2][[0,2,0,3,0,3]] = -9.9041318343207710E-15 -v_z[2][[0,0,0,5,0,3]] = 6.3386443739652934E-13 -v_z[2][[0,4,0,0,0,4]] = -1.5291743182168047E+00 -v_z[2][[0,2,0,2,0,4]] = -3.0583486364336090E+00 -v_z[2][[0,0,0,4,0,4]] = -1.5291743182168529E+00 -v_z[2][[0,2,0,1,0,5]] = -3.0950411982252409E-16 -v_z[2][[0,2,0,0,0,6]] = -4.0777981819114795E-01 -v_z[2][[0,0,0,2,0,6]] = -4.0777981819114495E-01 -v_z[2][[0,0,0,1,0,7]] = 4.6425617973378614E-16 -v_z[2][[0,0,0,0,0,8]] = 6.0256394873358070E-16 -v_z[2][[0,8,0,1,0,0]] = 4.8360018722269390E-18 -v_z[2][[0,0,0,9,0,0]] = -3.8031866243791761E-12 -v_z[2][[0,8,0,0,0,1]] = 2.2300458807328399E-01 -v_z[2][[0,6,0,2,0,1]] = 8.9201835229313575E-01 -v_z[2][[0,4,0,4,0,1]] = 1.3380275284397261E+00 -v_z[2][[0,2,0,6,0,1]] = 8.9201835229230564E-01 -v_z[2][[0,0,0,8,0,1]] = 2.2300458806681700E-01 -v_z[2][[0,6,0,1,0,2]] = 7.7376029955631023E-17 -v_z[2][[0,2,0,5,0,2]] = -3.1693221869826467E-13 -v_z[2][[0,0,0,7,0,2]] = 1.2677288747930585E-11 -v_z[2][[0,6,0,0,0,3]] = 1.7840367045862719E+00 -v_z[2][[0,4,0,2,0,3]] = 5.3521101137588154E+00 -v_z[2][[0,2,0,4,0,3]] = 5.3521101137584290E+00 -v_z[2][[0,0,0,6,0,3]] = 1.7840367045915837E+00 -v_z[2][[0,4,0,1,0,4]] = -3.0950411982252409E-16 -v_z[2][[0,2,0,3,0,4]] = -3.9616527337283084E-14 -v_z[2][[0,0,0,5,0,4]] = -1.2677288747930587E-12 -v_z[2][[0,4,0,0,0,5]] = 2.1408440455035276E+00 -v_z[2][[0,2,0,2,0,5]] = 4.2816880910070463E+00 -v_z[2][[0,0,0,4,0,5]] = 2.1408440455035951E+00 -v_z[2][[0,2,0,1,0,6]] = -6.1900823964504819E-16 -v_z[2][[0,0,0,3,0,6]] = 3.9616527337283084E-14 -v_z[2][[0,2,0,0,0,7]] = 4.0777981819114800E-01 -v_z[2][[0,0,0,2,0,7]] = 4.0777981819114251E-01 -v_z[2][[0,0,0,1,0,8]] = -6.1900823964504819E-16 -v_z[2][[0,0,0,0,0,9]] = 4.8360018722269383E-17 -v_z[2][[0,10,0,0,0,0]] = -2.2300458807328397E-02 -v_z[2][[0,8,0,2,0,0]] = -1.1150229403664200E-01 -v_z[2][[0,6,0,4,0,0]] = -2.2300458807328438E-01 -v_z[2][[0,4,0,6,0,0]] = -2.2300458807323487E-01 -v_z[2][[0,2,0,8,0,0]] = -1.1150229403340850E-01 -v_z[2][[0,0,0,10,0,0]] = -2.2300458833811095E-02 -v_z[2][[0,8,0,1,0,1]] = -7.7376029955631023E-17 -v_z[2][[0,6,0,3,0,1]] = 4.9520659171603855E-15 -v_z[2][[0,4,0,5,0,1]] = 1.5846610934913234E-13 -v_z[2][[0,2,0,7,0,1]] = -7.6063732487583521E-12 -v_z[2][[0,0,0,9,0,1]] = -2.0283661996688939E-11 -v_z[2][[0,8,0,0,0,2]] = -8.9201835229313586E-01 -v_z[2][[0,6,0,2,0,2]] = -3.5680734091725430E+00 -v_z[2][[0,4,0,4,0,2]] = -5.3521101137585081E+00 -v_z[2][[0,2,0,6,0,2]] = -3.5680734091755610E+00 -v_z[2][[0,0,0,8,0,2]] = -8.9201835219627512E-01 -v_z[2][[0,6,0,1,0,3]] = -3.0950411982252409E-16 -v_z[2][[0,2,0,5,0,3]] = -2.5354577495861174E-12 -v_z[2][[0,6,0,0,0,4]] = -3.5680734091725443E+00 -v_z[2][[0,4,0,2,0,4]] = -1.0704220227517652E+01 -v_z[2][[0,2,0,4,0,4]] = -1.0704220227517176E+01 -v_z[2][[0,0,0,6,0,4]] = -3.5680734091806330E+00 -v_z[2][[0,0,0,5,0,5]] = 1.0141830998344469E-11 -v_z[2][[0,4,0,0,0,6]] = -2.8544587273380353E+00 -v_z[2][[0,2,0,2,0,6]] = -5.7089174546760839E+00 -v_z[2][[0,0,0,4,0,6]] = -2.8544587273391810E+00 -v_z[2][[0,2,0,1,0,7]] = -1.2380164792900964E-15 -v_z[2][[0,0,0,3,0,7]] = -1.5846610934913234E-13 -v_z[2][[0,2,0,0,0,8]] = -4.0777981819115044E-01 -v_z[2][[0,0,0,2,0,8]] = -4.0777981819114045E-01 -v_z[2][[0,0,0,1,0,9]] = 6.1900823964504819E-16 -v_z[2][[0,0,0,0,0,10]] = 5.8032022466723267E-17 -v_z[3][[0,0,0,0,0,0]] = -4.6658276726731325E+00 -v_z[3][[1,0,0,0,0,0]] = -6.8423966858081142E-01 -v_z[3][[0,1,0,0,0,0]] = 4.8883780394693792E+00 -v_z[3][[0,0,1,0,0,0]] = 2.0114356699449174E+00 -v_z[3][[0,0,0,1,0,0]] = -1.4370195719809907E+01 -v_z[3][[1,1,0,0,0,0]] = -1.9911797994806493E-01 -v_z[3][[0,2,0,0,0,0]] = 1.4225482753148295E+00 -v_z[3][[0,1,1,0,0,0]] = -2.4090335846321635E+00 -v_z[3][[1,0,0,1,0,0]] = 5.8534023352610209E-01 -v_z[3][[0,1,0,1,0,0]] = 1.3028917991211632E+01 -v_z[3][[0,0,1,1,0,0]] = 7.0817526441791134E+00 -v_z[3][[0,0,0,2,0,0]] = -5.0593798776036557E+01 -v_z[3][[0,1,0,0,0,1]] = -4.8883780394693792E+00 -v_z[3][[0,0,0,1,0,1]] = 1.4370195719809907E+01 -v_z[3][[0,0,0,0,0,2]] = -2.9908780050024673E-15 -v_z[3][[1,2,0,0,0,0]] = -5.7944564980911231E-02 -v_z[3][[0,3,0,0,0,0]] = 2.8581593753950005E+00 -v_z[3][[0,2,1,0,0,0]] = -7.0104368838175568E-01 -v_z[3][[1,1,0,1,0,0]] = -5.3070605635906531E-01 -v_z[3][[0,2,0,1,0,0]] = 1.6148280707295586E+00 -v_z[3][[0,1,1,1,0,0]] = -6.4207597609725653E+00 -v_z[3][[1,0,0,2,0,0]] = 2.0608338653114426E+00 -v_z[3][[0,1,0,2,0,0]] = 3.3592581872007251E+01 -v_z[3][[0,0,1,2,0,0]] = 2.4933047207376632E+01 -v_z[3][[0,0,0,3,0,0]] = -1.8531297617831805E+02 -v_z[3][[1,1,0,0,0,1]] = 1.9911797994806493E-01 -v_z[3][[0,2,0,0,0,1]] = -2.8450965506296599E+00 -v_z[3][[0,1,1,0,0,1]] = 2.4090335846321635E+00 -v_z[3][[1,0,0,1,0,1]] = -5.8534023352610187E-01 -v_z[3][[0,1,0,1,0,1]] = -2.6057835982423267E+01 -v_z[3][[0,0,1,1,0,1]] = -7.0817526441791134E+00 -v_z[3][[0,0,0,2,0,1]] = 1.0118759755207309E+02 -v_z[3][[1,0,0,0,0,2]] = 1.1348938017852014E-16 -v_z[3][[0,1,0,0,0,2]] = 4.8883780394693819E+00 -v_z[3][[0,0,0,1,0,2]] = -1.4370195719809935E+01 -v_z[3][[0,0,0,0,0,3]] = 4.6363579969391675E-15 -v_z[3][[1,3,0,0,0,0]] = -1.1642121714057356E-01 -v_z[3][[0,4,0,0,0,0]] = 1.5430162118617257E+00 -v_z[3][[0,3,1,0,0,0]] = -1.4085248460663733E+00 -v_z[3][[1,2,0,1,0,0]] = -6.5776685193112305E-02 -v_z[3][[0,3,0,1,0,0]] = 1.7047235097162371E+01 -v_z[3][[0,2,1,1,0,0]] = -7.9580077980559594E-01 -v_z[3][[1,1,0,2,0,0]] = -1.3683244195901194E+00 -v_z[3][[0,2,0,2,0,0]] = -9.1245776304085222E+00 -v_z[3][[0,1,1,2,0,0]] = -1.6554705317544272E+01 -v_z[3][[1,0,0,3,0,0]] = 7.5483412241978947E+00 -v_z[3][[0,1,0,3,0,0]] = 7.0858159706055531E+01 -v_z[3][[0,0,1,3,0,0]] = 9.1323784633105760E+01 -v_z[3][[0,0,0,4,0,0]] = -6.7773668588511680E+02 -v_z[3][[1,2,0,0,0,1]] = 1.1588912996182243E-01 -v_z[3][[0,3,0,0,0,1]] = -8.5744781261849994E+00 -v_z[3][[0,2,1,0,0,1]] = 1.4020873767635114E+00 -v_z[3][[1,1,0,1,0,1]] = 1.0614121127181306E+00 -v_z[3][[0,2,0,1,0,1]] = -4.8444842121886591E+00 -v_z[3][[0,1,1,1,0,1]] = 1.2841519521945131E+01 -v_z[3][[1,0,0,2,0,1]] = -4.1216677306228862E+00 -v_z[3][[0,1,0,2,0,1]] = -1.0077774561602180E+02 -v_z[3][[0,0,1,2,0,1]] = -4.9866094414753263E+01 -v_z[3][[0,0,0,3,0,1]] = 5.5593892853495402E+02 -v_z[3][[1,1,0,0,0,2]] = -1.9911797994806507E-01 -v_z[3][[0,2,0,0,0,2]] = 4.2676448259444886E+00 -v_z[3][[0,1,1,0,0,2]] = -2.4090335846321631E+00 -v_z[3][[1,0,0,1,0,2]] = 5.8534023352610287E-01 -v_z[3][[0,1,0,1,0,2]] = 3.9086753973634913E+01 -v_z[3][[0,0,1,1,0,2]] = 7.0817526441791134E+00 -v_z[3][[0,0,0,2,0,2]] = -1.5178139632810982E+02 -v_z[3][[1,0,0,0,0,3]] = -1.6596405413960474E-16 -v_z[3][[0,1,0,0,0,3]] = -4.8883780394693872E+00 -v_z[3][[0,0,0,1,0,3]] = 1.4370195719809978E+01 -v_z[3][[0,0,0,0,0,4]] = -1.9572025000280723E-15 -v_z[3][[1,4,0,0,0,0]] = -6.2851577486910795E-02 -v_z[3][[0,5,0,0,0,0]] = 2.4891542136899751E+00 -v_z[3][[0,4,1,0,0,0]] = -7.6041129511544314E-01 -v_z[3][[1,3,0,1,0,0]] = -6.9438390174405951E-01 -v_z[3][[0,4,0,1,0,0]] = 9.4045575769822491E+00 -v_z[3][[0,3,1,1,0,0]] = -8.4010200403080937E+00 -v_z[3][[1,2,0,2,0,0]] = 3.7167081820935799E-01 -v_z[3][[0,3,0,2,0,0]] = 7.6811129081828000E+01 -v_z[3][[0,2,1,2,0,0]] = 4.4966681749563335E+00 -v_z[3][[1,1,0,3,0,0]] = -2.8862607412086341E+00 -v_z[3][[0,2,0,3,0,0]] = -1.0694677343791216E+02 -v_z[3][[0,1,1,3,0,0]] = -3.4919493766411421E+01 -v_z[3][[1,0,0,4,0,0]] = 2.7606203681576986E+01 -v_z[3][[0,1,0,4,0,0]] = 6.9655297916990961E+01 -v_z[3][[0,0,1,4,0,0]] = 3.3399430744757893E+02 -v_z[3][[0,0,0,5,0,0]] = -2.4805910015441850E+03 -v_z[3][[1,3,0,0,0,1]] = 3.4926365142172067E-01 -v_z[3][[0,4,0,0,0,1]] = -6.1720648474469009E+00 -v_z[3][[0,3,1,0,0,1]] = 4.2255745381991199E+00 -v_z[3][[1,2,0,1,0,1]] = 1.9733005557933692E-01 -v_z[3][[0,3,0,1,0,1]] = -6.8188940388649499E+01 -v_z[3][[0,2,1,1,0,1]] = 2.3874023394167878E+00 -v_z[3][[1,1,0,2,0,1]] = 4.1049732587703582E+00 -v_z[3][[0,2,0,2,0,1]] = 3.6498310521634096E+01 -v_z[3][[0,1,1,2,0,1]] = 4.9664115952632827E+01 -v_z[3][[1,0,0,3,0,1]] = -2.2645023672593688E+01 -v_z[3][[0,1,0,3,0,1]] = -2.8343263882422224E+02 -v_z[3][[0,0,1,3,0,1]] = -2.7397135389931731E+02 -v_z[3][[0,0,0,4,0,1]] = 2.7109467435404663E+03 -v_z[3][[1,2,0,0,0,2]] = -1.7383369494273357E-01 -v_z[3][[0,3,0,0,0,2]] = 1.7148956252370009E+01 -v_z[3][[0,2,1,0,0,2]] = -2.1031310651452677E+00 -v_z[3][[1,1,0,1,0,2]] = -1.5921181690771964E+00 -v_z[3][[0,2,0,1,0,2]] = 9.6889684243773306E+00 -v_z[3][[0,1,1,1,0,2]] = -1.9262279282917689E+01 -v_z[3][[1,0,0,2,0,2]] = 6.1825015959343395E+00 -v_z[3][[0,1,0,2,0,2]] = 2.0155549123204358E+02 -v_z[3][[0,0,1,2,0,2]] = 7.4799141622129895E+01 -v_z[3][[0,0,0,3,0,2]] = -1.1118778570699096E+03 -v_z[3][[1,1,0,0,0,3]] = 1.9911797994806527E-01 -v_z[3][[0,2,0,0,0,3]] = -5.6901931012593172E+00 -v_z[3][[0,1,1,0,0,3]] = 2.4090335846321631E+00 -v_z[3][[1,0,0,1,0,3]] = -5.8534023352610554E-01 -v_z[3][[0,1,0,1,0,3]] = -5.2115671964846577E+01 -v_z[3][[0,0,1,1,0,3]] = -7.0817526441791152E+00 -v_z[3][[0,0,0,2,0,3]] = 2.0237519510414688E+02 -v_z[3][[1,0,0,0,0,4]] = 1.1837663651818530E-16 -v_z[3][[0,1,0,0,0,4]] = 4.8883780394693881E+00 -v_z[3][[0,0,0,1,0,4]] = -1.4370195719810029E+01 -v_z[3][[0,0,0,0,0,5]] = 6.4768768996221705E-15 -v_z[3][[1,5,0,0,0,0]] = -1.0139055425078426E-01 -v_z[3][[0,6,0,0,0,0]] = 1.6736859278404346E+00 -v_z[3][[0,5,1,0,0,0]] = -1.2266760159896968E+00 -v_z[3][[1,4,0,1,0,0]] = -3.8307522288870377E-01 -v_z[3][[0,5,0,1,0,0]] = 2.1652694732616098E+01 -v_z[3][[0,4,1,1,0,0]] = -4.6346446344023757E+00 -v_z[3][[1,3,0,2,0,0]] = -3.1287426497734154E+00 -v_z[3][[0,4,0,2,0,0]] = 4.5704197357211484E+01 -v_z[3][[0,3,1,2,0,0]] = -3.7853166865900754E+01 -v_z[3][[1,2,0,3,0,0]] = 4.3562558617565301E+00 -v_z[3][[0,3,0,3,0,0]] = 2.8652017396875630E+02 -v_z[3][[0,2,1,3,0,0]] = 5.2704264461498497E+01 -v_z[3][[1,1,0,4,0,0]] = -2.8372646513681588E+00 -v_z[3][[0,2,0,4,0,0]] = -7.1216348792350163E+02 -v_z[3][[0,1,1,4,0,0]] = -3.4326713415926349E+01 -v_z[3][[1,0,0,5,0,0]] = 1.0104174949579699E+02 -v_z[3][[0,1,0,5,0,0]] = -4.3957108366176982E+02 -v_z[3][[0,0,1,5,0,0]] = 1.2224559934208469E+03 -v_z[3][[0,0,0,6,0,0]] = -9.0787216320293410E+03 -v_z[3][[1,4,0,0,0,1]] = 2.5140630994764335E-01 -v_z[3][[0,5,0,0,0,1]] = -1.2445771068449877E+01 -v_z[3][[0,4,1,0,0,1]] = 3.0416451804617726E+00 -v_z[3][[1,3,0,1,0,1]] = 2.7775356069762380E+00 -v_z[3][[0,4,0,1,0,1]] = -4.7022787884911224E+01 -v_z[3][[0,3,1,1,0,1]] = 3.3604080161232375E+01 -v_z[3][[1,2,0,2,0,1]] = -1.4866832728374302E+00 -v_z[3][[0,3,0,2,0,1]] = -3.8405564540913997E+02 -v_z[3][[0,2,1,2,0,1]] = -1.7986672699825334E+01 -v_z[3][[1,1,0,3,0,1]] = 1.1545042964834536E+01 -v_z[3][[0,2,0,3,0,1]] = 5.3473386718956044E+02 -v_z[3][[0,1,1,3,0,1]] = 1.3967797506564557E+02 -v_z[3][[1,0,0,4,0,1]] = -1.1042481472630799E+02 -v_z[3][[0,1,0,4,0,1]] = -3.4827648958495416E+02 -v_z[3][[0,0,1,4,0,1]] = -1.3359772297903157E+03 -v_z[3][[0,0,0,5,0,1]] = 1.2402955007720926E+04 -v_z[3][[1,3,0,0,0,2]] = -6.9852730284344156E-01 -v_z[3][[0,4,0,0,0,2]] = 1.5430162118617256E+01 -v_z[3][[0,3,1,0,0,2]] = -8.4511490763982398E+00 -v_z[3][[1,2,0,1,0,2]] = -3.9466011115867428E-01 -v_z[3][[0,3,0,1,0,2]] = 1.7047235097162380E+02 -v_z[3][[0,2,1,1,0,2]] = -4.7748046788335792E+00 -v_z[3][[1,1,0,2,0,2]] = -8.2099465175407218E+00 -v_z[3][[0,2,0,2,0,2]] = -9.1245776304085538E+01 -v_z[3][[0,1,1,2,0,2]] = -9.9328231905265596E+01 -v_z[3][[1,0,0,3,0,2]] = 4.5290047345187439E+01 -v_z[3][[0,1,0,3,0,2]] = 7.0858159706055653E+02 -v_z[3][[0,0,1,3,0,2]] = 5.4794270779863461E+02 -v_z[3][[0,0,0,4,0,2]] = -6.7773668588511719E+03 -v_z[3][[1,2,0,0,0,3]] = 2.3177825992364506E-01 -v_z[3][[0,3,0,0,0,3]] = -2.8581593753950028E+01 -v_z[3][[0,2,1,0,0,3]] = 2.8041747535270241E+00 -v_z[3][[1,1,0,1,0,3]] = 2.1228242254362648E+00 -v_z[3][[0,2,0,1,0,3]] = -1.6148280707295449E+01 -v_z[3][[0,1,1,1,0,3]] = 2.5683039043890250E+01 -v_z[3][[1,0,0,2,0,3]] = -8.2433354612458025E+00 -v_z[3][[0,1,0,2,0,3]] = -3.3592581872007253E+02 -v_z[3][[0,0,1,2,0,3]] = -9.9732188829506555E+01 -v_z[3][[0,0,0,3,0,3]] = 1.8531297617831863E+03 -v_z[3][[1,1,0,0,0,4]] = -1.9911797994806540E-01 -v_z[3][[0,2,0,0,0,4]] = 7.1127413765741458E+00 -v_z[3][[0,1,1,0,0,4]] = -2.4090335846321631E+00 -v_z[3][[1,0,0,1,0,4]] = 5.8534023352610542E-01 -v_z[3][[0,1,0,1,0,4]] = 6.5144589956058255E+01 -v_z[3][[0,0,1,1,0,4]] = 7.0817526441791170E+00 -v_z[3][[0,0,0,2,0,4]] = -2.5296899388018446E+02 -v_z[3][[1,0,0,0,0,5]] = -2.4040604895305627E-16 -v_z[3][[0,1,0,0,0,5]] = -4.8883780394693952E+00 -v_z[3][[0,0,0,1,0,5]] = 1.4370195719810091E+01 -v_z[3][[0,0,0,0,0,6]] = 1.7035339554873419E-15 -v_z[3][[1,6,0,0,0,0]] = -6.8174138400978829E-02 -v_z[3][[0,7,0,0,0,0]] = 2.3944236236712908E+00 -v_z[3][[0,6,1,0,0,0]] = -8.2480642408162030E-01 -v_z[3][[1,5,0,1,0,0]] = -8.8197778501979773E-01 -v_z[3][[0,6,0,1,0,0]] = 1.6199685125506132E+01 -v_z[3][[0,5,1,1,0,0]] = -1.0670629069089385E+01 -v_z[3][[1,4,0,2,0,0]] = -1.8616660535328640E+00 -v_z[3][[0,5,0,2,0,0]] = 1.3501415232478138E+02 -v_z[3][[0,4,1,2,0,0]] = -2.2523410731165718E+01 -v_z[3][[1,3,0,3,0,0]] = -1.1670807330036041E+01 -v_z[3][[0,4,0,3,0,0]] = 1.7006604714323853E+02 -v_z[3][[0,3,1,3,0,0]] = -1.4119953820926253E+02 -v_z[3][[1,2,0,4,0,0]] = 2.9008508336128550E+01 -v_z[3][[0,3,0,4,0,0]] = 8.8442576608850811E+02 -v_z[3][[0,2,1,4,0,0]] = 3.5096012344059830E+02 -v_z[3][[1,1,0,5,0,0]] = 1.7905019930049804E+01 -v_z[3][[0,2,0,5,0,0]] = -3.9778538364504307E+03 -v_z[3][[0,1,1,5,0,0]] = 2.1662430663594205E+02 -v_z[3][[1,0,0,6,0,0]] = 3.6980296885481499E+02 -v_z[3][[0,1,0,6,0,0]] = -4.1502497781845068E+03 -v_z[3][[0,0,1,6,0,0]] = 4.4740699554117991E+03 -v_z[3][[0,0,0,7,0,0]] = -3.3228224108857685E+04 -v_z[3][[1,5,0,0,0,1]] = 5.0695277125392113E-01 -v_z[3][[0,6,0,0,0,1]] = -1.0042115567042607E+01 -v_z[3][[0,5,1,0,0,1]] = 6.1333800799484841E+00 -v_z[3][[1,4,0,1,0,1]] = 1.9153761144435197E+00 -v_z[3][[0,5,0,1,0,1]] = -1.2991616839569653E+02 -v_z[3][[0,4,1,1,0,1]] = 2.3173223172011870E+01 -v_z[3][[1,3,0,2,0,1]] = 1.5643713248867087E+01 -v_z[3][[0,4,0,2,0,1]] = -2.7422518414326908E+02 -v_z[3][[0,3,1,2,0,1]] = 1.8926583432950369E+02 -v_z[3][[1,2,0,3,0,1]] = -2.1781279308782615E+01 -v_z[3][[0,3,0,3,0,1]] = -1.7191210438125370E+03 -v_z[3][[0,2,1,3,0,1]] = -2.6352132230749271E+02 -v_z[3][[1,1,0,4,0,1]] = 1.4186323256840808E+01 -v_z[3][[0,2,0,4,0,1]] = 4.2729809275410071E+03 -v_z[3][[0,1,1,4,0,1]] = 1.7163356707963203E+02 -v_z[3][[1,0,0,5,0,1]] = -5.0520874747898517E+02 -v_z[3][[0,1,0,5,0,1]] = 2.6374265019706136E+03 -v_z[3][[0,0,1,5,0,1]] = -6.1122799671042349E+03 -v_z[3][[0,0,0,6,0,1]] = 5.4472329792176010E+04 -v_z[3][[1,4,0,0,0,2]] = -6.2851577486910826E-01 -v_z[3][[0,5,0,0,0,2]] = 3.7337313205349631E+01 -v_z[3][[0,4,1,0,0,2]] = -7.6041129511544323E+00 -v_z[3][[1,3,0,1,0,2]] = -6.9438390174405971E+00 -v_z[3][[0,4,0,1,0,2]] = 1.4106836365473364E+02 -v_z[3][[0,3,1,1,0,2]] = -8.4010200403080944E+01 -v_z[3][[1,2,0,2,0,2]] = 3.7167081820935906E+00 -v_z[3][[0,3,0,2,0,2]] = 1.1521669362274206E+03 -v_z[3][[0,2,1,2,0,2]] = 4.4966681749563179E+01 -v_z[3][[1,1,0,3,0,2]] = -2.8862607412086362E+01 -v_z[3][[0,2,0,3,0,2]] = -1.6042016015686836E+03 -v_z[3][[0,1,1,3,0,2]] = -3.4919493766411370E+02 -v_z[3][[1,0,0,4,0,2]] = 2.7606203681577028E+02 -v_z[3][[0,1,0,4,0,2]] = 1.0448294687548539E+03 -v_z[3][[0,0,1,4,0,2]] = 3.3399430744757892E+03 -v_z[3][[0,0,0,5,0,2]] = -3.7208865023162783E+04 -v_z[3][[1,3,0,0,0,3]] = 1.1642121714057363E+00 -v_z[3][[0,4,0,0,0,3]] = -3.0860324237234504E+01 -v_z[3][[0,3,1,0,0,3]] = 1.4085248460663735E+01 -v_z[3][[1,2,0,1,0,3]] = 6.5776685193112172E-01 -v_z[3][[0,3,0,1,0,3]] = -3.4094470194324799E+02 -v_z[3][[0,2,1,1,0,3]] = 7.9580077980559807E+00 -v_z[3][[1,1,0,2,0,3]] = 1.3683244195901203E+01 -v_z[3][[0,2,0,2,0,3]] = 1.8249155260817201E+02 -v_z[3][[0,1,1,2,0,3]] = 1.6554705317544256E+02 -v_z[3][[1,0,0,3,0,3]] = -7.5483412241979181E+01 -v_z[3][[0,1,0,3,0,3]] = -1.4171631941211069E+03 -v_z[3][[0,0,1,3,0,3]] = -9.1323784633105777E+02 -v_z[3][[0,0,0,4,0,3]] = 1.3554733717702378E+04 -v_z[3][[1,2,0,0,0,4]] = -2.8972282490455620E-01 -v_z[3][[0,3,0,0,0,4]] = 4.2872390630925061E+01 -v_z[3][[0,2,1,0,0,4]] = -3.5052184419087822E+00 -v_z[3][[1,1,0,1,0,4]] = -2.6535302817953328E+00 -v_z[3][[0,2,0,1,0,4]] = 2.4222421060943333E+01 -v_z[3][[0,1,1,1,0,4]] = -3.2103798804862805E+01 -v_z[3][[1,0,0,2,0,4]] = 1.0304169326557250E+01 -v_z[3][[0,1,0,2,0,4]] = 5.0388872808010780E+02 -v_z[3][[0,0,1,2,0,4]] = 1.2466523603688321E+02 -v_z[3][[0,0,0,3,0,4]] = -2.7796946426747900E+03 -v_z[3][[1,1,0,0,0,5]] = 1.9911797994806568E-01 -v_z[3][[0,2,0,0,0,5]] = -8.5352896518890091E+00 -v_z[3][[0,1,1,0,0,5]] = 2.4090335846321627E+00 -v_z[3][[1,0,0,1,0,5]] = -5.8534023352610642E-01 -v_z[3][[0,1,0,1,0,5]] = -7.8173507947269826E+01 -v_z[3][[0,0,1,1,0,5]] = -7.0817526441791188E+00 -v_z[3][[0,0,0,2,0,5]] = 3.0356279265622265E+02 -v_z[3][[1,0,0,0,0,6]] = -1.2933496426824239E-16 -v_z[3][[0,1,0,0,0,6]] = 4.8883780394693961E+00 -v_z[3][[0,0,0,1,0,6]] = -1.4370195719810257E+01 -v_z[3][[0,0,0,0,0,7]] = 1.0105393170925861E-14 -v_z[3][[1,7,0,0,0,0]] = -9.7531899381723505E-02 -v_z[3][[0,8,0,0,0,0]] = 1.8154213568963600E+00 -v_z[3][[0,7,1,0,0,0]] = -1.1799919888943220E+00 -v_z[3][[1,6,0,1,0,0]] = -6.5986070470434477E-01 -v_z[3][[0,7,0,1,0,0]] = 2.6915923473076582E+01 -v_z[3][[0,6,1,1,0,0]] = -7.9833403253007491E+00 -v_z[3][[1,5,0,2,0,0]] = -5.4995225529302436E+00 -v_z[3][[0,6,0,2,0,0]] = 1.1636365808974371E+02 -v_z[3][[0,5,1,2,0,0]] = -6.6536103534731083E+01 -v_z[3][[1,4,0,3,0,0]] = -6.9272890704234165E+00 -v_z[3][[0,5,0,3,0,0]] = 6.9448914761986168E+02 -v_z[3][[0,4,1,3,0,0]] = -8.3809970478095465E+01 -v_z[3][[1,3,0,4,0,0]] = -3.6025256339764653E+01 -v_z[3][[0,4,0,4,0,0]] = 4.2687799892127913E+02 -v_z[3][[0,3,1,4,0,0]] = -4.3585241493566491E+02 -v_z[3][[1,2,0,5,0,0]] = 1.6202965769984559E+02 -v_z[3][[0,3,0,5,0,0]] = 1.9020206596320597E+03 -v_z[3][[0,2,1,5,0,0]] = 1.9603196416877513E+03 -v_z[3][[1,1,0,6,0,0]] = 1.6905185021281932E+02 -v_z[3][[0,2,0,6,0,0]] = -2.0288173238434756E+04 -v_z[3][[0,1,1,6,0,0]] = 2.0452778037076941E+03 -v_z[3][[1,0,0,7,0,0]] = 1.3534830588788498E+03 -v_z[3][[0,1,0,7,0,0]] = -2.4491705232851138E+04 -v_z[3][[0,0,1,7,0,0]] = 1.6375146764346662E+04 -v_z[3][[0,0,0,8,0,0]] = -1.2161535326102954E+05 -v_z[3][[1,6,0,0,0,1]] = 4.0904483040587314E-01 -v_z[3][[0,7,0,0,0,1]] = -1.6760965365699040E+01 -v_z[3][[0,6,1,0,0,1]] = 4.9488385444897229E+00 -v_z[3][[1,5,0,1,0,1]] = 5.2918667101187875E+00 -v_z[3][[0,6,0,1,0,1]] = -1.1339779587854296E+02 -v_z[3][[0,5,1,1,0,1]] = 6.4023774414536319E+01 -v_z[3][[1,4,0,2,0,1]] = 1.1169996321197186E+01 -v_z[3][[0,5,0,2,0,1]] = -9.4509906627346959E+02 -v_z[3][[0,4,1,2,0,1]] = 1.3514046438699427E+02 -v_z[3][[1,3,0,3,0,1]] = 7.0024843980216247E+01 -v_z[3][[0,4,0,3,0,1]] = -1.1904623300026672E+03 -v_z[3][[0,3,1,3,0,1]] = 8.4719722925557608E+02 -v_z[3][[1,2,0,4,0,1]] = -1.7405105001677128E+02 -v_z[3][[0,3,0,4,0,1]] = -6.1909803626195471E+03 -v_z[3][[0,2,1,4,0,1]] = -2.1057607406435909E+03 -v_z[3][[1,1,0,5,0,1]] = -1.0743011958029876E+02 -v_z[3][[0,2,0,5,0,1]] = 2.7844976855153032E+04 -v_z[3][[0,1,1,5,0,1]] = -1.2997458398156505E+03 -v_z[3][[1,0,0,6,0,1]] = -2.2188178131288910E+03 -v_z[3][[0,1,0,6,0,1]] = 2.9051748447291324E+04 -v_z[3][[0,0,1,6,0,1]] = -2.6844419732470804E+04 -v_z[3][[0,0,0,7,0,1]] = 2.3259756876200356E+05 -v_z[3][[1,5,0,0,0,2]] = -1.5208583137617637E+00 -v_z[3][[0,6,0,0,0,2]] = 3.5147404484649137E+01 -v_z[3][[0,5,1,0,0,2]] = -1.8400140239845456E+01 -v_z[3][[1,4,0,1,0,2]] = -5.7461283433305610E+00 -v_z[3][[0,5,0,1,0,2]] = 4.5470658938493813E+02 -v_z[3][[0,4,1,1,0,2]] = -6.9519669516035648E+01 -v_z[3][[1,3,0,2,0,2]] = -4.6931139746601268E+01 -v_z[3][[0,4,0,2,0,2]] = 9.5978814450144205E+02 -v_z[3][[0,3,1,2,0,2]] = -5.6779750298851093E+02 -v_z[3][[1,2,0,3,0,2]] = 6.5343837926347931E+01 -v_z[3][[0,3,0,3,0,2]] = 6.0169236533438789E+03 -v_z[3][[0,2,1,3,0,2]] = 7.9056396692247745E+02 -v_z[3][[1,1,0,4,0,2]] = -4.2558969770522367E+01 -v_z[3][[0,2,0,4,0,2]] = -1.4955433246393530E+04 -v_z[3][[0,1,1,4,0,2]] = -5.1490070123889291E+02 -v_z[3][[1,0,0,5,0,2]] = 1.5156262424369575E+03 -v_z[3][[0,1,0,5,0,2]] = -9.2309927568972889E+03 -v_z[3][[0,0,1,5,0,2]] = 1.8336839901312705E+04 -v_z[3][[0,0,0,6,0,2]] = -1.9065315427261608E+05 -v_z[3][[1,4,0,0,0,3]] = 1.2570315497382163E+00 -v_z[3][[0,5,0,0,0,3]] = -8.7120397479149148E+01 -v_z[3][[0,4,1,0,0,3]] = 1.5208225902308870E+01 -v_z[3][[1,3,0,1,0,3]] = 1.3887678034881201E+01 -v_z[3][[0,4,0,1,0,3]] = -3.2915951519437806E+02 -v_z[3][[0,3,1,1,0,3]] = 1.6802040080616183E+02 -v_z[3][[1,2,0,2,0,3]] = -7.4334163641871882E+00 -v_z[3][[0,3,0,2,0,3]] = -2.6883895178639827E+03 -v_z[3][[0,2,1,2,0,3]] = -8.9933363499126358E+01 -v_z[3][[1,1,0,3,0,3]] = 5.7725214824172838E+01 -v_z[3][[0,2,0,3,0,3]] = 3.7431370703269331E+03 -v_z[3][[0,1,1,3,0,3]] = 6.9838987532822648E+02 -v_z[3][[1,0,0,4,0,3]] = -5.5212407363154216E+02 -v_z[3][[0,1,0,4,0,3]] = -2.4379354270946551E+03 -v_z[3][[0,0,1,4,0,3]] = -6.6798861489515784E+03 -v_z[3][[0,0,0,5,0,3]] = 8.6820685054046655E+04 -v_z[3][[1,3,0,0,0,4]] = -1.7463182571086058E+00 -v_z[3][[0,4,0,0,0,4]] = 5.4005567415160456E+01 -v_z[3][[0,3,1,0,0,4]] = -2.1127872690995602E+01 -v_z[3][[1,2,0,1,0,4]] = -9.8665027789668436E-01 -v_z[3][[0,3,0,1,0,4]] = 5.9665322840068382E+02 -v_z[3][[0,2,1,1,0,4]] = -1.1937011697084003E+01 -v_z[3][[1,1,0,2,0,4]] = -2.0524866293851829E+01 -v_z[3][[0,2,0,2,0,4]] = -3.1936021706429921E+02 -v_z[3][[0,1,1,2,0,4]] = -2.4832057976316366E+02 -v_z[3][[1,0,0,3,0,4]] = 1.1322511836296886E+02 -v_z[3][[0,1,0,3,0,4]] = 2.4800355897119393E+03 -v_z[3][[0,0,1,3,0,4]] = 1.3698567694965870E+03 -v_z[3][[0,0,0,4,0,4]] = -2.3720784005979280E+04 -v_z[3][[1,2,0,0,0,5]] = 3.4766738988546919E-01 -v_z[3][[0,3,0,0,0,5]] = -6.0021346883295102E+01 -v_z[3][[0,2,1,0,0,5]] = 4.2062621302905416E+00 -v_z[3][[1,1,0,1,0,5]] = 3.1842363381544017E+00 -v_z[3][[0,2,0,1,0,5]] = -3.3911389485320768E+01 -v_z[3][[0,1,1,1,0,5]] = 3.8524558565835363E+01 -v_z[3][[1,0,0,2,0,5]] = -1.2365003191868691E+01 -v_z[3][[0,1,0,2,0,5]] = -7.0544421931214902E+02 -v_z[3][[0,0,1,2,0,5]] = -1.4959828324425987E+02 -v_z[3][[0,0,0,3,0,5]] = 3.8915724997447123E+03 -v_z[3][[1,1,0,0,0,6]] = -1.9911797994806563E-01 -v_z[3][[0,2,0,0,0,6]] = 9.9578379272038084E+00 -v_z[3][[0,1,1,0,0,6]] = -2.4090335846321644E+00 -v_z[3][[1,0,0,1,0,6]] = 5.8534023352610731E-01 -v_z[3][[0,1,0,1,0,6]] = 9.1202425938481582E+01 -v_z[3][[0,0,1,1,0,6]] = 7.0817526441791214E+00 -v_z[3][[0,0,0,2,0,6]] = -3.5415659143226151E+02 -v_z[3][[1,0,0,0,0,7]] = -2.3675327303637054E-16 -v_z[3][[0,1,0,0,0,7]] = -4.8883780394694138E+00 -v_z[3][[0,0,0,1,0,7]] = 1.4370195719810486E+01 -v_z[3][[0,0,0,0,0,8]] = -5.3747785298076987E-14 -v_z[3][[1,8,0,0,0,0]] = -7.3947438275256142E-02 -v_z[3][[0,9,0,0,0,0]] = 2.4062421715047946E+00 -v_z[3][[0,8,1,0,0,0]] = -8.9465482900675231E-01 -v_z[3][[1,7,0,1,0,0]] = -1.0963645338234680E+00 -v_z[3][[0,8,0,1,0,0]] = 2.3039339797884143E+01 -v_z[3][[0,7,1,1,0,0]] = -1.3264392214450979E+01 -v_z[3][[1,6,0,2,0,0]] = -4.7398332025712531E+00 -v_z[3][[0,7,0,2,0,0]] = 2.1095387350517970E+02 -v_z[3][[0,6,1,2,0,0]] = -5.7344983981491751E+01 -v_z[3][[1,5,0,3,0,0]] = -2.8288580599410913E+01 -v_z[3][[0,6,0,3,0,0]] = 6.8037847699461577E+02 -v_z[3][[0,5,1,3,0,0]] = -3.4225006070938167E+02 -v_z[3][[1,4,0,4,0,0]] = -1.7387993347319679E+01 -v_z[3][[0,5,0,4,0,0]] = 3.1152645558300051E+03 -v_z[3][[0,4,1,4,0,0]] = -2.1036904830984804E+02 -v_z[3][[1,3,0,5,0,0]] = -7.7474881956247941E+01 -v_z[3][[0,4,0,5,0,0]] = -2.2091182228993137E+02 -v_z[3][[0,3,1,5,0,0]] = -9.3733168971828582E+02 -v_z[3][[1,2,0,6,0,0]] = 8.2639682108382658E+02 -v_z[3][[0,3,0,6,0,0]] = -8.0610949868853197E+02 -v_z[3][[0,2,1,6,0,0]] = 9.9981814637906664E+03 -v_z[3][[1,1,0,7,0,0]] = 9.9761901229270006E+02 -v_z[3][[0,2,0,7,0,0]] = -9.7830173730697483E+04 -v_z[3][[0,1,1,7,0,0]] = 1.2069717189314295E+04 -v_z[3][[1,0,0,8,0,0]] = 4.9537501552630520E+03 -v_z[3][[0,1,0,8,0,0]] = -1.2368400389125964E+05 -v_z[3][[0,0,1,8,0,0]] = 5.9933063287494202E+04 -v_z[3][[0,0,0,9,0,0]] = -4.4511301048900193E+05 -v_z[3][[1,7,0,0,0,1]] = 6.8272329567206413E-01 -v_z[3][[0,8,0,0,0,1]] = -1.4523370855170885E+01 -v_z[3][[0,7,1,0,0,1]] = 8.2599439222602538E+00 -v_z[3][[1,6,0,1,0,1]] = 4.6190249329304169E+00 -v_z[3][[0,7,0,1,0,1]] = -2.1532738778461257E+02 -v_z[3][[0,6,1,1,0,1]] = 5.5883382277105255E+01 -v_z[3][[1,5,0,2,0,1]] = 3.8496657870511683E+01 -v_z[3][[0,6,0,2,0,1]] = -9.3090926471794967E+02 -v_z[3][[0,5,1,2,0,1]] = 4.6575272474311760E+02 -v_z[3][[1,4,0,3,0,1]] = 4.8491023492963905E+01 -v_z[3][[0,5,0,3,0,1]] = -5.5559131809588953E+03 -v_z[3][[0,4,1,3,0,1]] = 5.8666979334666894E+02 -v_z[3][[1,3,0,4,0,1]] = 2.5217679437835272E+02 -v_z[3][[0,4,0,4,0,1]] = -3.4150239913702130E+03 -v_z[3][[0,3,1,4,0,1]] = 3.0509669045496539E+03 -v_z[3][[1,2,0,5,0,1]] = -1.1342076038989176E+03 -v_z[3][[0,3,0,5,0,1]] = -1.5216165277056416E+04 -v_z[3][[0,2,1,5,0,1]] = -1.3722237491814260E+04 -v_z[3][[1,1,0,6,0,1]] = -1.1833629514897334E+03 -v_z[3][[0,2,0,6,0,1]] = 1.6230538590747834E+05 -v_z[3][[0,1,1,6,0,1]] = -1.4316944625953867E+04 -v_z[3][[1,0,0,7,0,1]] = -9.4743814121519499E+03 -v_z[3][[0,1,0,7,0,1]] = 1.9593364186280617E+05 -v_z[3][[0,0,1,7,0,1]] = -1.1462602735042667E+05 -v_z[3][[0,0,0,8,0,1]] = 9.7292282608823781E+05 -v_z[3][[1,6,0,0,0,2]] = -1.4316569064205560E+00 -v_z[3][[0,7,0,0,0,2]] = 6.7043861462796187E+01 -v_z[3][[0,6,1,0,0,2]] = -1.7320934905714029E+01 -v_z[3][[1,5,0,1,0,2]] = -1.8521533485415759E+01 -v_z[3][[0,6,0,1,0,2]] = 4.5359118351417175E+02 -v_z[3][[0,5,1,1,0,2]] = -2.2408321045087706E+02 -v_z[3][[1,4,0,2,0,2]] = -3.9094987124190112E+01 -v_z[3][[0,5,0,2,0,2]] = 3.7803962650938784E+03 -v_z[3][[0,4,1,2,0,2]] = -4.7299162535448068E+02 -v_z[3][[1,3,0,3,0,2]] = -2.4508695393075681E+02 -v_z[3][[0,4,0,3,0,2]] = 4.7618493200106604E+03 -v_z[3][[0,3,1,3,0,2]] = -2.9651903023945115E+03 -v_z[3][[1,2,0,4,0,2]] = 6.0917867505869913E+02 -v_z[3][[0,3,0,4,0,2]] = 2.4763921450478141E+04 -v_z[3][[0,2,1,4,0,2]] = 7.3701625922525582E+03 -v_z[3][[1,1,0,5,0,2]] = 3.7600541853104505E+02 -v_z[3][[0,2,0,5,0,2]] = -1.1137990742061229E+05 -v_z[3][[0,1,1,5,0,2]] = 4.5491104393548012E+03 -v_z[3][[1,0,0,6,0,2]] = 7.7658623459511173E+03 -v_z[3][[0,1,0,6,0,2]] = -1.1620699378916669E+05 -v_z[3][[0,0,1,6,0,2]] = 9.3955469063647804E+04 -v_z[3][[0,0,0,7,0,2]] = -9.3039027504801296E+05 -v_z[3][[1,5,0,0,0,3]] = 3.5486693987774500E+00 -v_z[3][[0,6,0,0,0,3]] = -9.3726411959064393E+01 -v_z[3][[0,5,1,0,0,3]] = 4.2933660559639392E+01 -v_z[3][[1,4,0,1,0,3]] = 1.3407632801104645E+01 -v_z[3][[0,5,0,1,0,3]] = -1.2125509050265021E+03 -v_z[3][[0,4,1,1,0,3]] = 1.6221256220408327E+02 -v_z[3][[1,3,0,2,0,3]] = 1.0950599274206969E+02 -v_z[3][[0,4,0,2,0,3]] = -2.5594350520038420E+03 -v_z[3][[0,3,1,2,0,3]] = 1.3248608403065257E+03 -v_z[3][[1,2,0,3,0,3]] = -1.5246895516147868E+02 -v_z[3][[0,3,0,3,0,3]] = -1.6045129742250359E+04 -v_z[3][[0,2,1,3,0,3]] = -1.8446492561524456E+03 -v_z[3][[1,1,0,4,0,3]] = 9.9304262797886850E+01 -v_z[3][[0,2,0,4,0,3]] = 3.9881155323716055E+04 -v_z[3][[0,1,1,4,0,3]] = 1.2014349695573983E+03 -v_z[3][[1,0,0,5,0,3]] = -3.5364612323529195E+03 -v_z[3][[0,1,0,5,0,3]] = 2.4615980685058701E+04 -v_z[3][[0,0,1,5,0,3]] = -4.2785959769729634E+04 -v_z[3][[0,0,0,6,0,3]] = 5.0840841139364539E+05 -v_z[3][[1,4,0,0,0,4]] = -2.1998052120418814E+00 -v_z[3][[0,5,0,0,0,4]] = 1.7424079495829841E+02 -v_z[3][[0,4,1,0,0,4]] = -2.6614395329040526E+01 -v_z[3][[1,3,0,1,0,4]] = -2.4303436561042112E+01 -v_z[3][[0,4,0,1,0,4]] = 6.5831903038875805E+02 -v_z[3][[0,3,1,1,0,4]] = -2.9403570141078319E+02 -v_z[3][[1,2,0,2,0,4]] = 1.3008478637327627E+01 -v_z[3][[0,3,0,2,0,4]] = 5.3767790357279646E+03 -v_z[3][[0,2,1,2,0,4]] = 1.5738338612347070E+02 -v_z[3][[1,1,0,3,0,4]] = -1.0101912594230248E+02 -v_z[3][[0,2,0,3,0,4]] = -7.4862741406539126E+03 -v_z[3][[0,1,1,3,0,4]] = -1.2221822818243954E+03 -v_z[3][[1,0,0,4,0,4]] = 9.6621712885520026E+02 -v_z[3][[0,1,0,4,0,4]] = 4.8758708541891456E+03 -v_z[3][[0,0,1,4,0,4]] = 1.1689800760665261E+04 -v_z[3][[0,0,0,5,0,4]] = -1.7364137010809354E+05 -v_z[3][[1,3,0,0,0,5]] = 2.4448455599520482E+00 -v_z[3][[0,4,0,0,0,5]] = -8.6408907864256776E+01 -v_z[3][[0,3,1,0,0,5]] = 2.9579021767393851E+01 -v_z[3][[1,2,0,1,0,5]] = 1.3813103890553666E+00 -v_z[3][[0,3,0,1,0,5]] = -9.5464516544109472E+02 -v_z[3][[0,2,1,1,0,5]] = 1.6711816375917635E+01 -v_z[3][[1,1,0,2,0,5]] = 2.8734812811392544E+01 -v_z[3][[0,2,0,2,0,5]] = 5.1097634730288411E+02 -v_z[3][[0,1,1,2,0,5]] = 3.4764881166842912E+02 -v_z[3][[1,0,0,3,0,5]] = -1.5851516570815636E+02 -v_z[3][[0,1,0,3,0,5]] = -3.9680569435389975E+03 -v_z[3][[0,0,1,3,0,5]] = -1.9177994772952218E+03 -v_z[3][[0,0,0,4,0,5]] = 3.7953254409567162E+04 -v_z[3][[1,2,0,0,0,6]] = -4.0561195486637880E-01 -v_z[3][[0,3,0,0,0,6]] = 8.0028462511060155E+01 -v_z[3][[0,2,1,0,0,6]] = -4.9073058186722989E+00 -v_z[3][[1,1,0,1,0,6]] = -3.7149423945134705E+00 -v_z[3][[0,2,0,1,0,6]] = 4.5215185980427236E+01 -v_z[3][[0,1,1,1,0,6]] = -4.4945318326807907E+01 -v_z[3][[1,0,0,2,0,6]] = 1.4425837057180118E+01 -v_z[3][[0,1,0,2,0,6]] = 9.4059229241619698E+02 -v_z[3][[0,0,1,2,0,6]] = 1.7453133045163653E+02 -v_z[3][[0,0,0,3,0,6]] = -5.1887633329929322E+03 -v_z[3][[1,1,0,0,0,7]] = 1.9911797994806596E-01 -v_z[3][[0,2,0,0,0,7]] = -1.1380386202518560E+01 -v_z[3][[0,1,1,0,0,7]] = 2.4090335846321644E+00 -v_z[3][[1,0,0,1,0,7]] = -5.8534023352611486E-01 -v_z[3][[0,1,0,1,0,7]] = -1.0423134392969297E+02 -v_z[3][[0,0,1,1,0,7]] = -7.0817526441791241E+00 -v_z[3][[0,0,0,2,0,7]] = 4.0475039020830764E+02 -v_z[3][[1,0,0,0,0,8]] = 1.7462246790302828E-15 -v_z[3][[0,1,0,0,0,8]] = 4.8883780394695009E+00 -v_z[3][[0,0,0,1,0,8]] = -1.4370195719811198E+01 -v_z[3][[0,0,0,0,0,9]] = 8.0918353229703886E-14 -v_z[3][[1,9,0,0,0,0]] = -9.8013303510358002E-02 -v_z[3][[0,10,0,0,0,0]] = 1.9691595945530533E+00 -v_z[3][[0,9,1,0,0,0]] = -1.1858162681179443E+00 -v_z[3][[1,8,0,1,0,0]] = -9.3845990691622905E-01 -v_z[3][[0,9,0,1,0,0]] = 3.2915299179007832E+01 -v_z[3][[0,8,1,1,0,0]] = -1.1353979355262840E+01 -v_z[3][[1,7,0,2,0,0]] = -8.5927702021856192E+00 -v_z[3][[0,8,0,2,0,0]] = 2.0569049838702117E+02 -v_z[3][[0,7,1,2,0,0]] = -1.0395983329828286E+02 -v_z[3][[1,6,0,3,0,0]] = -2.7713811584427830E+01 -v_z[3][[0,7,0,3,0,0]] = 1.3523006950409115E+03 -v_z[3][[0,6,1,3,0,0]] = -3.3529620420249398E+02 -v_z[3][[1,5,0,4,0,0]] = -1.2689386548099395E+02 -v_z[3][[0,6,0,4,0,0]] = 3.4448842817765822E+03 -v_z[3][[0,5,1,4,0,0]] = -1.5352284294328506E+03 -v_z[3][[1,4,0,5,0,0]] = 8.9983866726065571E+00 -v_z[3][[0,5,0,5,0,0]] = 1.2240947340486435E+04 -v_z[3][[0,4,1,5,0,0]] = 1.0886719374848508E+02 -v_z[3][[1,3,0,6,0,0]] = 3.2835204990265993E+01 -v_z[3][[0,4,0,6,0,0]] = -1.2390498478914637E+04 -v_z[3][[0,3,1,6,0,0]] = 3.9725750331778545E+02 -v_z[3][[1,2,0,7,0,0]] = 3.9849100077658695E+03 -v_z[3][[0,3,0,7,0,0]] = -4.2659825384033880E+04 -v_z[3][[0,2,1,7,0,0]] = 4.8211527873819359E+04 -v_z[3][[1,1,0,8,0,0]] = 5.0380123648107447E+03 -v_z[3][[0,2,0,8,0,0]] = -4.5387389318823919E+05 -v_z[3][[0,1,1,8,0,0]] = 6.0952511620431425E+04 -v_z[3][[1,0,0,9,0,0]] = 1.8130758869620873E+04 -v_z[3][[0,1,0,9,0,0]] = -5.7728637645122502E+05 -v_z[3][[0,0,1,9,0,0]] = 2.1935541452949526E+05 -v_z[3][[0,0,0,10,0,0]] = -1.6291163831508628E+06 -v_z[3][[1,8,0,0,0,1]] = 5.9157950620204913E-01 -v_z[3][[0,9,0,0,0,1]] = -2.1656179543543153E+01 -v_z[3][[0,8,1,0,0,1]] = 7.1572386320540158E+00 -v_z[3][[1,7,0,1,0,1]] = 8.7709162705877368E+00 -v_z[3][[0,8,0,1,0,1]] = -2.0735405818095745E+02 -v_z[3][[0,7,1,1,0,1]] = 1.0611513771560784E+02 -v_z[3][[1,6,0,2,0,1]] = 3.7918665620570067E+01 -v_z[3][[0,7,0,2,0,1]] = -1.8985848615466186E+03 -v_z[3][[0,6,1,2,0,1]] = 4.5875987185193389E+02 -v_z[3][[1,5,0,3,0,1]] = 2.2630864479528731E+02 -v_z[3][[0,6,0,3,0,1]] = -6.1234062929515285E+03 -v_z[3][[0,5,1,3,0,1]] = 2.7380004856750534E+03 -v_z[3][[1,4,0,4,0,1]] = 1.3910394677855675E+02 -v_z[3][[0,5,0,4,0,1]] = -2.8037381002470127E+04 -v_z[3][[0,4,1,4,0,1]] = 1.6829523864787880E+03 -v_z[3][[1,3,0,5,0,1]] = 6.1979905564998444E+02 -v_z[3][[0,4,0,5,0,1]] = 1.9882064006092410E+03 -v_z[3][[0,3,1,5,0,1]] = 7.4986535177462647E+03 -v_z[3][[1,2,0,6,0,1]] = -6.6111745686705945E+03 -v_z[3][[0,3,0,6,0,1]] = 7.2549854881971642E+03 -v_z[3][[0,2,1,6,0,1]] = -7.9985451710325317E+04 -v_z[3][[1,1,0,7,0,1]] = -7.9809520983416151E+03 -v_z[3][[0,2,0,7,0,1]] = 8.8047156357627816E+05 -v_z[3][[0,1,1,7,0,1]] = -9.6557737514514272E+04 -v_z[3][[1,0,0,8,0,1]] = -3.9630001242104299E+04 -v_z[3][[0,1,0,8,0,1]] = 1.1131560350213232E+06 -v_z[3][[0,0,1,8,0,1]] = -4.7946450629995367E+05 -v_z[3][[0,0,0,9,0,1]] = 4.0060170944010336E+06 -v_z[3][[1,7,0,0,0,2]] = -2.7308931826882574E+00 -v_z[3][[0,8,0,0,0,2]] = 6.5355168848269017E+01 -v_z[3][[0,7,1,0,0,2]] = -3.3039775689041015E+01 -v_z[3][[1,6,0,1,0,2]] = -1.8476099731721668E+01 -v_z[3][[0,7,0,1,0,2]] = 9.6897324503075708E+02 -v_z[3][[0,6,1,1,0,2]] = -2.2353352910842096E+02 -v_z[3][[1,5,0,2,0,2]] = -1.5398663148204682E+02 -v_z[3][[0,6,0,2,0,2]] = 4.1890916912307730E+03 -v_z[3][[0,5,1,2,0,2]] = -1.8630108989724704E+03 -v_z[3][[1,4,0,3,0,2]] = -1.9396409397185562E+02 -v_z[3][[0,5,0,3,0,2]] = 2.5001609314315047E+04 -v_z[3][[0,4,1,3,0,2]] = -2.3466791733866721E+03 -v_z[3][[1,3,0,4,0,2]] = -1.0087071775134114E+03 -v_z[3][[0,4,0,4,0,2]] = 1.5367607961165882E+04 -v_z[3][[0,3,1,4,0,2]] = -1.2203867618198594E+04 -v_z[3][[1,2,0,5,0,2]] = 4.5368304155956785E+03 -v_z[3][[0,3,0,5,0,2]] = 6.8472743746755004E+04 -v_z[3][[0,2,1,5,0,2]] = 5.4888949967257009E+04 -v_z[3][[1,1,0,6,0,2]] = 4.7334518059589482E+03 -v_z[3][[0,2,0,6,0,2]] = -7.3037423658365128E+05 -v_z[3][[0,1,1,6,0,2]] = 5.7267778503815527E+04 -v_z[3][[1,0,0,7,0,2]] = 3.7897525648607618E+04 -v_z[3][[0,1,0,7,0,2]] = -8.8170138838263927E+05 -v_z[3][[0,0,1,7,0,2]] = 4.5850410940170666E+05 -v_z[3][[0,0,0,8,0,2]] = -4.3781527173970398E+06 -v_z[3][[1,6,0,0,0,3]] = 3.8177517504548164E+00 -v_z[3][[0,7,0,0,0,3]] = -2.0113158438838855E+02 -v_z[3][[0,6,1,0,0,3]] = 4.6189159748570745E+01 -v_z[3][[1,5,0,1,0,3]] = 4.9390755961108695E+01 -v_z[3][[0,6,0,1,0,3]] = -1.3607735505425169E+03 -v_z[3][[0,5,1,1,0,3]] = 5.9755522786900542E+02 -v_z[3][[1,4,0,2,0,3]] = 1.0425329899784035E+02 -v_z[3][[0,5,0,2,0,3]] = -1.1341188795281643E+04 -v_z[3][[0,4,1,2,0,3]] = 1.2613110009452807E+03 -v_z[3][[1,3,0,3,0,3]] = 6.5356521048201876E+02 -v_z[3][[0,4,0,3,0,3]] = -1.4285547960031934E+04 -v_z[3][[0,3,1,3,0,3]] = 7.9071741397187016E+03 -v_z[3][[1,2,0,4,0,3]] = -1.6244764668231919E+03 -v_z[3][[0,3,0,4,0,3]] = -7.4291764351434336E+04 -v_z[3][[0,2,1,4,0,3]] = -1.9653766912673491E+04 -v_z[3][[1,1,0,5,0,3]] = -1.0026811160827765E+03 -v_z[3][[0,2,0,5,0,3]] = 3.3413972226183623E+05 -v_z[3][[0,1,1,5,0,3]] = -1.2130961171612958E+04 -v_z[3][[1,0,0,6,0,3]] = -2.0708966255869847E+04 -v_z[3][[0,1,0,6,0,3]] = 3.4862098136748734E+05 -v_z[3][[0,0,1,6,0,3]] = -2.5054791750306077E+05 -v_z[3][[0,0,0,7,0,3]] = 2.7911708251440637E+06 -v_z[3][[1,5,0,0,0,4]] = -7.0973387975549018E+00 -v_z[3][[0,6,0,0,0,4]] = 2.1088442690789492E+02 -v_z[3][[0,5,1,0,0,4]] = -8.5867321119278799E+01 -v_z[3][[1,4,0,1,0,4]] = -2.6815265602209301E+01 -v_z[3][[0,5,0,1,0,4]] = 2.7282395363096307E+03 -v_z[3][[0,4,1,1,0,4]] = -3.2442512440816648E+02 -v_z[3][[1,3,0,2,0,4]] = -2.1901198548413944E+02 -v_z[3][[0,4,0,2,0,4]] = 5.7587288670086482E+03 -v_z[3][[0,3,1,2,0,4]] = -2.6497216806130509E+03 -v_z[3][[1,2,0,3,0,4]] = 3.0493791032295871E+02 -v_z[3][[0,3,0,3,0,4]] = 3.6101541920063370E+04 -v_z[3][[0,2,1,3,0,4]] = 3.6892985123048929E+03 -v_z[3][[1,1,0,4,0,4]] = -1.9860852559577370E+02 -v_z[3][[0,2,0,4,0,4]] = -8.9732599478361590E+04 -v_z[3][[0,1,1,4,0,4]] = -2.4028699391147820E+03 -v_z[3][[1,0,0,5,0,4]] = 7.0729224647058609E+03 -v_z[3][[0,1,0,5,0,4]] = -5.5385956541385865E+04 -v_z[3][[0,0,1,5,0,4]] = 8.5571919539459297E+04 -v_z[3][[0,0,0,6,0,4]] = -1.1439189256356955E+06 -v_z[3][[1,4,0,0,0,5]] = 3.5196883392670104E+00 -v_z[3][[0,5,0,0,0,5]] = -3.1363343092493733E+02 -v_z[3][[0,4,1,0,0,5]] = 4.2583032526464855E+01 -v_z[3][[1,3,0,1,0,5]] = 3.8885498497667385E+01 -v_z[3][[0,4,0,1,0,5]] = -1.1849742546997636E+03 -v_z[3][[0,3,1,1,0,5]] = 4.7045712225725322E+02 -v_z[3][[1,2,0,2,0,5]] = -2.0813565819723976E+01 -v_z[3][[0,3,0,2,0,5]] = -9.6782022643103446E+03 -v_z[3][[0,2,1,2,0,5]] = -2.5181341779755348E+02 -v_z[3][[1,1,0,3,0,5]] = 1.6163060150768376E+02 -v_z[3][[0,2,0,3,0,5]] = 1.3475293453176981E+04 -v_z[3][[0,1,1,3,0,5]] = 1.9554916509190298E+03 -v_z[3][[1,0,0,4,0,5]] = -1.5459474061683202E+03 -v_z[3][[0,1,0,4,0,5]] = -8.7765675375386090E+03 -v_z[3][[0,0,1,4,0,5]] = -1.8703681217064423E+04 -v_z[3][[0,0,0,5,0,5]] = 3.1255446619457408E+05 -v_z[3][[1,3,0,0,0,6]] = -3.2597940799360661E+00 -v_z[3][[0,4,0,0,0,6]] = 1.2961336179638513E+02 -v_z[3][[0,3,1,0,0,6]] = -3.9438695689858463E+01 -v_z[3][[1,2,0,1,0,6]] = -1.8417471854071525E+00 -v_z[3][[0,3,0,1,0,6]] = 1.4319677481616418E+03 -v_z[3][[0,2,1,1,0,6]] = -2.2282421834556857E+01 -v_z[3][[1,1,0,2,0,6]] = -3.8313083748523347E+01 -v_z[3][[0,2,0,2,0,6]] = -7.6646452095434336E+02 -v_z[3][[0,1,1,2,0,6]] = -4.6353174889123886E+02 -v_z[3][[1,0,0,3,0,6]] = 2.1135355427754106E+02 -v_z[3][[0,1,0,3,0,6]] = 5.9520854153084065E+03 -v_z[3][[0,0,1,3,0,6]] = 2.5570659697269630E+03 -v_z[3][[0,0,0,4,0,6]] = -5.6929881614350321E+04 -v_z[3][[1,2,0,0,0,7]] = 4.6355651984728818E-01 -v_z[3][[0,3,0,0,0,7]] = -1.0289373751422039E+02 -v_z[3][[0,2,1,0,0,7]] = 5.6083495070540597E+00 -v_z[3][[1,1,0,1,0,7]] = 4.2456484508725474E+00 -v_z[3][[0,2,0,1,0,7]] = -5.8133810546263696E+01 -v_z[3][[0,1,1,1,0,7]] = 5.1366078087780437E+01 -v_z[3][[1,0,0,2,0,7]] = -1.6486670922491584E+01 -v_z[3][[0,1,0,2,0,7]] = -1.2093329473922688E+03 -v_z[3][[0,0,1,2,0,7]] = -1.9946437765901325E+02 -v_z[3][[0,0,0,3,0,7]] = 6.6712671424195878E+03 -v_z[3][[1,1,0,0,0,8]] = -1.9911797994806765E-01 -v_z[3][[0,2,0,0,0,8]] = 1.2802934477833471E+01 -v_z[3][[0,1,1,0,0,8]] = -2.4090335846321573E+00 -v_z[3][[1,0,0,1,0,8]] = 5.8534023352613507E-01 -v_z[3][[0,1,0,1,0,8]] = 1.1726026192090642E+02 -v_z[3][[0,0,1,1,0,8]] = 7.0817526441791214E+00 -v_z[3][[0,0,0,2,0,8]] = -4.5534418898435518E+02 -v_z[3][[1,0,0,0,0,9]] = -2.4478938005307911E-15 -v_z[3][[0,1,0,0,0,9]] = -4.8883780394696998E+00 -v_z[3][[0,0,0,1,0,9]] = 1.4370195719811958E+01 -v_z[3][[0,0,0,0,0,10]] = -9.2722592696757856E-14 -v_z[4][[0,0,0,0,0,0]] = 5.1056863393444984E-01 -v_z[4][[0,1,0,0,0,0]] = -8.3281830218258979E-01 -v_z[4][[0,0,0,1,0,0]] = 2.1385356109267489E-01 -v_z[4][[0,0,0,0,0,1]] = 5.1056863393444984E-01 -v_z[4][[0,2,0,0,0,0]] = -2.5528431696722492E-01 -v_z[4][[0,0,0,2,0,0]] = -2.5528431696722492E-01 -v_z[4][[0,0,0,1,0,1]] = 7.3515830342890819E-18 -v_z[4][[0,0,0,0,0,2]] = -1.6481295189900569E-17 -v_z[4][[0,2,0,1,0,0]] = -3.6757915171445410E-18 -v_z[4][[0,0,0,3,0,0]] = 1.7643799282293797E-16 -v_z[4][[0,2,0,0,0,1]] = 2.5528431696722492E-01 -v_z[4][[0,0,0,2,0,1]] = 2.5528431696722481E-01 -v_z[4][[0,0,0,1,0,2]] = 4.4109498205734491E-17 -v_z[4][[0,0,0,0,0,3]] = 1.8319190948472838E-17 -v_z[4][[0,4,0,0,0,0]] = -6.3821079241806231E-02 -v_z[4][[0,2,0,2,0,0]] = -1.2764215848361241E-01 -v_z[4][[0,0,0,4,0,0]] = -6.3821079241805440E-02 -v_z[4][[0,0,0,3,0,1]] = -7.0575197129175186E-16 -v_z[4][[0,2,0,0,0,2]] = -2.5528431696722492E-01 -v_z[4][[0,0,0,2,0,2]] = -2.5528431696722459E-01 -v_z[4][[0,0,0,1,0,3]] = -5.8812664274312655E-17 -v_z[4][[0,0,0,0,0,4]] = -6.4206818275529741E-17 -v_z[4][[0,2,0,3,0,0]] = 3.5287598564587593E-16 -v_z[4][[0,0,0,5,0,0]] = 1.8820052567780050E-15 -v_z[4][[0,4,0,0,0,1]] = 1.9146323772541871E-01 -v_z[4][[0,2,0,2,0,1]] = 3.8292647545083708E-01 -v_z[4][[0,0,0,4,0,1]] = 1.9146323772541538E-01 -v_z[4][[0,2,0,1,0,2]] = 2.9406332137156328E-17 -v_z[4][[0,0,0,3,0,2]] = 1.8820052567780050E-15 -v_z[4][[0,2,0,0,0,3]] = 2.5528431696722498E-01 -v_z[4][[0,0,0,2,0,3]] = 2.5528431696722464E-01 -v_z[4][[0,0,0,1,0,4]] = -5.8812664274312655E-17 -v_z[4][[0,0,0,0,0,5]] = -1.1027374551433623E-17 -v_z[4][[0,6,0,0,0,0]] = -3.1910539620903115E-02 -v_z[4][[0,4,0,2,0,0]] = -9.5731618862709339E-02 -v_z[4][[0,2,0,4,0,0]] = -9.5731618862708631E-02 -v_z[4][[0,0,0,6,0,0]] = -3.1910539620895663E-02 -v_z[4][[0,4,0,1,0,1]] = 5.8812664274312655E-17 -v_z[4][[0,4,0,0,0,2]] = -3.8292647545083741E-01 -v_z[4][[0,2,0,2,0,2]] = -7.6585295090167416E-01 -v_z[4][[0,0,0,4,0,2]] = -3.8292647545083075E-01 -v_z[4][[0,0,0,3,0,3]] = -3.7640105135560099E-15 -v_z[4][[0,2,0,0,0,4]] = -2.5528431696722503E-01 -v_z[4][[0,0,0,2,0,4]] = -2.5528431696722564E-01 -v_z[4][[0,0,0,1,0,5]] = 5.8812664274312655E-17 -v_z[4][[0,0,0,0,0,6]] = -1.5046838565392672E-16 -v_z[4][[0,0,0,7,0,0]] = 3.0112084108448080E-14 -v_z[4][[0,6,0,0,0,1]] = 1.5955269810451558E-01 -v_z[4][[0,4,0,2,0,1]] = 4.7865809431354689E-01 -v_z[4][[0,2,0,4,0,1]] = 4.7865809431354034E-01 -v_z[4][[0,0,0,6,0,1]] = 1.5955269810446326E-01 -v_z[4][[0,4,0,1,0,2]] = -1.1762532854862531E-16 -v_z[4][[0,2,0,3,0,2]] = -7.5280210271120199E-15 -v_z[4][[0,4,0,0,0,3]] = 6.3821079241806233E-01 -v_z[4][[0,2,0,2,0,3]] = 1.2764215848361238E+00 -v_z[4][[0,0,0,4,0,3]] = 6.3821079241797352E-01 -v_z[4][[0,2,0,1,0,4]] = -2.3525065709725062E-16 -v_z[4][[0,2,0,0,0,5]] = 2.5528431696722548E-01 -v_z[4][[0,0,0,2,0,5]] = 2.5528431696722975E-01 -v_z[4][[0,0,0,0,0,7]] = -3.6757915171445406E-17 -v_z[4][[0,8,0,0,0,0]] = -1.9944087263064448E-02 -v_z[4][[0,6,0,2,0,0]] = -7.9776349052257806E-02 -v_z[4][[0,4,0,4,0,0]] = -1.1966452357838696E-01 -v_z[4][[0,2,0,6,0,0]] = -7.9776349052231632E-02 -v_z[4][[0,0,0,8,0,0]] = -1.9944087262335215E-02 -v_z[4][[0,6,0,1,0,1]] = 8.8218996411468983E-17 -v_z[4][[0,4,0,3,0,1]] = 1.8820052567780050E-15 -v_z[4][[0,2,0,5,0,1]] = 1.2044833643379232E-13 -v_z[4][[0,0,0,7,0,1]] = 4.8179334573516927E-13 -v_z[4][[0,6,0,0,0,2]] = -4.7865809431354672E-01 -v_z[4][[0,4,0,2,0,2]] = -1.4359742829406397E+00 -v_z[4][[0,2,0,4,0,2]] = -1.4359742829406510E+00 -v_z[4][[0,0,0,6,0,2]] = -4.7865809431435336E-01 -v_z[4][[0,4,0,1,0,3]] = 2.3525065709725062E-16 -v_z[4][[0,2,0,3,0,3]] = 1.5056042054224040E-14 -v_z[4][[0,0,0,5,0,3]] = -9.6358669147033854E-13 -v_z[4][[0,4,0,0,0,4]] = -9.5731618862709378E-01 -v_z[4][[0,2,0,2,0,4]] = -1.9146323772541880E+00 -v_z[4][[0,0,0,4,0,4]] = -9.5731618862702061E-01 -v_z[4][[0,2,0,1,0,5]] = 4.7050131419450124E-16 -v_z[4][[0,2,0,0,0,6]] = -2.5528431696722476E-01 -v_z[4][[0,0,0,2,0,6]] = -2.5528431696722931E-01 -v_z[4][[0,0,0,1,0,7]] = -7.0575197129175186E-16 -v_z[4][[0,0,0,0,0,8]] = 6.3863145778715229E-16 -v_z[4][[0,8,0,1,0,0]] = -7.3515830342890819E-18 -v_z[4][[0,0,0,9,0,0]] = 5.7815201488220313E-12 -v_z[4][[0,8,0,0,0,1]] = 1.3960861084145115E-01 -v_z[4][[0,6,0,2,0,1]] = 5.5843444336580494E-01 -v_z[4][[0,4,0,4,0,1]] = 8.3765166504867306E-01 -v_z[4][[0,2,0,6,0,1]] = 5.5843444336706682E-01 -v_z[4][[0,0,0,8,0,1]] = 1.3960861085128212E-01 -v_z[4][[0,6,0,1,0,2]] = -1.1762532854862531E-16 -v_z[4][[0,2,0,5,0,2]] = 4.8179334573516927E-13 -v_z[4][[0,0,0,7,0,2]] = -1.9271733829406769E-11 -v_z[4][[0,6,0,0,0,3]] = 1.1168688867316092E+00 -v_z[4][[0,4,0,2,0,3]] = 3.3506066601948277E+00 -v_z[4][[0,2,0,4,0,3]] = 3.3506066601954148E+00 -v_z[4][[0,0,0,6,0,3]] = 1.1168688867235341E+00 -v_z[4][[0,4,0,1,0,4]] = 4.7050131419450124E-16 -v_z[4][[0,2,0,3,0,4]] = 6.0224168216896159E-14 -v_z[4][[0,0,0,5,0,4]] = 1.9271733829406771E-12 -v_z[4][[0,4,0,0,0,5]] = 1.3402426640779317E+00 -v_z[4][[0,2,0,2,0,5]] = 2.6804853281558767E+00 -v_z[4][[0,0,0,4,0,5]] = 1.3402426640778293E+00 -v_z[4][[0,2,0,1,0,6]] = 9.4100262838900248E-16 -v_z[4][[0,0,0,3,0,6]] = -6.0224168216896159E-14 -v_z[4][[0,2,0,0,0,7]] = 2.5528431696722470E-01 -v_z[4][[0,0,0,2,0,7]] = 2.5528431696723308E-01 -v_z[4][[0,0,0,1,0,8]] = 9.4100262838900248E-16 -v_z[4][[0,0,0,0,0,9]] = -7.3515830342890813E-17 -v_z[4][[0,10,0,0,0,0]] = -1.3960861084145113E-02 -v_z[4][[0,8,0,2,0,0]] = -6.9804305420725563E-02 -v_z[4][[0,6,0,4,0,0]] = -1.3960861084145054E-01 -v_z[4][[0,4,0,6,0,0]] = -1.3960861084152582E-01 -v_z[4][[0,2,0,8,0,0]] = -6.9804305425641061E-02 -v_z[4][[0,0,0,10,0,0]] = -1.3960861043886700E-02 -v_z[4][[0,8,0,1,0,1]] = 1.1762532854862531E-16 -v_z[4][[0,6,0,3,0,1]] = -7.5280210271120199E-15 -v_z[4][[0,4,0,5,0,1]] = -2.4089667286758464E-13 -v_z[4][[0,2,0,7,0,1]] = 1.1563040297644063E-11 -v_z[4][[0,0,0,9,0,1]] = 3.0834774127050833E-11 -v_z[4][[0,8,0,0,0,2]] = -5.5843444336580461E-01 -v_z[4][[0,6,0,2,0,2]] = -2.2337377734632198E+00 -v_z[4][[0,4,0,4,0,2]] = -3.3506066601952944E+00 -v_z[4][[0,2,0,6,0,2]] = -2.2337377734586314E+00 -v_z[4][[0,0,0,8,0,2]] = -5.5843444351305016E-01 -v_z[4][[0,6,0,1,0,3]] = 4.7050131419450124E-16 -v_z[4][[0,2,0,5,0,3]] = 3.8543467658813542E-12 -v_z[4][[0,6,0,0,0,4]] = -2.2337377734632189E+00 -v_z[4][[0,4,0,2,0,4]] = -6.7012133203896260E+00 -v_z[4][[0,2,0,4,0,4]] = -6.7012133203903490E+00 -v_z[4][[0,0,0,6,0,4]] = -2.2337377734509234E+00 -v_z[4][[0,0,0,5,0,5]] = -1.5417387063525417E-11 -v_z[4][[0,4,0,0,0,6]] = -1.7869902187705740E+00 -v_z[4][[0,2,0,2,0,6]] = -3.5739804375411270E+00 -v_z[4][[0,0,0,4,0,6]] = -1.7869902187688320E+00 -v_z[4][[0,2,0,1,0,7]] = 1.8820052567780050E-15 -v_z[4][[0,0,0,3,0,7]] = 2.4089667286758464E-13 -v_z[4][[0,2,0,0,0,8]] = -2.5528431696722725E-01 -v_z[4][[0,0,0,2,0,8]] = -2.5528431696724246E-01 -v_z[4][[0,0,0,1,0,9]] = -9.4100262838900248E-16 -v_z[4][[0,0,0,0,0,10]] = -8.8218996411468983E-17 -v_z[5][[0,0,0,0,0,0]] = 5.4978140034254439E+00 -v_z[5][[1,0,0,0,0,0]] = -2.9100619138474915E-01 -v_z[5][[0,1,0,0,0,0]] = 2.0790204670029593E+00 -v_z[5][[0,0,1,0,0,0]] = -3.5207452815893663E+00 -v_z[5][[0,0,0,1,0,0]] = 2.5153078237606248E+01 -v_z[5][[0,0,0,0,1,0]] = 1.0000000000000000E+00 -v_z[5][[0,0,0,0,0,1]] = -4.2879710302052843E-03 -v_z[5][[1,1,0,0,0,0]] = -8.4684603424257252E-02 -v_z[5][[0,2,0,0,0,0]] = 4.1771319416822728E+00 -v_z[5][[0,1,1,0,0,0]] = -1.0245586752311477E+00 -v_z[5][[1,0,0,1,0,0]] = -1.0245586752311482E+00 -v_z[5][[0,1,0,1,0,0]] = 1.4639402999056788E+01 -v_z[5][[0,0,1,1,0,0]] = -1.2395647337833786E+01 -v_z[5][[0,0,0,2,0,0]] = 9.2129705636269378E+01 -v_z[5][[1,0,0,0,0,1]] = -5.5511151231257827E-17 -v_z[5][[0,1,0,0,0,1]] = -2.0790204670029588E+00 -v_z[5][[0,0,1,0,0,1]] = 4.4408920985006262E-16 -v_z[5][[0,0,0,1,0,1]] = -2.5153078237606252E+01 -v_z[5][[0,0,0,0,1,1]] = 2.2204460492503131E-16 -v_z[5][[0,0,0,0,0,2]] = 6.4152051665264213E-03 -v_z[5][[1,2,0,0,0,0]] = -1.7014683960379556E-01 -v_z[5][[0,3,0,0,0,0]] = 2.2550814907620169E+00 -v_z[5][[0,2,1,0,0,0]] = -2.0585255587239035E+00 -v_z[5][[1,1,0,1,0,0]] = -5.9630583585844110E-01 -v_z[5][[0,2,0,1,0,0]] = 3.1543313603959199E+01 -v_z[5][[0,1,1,1,0,0]] = -7.2144202430630324E+00 -v_z[5][[1,0,0,2,0,0]] = -3.7527132172238939E+00 -v_z[5][[0,1,0,2,0,0]] = 7.9391434018324674E+01 -v_z[5][[0,0,1,2,0,0]] = -4.5402289517718778E+01 -v_z[5][[0,0,0,3,0,0]] = 3.3694176553191681E+02 -v_z[5][[1,1,0,0,0,1]] = 8.4684603424257293E-02 -v_z[5][[0,2,0,0,0,1]] = -8.3542638833645437E+00 -v_z[5][[0,1,1,0,0,1]] = 1.0245586752311477E+00 -v_z[5][[1,0,0,1,0,1]] = 1.0245586752311482E+00 -v_z[5][[0,1,0,1,0,1]] = -2.9278805998113565E+01 -v_z[5][[0,0,1,1,0,1]] = 1.2395647337833786E+01 -v_z[5][[0,0,0,2,0,1]] = -1.8425941127253878E+02 -v_z[5][[1,0,0,0,0,2]] = -2.6422006943471743E-16 -v_z[5][[0,1,0,0,0,2]] = 2.0790204670029628E+00 -v_z[5][[0,0,1,0,0,2]] = 3.1918911957973251E-16 -v_z[5][[0,0,0,1,0,2]] = 2.5153078237606298E+01 -v_z[5][[0,0,0,0,1,2]] = -1.1969591984239969E-16 -v_z[5][[0,0,0,0,0,3]] = -8.5257606361732411E-03 -v_z[5][[1,3,0,0,0,0]] = -9.1856085481380967E-02 -v_z[5][[0,4,0,0,0,0]] = 3.6378396751722311E+00 -v_z[5][[0,3,1,0,0,0]] = -1.1113230203279798E+00 -v_z[5][[1,2,0,1,0,0]] = -1.2848517105216446E+00 -v_z[5][[0,3,0,1,0,0]] = 2.4438568573271166E+01 -v_z[5][[0,2,1,1,0,0]] = -1.5544808774808001E+01 -v_z[5][[1,1,0,2,0,0]] = -3.2338460403984737E+00 -v_z[5][[0,2,0,2,0,0]] = 1.8409885222493961E+02 -v_z[5][[0,1,1,2,0,0]] = -3.9124762720481627E+01 -v_z[5][[1,0,0,3,0,0]] = -1.3724626690314659E+01 -v_z[5][[0,1,0,3,0,0]] = 3.8488885812405482E+02 -v_z[5][[0,0,1,3,0,0]] = -1.6604772026177963E+02 -v_z[5][[0,0,0,4,0,0]] = 1.2332440150134682E+03 -v_z[5][[1,2,0,0,0,1]] = 3.4029367920759113E-01 -v_z[5][[0,3,0,0,0,1]] = -6.7652444722860512E+00 -v_z[5][[0,2,1,0,0,1]] = 4.1170511174478062E+00 -v_z[5][[1,1,0,1,0,1]] = 1.1926116717168820E+00 -v_z[5][[0,2,0,1,0,1]] = -9.4629940811877589E+01 -v_z[5][[0,1,1,1,0,1]] = 1.4428840486126067E+01 -v_z[5][[1,0,0,2,0,1]] = 7.5054264344477852E+00 -v_z[5][[0,1,0,2,0,1]] = -2.3817430205497402E+02 -v_z[5][[0,0,1,2,0,1]] = 9.0804579035437570E+01 -v_z[5][[0,0,0,3,0,1]] = -1.0108252965957502E+03 -v_z[5][[1,1,0,0,0,2]] = -8.4684603424257390E-02 -v_z[5][[0,2,0,0,0,2]] = 1.2531395825046827E+01 -v_z[5][[0,1,1,0,0,2]] = -1.0245586752311484E+00 -v_z[5][[1,0,0,1,0,2]] = -1.0245586752311493E+00 -v_z[5][[0,1,0,1,0,2]] = 4.3918208997170396E+01 -v_z[5][[0,0,1,1,0,2]] = -1.2395647337833784E+01 -v_z[5][[0,0,0,2,0,2]] = 2.7638911690880843E+02 -v_z[5][[1,0,0,0,0,3]] = 2.2865823817719289E-16 -v_z[5][[0,1,0,0,0,3]] = -2.0790204670029686E+00 -v_z[5][[0,0,1,0,0,3]] = 1.8908485888147197E-16 -v_z[5][[0,0,0,1,0,3]] = -2.5153078237606376E+01 -v_z[5][[0,0,0,0,1,3]] = 2.7018318138338770E-16 -v_z[5][[0,0,0,0,0,4]] = 1.0615558331213077E-02 -v_z[5][[1,4,0,0,0,0]] = -1.4817988331644005E-01 -v_z[5][[0,5,0,0,0,0]] = 2.4460521724965796E+00 -v_z[5][[0,4,1,0,0,0]] = -1.7927578191044640E+00 -v_z[5][[1,3,0,1,0,0]] = -9.9545460024614640E-01 -v_z[5][[0,4,0,1,0,0]] = 3.8835473216624251E+01 -v_z[5][[0,3,1,1,0,0]] = -1.2043530999034003E+01 -v_z[5][[1,2,0,2,0,0]] = -7.4988863933621523E+00 -v_z[5][[0,3,0,2,0,0]] = 1.8095889368872000E+02 -v_z[5][[0,2,1,2,0,0]] = -9.0725454193852315E+01 -v_z[5][[1,1,0,3,0,0]] = -1.5677652447374554E+01 -v_z[5][[0,2,0,3,0,0]] = 9.5070101515342105E+02 -v_z[5][[0,1,1,3,0,0]] = -1.8967644852447160E+02 -v_z[5][[1,0,0,4,0,0]] = -5.0233647044035905E+01 -v_z[5][[0,1,0,4,0,0]] = 1.7539328696012308E+03 -v_z[5][[0,0,1,4,0,0]] = -6.0775296554938973E+02 -v_z[5][[0,0,0,5,0,0]] = 4.5135530644526725E+03 -v_z[5][[1,3,0,0,0,1]] = 2.7556825644414296E-01 -v_z[5][[0,4,0,0,0,1]] = -1.4551358700688930E+01 -v_z[5][[0,3,1,0,0,1]] = 3.3339690609839394E+00 -v_z[5][[1,2,0,1,0,1]] = 3.8545551315649336E+00 -v_z[5][[0,3,0,1,0,1]] = -9.7754274293084620E+01 -v_z[5][[0,2,1,1,0,1]] = 4.6634426324424005E+01 -v_z[5][[1,1,0,2,0,1]] = 9.7015381211954210E+00 -v_z[5][[0,2,0,2,0,1]] = -7.3639540889975831E+02 -v_z[5][[0,1,1,2,0,1]] = 1.1737428816144487E+02 -v_z[5][[1,0,0,3,0,1]] = 4.1173880070943980E+01 -v_z[5][[0,1,0,3,0,1]] = -1.5395554324962191E+03 -v_z[5][[0,0,1,3,0,1]] = 4.9814316078533869E+02 -v_z[5][[0,0,0,4,0,1]] = -4.9329760600538702E+03 -v_z[5][[1,2,0,0,0,2]] = -5.1044051881138730E-01 -v_z[5][[0,3,0,0,0,2]] = 1.3530488944572106E+01 -v_z[5][[0,2,1,0,0,2]] = -6.1755766761717101E+00 -v_z[5][[1,1,0,1,0,2]] = -1.7889175075753250E+00 -v_z[5][[0,2,0,1,0,2]] = 1.8925988162375532E+02 -v_z[5][[0,1,1,1,0,2]] = -2.1643260729189109E+01 -v_z[5][[1,0,0,2,0,2]] = -1.1258139651671700E+01 -v_z[5][[0,1,0,2,0,2]] = 4.7634860410994838E+02 -v_z[5][[0,0,1,2,0,2]] = -1.3620686855315631E+02 -v_z[5][[0,0,0,3,0,2]] = 2.0216505931915030E+03 -v_z[5][[1,1,0,0,0,3]] = 8.4684603424257571E-02 -v_z[5][[0,2,0,0,0,3]] = -1.6708527766729123E+01 -v_z[5][[0,1,1,0,0,3]] = 1.0245586752311504E+00 -v_z[5][[1,0,0,1,0,3]] = 1.0245586752311548E+00 -v_z[5][[0,1,0,1,0,3]] = -5.8557611996227308E+01 -v_z[5][[0,0,1,1,0,3]] = 1.2395647337833795E+01 -v_z[5][[0,0,0,2,0,3]] = -3.6851882254507893E+02 -v_z[5][[1,0,0,0,0,4]] = -2.0513105103425744E-16 -v_z[5][[0,1,0,0,0,4]] = 2.0790204670029744E+00 -v_z[5][[0,0,1,0,0,4]] = 5.7419347054832315E-16 -v_z[5][[0,0,0,1,0,4]] = 2.5153078237606479E+01 -v_z[5][[0,0,0,0,1,4]] = -3.8575913297034248E-16 -v_z[5][[0,0,0,0,0,5]] = -1.2680573016581917E-02 -v_z[5][[1,5,0,0,0,0]] = -9.9634881652476415E-02 -v_z[5][[0,6,0,0,0,0]] = 3.4993931711641166E+00 -v_z[5][[0,5,1,0,0,0]] = -1.2054349695807027E+00 -v_z[5][[1,4,0,1,0,0]] = -1.5818827665915940E+00 -v_z[5][[0,5,0,1,0,0]] = 3.3962499457750638E+01 -v_z[5][[0,4,1,1,0,0]] = -1.9138446024130758E+01 -v_z[5][[1,3,0,2,0,0]] = -7.3709866696082793E+00 -v_z[5][[0,4,0,2,0,0]] = 2.9715835621794565E+02 -v_z[5][[0,3,1,2,0,0]] = -8.9178056364341316E+01 -v_z[5][[1,2,0,3,0,0]] = -3.8724841684394718E+01 -v_z[5][[0,3,0,3,0,0]] = 1.1220936167800312E+03 -v_z[5][[0,2,1,3,0,0]] = -4.6851341200630185E+02 -v_z[5][[1,1,0,4,0,0]] = -7.1442831781769911E+01 -v_z[5][[0,2,0,4,0,0]] = 4.5911469856944595E+03 -v_z[5][[0,1,1,4,0,0]] = -8.6435278817312133E+02 -v_z[5][[1,0,0,5,0,0]] = -1.8385025898687647E+02 -v_z[5][[0,1,0,5,0,0]] = 7.6828971162092921E+03 -v_z[5][[0,0,1,5,0,0]] = -2.2243167018780773E+03 -v_z[5][[0,0,0,6,0,0]] = 1.6519655391100547E+04 -v_z[5][[1,4,0,0,0,1]] = 5.9271953326576021E-01 -v_z[5][[0,5,0,0,0,1]] = -1.2230260862482897E+01 -v_z[5][[0,4,1,0,0,1]] = 7.1710312764178576E+00 -v_z[5][[1,3,0,1,0,1]] = 3.9818184009845856E+00 -v_z[5][[0,4,0,1,0,1]] = -1.9417736608312123E+02 -v_z[5][[0,3,1,1,0,1]] = 4.8174123996136004E+01 -v_z[5][[1,2,0,2,0,1]] = 2.9995545573448613E+01 -v_z[5][[0,3,0,2,0,1]] = -9.0479446844359995E+02 -v_z[5][[0,2,1,2,0,1]] = 3.6290181677540926E+02 -v_z[5][[1,1,0,3,0,1]] = 6.2710609789498214E+01 -v_z[5][[0,2,0,3,0,1]] = -4.7535050757671042E+03 -v_z[5][[0,1,1,3,0,1]] = 7.5870579409788604E+02 -v_z[5][[1,0,0,4,0,1]] = 2.0093458817614368E+02 -v_z[5][[0,1,0,4,0,1]] = -8.7696643480061539E+03 -v_z[5][[0,0,1,4,0,1]] = 2.4310118621975580E+03 -v_z[5][[0,0,0,5,0,1]] = -2.2567765322263363E+04 -v_z[5][[1,3,0,0,0,2]] = -5.5113651288828613E-01 -v_z[5][[0,4,0,0,0,2]] = 3.6378396751722320E+01 -v_z[5][[0,3,1,0,0,2]] = -6.6679381219678788E+00 -v_z[5][[1,2,0,1,0,2]] = -7.7091102631298716E+00 -v_z[5][[0,3,0,1,0,2]] = 2.4438568573271178E+02 -v_z[5][[0,2,1,1,0,2]] = -9.3268852648847997E+01 -v_z[5][[1,1,0,2,0,2]] = -1.9403076242390856E+01 -v_z[5][[0,2,0,2,0,2]] = 1.8409885222493972E+03 -v_z[5][[0,1,1,2,0,2]] = -2.3474857632288990E+02 -v_z[5][[1,0,0,3,0,2]] = -8.2347760141888088E+01 -v_z[5][[0,1,0,3,0,2]] = 3.8488885812405488E+03 -v_z[5][[0,0,1,3,0,2]] = -9.9628632157067761E+02 -v_z[5][[0,0,0,4,0,2]] = 1.2332440150134691E+04 -v_z[5][[1,2,0,0,0,3]] = 6.8058735841518303E-01 -v_z[5][[0,3,0,0,0,3]] = -2.2550814907620200E+01 -v_z[5][[0,2,1,0,0,3]] = 8.2341022348956141E+00 -v_z[5][[1,1,0,1,0,3]] = 2.3852233434337702E+00 -v_z[5][[0,2,0,1,0,3]] = -3.1543313603959257E+02 -v_z[5][[0,1,1,1,0,3]] = 2.8857680972252162E+01 -v_z[5][[1,0,0,2,0,3]] = 1.5010852868895618E+01 -v_z[5][[0,1,0,2,0,3]] = -7.9391434018324912E+02 -v_z[5][[0,0,1,2,0,3]] = 1.8160915807087514E+02 -v_z[5][[0,0,0,3,0,3]] = -3.3694176553191792E+03 -v_z[5][[1,1,0,0,0,4]] = -8.4684603424257668E-02 -v_z[5][[0,2,0,0,0,4]] = 2.0885659708411431E+01 -v_z[5][[0,1,1,0,0,4]] = -1.0245586752311497E+00 -v_z[5][[1,0,0,1,0,4]] = -1.0245586752311531E+00 -v_z[5][[0,1,0,1,0,4]] = 7.3197014995284405E+01 -v_z[5][[0,0,1,1,0,4]] = -1.2395647337833781E+01 -v_z[5][[0,0,0,2,0,4]] = 4.6064852818135000E+02 -v_z[5][[1,0,0,0,0,5]] = 4.6420116014966872E-16 -v_z[5][[0,1,0,0,0,5]] = -2.0790204670029810E+00 -v_z[5][[0,0,1,0,0,5]] = -1.7087026238371550E-16 -v_z[5][[0,0,0,1,0,5]] = -2.5153078237606586E+01 -v_z[5][[0,0,0,0,1,5]] = 2.1250362580715887E-16 -v_z[5][[0,0,0,0,0,6]] = 1.4716841925778237E-02 -v_z[5][[1,6,0,0,0,0]] = -1.4254055100899868E-01 -v_z[5][[0,7,0,0,0,0]] = 2.6531951306794928E+00 -v_z[5][[0,6,1,0,0,0]] = -1.7245302239517266E+00 -v_z[5][[1,5,0,1,0,0]] = -1.3833922481880396E+00 -v_z[5][[0,6,0,1,0,0]] = 4.7136487811566120E+01 -v_z[5][[0,5,1,1,0,0]] = -1.6737003797818847E+01 -v_z[5][[1,4,0,2,0,0]] = -1.2104131705253224E+01 -v_z[5][[0,5,0,2,0,0]] = 3.0862822009114603E+02 -v_z[5][[0,4,1,2,0,0]] = -1.4644212340026482E+02 -v_z[5][[1,3,0,3,0,0]] = -4.5706165211009520E+01 -v_z[5][[0,4,0,3,0,0]] = 1.9222430657825325E+03 -v_z[5][[0,3,1,3,0,0]] = -5.5297711962921176E+02 -v_z[5][[1,2,0,4,0,0]] = -1.8701088705802235E+02 -v_z[5][[0,3,0,4,0,0]] = 6.2746234468478260E+03 -v_z[5][[0,2,1,4,0,0]] = -2.2625556352677609E+03 -v_z[5][[1,1,0,5,0,0]] = -3.1294694100508968E+02 -v_z[5][[0,2,0,5,0,0]] = 2.1225051313112064E+04 -v_z[5][[0,1,1,5,0,0]] = -3.7861959592287772E+03 -v_z[5][[1,0,0,6,0,0]] = -6.7289403240816171E+02 -v_z[5][[0,1,0,6,0,0]] = 3.2743866072015313E+04 -v_z[5][[0,0,1,6,0,0]] = -8.1410243484421708E+03 -v_z[5][[0,0,0,7,0,0]] = 6.0461965092007638E+04 -v_z[5][[1,5,0,0,0,1]] = 4.9817440826238185E-01 -v_z[5][[0,6,0,0,0,1]] = -2.0996359026984713E+01 -v_z[5][[0,5,1,0,0,1]] = 6.0271748479035132E+00 -v_z[5][[1,4,0,1,0,1]] = 7.9094138329579682E+00 -v_z[5][[0,5,0,1,0,1]] = -2.0377499674650386E+02 -v_z[5][[0,4,1,1,0,1]] = 9.5692230120653818E+01 -v_z[5][[1,3,0,2,0,1]] = 3.6854933348041392E+01 -v_z[5][[0,4,0,2,0,1]] = -1.7829501373076737E+03 -v_z[5][[0,3,1,2,0,1]] = 4.4589028182170671E+02 -v_z[5][[1,2,0,3,0,1]] = 1.9362420842197355E+02 -v_z[5][[0,3,0,3,0,1]] = -6.7325617006801858E+03 -v_z[5][[0,2,1,3,0,1]] = 2.3425670600315102E+03 -v_z[5][[1,1,0,4,0,1]] = 3.5721415890884947E+02 -v_z[5][[0,2,0,4,0,1]] = -2.7546881914166745E+04 -v_z[5][[0,1,1,4,0,1]] = 4.3217639408656059E+03 -v_z[5][[1,0,0,5,0,1]] = 9.1925129493438271E+02 -v_z[5][[0,1,0,5,0,1]] = -4.6097382697255744E+04 -v_z[5][[0,0,1,5,0,1]] = 1.1121583509390392E+04 -v_z[5][[0,0,0,6,0,1]] = -9.9117932346603193E+04 -v_z[5][[1,4,0,0,0,2]] = -1.4817988331644008E+00 -v_z[5][[0,5,0,0,0,2]] = 3.6690782587448695E+01 -v_z[5][[0,4,1,0,0,2]] = -1.7927578191044642E+01 -v_z[5][[1,3,0,1,0,2]] = -9.9545460024614627E+00 -v_z[5][[0,4,0,1,0,2]] = 5.8253209824936403E+02 -v_z[5][[0,3,1,1,0,2]] = -1.2043530999034000E+02 -v_z[5][[1,2,0,2,0,2]] = -7.4988863933621531E+01 -v_z[5][[0,3,0,2,0,2]] = 2.7143834053308005E+03 -v_z[5][[0,2,1,2,0,2]] = -9.0725454193852295E+02 -v_z[5][[1,1,0,3,0,2]] = -1.5677652447374567E+02 -v_z[5][[0,2,0,3,0,2]] = 1.4260515227301321E+04 -v_z[5][[0,1,1,3,0,2]] = -1.8967644852447165E+03 -v_z[5][[1,0,0,4,0,2]] = -5.0233647044035973E+02 -v_z[5][[0,1,0,4,0,2]] = 2.6308993044018502E+04 -v_z[5][[0,0,1,4,0,2]] = -6.0775296554938977E+03 -v_z[5][[0,0,0,5,0,2]] = 6.7703295966790116E+04 -v_z[5][[1,3,0,0,0,3]] = 9.1856085481381100E-01 -v_z[5][[0,4,0,0,0,3]] = -7.2756793503444726E+01 -v_z[5][[0,3,1,0,0,3]] = 1.1113230203279805E+01 -v_z[5][[1,2,0,1,0,3]] = 1.2848517105216466E+01 -v_z[5][[0,3,0,1,0,3]] = -4.8877137146542378E+02 -v_z[5][[0,2,1,1,0,3]] = 1.5544808774808001E+02 -v_z[5][[1,1,0,2,0,3]] = 3.2338460403984811E+01 -v_z[5][[0,2,0,2,0,3]] = -3.6819770444988003E+03 -v_z[5][[0,1,1,2,0,3]] = 3.9124762720481681E+02 -v_z[5][[1,0,0,3,0,3]] = 1.3724626690314713E+02 -v_z[5][[0,1,0,3,0,3]] = -7.6977771624811194E+03 -v_z[5][[0,0,1,3,0,3]] = 1.6604772026177966E+03 -v_z[5][[0,0,0,4,0,3]] = -2.4664880300269440E+04 -v_z[5][[1,2,0,0,0,4]] = -8.5073419801898031E-01 -v_z[5][[0,3,0,0,0,4]] = 3.3826222361430325E+01 -v_z[5][[0,2,1,0,0,4]] = -1.0292627793619518E+01 -v_z[5][[1,1,0,1,0,4]] = -2.9815291792922154E+00 -v_z[5][[0,2,0,1,0,4]] = 4.7314970405938942E+02 -v_z[5][[0,1,1,1,0,4]] = -3.6072101215315222E+01 -v_z[5][[1,0,0,2,0,4]] = -1.8763566086119539E+01 -v_z[5][[0,1,0,2,0,4]] = 1.1908715102748793E+03 -v_z[5][[0,0,1,2,0,4]] = -2.2701144758859397E+02 -v_z[5][[0,0,0,3,0,4]] = 5.0541264829787870E+03 -v_z[5][[1,1,0,0,0,5]] = 8.4684603424257959E-02 -v_z[5][[0,2,0,0,0,5]] = -2.5062791650093693E+01 -v_z[5][[0,1,1,0,0,5]] = 1.0245586752311540E+00 -v_z[5][[1,0,0,1,0,5]] = 1.0245586752311577E+00 -v_z[5][[0,1,0,1,0,5]] = -8.7836417994341843E+01 -v_z[5][[0,0,1,1,0,5]] = 1.2395647337833793E+01 -v_z[5][[0,0,0,2,0,5]] = -5.5277823381762244E+02 -v_z[5][[1,0,0,0,0,6]] = 1.5742615544489524E-16 -v_z[5][[0,1,0,0,0,6]] = 2.0790204670029784E+00 -v_z[5][[0,0,1,0,0,6]] = 7.1644079557842133E-16 -v_z[5][[0,0,0,1,0,6]] = 2.5153078237606888E+01 -v_z[5][[0,0,0,0,1,6]] = -9.4715901788333667E-16 -v_z[5][[0,0,0,0,0,7]] = -1.6720473194997081E-02 -v_z[5][[1,7,0,0,0,0]] = -1.0807242209243918E-01 -v_z[5][[0,8,0,0,0,0]] = 3.5166656977015154E+00 -v_z[5][[0,7,1,0,0,0]] = -1.3075167519333761E+00 -v_z[5][[1,6,0,1,0,0]] = -1.9200074460494170E+00 -v_z[5][[0,7,0,1,0,0]] = 4.4009267518748409E+01 -v_z[5][[0,6,1,1,0,0]] = -2.3229255446862631E+01 -v_z[5][[1,5,0,2,0,0]] = -1.2571332913153057E+01 -v_z[5][[0,6,0,2,0,0]] = 4.3767658870419461E+02 -v_z[5][[0,5,1,2,0,0]] = -1.5209456825182960E+02 -v_z[5][[1,4,0,3,0,0]] = -7.8298599890883324E+01 -v_z[5][[0,5,0,3,0,0]] = 2.2809796787303831E+03 -v_z[5][[0,4,1,3,0,0]] = -9.4729746061110063E+02 -v_z[5][[1,3,0,4,0,0]] = -2.5558382260606041E+02 -v_z[5][[0,4,0,4,0,0]] = 1.1258202056635084E+04 -v_z[5][[0,3,1,4,0,0]] = -3.0921869160547981E+03 -v_z[5][[1,2,0,5,0,0]] = -8.6455861384640912E+02 -v_z[5][[0,3,0,5,0,0]] = 3.2772489528973783E+04 -v_z[5][[0,2,1,5,0,0]] = -1.0459882815114224E+04 -v_z[5][[1,1,0,6,0,0]] = -1.3337537349417701E+03 -v_z[5][[0,2,0,6,0,0]] = 9.5162043246978981E+04 -v_z[5][[0,1,1,6,0,0]] = -1.6136451072581945E+04 -v_z[5][[1,0,0,7,0,0]] = -2.4627932323576110E+03 -v_z[5][[0,1,0,7,0,0]] = 1.3676809278716292E+05 -v_z[5][[0,0,1,7,0,0]] = -2.9796162106012292E+04 -v_z[5][[0,0,0,8,0,0]] = 2.2129119868953433E+05 -v_z[5][[1,6,0,0,0,1]] = 8.5524330605399168E-01 -v_z[5][[0,7,0,0,0,1]] = -1.8572365914756457E+01 -v_z[5][[0,6,1,0,0,1]] = 1.0347181343710361E+01 -v_z[5][[1,5,0,1,0,1]] = 8.3003534891282342E+00 -v_z[5][[0,6,0,1,0,1]] = -3.2995541468096286E+02 -v_z[5][[0,5,1,1,0,1]] = 1.0042202278691309E+02 -v_z[5][[1,4,0,2,0,1]] = 7.2624790231519370E+01 -v_z[5][[0,5,0,2,0,1]] = -2.1603975406380218E+03 -v_z[5][[0,4,1,2,0,1]] = 8.7865274040158897E+02 -v_z[5][[1,3,0,3,0,1]] = 2.7423699126605720E+02 -v_z[5][[0,4,0,3,0,1]] = -1.3455701460477732E+04 -v_z[5][[0,3,1,3,0,1]] = 3.3178627177752696E+03 -v_z[5][[1,2,0,4,0,1]] = 1.1220653223481338E+03 -v_z[5][[0,3,0,4,0,1]] = -4.3922364127934779E+04 -v_z[5][[0,2,1,4,0,1]] = 1.3575333811606566E+04 -v_z[5][[1,1,0,5,0,1]] = 1.8776816460305381E+03 -v_z[5][[0,2,0,5,0,1]] = -1.4857535919178449E+05 -v_z[5][[0,1,1,5,0,1]] = 2.2717175755372667E+04 -v_z[5][[1,0,0,6,0,1]] = 4.0373641944489723E+03 -v_z[5][[0,1,0,6,0,1]] = -2.2920706250410655E+05 -v_z[5][[0,0,1,6,0,1]] = 4.8846146090653026E+04 -v_z[5][[0,0,0,7,0,1]] = -4.2323375564405316E+05 -v_z[5][[1,5,0,0,0,2]] = -1.4945232247871465E+00 -v_z[5][[0,6,0,0,0,2]] = 7.3487256594446507E+01 -v_z[5][[0,5,1,0,0,2]] = -1.8081524543710533E+01 -v_z[5][[1,4,0,1,0,2]] = -2.3728241498873921E+01 -v_z[5][[0,5,0,1,0,2]] = 7.1321248861276376E+02 -v_z[5][[0,4,1,1,0,2]] = -2.8707669036196125E+02 -v_z[5][[1,3,0,2,0,2]] = -1.1056480004412420E+02 -v_z[5][[0,4,0,2,0,2]] = 6.2403254805768602E+03 -v_z[5][[0,3,1,2,0,2]] = -1.3376708454651198E+03 -v_z[5][[1,2,0,3,0,2]] = -5.8087262526592099E+02 -v_z[5][[0,3,0,3,0,2]] = 2.3563965952380662E+04 -v_z[5][[0,2,1,3,0,2]] = -7.0277011800945274E+03 -v_z[5][[1,1,0,4,0,2]] = -1.0716424767265498E+03 -v_z[5][[0,2,0,4,0,2]] = 9.6414086699583713E+04 -v_z[5][[0,1,1,4,0,2]] = -1.2965291822596826E+04 -v_z[5][[1,0,0,5,0,2]] = -2.7577538848031513E+03 -v_z[5][[0,1,0,5,0,2]] = 1.6134083944039536E+05 -v_z[5][[0,0,1,5,0,2]] = -3.3364750528171149E+04 -v_z[5][[0,0,0,6,0,2]] = 3.4691276321311126E+05 -v_z[5][[1,4,0,0,0,3]] = 2.9635976663288046E+00 -v_z[5][[0,5,0,0,0,3]] = -8.5611826037380382E+01 -v_z[5][[0,4,1,0,0,3]] = 3.5855156382089284E+01 -v_z[5][[1,3,0,1,0,3]] = 1.9909092004922954E+01 -v_z[5][[0,4,0,1,0,3]] = -1.3592415625818512E+03 -v_z[5][[0,3,1,1,0,3]] = 2.4087061998068015E+02 -v_z[5][[1,2,0,2,0,3]] = 1.4997772786724323E+02 -v_z[5][[0,3,0,2,0,3]] = -6.3335612791052108E+03 -v_z[5][[0,2,1,2,0,3]] = 1.8145090838770457E+03 -v_z[5][[1,1,0,3,0,3]] = 3.1355304894749167E+02 -v_z[5][[0,2,0,3,0,3]] = -3.3274535530369787E+04 -v_z[5][[0,1,1,3,0,3]] = 3.7935289704894367E+03 -v_z[5][[1,0,0,4,0,3]] = 1.0046729408807223E+03 -v_z[5][[0,1,0,4,0,3]] = -6.1387650436043266E+04 -v_z[5][[0,0,1,4,0,3]] = 1.2155059310987792E+04 -v_z[5][[0,0,0,5,0,3]] = -1.5797435725584379E+05 -v_z[5][[1,3,0,0,0,4]] = -1.3778412822207171E+00 -v_z[5][[0,4,0,0,0,4]] = 1.2732438863102827E+02 -v_z[5][[0,3,1,0,0,4]] = -1.6669845304919704E+01 -v_z[5][[1,2,0,1,0,4]] = -1.9272775657824710E+01 -v_z[5][[0,3,0,1,0,4]] = 8.5534990006449345E+02 -v_z[5][[0,2,1,1,0,4]] = -2.3317213162211999E+02 -v_z[5][[1,1,0,2,0,4]] = -4.8507690605977260E+01 -v_z[5][[0,2,0,2,0,4]] = 6.4434598278729109E+03 -v_z[5][[0,1,1,2,0,4]] = -5.8687144080722510E+02 -v_z[5][[1,0,0,3,0,4]] = -2.0586940035472068E+02 -v_z[5][[0,1,0,3,0,4]] = 1.3471110034342004E+04 -v_z[5][[0,0,1,3,0,4]] = -2.4907158039266947E+03 -v_z[5][[0,0,0,4,0,4]] = 4.3163540525471733E+04 -v_z[5][[1,2,0,0,0,5]] = 1.0208810376227742E+00 -v_z[5][[0,3,0,0,0,5]] = -4.7356711306002524E+01 -v_z[5][[0,2,1,0,0,5]] = 1.2351153352343424E+01 -v_z[5][[1,1,0,1,0,5]] = 3.5778350151506655E+00 -v_z[5][[0,2,0,1,0,5]] = -6.6240958568314704E+02 -v_z[5][[0,1,1,1,0,5]] = 4.3286521458378303E+01 -v_z[5][[1,0,0,2,0,5]] = 2.2516279303343417E+01 -v_z[5][[0,1,0,2,0,5]] = -1.6672201143848406E+03 -v_z[5][[0,0,1,2,0,5]] = 2.7241373710631274E+02 -v_z[5][[0,0,0,3,0,5]] = -7.0757770761703132E+03 -v_z[5][[1,1,0,0,0,6]] = -8.4684603424257876E-02 -v_z[5][[0,2,0,0,0,6]] = 2.9239923591776098E+01 -v_z[5][[0,1,1,0,0,6]] = -1.0245586752311520E+00 -v_z[5][[1,0,0,1,0,6]] = -1.0245586752311566E+00 -v_z[5][[0,1,0,1,0,6]] = 1.0247582099339952E+02 -v_z[5][[0,0,1,1,0,6]] = -1.2395647337833761E+01 -v_z[5][[0,0,0,2,0,6]] = 6.4490793945389532E+02 -v_z[5][[1,0,0,0,0,7]] = 6.4293188828390413E-16 -v_z[5][[0,1,0,0,0,7]] = -2.0790204670029850E+00 -v_z[5][[0,0,1,0,0,7]] = 1.1102230246251565E-15 -v_z[5][[0,0,0,1,0,7]] = -2.5153078237607343E+01 -v_z[5][[0,0,0,0,1,7]] = -4.2869353900076845E-16 -v_z[5][[0,0,0,0,0,8]] = 1.8687654116278180E-02 -v_z[5][[1,8,0,0,0,0]] = -1.4324411169210405E-01 -v_z[5][[0,9,0,0,0,0]] = 2.8778799081282531E+00 -v_z[5][[0,8,1,0,0,0]] = -1.7330422694981393E+00 -v_z[5][[1,7,0,1,0,0]] = -1.7926265883230306E+00 -v_z[5][[0,8,0,1,0,0]] = 5.6564930765138286E+01 -v_z[5][[0,7,1,1,0,0]] = -2.1688135130243538E+01 -v_z[5][[1,6,0,2,0,0]] = -1.7827851592017915E+01 -v_z[5][[0,7,0,2,0,0]] = 4.6689373981867334E+02 -v_z[5][[0,6,1,2,0,0]] = -2.1569068367513086E+02 -v_z[5][[1,5,0,3,0,0]] = -9.2910994662082643E+01 -v_z[5][[0,6,0,3,0,0]] = 3.3488666655922548E+03 -v_z[5][[0,5,1,3,0,0]] = -1.1240858639732894E+03 -v_z[5][[1,4,0,4,0,0]] = -4.5857960109968462E+02 -v_z[5][[0,5,0,4,0,0]] = 1.4879163857825844E+04 -v_z[5][[0,4,1,4,0,0]] = -5.5481361380047247E+03 -v_z[5][[1,3,0,5,0,0]] = -1.3349196523243306E+03 -v_z[5][[0,4,0,5,0,0]] = 6.1629616345595183E+04 -v_z[5][[0,3,1,5,0,0]] = -1.6150556951580058E+04 -v_z[5][[1,2,0,6,0,0]] = -3.8762292249241600E+03 -v_z[5][[0,3,0,6,0,0]] = 1.6306203116672821E+05 -v_z[5][[0,2,1,6,0,0]] = -4.6896650854988322E+04 -v_z[5][[1,1,0,7,0,0]] = -5.5709656939881670E+03 -v_z[5][[0,2,0,7,0,0]] = 4.1700148883533425E+05 -v_z[5][[0,1,1,7,0,0]] = -6.7400460064688959E+04 -v_z[5][[1,0,0,8,0,0]] = -9.0138397864433209E+03 -v_z[5][[0,1,0,8,0,0]] = 5.6251894409106125E+05 -v_z[5][[0,0,1,8,0,0]] = -1.0905415361133685E+05 -v_z[5][[0,0,0,9,0,0]] = 8.0992716172496649E+05 -v_z[5][[1,7,0,0,0,1]] = 7.5650695464707385E-01 -v_z[5][[0,8,0,0,0,1]] = -2.8133325581612130E+01 -v_z[5][[0,7,1,0,0,1]] = 9.1526172635336298E+00 -v_z[5][[1,6,0,1,0,1]] = 1.3440052122345909E+01 -v_z[5][[0,7,0,1,0,1]] = -3.5207414014998744E+02 -v_z[5][[0,6,1,1,0,1]] = 1.6260478812803842E+02 -v_z[5][[1,5,0,2,0,1]] = 8.7999330392071414E+01 -v_z[5][[0,6,0,2,0,1]] = -3.5014127096335578E+03 -v_z[5][[0,5,1,2,0,1]] = 1.0646619777628071E+03 -v_z[5][[1,4,0,3,0,1]] = 5.4809019923618303E+02 -v_z[5][[0,5,0,3,0,1]] = -1.8247837429843057E+04 -v_z[5][[0,4,1,3,0,1]] = 6.6310822242777031E+03 -v_z[5][[1,3,0,4,0,1]] = 1.7890867582424232E+03 -v_z[5][[0,4,0,4,0,1]] = -9.0065616453080700E+04 -v_z[5][[0,3,1,4,0,1]] = 2.1645308412383587E+04 -v_z[5][[1,2,0,5,0,1]] = 6.0519102969248615E+03 -v_z[5][[0,3,0,5,0,1]] = -2.6217991623179038E+05 -v_z[5][[0,2,1,5,0,1]] = 7.3219179705799572E+04 -v_z[5][[1,1,0,6,0,1]] = 9.3362761445923952E+03 -v_z[5][[0,2,0,6,0,1]] = -7.6129634597583138E+05 -v_z[5][[0,1,1,6,0,1]] = 1.1295515750807358E+05 -v_z[5][[1,0,0,7,0,1]] = 1.7239552626503275E+04 -v_z[5][[0,1,0,7,0,1]] = -1.0941447422972973E+06 -v_z[5][[0,0,1,7,0,1]] = 2.0857313474208614E+05 -v_z[5][[0,0,0,8,0,1]] = -1.7703295895162774E+06 -v_z[5][[1,6,0,0,0,2]] = -2.9933515711889704E+00 -v_z[5][[0,7,0,0,0,2]] = 7.4289463659025856E+01 -v_z[5][[0,6,1,0,0,2]] = -3.6215134702986269E+01 -v_z[5][[1,5,0,1,0,2]] = -2.9051237211948823E+01 -v_z[5][[0,6,0,1,0,2]] = 1.3198216587238519E+03 -v_z[5][[0,5,1,1,0,2]] = -3.5147707975419576E+02 -v_z[5][[1,4,0,2,0,2]] = -2.5418676581031784E+02 -v_z[5][[0,5,0,2,0,2]] = 8.6415901625520964E+03 -v_z[5][[0,4,1,2,0,2]] = -3.0752845914055611E+03 -v_z[5][[1,3,0,3,0,2]] = -9.5982946943120032E+02 -v_z[5][[0,4,0,3,0,2]] = 5.3822805841910966E+04 -v_z[5][[0,3,1,3,0,2]] = -1.1612519512213454E+04 -v_z[5][[1,2,0,4,0,2]] = -3.9272286282184705E+03 -v_z[5][[0,3,0,4,0,2]] = 1.7568945651173935E+05 -v_z[5][[0,2,1,4,0,2]] = -4.7513668340622957E+04 -v_z[5][[1,1,0,5,0,2]] = -6.5718857611068906E+03 -v_z[5][[0,2,0,5,0,2]] = 5.9430143676713866E+05 -v_z[5][[0,1,1,5,0,2]] = -7.9510115143804345E+04 -v_z[5][[1,0,0,6,0,2]] = -1.4130774680571401E+04 -v_z[5][[0,1,0,6,0,2]] = 9.1682825001642900E+05 -v_z[5][[0,0,1,6,0,2]] = -1.7096151131728559E+05 -v_z[5][[0,0,0,7,0,2]] = 1.6929350225762099E+06 -v_z[5][[1,5,0,0,0,3]] = 3.4872208578366766E+00 -v_z[5][[0,6,0,0,0,3]] = -1.9596601758519074E+02 -v_z[5][[0,5,1,0,0,3]] = 4.2190223935324610E+01 -v_z[5][[1,4,0,1,0,3]] = 5.5365896830705836E+01 -v_z[5][[0,5,0,1,0,3]] = -1.9018999696340388E+03 -v_z[5][[0,4,1,1,0,3]] = 6.6984561084457653E+02 -v_z[5][[1,3,0,2,0,3]] = 2.5798453343629012E+02 -v_z[5][[0,4,0,2,0,3]] = -1.6640867948204985E+04 -v_z[5][[0,3,1,2,0,3]] = 3.1212319727519462E+03 -v_z[5][[1,2,0,3,0,3]] = 1.3553694589538168E+03 -v_z[5][[0,3,0,3,0,3]] = -6.2837242539681822E+04 -v_z[5][[0,2,1,3,0,3]] = 1.6397969420220568E+04 -v_z[5][[1,1,0,4,0,3]] = 2.5004991123619520E+03 -v_z[5][[0,2,0,4,0,3]] = -2.5710423119889002E+05 -v_z[5][[0,1,1,4,0,3]] = 3.0252347586059288E+04 -v_z[5][[1,0,0,5,0,3]] = 6.4347590645407199E+03 -v_z[5][[0,1,0,5,0,3]] = -4.3024223850772006E+05 -v_z[5][[0,0,1,5,0,3]] = 7.7851084565732686E+04 -v_z[5][[0,0,0,6,0,3]] = -9.2510070190163504E+05 -v_z[5][[1,4,0,0,0,4]] = -5.1862959160754052E+00 -v_z[5][[0,5,0,0,0,4]] = 1.7122365207476082E+02 -v_z[5][[0,4,1,0,0,4]] = -6.2746523668656266E+01 -v_z[5][[1,3,0,1,0,4]] = -3.4840911008615201E+01 -v_z[5][[0,4,0,1,0,4]] = 2.7184831251637038E+03 -v_z[5][[0,3,1,1,0,4]] = -4.2152358496619041E+02 -v_z[5][[1,2,0,2,0,4]] = -2.6246102376767601E+02 -v_z[5][[0,3,0,2,0,4]] = 1.2667122558210453E+04 -v_z[5][[0,2,1,2,0,4]] = -3.1753908967848320E+03 -v_z[5][[1,1,0,3,0,4]] = -5.4871783565811120E+02 -v_z[5][[0,2,0,3,0,4]] = 6.6549071060739807E+04 -v_z[5][[0,1,1,3,0,4]] = -6.6386756983565156E+03 -v_z[5][[1,0,0,4,0,4]] = -1.7581776465412672E+03 -v_z[5][[0,1,0,4,0,4]] = 1.2277530087208727E+05 -v_z[5][[0,0,1,4,0,4]] = -2.1271353794228649E+04 -v_z[5][[0,0,0,5,0,4]] = 3.1594871451168787E+05 -v_z[5][[1,3,0,0,0,5]] = 1.9289777951090046E+00 -v_z[5][[0,4,0,0,0,5]] = -2.0371902180964531E+02 -v_z[5][[0,3,1,0,0,5]] = 2.3337783426887597E+01 -v_z[5][[1,2,0,1,0,5]] = 2.6981885920954600E+01 -v_z[5][[0,3,0,1,0,5]] = -1.3685598401031925E+03 -v_z[5][[0,2,1,1,0,5]] = 3.2644098427096816E+02 -v_z[5][[1,1,0,2,0,5]] = 6.7910766848368212E+01 -v_z[5][[0,2,0,2,0,5]] = -1.0309535724596695E+04 -v_z[5][[0,1,1,2,0,5]] = 8.2162001713011603E+02 -v_z[5][[1,0,0,3,0,5]] = 2.8821716049660881E+02 -v_z[5][[0,1,0,3,0,5]] = -2.1553776054947451E+04 -v_z[5][[0,0,1,3,0,5]] = 3.4870021254973708E+03 -v_z[5][[0,0,0,4,0,5]] = -6.9061664840755402E+04 -v_z[5][[1,2,0,0,0,6]] = -1.1910278772265745E+00 -v_z[5][[0,3,0,0,0,6]] = 6.3142281741336816E+01 -v_z[5][[0,2,1,0,0,6]] = -1.4409678911067328E+01 -v_z[5][[1,1,0,1,0,6]] = -4.1741408510091169E+00 -v_z[5][[0,2,0,1,0,6]] = 8.8321278091086617E+02 -v_z[5][[0,1,1,1,0,6]] = -5.0500941701441391E+01 -v_z[5][[1,0,0,2,0,6]] = -2.6268992520567281E+01 -v_z[5][[0,1,0,2,0,6]] = 2.2229601525131357E+03 -v_z[5][[0,0,1,2,0,6]] = -3.1781602662403157E+02 -v_z[5][[0,0,0,3,0,6]] = 9.4343694348937079E+03 -v_z[5][[1,1,0,0,0,7]] = 8.4684603424258320E-02 -v_z[5][[0,2,0,0,0,7]] = -3.3417055533458594E+01 -v_z[5][[0,1,1,0,0,7]] = 1.0245586752311533E+00 -v_z[5][[1,0,0,1,0,7]] = 1.0245586752311711E+00 -v_z[5][[0,1,0,1,0,7]] = -1.1711522399245857E+02 -v_z[5][[0,0,1,1,0,7]] = 1.2395647337833816E+01 -v_z[5][[0,0,0,2,0,7]] = -7.3703764509018333E+02 -v_z[5][[1,0,0,0,0,8]] = -3.7281918004172798E-15 -v_z[5][[0,1,0,0,0,8]] = 2.0790204670029779E+00 -v_z[5][[0,0,1,0,0,8]] = -4.6412526599759474E-15 -v_z[5][[0,0,0,1,0,8]] = 2.5153078237608710E+01 -v_z[5][[0,0,0,0,1,8]] = 1.1024167689832609E-15 -v_z[5][[0,0,0,0,0,9]] = -2.0614659191799459E-02 -v_z[5][[1,9,0,0,0,0]] = -1.1722449229843630E-01 -v_z[5][[0,10,0,0,0,0]] = 3.6191226002153227E+00 -v_z[5][[0,9,1,0,0,0]] = -1.4182432895414268E+00 -v_z[5][[1,8,0,1,0,0]] = -2.3040555904058344E+00 -v_z[5][[0,9,0,1,0,0]] = 5.4942235582501361E+01 -v_z[5][[0,8,1,1,0,0]] = -2.7875670994627747E+01 -v_z[5][[1,7,0,2,0,0]] = -1.9017951879430232E+01 -v_z[5][[0,8,0,2,0,0]] = 6.1105247150460241E+02 -v_z[5][[0,7,1,2,0,0]] = -2.3008914011891585E+02 -v_z[5][[1,6,0,3,0,0]] = -1.3640916479538996E+02 -v_z[5][[0,7,0,3,0,0]] = 3.9605268573249014E+03 -v_z[5][[0,6,1,3,0,0]] = -1.6503495029902799E+03 -v_z[5][[1,5,0,4,0,0]] = -6.0607199908952589E+02 -v_z[5][[0,6,0,4,0,0]] = 2.2746601193742510E+04 -v_z[5][[0,5,1,4,0,0]] = -7.3325763996432579E+03 -v_z[5][[1,4,0,5,0,0]] = -2.5103550937809996E+03 -v_z[5][[0,5,0,5,0,0]] = 8.9172391338259491E+04 -v_z[5][[0,4,1,5,0,0]] = -3.0371590410108565E+04 -v_z[5][[1,3,0,6,0,0]] = -6.6419949500615085E+03 -v_z[5][[0,4,0,6,0,0]] = 3.2118443095543981E+05 -v_z[5][[0,3,1,6,0,0]] = -8.0358332822725439E+04 -v_z[5][[1,2,0,7,0,0]] = -1.6985694114041777E+04 -v_z[5][[0,3,0,7,0,0]] = 7.8235715052174986E+05 -v_z[5][[0,2,1,7,0,0]] = -2.0550182153157677E+05 -v_z[5][[1,1,0,8,0,0]] = -2.2913047011823739E+04 -v_z[5][[0,2,0,8,0,0]] = 1.7950412225431991E+06 -v_z[5][[0,1,1,8,0,0]] = -2.7721404060113488E+05 -v_z[5][[1,0,0,9,0,0]] = -3.2990709606666569E+04 -v_z[5][[0,1,0,9,0,0]] = 2.2855487727843015E+06 -v_z[5][[0,0,1,9,0,0]] = -3.9913887959306751E+05 -v_z[5][[0,0,0,10,0,0]] = 2.9643386612610365E+06 -v_z[5][[1,8,0,0,0,1]] = 1.1459528935368319E+00 -v_z[5][[0,9,0,0,0,1]] = -2.5900919173154289E+01 -v_z[5][[0,8,1,0,0,1]] = 1.3864338155985115E+01 -v_z[5][[1,7,0,1,0,1]] = 1.4341012706584236E+01 -v_z[5][[0,8,0,1,0,1]] = -5.0908437688624468E+02 -v_z[5][[0,7,1,1,0,1]] = 1.7350508104194827E+02 -v_z[5][[1,6,0,2,0,1]] = 1.4262281273614326E+02 -v_z[5][[0,7,0,2,0,1]] = -4.2020436583680594E+03 -v_z[5][[0,6,1,2,0,1]] = 1.7255254694010466E+03 -v_z[5][[1,5,0,3,0,1]] = 7.4328795729666115E+02 -v_z[5][[0,6,0,3,0,1]] = -3.0139799990330321E+04 -v_z[5][[0,5,1,3,0,1]] = 8.9926869117863134E+03 -v_z[5][[1,4,0,4,0,1]] = 3.6686368087974779E+03 -v_z[5][[0,5,0,4,0,1]] = -1.3391247472043251E+05 -v_z[5][[0,4,1,4,0,1]] = 4.4385089104037797E+04 -v_z[5][[1,3,0,5,0,1]] = 1.0679357218594645E+04 -v_z[5][[0,4,0,5,0,1]] = -5.5466654711035662E+05 -v_z[5][[0,3,1,5,0,1]] = 1.2920445561264045E+05 -v_z[5][[1,2,0,6,0,1]] = 3.1009833799393251E+04 -v_z[5][[0,3,0,6,0,1]] = -1.4675582805005531E+06 -v_z[5][[0,2,1,6,0,1]] = 3.7517320683990652E+05 -v_z[5][[1,1,0,7,0,1]] = 4.4567725551905343E+04 -v_z[5][[0,2,0,7,0,1]] = -3.7530133995180000E+06 -v_z[5][[0,1,1,7,0,1]] = 5.3920368051751168E+05 -v_z[5][[1,0,0,8,0,1]] = 7.2110718291546291E+04 -v_z[5][[0,1,0,8,0,1]] = -5.0626704968195325E+06 -v_z[5][[0,0,1,8,0,1]] = 8.7243322889069468E+05 -v_z[5][[0,0,0,9,0,1]] = -7.2893444555247305E+06 -v_z[5][[1,7,0,0,0,2]] = -3.0260278185882958E+00 -v_z[5][[0,8,0,0,0,2]] = 1.2659996511725460E+02 -v_z[5][[0,7,1,0,0,2]] = -3.6610469054134519E+01 -v_z[5][[1,6,0,1,0,2]] = -5.3760208489383672E+01 -v_z[5][[0,7,0,1,0,2]] = 1.5843336306749445E+03 -v_z[5][[0,6,1,1,0,2]] = -6.5041915251215346E+02 -v_z[5][[1,5,0,2,0,2]] = -3.5199732156828577E+02 -v_z[5][[0,6,0,2,0,2]] = 1.5756357193351016E+04 -v_z[5][[0,5,1,2,0,2]] = -4.2586479110512300E+03 -v_z[5][[1,4,0,3,0,2]] = -2.1923607969447330E+03 -v_z[5][[0,5,0,3,0,2]] = 8.2115268434293801E+04 -v_z[5][[0,4,1,3,0,2]] = -2.6524328897110812E+04 -v_z[5][[1,3,0,4,0,2]] = -7.1563470329696966E+03 -v_z[5][[0,4,0,4,0,2]] = 4.0529527403886378E+05 -v_z[5][[0,3,1,4,0,2]] = -8.6581233649534392E+04 -v_z[5][[1,2,0,5,0,2]] = -2.4207641187699464E+04 -v_z[5][[0,3,0,5,0,2]] = 1.1798096230430561E+06 -v_z[5][[0,2,1,5,0,2]] = -2.9287671882319835E+05 -v_z[5][[1,1,0,6,0,2]] = -3.7345104578369581E+04 -v_z[5][[0,2,0,6,0,2]] = 3.4258335568912425E+06 -v_z[5][[0,1,1,6,0,2]] = -4.5182063003229455E+05 -v_z[5][[1,0,0,7,0,2]] = -6.8958210506012794E+04 -v_z[5][[0,1,0,7,0,2]] = 4.9236513403378557E+06 -v_z[5][[0,0,1,7,0,2]] = -8.3429253896834422E+05 -v_z[5][[0,0,0,8,0,2]] = 7.9664831528231949E+06 -v_z[5][[1,6,0,0,0,3]] = 7.9822708565039262E+00 -v_z[5][[0,7,0,0,0,3]] = -2.2286839097707767E+02 -v_z[5][[0,6,1,0,0,3]] = 9.6573692541296722E+01 -v_z[5][[1,5,0,1,0,3]] = 7.7469965898530276E+01 -v_z[5][[0,6,0,1,0,3]] = -3.9594649761715591E+03 -v_z[5][[0,5,1,1,0,3]] = 9.3727221267785569E+02 -v_z[5][[1,4,0,2,0,3]] = 6.7783137549418097E+02 -v_z[5][[0,5,0,2,0,3]] = -2.5924770487656315E+04 -v_z[5][[0,4,1,2,0,3]] = 8.2007589104148319E+03 -v_z[5][[1,3,0,3,0,3]] = 2.5595452518165366E+03 -v_z[5][[0,4,0,3,0,3]] = -1.6146841752573312E+05 -v_z[5][[0,3,1,3,0,3]] = 3.0966718699235873E+04 -v_z[5][[1,2,0,4,0,3]] = 1.0472609675249256E+04 -v_z[5][[0,3,0,4,0,3]] = -5.2706836953521869E+05 -v_z[5][[0,2,1,4,0,3]] = 1.2670311557499463E+05 -v_z[5][[1,1,0,5,0,3]] = 1.7525028696285077E+04 -v_z[5][[0,2,0,5,0,3]] = -1.7829043103014142E+06 -v_z[5][[0,1,1,5,0,3]] = 2.1202697371681177E+05 -v_z[5][[1,0,0,6,0,3]] = 3.7682065814857429E+04 -v_z[5][[0,1,0,6,0,3]] = -2.7504847500492707E+06 -v_z[5][[0,0,1,6,0,3]] = 4.5589736351276177E+05 -v_z[5][[0,0,0,7,0,3]] = -5.0788050677286722E+06 -v_z[5][[1,5,0,0,0,4]] = -6.9744417156733522E+00 -v_z[5][[0,6,0,0,0,4]] = 4.4092353956667932E+02 -v_z[5][[0,5,1,0,0,4]] = -8.4380447870649192E+01 -v_z[5][[1,4,0,1,0,4]] = -1.1073179366141173E+02 -v_z[5][[0,5,0,1,0,4]] = 4.2792749316765903E+03 -v_z[5][[0,4,1,1,0,4]] = -1.3396912216891533E+03 -v_z[5][[1,3,0,2,0,4]] = -5.1596906687258047E+02 -v_z[5][[0,4,0,2,0,4]] = 3.7441952883461272E+04 -v_z[5][[0,3,1,2,0,4]] = -6.2424639455038996E+03 -v_z[5][[1,2,0,3,0,4]] = -2.7107389179076386E+03 -v_z[5][[0,3,0,3,0,4]] = 1.4138379571428444E+05 -v_z[5][[0,2,1,3,0,4]] = -3.2795938840441144E+04 -v_z[5][[1,1,0,4,0,4]] = -5.0009982247239113E+03 -v_z[5][[0,2,0,4,0,4]] = 5.7848452019750490E+05 -v_z[5][[0,1,1,4,0,4]] = -6.0504695172118591E+04 -v_z[5][[1,0,0,5,0,4]] = -1.2869518129081482E+04 -v_z[5][[0,1,0,5,0,4]] = 9.6804503664237820E+05 -v_z[5][[0,0,1,5,0,4]] = -1.5570216913146549E+05 -v_z[5][[0,0,0,6,0,4]] = 2.0814765792786658E+06 -v_z[5][[1,4,0,0,0,5]] = 8.2980734657206554E+00 -v_z[5][[0,5,0,0,0,5]] = -3.0820257373456968E+02 -v_z[5][[0,4,1,0,0,5]] = 1.0039443786985001E+02 -v_z[5][[1,3,0,1,0,5]] = 5.5745457613784311E+01 -v_z[5][[0,4,0,1,0,5]] = -4.8932696252946753E+03 -v_z[5][[0,3,1,1,0,5]] = 6.7443773594590516E+02 -v_z[5][[1,2,0,2,0,5]] = 4.1993763802828141E+02 -v_z[5][[0,3,0,2,0,5]] = -2.2800820604778877E+04 -v_z[5][[0,2,1,2,0,5]] = 5.0806254348557304E+03 -v_z[5][[1,1,0,3,0,5]] = 8.7794853705297828E+02 -v_z[5][[0,2,0,3,0,5]] = -1.1978832790933197E+05 -v_z[5][[0,1,1,3,0,5]] = 1.0621881117370427E+04 -v_z[5][[1,0,0,4,0,5]] = 2.8130842344660255E+03 -v_z[5][[0,1,0,4,0,5]] = -2.2099554156976193E+05 -v_z[5][[0,0,1,4,0,5]] = 3.4034166070765801E+04 -v_z[5][[0,0,0,5,0,5]] = -5.6870768612104887E+05 -v_z[5][[1,3,0,0,0,6]] = -2.5719703934786748E+00 -v_z[5][[0,4,0,0,0,6]] = 3.0557853271446834E+02 -v_z[5][[0,3,1,0,0,6]] = -3.1117044569183498E+01 -v_z[5][[1,2,0,1,0,6]] = -3.5975847894606204E+01 -v_z[5][[0,3,0,1,0,6]] = 2.0528397601548004E+03 -v_z[5][[0,2,1,1,0,6]] = -4.3525464569462429E+02 -v_z[5][[1,1,0,2,0,6]] = -9.0547689131157512E+01 -v_z[5][[0,2,0,2,0,6]] = 1.5464303586895127E+04 -v_z[5][[0,1,1,2,0,6]] = -1.0954933561734879E+03 -v_z[5][[1,0,0,3,0,6]] = -3.8428954732881044E+02 -v_z[5][[0,1,0,3,0,6]] = 3.2330664082421325E+04 -v_z[5][[0,0,1,3,0,6]] = -4.6493361673298295E+03 -v_z[5][[0,0,0,4,0,6]] = 1.0359249726113217E+05 -v_z[5][[1,2,0,0,0,7]] = 1.3611747168303754E+00 -v_z[5][[0,3,0,0,0,7]] = -8.1182933667433332E+01 -v_z[5][[0,2,1,0,0,7]] = 1.6468204469791239E+01 -v_z[5][[1,1,0,1,0,7]] = 4.7704466868675670E+00 -v_z[5][[0,2,0,1,0,7]] = -1.1355592897425472E+03 -v_z[5][[0,1,1,1,0,7]] = 5.7715361944504536E+01 -v_z[5][[1,0,0,2,0,7]] = 3.0021705737791201E+01 -v_z[5][[0,1,0,2,0,7]] = -2.8580916246597503E+03 -v_z[5][[0,0,1,2,0,7]] = 3.6321831614175045E+02 -v_z[5][[0,0,0,3,0,7]] = -1.2129903559149261E+04 -v_z[5][[1,1,0,0,0,8]] = -8.4684603424260013E-02 -v_z[5][[0,2,0,0,0,8]] = 3.7594187475140821E+01 -v_z[5][[0,1,1,0,0,8]] = -1.0245586752311648E+00 -v_z[5][[1,0,0,1,0,8]] = -1.0245586752312092E+00 -v_z[5][[0,1,0,1,0,8]] = 1.3175462699151592E+02 -v_z[5][[0,0,1,1,0,8]] = -1.2395647337833829E+01 -v_z[5][[0,0,0,2,0,8]] = 8.2916735072647430E+02 -v_z[5][[1,0,0,0,0,9]] = 4.9923173234267537E-15 -v_z[5][[0,1,0,0,0,9]] = -2.0790204670028354E+00 -v_z[5][[0,0,1,0,0,9]] = 3.2213814948889308E-15 -v_z[5][[0,0,0,1,0,9]] = -2.5153078237610146E+01 -v_z[5][[0,0,0,0,1,9]] = -1.3769367590565906E-15 -v_z[5][[0,0,0,0,0,10]] = 2.2497857971639640E-02 -v_z[6][[0,0,0,0,0,1]] = 1.0000000000000000E+00 -v_z[6][[0,0,0,0,0,2]] = -1.1102230246251565E-16 -v_z[6][[0,0,0,0,0,3]] = 6.2450045135165055E-17 -v_z[6][[0,0,0,0,0,4]] = -6.9605779473569385E-17 -v_z[6][[0,0,0,0,0,5]] = 1.2305694657710475E-16 -v_z[6][[0,0,0,0,0,6]] = -1.3178477406561306E-16 -v_z[6][[0,0,0,0,0,7]] = 1.5761589082508021E-16 -v_z[6][[0,0,0,0,0,8]] = 4.9755392948075405E-16 -v_z[6][[0,0,0,0,0,9]] = -5.9377009602526454E-16 -v_z[6][[0,0,0,0,0,10]] = 4.0075161613674359E-16 +v_z[1][[0, 0, 0, 0, 0, 0]] = -1.0743571132816715E+01 +v_z[1][[1, 0, 0, 0, 0, 0]] = 7.8517557231785995E-01 +v_z[1][[0, 1, 0, 0, 0, 0]] = -5.6094891908376905E+00 +v_z[1][[0, 0, 1, 0, 0, 0]] = 3.0577399960603300E+00 +v_z[1][[0, 0, 0, 1, 0, 0]] = -2.1845253547124880E+01 +v_z[1][[1, 1, 0, 0, 0, 0]] = 2.2849095286856108E-01 +v_z[1][[0, 2, 0, 0, 0, 0]] = -1.6323960850395909E+00 +v_z[1][[0, 1, 1, 0, 0, 0]] = 2.7644031914573355E+00 +v_z[1][[1, 0, 0, 1, 0, 0]] = 8.8982127049833493E-01 +v_z[1][[0, 1, 0, 1, 0, 0]] = -2.6106686635351355E+01 +v_z[1][[0, 0, 1, 1, 0, 0]] = 1.0765523663456493E+01 +v_z[1][[0, 0, 0, 2, 0, 0]] = -7.6911573351163469E+01 +v_z[1][[0, 1, 0, 0, 0, 1]] = 5.6094891908376896E+00 +v_z[1][[0, 0, 0, 1, 0, 1]] = 2.1845253547124884E+01 +v_z[1][[0, 0, 0, 0, 0, 2]] = -4.9498895237805478E-15 +v_z[1][[1, 2, 0, 0, 0, 0]] = 6.6492281960152180E-02 +v_z[1][[0, 3, 0, 0, 0, 0]] = -3.2797819629575895E+00 +v_z[1][[0, 2, 1, 0, 0, 0]] = 8.0445844419784474E-01 +v_z[1][[1, 1, 0, 1, 0, 0]] = 1.0634019431387043E+00 +v_z[1][[0, 2, 0, 1, 0, 0]] = -2.4267085035079237E+01 +v_z[1][[0, 1, 1, 1, 0, 0]] = 1.2865593532298867E+01 +v_z[1][[1, 0, 0, 2, 0, 0]] = 3.1328340395648699E+00 +v_z[1][[0, 1, 0, 2, 0, 0]] = -1.1710148241909523E+02 +v_z[1][[0, 0, 1, 2, 0, 0]] = 3.7902666641953118E+01 +v_z[1][[0, 0, 0, 3, 0, 0]] = -2.8170868574928659E+02 +v_z[1][[1, 1, 0, 0, 0, 1]] = -2.2849095286856108E-01 +v_z[1][[0, 2, 0, 0, 0, 1]] = 3.2647921700791822E+00 +v_z[1][[0, 1, 1, 0, 0, 1]] = -2.7644031914573355E+00 +v_z[1][[1, 0, 0, 1, 0, 1]] = -8.8982127049833482E-01 +v_z[1][[0, 1, 0, 1, 0, 1]] = 5.2213373270702689E+01 +v_z[1][[0, 0, 1, 1, 0, 1]] = -1.0765523663456493E+01 +v_z[1][[0, 0, 0, 2, 0, 1]] = 1.5382314670232694E+02 +v_z[1][[1, 0, 0, 0, 0, 2]] = 1.7252404443511759E-16 +v_z[1][[0, 1, 0, 0, 0, 2]] = -5.6094891908376958E+00 +v_z[1][[0, 0, 0, 1, 0, 2]] = -2.1845253547124926E+01 +v_z[1][[0, 0, 0, 0, 0, 3]] = 7.2438811879117269E-15 +v_z[1][[1, 3, 0, 0, 0, 0]] = 1.3359514216398530E-01 +v_z[1][[0, 4, 0, 0, 0, 0]] = -1.7706349001324773E+00 +v_z[1][[0, 3, 1, 0, 0, 0]] = 1.6163039837019832E+00 +v_z[1][[1, 2, 0, 1, 0, 0]] = 9.8846957260641899E-01 +v_z[1][[0, 3, 0, 1, 0, 0]] = -3.1662492180468746E+01 +v_z[1][[0, 2, 1, 1, 0, 0]] = 1.1959022477111088E+01 +v_z[1][[1, 1, 0, 2, 0, 0]] = 4.7698869522671110E+00 +v_z[1][[0, 2, 0, 2, 0, 0]] = -1.5878746625757370E+02 +v_z[1][[0, 1, 1, 2, 0, 0]] = 5.7708589982217148E+01 +v_z[1][[1, 0, 0, 3, 0, 0]] = 1.1474821298049745E+01 +v_z[1][[0, 1, 0, 3, 0, 0]] = -5.0731680673172895E+02 +v_z[1][[0, 0, 1, 3, 0, 0]] = 1.3882839657103938E+02 +v_z[1][[0, 0, 0, 4, 0, 0]] = -1.0302803128101277E+03 +v_z[1][[1, 2, 0, 0, 0, 1]] = -1.3298456392030442E-01 +v_z[1][[0, 3, 0, 0, 0, 1]] = 9.8393458888727636E+00 +v_z[1][[0, 2, 1, 0, 0, 1]] = -1.6089168883956895E+00 +v_z[1][[1, 1, 0, 1, 0, 1]] = -2.1268038862774086E+00 +v_z[1][[0, 2, 0, 1, 0, 1]] = 7.2801255105237701E+01 +v_z[1][[0, 1, 1, 1, 0, 1]] = -2.5731187064597734E+01 +v_z[1][[1, 0, 0, 2, 0, 1]] = -6.2656680791297408E+00 +v_z[1][[0, 1, 0, 2, 0, 1]] = 3.5130444725728557E+02 +v_z[1][[0, 0, 1, 2, 0, 1]] = -7.5805333283906236E+01 +v_z[1][[0, 0, 0, 3, 0, 1]] = 8.4512605724785942E+02 +v_z[1][[1, 1, 0, 0, 0, 2]] = 2.2849095286856136E-01 +v_z[1][[0, 2, 0, 0, 0, 2]] = -4.8971882551187793E+00 +v_z[1][[0, 1, 1, 0, 0, 2]] = 2.7644031914573364E+00 +v_z[1][[1, 0, 0, 1, 0, 2]] = 8.8982127049833626E-01 +v_z[1][[0, 1, 0, 1, 0, 2]] = -7.8320059906054126E+01 +v_z[1][[0, 0, 1, 1, 0, 2]] = 1.0765523663456493E+01 +v_z[1][[0, 0, 0, 2, 0, 2]] = -2.3073472005349069E+02 +v_z[1][[1, 0, 0, 0, 0, 3]] = -2.5229488262226576E-16 +v_z[1][[0, 1, 0, 0, 0, 3]] = 5.6094891908377065E+00 +v_z[1][[0, 0, 0, 1, 0, 3]] = 2.1845253547124972E+01 +v_z[1][[0, 0, 0, 0, 0, 4]] = -2.1914628912378018E-15 +v_z[1][[1, 4, 0, 0, 0, 0]] = 7.2123154488721586E-02 +v_z[1][[0, 5, 0, 0, 0, 0]] = -2.8563428489539713E+00 +v_z[1][[0, 4, 1, 0, 0, 0]] = 8.7258368851603418E-01 +v_z[1][[1, 3, 0, 1, 0, 0]] = 1.2897062036103688E+00 +v_z[1][[0, 4, 0, 1, 0, 0]] = -3.0312134940176684E+01 +v_z[1][[0, 3, 1, 1, 0, 0]] = 1.5603540974130993E+01 +v_z[1][[1, 2, 0, 2, 0, 0]] = 6.4678793798262815E+00 +v_z[1][[0, 3, 0, 2, 0, 0]] = -2.1927671023173218E+02 +v_z[1][[0, 2, 1, 2, 0, 0]] = 7.8251791482694642E+01 +v_z[1][[1, 1, 0, 3, 0, 0]] = 2.0664501995244535E+01 +v_z[1][[0, 2, 0, 3, 0, 0]] = -8.6513175313332124E+02 +v_z[1][[0, 1, 1, 3, 0, 0]] = 2.5000996559540562E+02 +v_z[1][[1, 0, 0, 4, 0, 0]] = 4.1966339961972288E+01 +v_z[1][[0, 1, 0, 4, 0, 0]] = -2.1452031308196892E+03 +v_z[1][[0, 0, 1, 4, 0, 0]] = 5.0773075549908083E+02 +v_z[1][[0, 0, 0, 5, 0, 0]] = -3.7709395496087236E+03 +v_z[1][[1, 3, 0, 0, 0, 1]] = -4.0078542649195592E-01 +v_z[1][[0, 4, 0, 0, 0, 1]] = 7.0825396005299108E+00 +v_z[1][[0, 3, 1, 0, 0, 1]] = -4.8489119511059497E+00 +v_z[1][[1, 2, 0, 1, 0, 1]] = -2.9654087178192570E+00 +v_z[1][[0, 3, 0, 1, 0, 1]] = 1.2664996872187503E+02 +v_z[1][[0, 2, 1, 1, 0, 1]] = -3.5877067431333259E+01 +v_z[1][[1, 1, 0, 2, 0, 1]] = -1.4309660856801329E+01 +v_z[1][[0, 2, 0, 2, 0, 1]] = 6.3514986503029456E+02 +v_z[1][[0, 1, 1, 2, 0, 1]] = -1.7312576994665142E+02 +v_z[1][[1, 0, 0, 3, 0, 1]] = -3.4424463894149241E+01 +v_z[1][[0, 1, 0, 3, 0, 1]] = 2.0292672269269158E+03 +v_z[1][[0, 0, 1, 3, 0, 1]] = -4.1648518971311813E+02 +v_z[1][[0, 0, 0, 4, 0, 1]] = 4.1211212512405100E+03 +v_z[1][[1, 2, 0, 0, 0, 2]] = 1.9947684588045703E-01 +v_z[1][[0, 3, 0, 0, 0, 2]] = -1.9678691777745545E+01 +v_z[1][[0, 2, 1, 0, 0, 2]] = 2.4133753325935352E+00 +v_z[1][[1, 1, 0, 1, 0, 2]] = 3.1902058294161142E+00 +v_z[1][[0, 2, 0, 1, 0, 2]] = -1.4560251021047560E+02 +v_z[1][[0, 1, 1, 1, 0, 2]] = 3.8596780596896608E+01 +v_z[1][[1, 0, 0, 2, 0, 2]] = 9.3985021186946263E+00 +v_z[1][[0, 1, 0, 2, 0, 2]] = -7.0260889451457183E+02 +v_z[1][[0, 0, 1, 2, 0, 2]] = 1.1370799992585935E+02 +v_z[1][[0, 0, 0, 3, 0, 2]] = -1.6902521144957207E+03 +v_z[1][[1, 1, 0, 0, 0, 3]] = -2.2849095286856169E-01 +v_z[1][[0, 2, 0, 0, 0, 3]] = 6.5295843401583813E+00 +v_z[1][[0, 1, 1, 0, 0, 3]] = -2.7644031914573377E+00 +v_z[1][[1, 0, 0, 1, 0, 3]] = -8.8982127049834037E-01 +v_z[1][[0, 1, 0, 1, 0, 3]] = 1.0442674654140562E+02 +v_z[1][[0, 0, 1, 1, 0, 3]] = -1.0765523663456497E+01 +v_z[1][[0, 0, 0, 2, 0, 3]] = 3.0764629340465484E+02 +v_z[1][[1, 0, 0, 0, 0, 4]] = 1.7995354337663871E-16 +v_z[1][[0, 1, 0, 0, 0, 4]] = -5.6094891908377145E+00 +v_z[1][[0, 0, 0, 1, 0, 4]] = -2.1845253547125086E+01 +v_z[1][[0, 0, 0, 0, 0, 5]] = 1.0133244271832888E-14 +v_z[1][[1, 5, 0, 0, 0, 0]] = 1.1634722468897954E-01 +v_z[1][[0, 6, 0, 0, 0, 0]] = -1.9205804144593430E+00 +v_z[1][[0, 5, 1, 0, 0, 0]] = 1.4076296466426661E+00 +v_z[1][[1, 4, 0, 1, 0, 0]] = 1.2347021912929459E+00 +v_z[1][[0, 5, 0, 1, 0, 0]] = -3.7972056469390871E+01 +v_z[1][[0, 4, 1, 1, 0, 0]] = 1.4938073631620018E+01 +v_z[1][[1, 3, 0, 2, 0, 0]] = 8.9317837610896316E+00 +v_z[1][[0, 4, 0, 2, 0, 0]] = -2.6083328263844919E+02 +v_z[1][[0, 3, 1, 2, 0, 0]] = 1.0806139684999448E+02 +v_z[1][[1, 2, 0, 3, 0, 0]] = 3.5239354583863886E+01 +v_z[1][[0, 3, 0, 3, 0, 0]] = -1.2997924605510857E+03 +v_z[1][[0, 2, 1, 3, 0, 0]] = 4.2634416397470272E+02 +v_z[1][[1, 1, 0, 4, 0, 0]] = 8.7380417500084576E+01 +v_z[1][[0, 2, 0, 4, 0, 0]] = -4.2841417630260339E+03 +v_z[1][[0, 1, 1, 4, 0, 0]] = 1.0571740455170743E+03 +v_z[1][[1, 0, 0, 5, 0, 0]] = 1.5360143171452651E+02 +v_z[1][[0, 1, 0, 5, 0, 0]] = -8.9070022963532228E+03 +v_z[1][[0, 0, 1, 5, 0, 0]] = 1.8583505504846444E+03 +v_z[1][[0, 0, 0, 6, 0, 0]] = -1.3801271729517675E+04 +v_z[1][[1, 4, 0, 0, 0, 1]] = -2.8849261795488618E-01 +v_z[1][[0, 5, 0, 0, 0, 1]] = 1.4281714244769860E+01 +v_z[1][[0, 4, 1, 0, 0, 1]] = -3.4903347540641367E+00 +v_z[1][[1, 3, 0, 1, 0, 1]] = -5.1588248144414752E+00 +v_z[1][[0, 4, 0, 1, 0, 1]] = 1.5156067470088342E+02 +v_z[1][[0, 3, 1, 1, 0, 1]] = -6.2414163896523974E+01 +v_z[1][[1, 2, 0, 2, 0, 1]] = -2.5871517519305122E+01 +v_z[1][[0, 3, 0, 2, 0, 1]] = 1.0963835511586608E+03 +v_z[1][[0, 2, 1, 2, 0, 1]] = -3.1300716593077857E+02 +v_z[1][[1, 1, 0, 3, 0, 1]] = -8.2658007980978155E+01 +v_z[1][[0, 2, 0, 3, 0, 1]] = 4.3256587656666061E+03 +v_z[1][[0, 1, 1, 3, 0, 1]] = -1.0000398623816225E+03 +v_z[1][[1, 0, 0, 4, 0, 1]] = -1.6786535984788921E+02 +v_z[1][[0, 1, 0, 4, 0, 1]] = 1.0726015654098443E+04 +v_z[1][[0, 0, 1, 4, 0, 1]] = -2.0309230219963233E+03 +v_z[1][[0, 0, 0, 5, 0, 1]] = 1.8854697748043611E+04 +v_z[1][[1, 3, 0, 0, 0, 2]] = 8.0157085298391229E-01 +v_z[1][[0, 4, 0, 0, 0, 2]] = -1.7706349001324774E+01 +v_z[1][[0, 3, 1, 0, 0, 2]] = 9.6978239022119030E+00 +v_z[1][[1, 2, 0, 1, 0, 2]] = 5.9308174356385166E+00 +v_z[1][[0, 3, 0, 1, 0, 2]] = -3.1662492180468769E+02 +v_z[1][[0, 2, 1, 1, 0, 2]] = 7.1754134862666533E+01 +v_z[1][[1, 1, 0, 2, 0, 2]] = 2.8619321713602684E+01 +v_z[1][[0, 2, 0, 2, 0, 2]] = -1.5878746625757381E+03 +v_z[1][[0, 1, 1, 2, 0, 2]] = 3.4625153989330295E+02 +v_z[1][[1, 0, 0, 3, 0, 2]] = 6.8848927788298582E+01 +v_z[1][[0, 1, 0, 3, 0, 2]] = -5.0731680673172923E+03 +v_z[1][[0, 0, 1, 3, 0, 2]] = 8.3297037942623626E+02 +v_z[1][[0, 0, 0, 4, 0, 2]] = -1.0302803128101286E+04 +v_z[1][[1, 2, 0, 0, 0, 3]] = -2.6596912784060939E-01 +v_z[1][[0, 3, 0, 0, 0, 3]] = 3.2797819629575940E+01 +v_z[1][[0, 2, 1, 0, 0, 3]] = -3.2178337767913816E+00 +v_z[1][[1, 1, 0, 1, 0, 3]] = -4.2536077725548260E+00 +v_z[1][[0, 2, 0, 1, 0, 3]] = 2.4267085035079293E+02 +v_z[1][[0, 1, 1, 1, 0, 3]] = -5.1462374129195510E+01 +v_z[1][[1, 0, 0, 2, 0, 3]] = -1.2531336158259528E+01 +v_z[1][[0, 1, 0, 2, 0, 3]] = 1.1710148241909549E+03 +v_z[1][[0, 0, 1, 2, 0, 3]] = -1.5161066656781253E+02 +v_z[1][[0, 0, 0, 3, 0, 3]] = 2.8170868574928732E+03 +v_z[1][[1, 1, 0, 0, 0, 4]] = 2.2849095286856194E-01 +v_z[1][[0, 2, 0, 0, 0, 4]] = -8.1619804251980028E+00 +v_z[1][[0, 1, 1, 0, 0, 4]] = 2.7644031914573390E+00 +v_z[1][[1, 0, 0, 1, 0, 4]] = 8.8982127049834014E-01 +v_z[1][[0, 1, 0, 1, 0, 4]] = -1.3053343317675740E+02 +v_z[1][[0, 0, 1, 1, 0, 4]] = 1.0765523663456500E+01 +v_z[1][[0, 0, 0, 2, 0, 4]] = -3.8455786675581987E+02 +v_z[1][[1, 0, 0, 0, 0, 5]] = -3.6545995587257747E-16 +v_z[1][[0, 1, 0, 0, 0, 5]] = 5.6094891908377296E+00 +v_z[1][[0, 0, 0, 1, 0, 5]] = 2.1845253547125168E+01 +v_z[1][[0, 0, 0, 0, 0, 6]] = 2.5324787872032580E-15 +v_z[1][[1, 6, 0, 0, 0, 0]] = 7.8230875224305413E-02 +v_z[1][[0, 7, 0, 0, 0, 0]] = -2.7476380359339938E+00 +v_z[1][[0, 6, 1, 0, 0, 0]] = 9.4647809213249023E-01 +v_z[1][[1, 5, 0, 1, 0, 0]] = 1.5467132692298293E+00 +v_z[1][[0, 6, 0, 1, 0, 0]] = -3.7366759410493245E+01 +v_z[1][[0, 5, 1, 1, 0, 0]] = 1.8712947029408021E+01 +v_z[1][[1, 4, 0, 2, 0, 0]] = 1.0624504881342686E+01 +v_z[1][[0, 5, 0, 2, 0, 0]] = -3.3716997537060104E+02 +v_z[1][[0, 4, 1, 2, 0, 0]] = 1.2854082331449248E+02 +v_z[1][[1, 3, 0, 3, 0, 0]] = 5.2944360482551922E+01 +v_z[1][[0, 4, 0, 3, 0, 0]] = -1.7896734887206335E+03 +v_z[1][[0, 3, 1, 3, 0, 0]] = 6.4054859612681048E+02 +v_z[1][[1, 2, 0, 4, 0, 0]] = 1.7450566359173794E+02 +v_z[1][[0, 3, 0, 4, 0, 0]] = -7.0359269934403610E+03 +v_z[1][[0, 2, 1, 4, 0, 0]] = 2.1112608937207301E+03 +v_z[1][[1, 1, 0, 5, 0, 0]] = 3.6280833649173564E+02 +v_z[1][[0, 2, 0, 5, 0, 0]] = -2.0070956906228679E+04 +v_z[1][[0, 1, 1, 5, 0, 0]] = 4.3894452305165114E+03 +v_z[1][[1, 0, 0, 6, 0, 0]] = 5.6216629019022321E+02 +v_z[1][[0, 1, 0, 6, 0, 0]] = -3.6463131674050994E+04 +v_z[1][[0, 0, 1, 6, 0, 0]] = 6.8013821432375980E+03 +v_z[1][[0, 0, 0, 7, 0, 0]] = -5.0512811010502097E+04 +v_z[1][[1, 5, 0, 0, 0, 1]] = -5.8173612344489756E-01 +v_z[1][[0, 6, 0, 0, 0, 1]] = 1.1523482486756066E+01 +v_z[1][[0, 5, 1, 0, 0, 1]] = -7.0381482332133309E+00 +v_z[1][[1, 4, 0, 1, 0, 1]] = -6.1735109564647281E+00 +v_z[1][[0, 5, 0, 1, 0, 1]] = 2.2783233881634521E+02 +v_z[1][[0, 4, 1, 1, 0, 1]] = -7.4690368158100085E+01 +v_z[1][[1, 3, 0, 2, 0, 1]] = -4.4658918805448153E+01 +v_z[1][[0, 4, 0, 2, 0, 1]] = 1.5649996958306951E+03 +v_z[1][[0, 3, 1, 2, 0, 1]] = -5.4030698424997240E+02 +v_z[1][[1, 2, 0, 3, 0, 1]] = -1.7619677291931936E+02 +v_z[1][[0, 3, 0, 3, 0, 1]] = 7.7987547633065133E+03 +v_z[1][[0, 2, 1, 3, 0, 1]] = -2.1317208198735134E+03 +v_z[1][[1, 1, 0, 4, 0, 1]] = -4.3690208750042302E+02 +v_z[1][[0, 2, 0, 4, 0, 1]] = 2.5704850578156180E+04 +v_z[1][[0, 1, 1, 4, 0, 1]] = -5.2858702275853702E+03 +v_z[1][[1, 0, 0, 5, 0, 1]] = -7.6800715857263299E+02 +v_z[1][[0, 1, 0, 5, 0, 1]] = 5.3442013778119312E+04 +v_z[1][[0, 0, 1, 5, 0, 1]] = -9.2917527524232228E+03 +v_z[1][[0, 0, 0, 6, 0, 1]] = 8.2807630377105990E+04 +v_z[1][[1, 4, 0, 0, 0, 2]] = 7.2123154488721619E-01 +v_z[1][[0, 5, 0, 0, 0, 2]] = -4.2845142734309590E+01 +v_z[1][[0, 4, 1, 0, 0, 2]] = 8.7258368851603443E+00 +v_z[1][[1, 3, 0, 1, 0, 2]] = 1.2897062036103693E+01 +v_z[1][[0, 4, 0, 1, 0, 2]] = -4.5468202410265036E+02 +v_z[1][[0, 3, 1, 1, 0, 2]] = 1.5603540974130999E+02 +v_z[1][[1, 2, 0, 2, 0, 2]] = 6.4678793798262845E+01 +v_z[1][[0, 3, 0, 2, 0, 2]] = -3.2891506534759856E+03 +v_z[1][[0, 2, 1, 2, 0, 2]] = 7.8251791482694648E+02 +v_z[1][[1, 1, 0, 3, 0, 2]] = 2.0664501995244555E+02 +v_z[1][[0, 2, 0, 3, 0, 2]] = -1.2976976296999819E+04 +v_z[1][[0, 1, 1, 3, 0, 2]] = 2.5000996559540572E+03 +v_z[1][[1, 0, 0, 4, 0, 2]] = 4.1966339961972352E+02 +v_z[1][[0, 1, 0, 4, 0, 2]] = -3.2178046962295371E+04 +v_z[1][[0, 0, 1, 4, 0, 2]] = 5.0773075549908081E+03 +v_z[1][[0, 0, 0, 5, 0, 2]] = -5.6564093244130869E+04 +v_z[1][[1, 3, 0, 0, 0, 3]] = -1.3359514216398545E+00 +v_z[1][[0, 4, 0, 0, 0, 3]] = 3.5412698002649620E+01 +v_z[1][[0, 3, 1, 0, 0, 3]] = -1.6163039837019838E+01 +v_z[1][[1, 2, 0, 1, 0, 3]] = -9.8846957260642085E+00 +v_z[1][[0, 3, 0, 1, 0, 3]] = 6.3324984360937572E+02 +v_z[1][[0, 2, 1, 1, 0, 3]] = -1.1959022477111094E+02 +v_z[1][[1, 1, 0, 2, 0, 3]] = -4.7698869522671203E+01 +v_z[1][[0, 2, 0, 2, 0, 3]] = 3.1757493251514816E+03 +v_z[1][[0, 1, 1, 2, 0, 3]] = -5.7708589982217177E+02 +v_z[1][[1, 0, 0, 3, 0, 3]] = -1.1474821298049781E+02 +v_z[1][[0, 1, 0, 3, 0, 3]] = 1.0146336134634608E+04 +v_z[1][[0, 0, 1, 3, 0, 3]] = -1.3882839657103939E+03 +v_z[1][[0, 0, 0, 4, 0, 3]] = 2.0605606256202624E+04 +v_z[1][[1, 2, 0, 0, 0, 4]] = 3.3246140980076244E-01 +v_z[1][[0, 3, 0, 0, 0, 4]] = -4.9196729444363939E+01 +v_z[1][[0, 2, 1, 0, 0, 4]] = 4.0222922209892298E+00 +v_z[1][[1, 1, 0, 1, 0, 4]] = 5.3170097156935370E+00 +v_z[1][[0, 2, 0, 1, 0, 4]] = -3.6400627552618982E+02 +v_z[1][[0, 1, 1, 1, 0, 4]] = 6.4327967661494412E+01 +v_z[1][[1, 0, 0, 2, 0, 4]] = 1.5664170197824404E+01 +v_z[1][[0, 1, 0, 2, 0, 4]] = -1.7565222362864388E+03 +v_z[1][[0, 0, 1, 2, 0, 4]] = 1.8951333320976568E+02 +v_z[1][[0, 0, 0, 3, 0, 4]] = -4.2256302862393295E+03 +v_z[1][[1, 1, 0, 0, 0, 5]] = -2.2849095286856244E-01 +v_z[1][[0, 2, 0, 0, 0, 5]] = 9.7943765102376030E+00 +v_z[1][[0, 1, 1, 0, 0, 5]] = -2.7644031914573408E+00 +v_z[1][[1, 0, 0, 1, 0, 5]] = -8.8982127049834159E-01 +v_z[1][[0, 1, 0, 1, 0, 5]] = 1.5664011981210950E+02 +v_z[1][[0, 0, 1, 1, 0, 5]] = -1.0765523663456502E+01 +v_z[1][[0, 0, 0, 2, 0, 5]] = 4.6146944010698581E+02 +v_z[1][[1, 0, 0, 0, 0, 6]] = -1.9661215073453894E-16 +v_z[1][[0, 1, 0, 0, 0, 6]] = -5.6094891908377260E+00 +v_z[1][[0, 0, 0, 1, 0, 6]] = -2.1845253547125431E+01 +v_z[1][[0, 0, 0, 0, 0, 7]] = 1.5946520037479239E-14 +v_z[1][[1, 7, 0, 0, 0, 0]] = 1.1191935871699366E-01 +v_z[1][[0, 8, 0, 0, 0, 0]] = -2.0832240052022275E+00 +v_z[1][[0, 7, 1, 0, 0, 0]] = 1.3540590055707442E+00 +v_z[1][[1, 6, 0, 1, 0, 0]] = 1.5220577440918279E+00 +v_z[1][[0, 7, 0, 1, 0, 0]] = -4.5123199662931391E+01 +v_z[1][[0, 6, 1, 1, 0, 0]] = 1.8414651576030682E+01 +v_z[1][[1, 5, 0, 2, 0, 0]] = 1.3733922346607343E+01 +v_z[1][[0, 6, 0, 2, 0, 0]] = -3.8645846339874373E+02 +v_z[1][[0, 5, 1, 2, 0, 0]] = 1.6616018397904998E+02 +v_z[1][[1, 4, 0, 3, 0, 0]] = 7.2898652060743814E+01 +v_z[1][[0, 5, 0, 3, 0, 0]] = -2.4530031517954440E+03 +v_z[1][[0, 4, 1, 3, 0, 0]] = 8.8196606421254023E+02 +v_z[1][[1, 3, 0, 4, 0, 0]] = 2.8659394970769853E+02 +v_z[1][[0, 4, 0, 4, 0, 0]] = -1.0804400560350688E+04 +v_z[1][[0, 3, 1, 4, 0, 0]] = 3.4673636714188424E+03 +v_z[1][[1, 2, 0, 5, 0, 0]] = 8.1754896256483153E+02 +v_z[1][[0, 3, 0, 5, 0, 0]] = -3.5851558885893253E+04 +v_z[1][[0, 2, 1, 5, 0, 0]] = 9.8911354384649439E+03 +v_z[1][[1, 1, 0, 6, 0, 0]] = 1.4852503351613470E+03 +v_z[1][[0, 2, 0, 6, 0, 0]] = -9.0610372101529851E+04 +v_z[1][[0, 1, 1, 6, 0, 0]] = 1.7969336269497562E+04 +v_z[1][[1, 0, 0, 7, 0, 0]] = 2.0575349960047552E+03 +v_z[1][[0, 1, 0, 7, 0, 0]] = -1.4759548695862401E+05 +v_z[1][[0, 0, 1, 7, 0, 0]] = 2.4893135759132612E+04 +v_z[1][[0, 0, 0, 8, 0, 0]] = -1.8487696890223675E+05 +v_z[1][[1, 6, 0, 0, 0, 1]] = -4.6938525134583198E-01 +v_z[1][[0, 7, 0, 0, 0, 1]] = 1.9233466251537962E+01 +v_z[1][[0, 6, 1, 0, 0, 1]] = -5.6788685527949418E+00 +v_z[1][[1, 5, 0, 1, 0, 1]] = -9.2802796153789728E+00 +v_z[1][[0, 6, 0, 1, 0, 1]] = 2.6156731587345263E+02 +v_z[1][[0, 5, 1, 1, 0, 1]] = -1.1227768217644811E+02 +v_z[1][[1, 4, 0, 2, 0, 1]] = -6.3747029288056098E+01 +v_z[1][[0, 5, 0, 2, 0, 1]] = 2.3601898275942071E+03 +v_z[1][[0, 4, 1, 2, 0, 1]] = -7.7124493988695508E+02 +v_z[1][[1, 3, 0, 3, 0, 1]] = -3.1766616289531157E+02 +v_z[1][[0, 4, 0, 3, 0, 1]] = 1.2527714421044437E+04 +v_z[1][[0, 3, 1, 3, 0, 1]] = -3.8432915767608638E+03 +v_z[1][[1, 2, 0, 4, 0, 1]] = -1.0470339815504274E+03 +v_z[1][[0, 3, 0, 4, 0, 1]] = 4.9251488954082532E+04 +v_z[1][[0, 2, 1, 4, 0, 1]] = -1.2667565362324382E+04 +v_z[1][[1, 1, 0, 5, 0, 1]] = -2.1768500189504139E+03 +v_z[1][[0, 2, 0, 5, 0, 1]] = 1.4049669834360076E+05 +v_z[1][[0, 1, 1, 5, 0, 1]] = -2.6336671383099070E+04 +v_z[1][[1, 0, 0, 6, 0, 1]] = -3.3729977411413406E+03 +v_z[1][[0, 1, 0, 6, 0, 1]] = 2.5524192171835635E+05 +v_z[1][[0, 0, 1, 6, 0, 1]] = -4.0808292859425601E+04 +v_z[1][[0, 0, 0, 7, 0, 1]] = 3.5358967707351438E+05 +v_z[1][[1, 5, 0, 0, 0, 2]] = 1.7452083703346930E+00 +v_z[1][[0, 6, 0, 0, 0, 2]] = -4.0332188703646253E+01 +v_z[1][[0, 5, 1, 0, 0, 2]] = 2.1114444699639993E+01 +v_z[1][[1, 4, 0, 1, 0, 2]] = 1.8520532869394195E+01 +v_z[1][[0, 5, 0, 1, 0, 2]] = -7.9741318585720887E+02 +v_z[1][[0, 4, 1, 1, 0, 2]] = 2.2407110447430031E+02 +v_z[1][[1, 3, 0, 2, 0, 2]] = 1.3397675641634453E+02 +v_z[1][[0, 4, 0, 2, 0, 2]] = -5.4774989354074351E+03 +v_z[1][[0, 3, 1, 2, 0, 2]] = 1.6209209527499174E+03 +v_z[1][[1, 2, 0, 3, 0, 2]] = 5.2859031875795847E+02 +v_z[1][[0, 3, 0, 3, 0, 2]] = -2.7295641671572812E+04 +v_z[1][[0, 2, 1, 3, 0, 2]] = 6.3951624596205411E+03 +v_z[1][[1, 1, 0, 4, 0, 2]] = 1.3107062625012702E+03 +v_z[1][[0, 2, 0, 4, 0, 2]] = -8.9966977023546744E+04 +v_z[1][[0, 1, 1, 4, 0, 2]] = 1.5857610682756118E+04 +v_z[1][[1, 0, 0, 5, 0, 2]] = 2.3040214757179019E+03 +v_z[1][[0, 1, 0, 5, 0, 2]] = -1.8704704822341783E+05 +v_z[1][[0, 0, 1, 5, 0, 2]] = 2.7875258257269670E+04 +v_z[1][[0, 0, 0, 6, 0, 2]] = -2.8982670631987107E+05 +v_z[1][[1, 4, 0, 0, 0, 3]] = -1.4424630897744335E+00 +v_z[1][[0, 5, 0, 0, 0, 3]] = 9.9971999713389096E+01 +v_z[1][[0, 4, 1, 0, 0, 3]] = -1.7451673770320696E+01 +v_z[1][[1, 3, 0, 1, 0, 3]] = -2.5794124072207403E+01 +v_z[1][[0, 4, 0, 1, 0, 3]] = 1.0609247229061857E+03 +v_z[1][[0, 3, 1, 1, 0, 3]] = -3.1207081948261998E+02 +v_z[1][[1, 2, 0, 2, 0, 3]] = -1.2935758759652580E+02 +v_z[1][[0, 3, 0, 2, 0, 3]] = 7.6746848581106406E+03 +v_z[1][[0, 2, 1, 2, 0, 3]] = -1.5650358296538934E+03 +v_z[1][[1, 1, 0, 3, 0, 3]] = -4.1329003990489161E+02 +v_z[1][[0, 2, 0, 3, 0, 3]] = 3.0279611359666287E+04 +v_z[1][[0, 1, 1, 3, 0, 3]] = -5.0001993119081171E+03 +v_z[1][[1, 0, 0, 4, 0, 3]] = -8.3932679923944943E+02 +v_z[1][[0, 1, 0, 4, 0, 3]] = 7.5082109578689327E+04 +v_z[1][[0, 0, 1, 4, 0, 3]] = -1.0154615109981616E+04 +v_z[1][[0, 0, 0, 5, 0, 3]] = 1.3198288423630554E+05 +v_z[1][[1, 3, 0, 0, 0, 4]] = 2.0039271324597836E+00 +v_z[1][[0, 4, 0, 0, 0, 4]] = -6.1972221504636806E+01 +v_z[1][[0, 3, 1, 0, 0, 4]] = 2.4244559755529764E+01 +v_z[1][[1, 2, 0, 1, 0, 4]] = 1.4827043589096323E+01 +v_z[1][[0, 3, 0, 1, 0, 4]] = -1.1081872263164094E+03 +v_z[1][[0, 2, 1, 1, 0, 4]] = 1.7938533715666648E+02 +v_z[1][[1, 1, 0, 2, 0, 4]] = 7.1548304284006861E+01 +v_z[1][[0, 2, 0, 2, 0, 4]] = -5.5575613190151034E+03 +v_z[1][[0, 1, 1, 2, 0, 4]] = 8.6562884973325822E+02 +v_z[1][[1, 0, 0, 3, 0, 4]] = 1.7212231947074685E+02 +v_z[1][[0, 1, 0, 3, 0, 4]] = -1.7756088235610612E+04 +v_z[1][[0, 0, 1, 3, 0, 4]] = 2.0824259485655912E+03 +v_z[1][[0, 0, 0, 4, 0, 4]] = -3.6059810948354745E+04 +v_z[1][[1, 2, 0, 0, 0, 5]] = -3.9895369176091355E-01 +v_z[1][[0, 3, 0, 0, 0, 5]] = 6.8875421222109537E+01 +v_z[1][[0, 2, 1, 0, 0, 5]] = -4.8267506651870802E+00 +v_z[1][[1, 1, 0, 1, 0, 5]] = -6.3804116588322533E+00 +v_z[1][[0, 2, 0, 1, 0, 5]] = 5.0960878573666753E+02 +v_z[1][[0, 1, 1, 1, 0, 5]] = -7.7193561193793329E+01 +v_z[1][[1, 0, 0, 2, 0, 5]] = -1.8797004237389270E+01 +v_z[1][[0, 1, 0, 2, 0, 5]] = 2.4591311308010258E+03 +v_z[1][[0, 0, 1, 2, 0, 5]] = -2.2741599985171885E+02 +v_z[1][[0, 0, 0, 3, 0, 5]] = 5.9158824007350695E+03 +v_z[1][[1, 1, 0, 0, 0, 6]] = 2.2849095286856230E-01 +v_z[1][[0, 2, 0, 0, 0, 6]] = -1.1426772595277267E+01 +v_z[1][[0, 1, 1, 0, 0, 6]] = 2.7644031914573413E+00 +v_z[1][[1, 0, 0, 1, 0, 6]] = 8.8982127049834292E-01 +v_z[1][[0, 1, 0, 1, 0, 6]] = -1.8274680644746192E+02 +v_z[1][[0, 0, 1, 1, 0, 6]] = 1.0765523663456506E+01 +v_z[1][[0, 0, 0, 2, 0, 6]] = -5.3838101345815335E+02 +v_z[1][[1, 0, 0, 0, 0, 7]] = -3.5990708675327733E-16 +v_z[1][[0, 1, 0, 0, 0, 7]] = 5.6094891908377402E+00 +v_z[1][[0, 0, 0, 1, 0, 7]] = 2.1845253547125790E+01 +v_z[1][[0, 0, 0, 0, 0, 8]] = -8.2423875839205964E-14 +v_z[1][[1, 8, 0, 0, 0, 0]] = 8.4855825868208237E-02 +v_z[1][[0, 9, 0, 0, 0, 0]] = -2.7612000018433696E+00 +v_z[1][[0, 8, 1, 0, 0, 0]] = 1.0266302140144778E+00 +v_z[1][[1, 7, 0, 1, 0, 0]] = 1.8380003128095692E+00 +v_z[1][[0, 8, 0, 1, 0, 0]] = -4.5308051167958354E+01 +v_z[1][[0, 7, 1, 1, 0, 0]] = 2.2237090207913706E+01 +v_z[1][[1, 6, 0, 2, 0, 0]] = 1.5741587075402254E+01 +v_z[1][[0, 7, 0, 2, 0, 0]] = -4.7822186351533998E+02 +v_z[1][[0, 6, 1, 2, 0, 0]] = 1.9044996313214227E+02 +v_z[1][[1, 5, 0, 3, 0, 0]] = 9.9918015433349197E+01 +v_z[1][[0, 6, 0, 3, 0, 0]] = -3.1292707353125975E+03 +v_z[1][[0, 5, 1, 3, 0, 0]] = 1.2088604703177236E+03 +v_z[1][[1, 4, 0, 4, 0, 0]] = 4.4009493471177905E+02 +v_z[1][[0, 5, 0, 4, 0, 0]] = -1.5814308036943294E+04 +v_z[1][[0, 4, 1, 4, 0, 0]] = 5.3244989650040734E+03 +v_z[1][[1, 3, 0, 5, 0, 0]] = 1.4603391811577299E+03 +v_z[1][[0, 4, 0, 5, 0, 0]] = -6.0156812934494854E+04 +v_z[1][[0, 3, 1, 5, 0, 0]] = 1.7667948084250267E+04 +v_z[1][[1, 2, 0, 6, 0, 0]] = 3.6908263046606335E+03 +v_z[1][[0, 3, 0, 6, 0, 0]] = -1.7492866377259529E+05 +v_z[1][[0, 2, 1, 6, 0, 0]] = 4.4653549243972564E+04 +v_z[1][[1, 1, 0, 7, 0, 0]] = 6.0119972259432416E+03 +v_z[1][[0, 2, 0, 7, 0, 0]] = -3.9836775127209508E+05 +v_z[1][[0, 1, 1, 7, 0, 0]] = 7.2736290473568399E+04 +v_z[1][[1, 0, 0, 8, 0, 0]] = 7.5305813686065876E+03 +v_z[1][[0, 1, 0, 8, 0, 0]] = -5.9195371108016104E+05 +v_z[1][[0, 0, 1, 8, 0, 0]] = 9.1108916600650991E+04 +v_z[1][[0, 0, 0, 9, 0, 0]] = -6.7665094900912954E+05 +v_z[1][[1, 7, 0, 0, 0, 1]] = -7.8343551101895492E-01 +v_z[1][[0, 8, 0, 0, 0, 1]] = 1.6665792041617824E+01 +v_z[1][[0, 7, 1, 0, 0, 1]] = -9.4784130389952068E+00 +v_z[1][[1, 6, 0, 1, 0, 1]] = -1.0654404208642791E+01 +v_z[1][[0, 7, 0, 1, 0, 1]] = 3.6098559730345130E+02 +v_z[1][[0, 6, 1, 1, 0, 1]] = -1.2890256103221478E+02 +v_z[1][[1, 5, 0, 2, 0, 1]] = -9.6137456426251376E+01 +v_z[1][[0, 6, 0, 2, 0, 1]] = 3.0916677071899503E+03 +v_z[1][[0, 5, 1, 2, 0, 1]] = -1.1631212878533497E+03 +v_z[1][[1, 4, 0, 3, 0, 1]] = -5.1029056442520653E+02 +v_z[1][[0, 5, 0, 3, 0, 1]] = 1.9624025214363552E+04 +v_z[1][[0, 4, 1, 3, 0, 1]] = -6.1737624494877809E+03 +v_z[1][[1, 3, 0, 4, 0, 1]] = -2.0061576479538899E+03 +v_z[1][[0, 4, 0, 4, 0, 1]] = 8.6435204482805566E+04 +v_z[1][[0, 3, 1, 4, 0, 1]] = -2.4271545699931896E+04 +v_z[1][[1, 2, 0, 5, 0, 1]] = -5.7228427379538189E+03 +v_z[1][[0, 3, 0, 5, 0, 1]] = 2.8681247108714626E+05 +v_z[1][[0, 2, 1, 5, 0, 1]] = -6.9237948069254620E+04 +v_z[1][[1, 1, 0, 6, 0, 1]] = -1.0396752346129429E+04 +v_z[1][[0, 2, 0, 6, 0, 1]] = 7.2488297681223776E+05 +v_z[1][[0, 1, 1, 6, 0, 1]] = -1.2578535388648296E+05 +v_z[1][[1, 0, 0, 7, 0, 1]] = -1.4402744972033288E+04 +v_z[1][[0, 1, 0, 7, 0, 1]] = 1.1807638956689870E+06 +v_z[1][[0, 0, 1, 7, 0, 1]] = -1.7425195031392833E+05 +v_z[1][[0, 0, 0, 8, 0, 1]] = 1.4790157512178964E+06 +v_z[1][[1, 6, 0, 0, 0, 2]] = 1.6428483797104128E+00 +v_z[1][[0, 7, 0, 0, 0, 2]] = -7.6933865006151876E+01 +v_z[1][[0, 6, 1, 0, 0, 2]] = 1.9876039934782295E+01 +v_z[1][[1, 5, 0, 1, 0, 2]] = 3.2480978653826412E+01 +v_z[1][[0, 6, 0, 1, 0, 2]] = -1.0462692634938119E+03 +v_z[1][[0, 5, 1, 1, 0, 2]] = 3.9297188761756843E+02 +v_z[1][[1, 4, 0, 2, 0, 2]] = 2.2311460250819641E+02 +v_z[1][[0, 5, 0, 2, 0, 2]] = -9.4407593103768377E+03 +v_z[1][[0, 4, 1, 2, 0, 2]] = 2.6993572896043424E+03 +v_z[1][[1, 3, 0, 3, 0, 2]] = 1.1118315701335907E+03 +v_z[1][[0, 4, 0, 3, 0, 2]] = -5.0110857684177783E+04 +v_z[1][[0, 3, 1, 3, 0, 2]] = 1.3451520518663019E+04 +v_z[1][[1, 2, 0, 4, 0, 2]] = 3.6646189354264975E+03 +v_z[1][[0, 3, 0, 4, 0, 2]] = -1.9700595581633024E+05 +v_z[1][[0, 2, 1, 4, 0, 2]] = 4.4336478768135341E+04 +v_z[1][[1, 1, 0, 5, 0, 2]] = 7.6189750663264549E+03 +v_z[1][[0, 2, 0, 5, 0, 2]] = -5.6198679337440373E+05 +v_z[1][[0, 1, 1, 5, 0, 2]] = 9.2178349840846771E+04 +v_z[1][[1, 0, 0, 6, 0, 2]] = 1.1805492093994690E+04 +v_z[1][[0, 1, 0, 6, 0, 2]] = -1.0209676868734277E+06 +v_z[1][[0, 0, 1, 6, 0, 2]] = 1.4282902500798958E+05 +v_z[1][[0, 0, 0, 7, 0, 2]] = -1.4143587082940557E+06 +v_z[1][[1, 5, 0, 0, 0, 3]] = -4.0721528641142868E+00 +v_z[1][[0, 6, 0, 0, 0, 3]] = 1.0755250320972337E+02 +v_z[1][[0, 5, 1, 0, 0, 3]] = -4.9267037632493320E+01 +v_z[1][[1, 4, 0, 1, 0, 3]] = -4.3214576695253143E+01 +v_z[1][[0, 5, 0, 1, 0, 3]] = 2.1264351622858931E+03 +v_z[1][[0, 4, 1, 1, 0, 3]] = -5.2283257710670091E+02 +v_z[1][[1, 3, 0, 2, 0, 3]] = -3.1261243163813737E+02 +v_z[1][[0, 4, 0, 2, 0, 3]] = 1.4606663827753182E+04 +v_z[1][[0, 3, 1, 2, 0, 3]] = -3.7821488897498075E+03 +v_z[1][[1, 2, 0, 3, 0, 3]] = -1.2333774104352374E+03 +v_z[1][[0, 3, 0, 3, 0, 3]] = 7.2788377790860919E+04 +v_z[1][[0, 2, 1, 3, 0, 3]] = -1.4922045739114597E+04 +v_z[1][[1, 1, 0, 4, 0, 3]] = -3.0583146125029680E+03 +v_z[1][[0, 2, 0, 4, 0, 3]] = 2.3991193872945820E+05 +v_z[1][[0, 1, 1, 4, 0, 3]] = -3.7001091593097619E+04 +v_z[1][[1, 0, 0, 5, 0, 3]] = -5.3760501100084657E+03 +v_z[1][[0, 1, 0, 5, 0, 3]] = 4.9879212859578017E+05 +v_z[1][[0, 0, 1, 5, 0, 3]] = -6.5042269266962554E+04 +v_z[1][[0, 0, 0, 6, 0, 3]] = 7.7287121685299347E+05 +v_z[1][[1, 4, 0, 0, 0, 4]] = 2.5243104071052573E+00 +v_z[1][[0, 5, 0, 0, 0, 4]] = -1.9994399942677828E+02 +v_z[1][[0, 4, 1, 0, 0, 4]] = 3.0540429098061225E+01 +v_z[1][[1, 3, 0, 1, 0, 4]] = 4.5139717126362982E+01 +v_z[1][[0, 4, 0, 1, 0, 4]] = -2.1218494458123719E+03 +v_z[1][[0, 3, 1, 1, 0, 4]] = 5.4612393409458514E+02 +v_z[1][[1, 2, 0, 2, 0, 4]] = 2.2637577829392040E+02 +v_z[1][[0, 3, 0, 2, 0, 4]] = -1.5349369716221308E+04 +v_z[1][[0, 2, 1, 2, 0, 4]] = 2.7388127018943142E+03 +v_z[1][[1, 1, 0, 3, 0, 4]] = 7.2325756983356086E+02 +v_z[1][[0, 2, 0, 3, 0, 4]] = -6.0559222719332793E+04 +v_z[1][[0, 1, 1, 3, 0, 4]] = 8.7503487958392088E+03 +v_z[1][[1, 0, 0, 4, 0, 4]] = 1.4688218986690388E+03 +v_z[1][[0, 1, 0, 4, 0, 4]] = -1.5016421915737938E+05 +v_z[1][[0, 0, 1, 4, 0, 4]] = 1.7770576442467827E+04 +v_z[1][[0, 0, 0, 5, 0, 4]] = -2.6396576847261144E+05 +v_z[1][[1, 3, 0, 0, 0, 5]] = -2.8054979854436963E+00 +v_z[1][[0, 4, 0, 0, 0, 5]] = 9.9155554407418990E+01 +v_z[1][[0, 3, 1, 0, 0, 5]] = -3.3942383657741672E+01 +v_z[1][[1, 2, 0, 1, 0, 5]] = -2.0757861024734858E+01 +v_z[1][[0, 3, 0, 1, 0, 5]] = 1.7730995621062582E+03 +v_z[1][[0, 2, 1, 1, 0, 5]] = -2.5113947201933317E+02 +v_z[1][[1, 1, 0, 2, 0, 5]] = -1.0016762599760965E+02 +v_z[1][[0, 2, 0, 2, 0, 5]] = 8.8920981104242019E+03 +v_z[1][[0, 1, 1, 2, 0, 5]] = -1.2118803896265617E+03 +v_z[1][[1, 0, 0, 3, 0, 5]] = -2.4097124725904555E+02 +v_z[1][[0, 1, 0, 3, 0, 5]] = 2.8409741176977197E+04 +v_z[1][[0, 0, 1, 3, 0, 5]] = -2.9153963279918280E+03 +v_z[1][[0, 0, 0, 4, 0, 5]] = 5.7695697517368113E+04 +v_z[1][[1, 2, 0, 0, 0, 6]] = 4.6544597372106977E-01 +v_z[1][[0, 3, 0, 0, 0, 6]] = -9.1833894962812934E+01 +v_z[1][[0, 2, 1, 0, 0, 6]] = 5.6312091093849297E+00 +v_z[1][[1, 1, 0, 1, 0, 6]] = 7.4438136019709695E+00 +v_z[1][[0, 2, 0, 1, 0, 6]] = -6.7947838098222655E+02 +v_z[1][[0, 1, 1, 1, 0, 6]] = 9.0059154726092231E+01 +v_z[1][[1, 0, 0, 2, 0, 6]] = 2.1929838276954115E+01 +v_z[1][[0, 1, 0, 2, 0, 6]] = -3.2788415077347163E+03 +v_z[1][[0, 0, 1, 2, 0, 6]] = 2.6531866649367197E+02 +v_z[1][[0, 0, 0, 3, 0, 6]] = -7.8878432009800608E+03 +v_z[1][[1, 1, 0, 0, 0, 7]] = -2.2849095286856286E-01 +v_z[1][[0, 2, 0, 0, 0, 7]] = 1.3059168680317033E+01 +v_z[1][[0, 1, 1, 0, 0, 7]] = -2.7644031914573435E+00 +v_z[1][[1, 0, 0, 1, 0, 7]] = -8.8982127049835447E-01 +v_z[1][[0, 1, 0, 1, 0, 7]] = 2.0885349308281579E+02 +v_z[1][[0, 0, 1, 1, 0, 7]] = -1.0765523663456511E+01 +v_z[1][[0, 0, 0, 2, 0, 7]] = 6.1529258680933174E+02 +v_z[1][[1, 0, 0, 0, 0, 8]] = 2.6545721163057274E-15 +v_z[1][[0, 1, 0, 0, 0, 8]] = -5.6094891908377855E+00 +v_z[1][[0, 0, 0, 1, 0, 8]] = -2.1845253547126898E+01 +v_z[1][[0, 0, 0, 0, 0, 9]] = 1.2471094400677167E-13 +v_z[1][[1, 9, 0, 0, 0, 0]] = 1.1247177737901123E-01 +v_z[1][[0, 10, 0, 0, 0, 0]] = -2.2596410039266686E+00 +v_z[1][[0, 9, 1, 0, 0, 0]] = 1.3607424558042447E+00 +v_z[1][[1, 8, 0, 1, 0, 0]] = 1.8455298569598280E+00 +v_z[1][[0, 9, 0, 1, 0, 0]] = -5.3213210385579700E+01 +v_z[1][[0, 8, 1, 1, 0, 0]] = 2.2328186575703683E+01 +v_z[1][[1, 7, 0, 2, 0, 0]] = 1.9479379594077045E+01 +v_z[1][[0, 8, 0, 2, 0, 0]] = -5.3955441054869914E+02 +v_z[1][[0, 7, 1, 2, 0, 0]] = 2.3567173422595815E+02 +v_z[1][[1, 6, 0, 3, 0, 0]] = 1.2746437826516340E+02 +v_z[1][[0, 7, 0, 3, 0, 0]] = -4.0570879629263409E+03 +v_z[1][[0, 6, 1, 3, 0, 0]] = 1.5421307918306879E+03 +v_z[1][[1, 5, 0, 4, 0, 0]] = 6.4416316519873885E+02 +v_z[1][[0, 6, 0, 4, 0, 0]] = -2.1922719542534251E+04 +v_z[1][[0, 5, 1, 4, 0, 0]] = 7.7934232727324215E+03 +v_z[1][[1, 4, 0, 5, 0, 0]] = 2.4503634896720137E+03 +v_z[1][[0, 5, 0, 5, 0, 0]] = -9.3886683721892274E+04 +v_z[1][[0, 4, 1, 5, 0, 0]] = 2.9645780570473809E+04 +v_z[1][[1, 3, 0, 6, 0, 0]] = 7.1253577125541015E+03 +v_z[1][[0, 4, 0, 6, 0, 0]] = -3.1647966648642858E+05 +v_z[1][[0, 3, 1, 6, 0, 0]] = 8.6206308624352911E+04 +v_z[1][[1, 2, 0, 7, 0, 0]] = 1.6226687312088872E+04 +v_z[1][[0, 3, 0, 7, 0, 0]] = -8.2602067719102546E+05 +v_z[1][[0, 2, 1, 7, 0, 0]] = 1.9631895980635393E+05 +v_z[1][[1, 1, 0, 8, 0, 0]] = 2.4112011432289764E+04 +v_z[1][[0, 2, 0, 8, 0, 0]] = -1.7167582646948544E+06 +v_z[1][[0, 1, 1, 8, 0, 0]] = 2.9171973996808793E+05 +v_z[1][[1, 0, 0, 9, 0, 0]] = 2.7561978433087799E+04 +v_z[1][[0, 1, 0, 9, 0, 0]] = -2.3559716966320458E+06 +v_z[1][[0, 0, 1, 9, 0, 0]] = 3.3345924723389174E+05 +v_z[1][[0, 0, 0, 10, 0, 0]] = -2.4765466763020824E+06 +v_z[1][[1, 8, 0, 0, 0, 1]] = -6.7884660694566534E-01 +v_z[1][[0, 9, 0, 0, 0, 1]] = 2.4850800016590341E+01 +v_z[1][[0, 8, 1, 0, 0, 1]] = -8.2130417121158210E+00 +v_z[1][[1, 7, 0, 1, 0, 1]] = -1.4704002502476541E+01 +v_z[1][[0, 8, 0, 1, 0, 1]] = 4.0777246051162541E+02 +v_z[1][[0, 7, 1, 1, 0, 1]] = -1.7789672166330962E+02 +v_z[1][[1, 6, 0, 2, 0, 1]] = -1.2593269660321801E+02 +v_z[1][[0, 7, 0, 2, 0, 1]] = 4.3039967716380579E+03 +v_z[1][[0, 6, 1, 2, 0, 1]] = -1.5235997050571380E+03 +v_z[1][[1, 5, 0, 3, 0, 1]] = -7.9934412346679335E+02 +v_z[1][[0, 6, 0, 3, 0, 1]] = 2.8163436617813404E+04 +v_z[1][[0, 5, 1, 3, 0, 1]] = -9.6708837625417873E+03 +v_z[1][[1, 4, 0, 4, 0, 1]] = -3.5207594776942324E+03 +v_z[1][[0, 5, 0, 4, 0, 1]] = 1.4232877233248961E+05 +v_z[1][[0, 4, 1, 4, 0, 1]] = -4.2595991720032580E+04 +v_z[1][[1, 3, 0, 5, 0, 1]] = -1.1682713449261839E+04 +v_z[1][[0, 4, 0, 5, 0, 1]] = 5.4141131641045364E+05 +v_z[1][[0, 3, 1, 5, 0, 1]] = -1.4134358467400214E+05 +v_z[1][[1, 2, 0, 6, 0, 1]] = -2.9526610437285046E+04 +v_z[1][[0, 3, 0, 6, 0, 1]] = 1.5743579739533577E+06 +v_z[1][[0, 2, 1, 6, 0, 1]] = -3.5722839395178051E+05 +v_z[1][[1, 1, 0, 7, 0, 1]] = -4.8095977807545940E+04 +v_z[1][[0, 2, 0, 7, 0, 1]] = 3.5853097614488462E+06 +v_z[1][[0, 1, 1, 7, 0, 1]] = -5.8189032378854731E+05 +v_z[1][[1, 0, 0, 8, 0, 1]] = -6.0244650948852519E+04 +v_z[1][[0, 1, 0, 8, 0, 1]] = 5.3275833997214325E+06 +v_z[1][[0, 0, 1, 8, 0, 1]] = -7.2887133280520805E+05 +v_z[1][[0, 0, 0, 9, 0, 1]] = 6.0898585410821931E+06 +v_z[1][[1, 7, 0, 0, 0, 2]] = 3.1337420440758201E+00 +v_z[1][[0, 8, 0, 0, 0, 2]] = -7.4996064187280240E+01 +v_z[1][[0, 7, 1, 0, 0, 2]] = 3.7913652155980827E+01 +v_z[1][[1, 6, 0, 1, 0, 2]] = 4.2617616834571180E+01 +v_z[1][[0, 7, 0, 1, 0, 2]] = -1.6244351878655318E+03 +v_z[1][[0, 6, 1, 1, 0, 2]] = 5.1561024412885899E+02 +v_z[1][[1, 5, 0, 2, 0, 2]] = 3.8454982570500556E+02 +v_z[1][[0, 6, 0, 2, 0, 2]] = -1.3912504682354780E+04 +v_z[1][[0, 5, 1, 2, 0, 2]] = 4.6524851514133989E+03 +v_z[1][[1, 4, 0, 3, 0, 2]] = 2.0411622577008268E+03 +v_z[1][[0, 5, 0, 3, 0, 2]] = -8.8308113464636030E+04 +v_z[1][[0, 4, 1, 3, 0, 2]] = 2.4695049797951127E+04 +v_z[1][[1, 3, 0, 4, 0, 2]] = 8.0246305918155631E+03 +v_z[1][[0, 4, 0, 4, 0, 2]] = -3.8895842017262551E+05 +v_z[1][[0, 3, 1, 4, 0, 2]] = 9.7086182799727598E+04 +v_z[1][[1, 2, 0, 5, 0, 2]] = 2.2891370951815297E+04 +v_z[1][[0, 3, 0, 5, 0, 2]] = -1.2906561198921569E+06 +v_z[1][[0, 2, 1, 5, 0, 2]] = 2.7695179227701848E+05 +v_z[1][[1, 1, 0, 6, 0, 2]] = 4.1587009384517740E+04 +v_z[1][[0, 2, 0, 6, 0, 2]] = -3.2619733956550742E+06 +v_z[1][[0, 1, 1, 6, 0, 2]] = 5.0314141554593190E+05 +v_z[1][[1, 0, 0, 7, 0, 2]] = 5.7610979888132882E+04 +v_z[1][[0, 1, 0, 7, 0, 2]] = -5.3134375305104563E+06 +v_z[1][[0, 0, 1, 7, 0, 2]] = 6.9700780125571333E+05 +v_z[1][[0, 0, 0, 8, 0, 2]] = -6.6555708804804888E+06 +v_z[1][[1, 6, 0, 0, 0, 3]] = -4.3809290125611042E+00 +v_z[1][[0, 7, 0, 0, 0, 3]] = 2.3080159501845574E+02 +v_z[1][[0, 6, 1, 0, 0, 3]] = -5.3002773159419462E+01 +v_z[1][[1, 5, 0, 1, 0, 3]] = -8.6615943076870508E+01 +v_z[1][[0, 6, 0, 1, 0, 3]] = 3.1388077904814377E+03 +v_z[1][[0, 5, 1, 1, 0, 3]] = -1.0479250336468494E+03 +v_z[1][[1, 4, 0, 2, 0, 3]] = -5.9497227335519096E+02 +v_z[1][[0, 5, 0, 2, 0, 3]] = 2.8322277931130528E+04 +v_z[1][[0, 4, 1, 2, 0, 3]] = -7.1982861056115817E+03 +v_z[1][[1, 3, 0, 3, 0, 3]] = -2.9648841870229107E+03 +v_z[1][[0, 4, 0, 3, 0, 3]] = 1.5033257305253352E+05 +v_z[1][[0, 3, 1, 3, 0, 3]] = -3.5870721383101394E+04 +v_z[1][[1, 2, 0, 4, 0, 3]] = -9.7723171611373255E+03 +v_z[1][[0, 3, 0, 4, 0, 3]] = 5.9101786744899151E+05 +v_z[1][[0, 2, 1, 4, 0, 3]] = -1.1823061004836092E+05 +v_z[1][[1, 1, 0, 5, 0, 3]] = -2.0317266843537262E+04 +v_z[1][[0, 2, 0, 5, 0, 3]] = 1.6859603801232090E+06 +v_z[1][[0, 1, 1, 5, 0, 3]] = -2.4580893290892494E+05 +v_z[1][[1, 0, 0, 6, 0, 3]] = -3.1481312250652813E+04 +v_z[1][[0, 1, 0, 6, 0, 3]] = 3.0629030606202735E+06 +v_z[1][[0, 0, 1, 6, 0, 3]] = -3.8087740002130548E+05 +v_z[1][[0, 0, 0, 7, 0, 3]] = 4.2430761248822017E+06 +v_z[1][[1, 5, 0, 0, 0, 4]] = 8.1443057282285736E+00 +v_z[1][[0, 6, 0, 0, 0, 4]] = -2.4199313222187786E+02 +v_z[1][[0, 5, 1, 0, 0, 4]] = 9.8534075264986654E+01 +v_z[1][[1, 4, 0, 1, 0, 4]] = 8.6429153390506343E+01 +v_z[1][[0, 5, 0, 1, 0, 4]] = -4.7844791151432619E+03 +v_z[1][[0, 4, 1, 1, 0, 4]] = 1.0456651542134018E+03 +v_z[1][[1, 3, 0, 2, 0, 4]] = 6.2522486327627530E+02 +v_z[1][[0, 4, 0, 2, 0, 4]] = -3.2864993612444705E+04 +v_z[1][[0, 3, 1, 2, 0, 4]] = 7.5642977794996186E+03 +v_z[1][[1, 2, 0, 3, 0, 4]] = 2.4667548208704789E+03 +v_z[1][[0, 3, 0, 3, 0, 4]] = -1.6377385002943737E+05 +v_z[1][[0, 2, 1, 3, 0, 4]] = 2.9844091478229209E+04 +v_z[1][[1, 1, 0, 4, 0, 4]] = 6.1166292250059450E+03 +v_z[1][[0, 2, 0, 4, 0, 4]] = -5.3980186214128311E+05 +v_z[1][[0, 1, 1, 4, 0, 4]] = 7.4002183186195296E+04 +v_z[1][[1, 0, 0, 5, 0, 4]] = 1.0752100220016966E+04 +v_z[1][[0, 1, 0, 5, 0, 4]] = -1.1222822893405126E+06 +v_z[1][[0, 0, 1, 5, 0, 4]] = 1.3008453853392515E+05 +v_z[1][[0, 0, 0, 6, 0, 4]] = -1.7389602379192240E+06 +v_z[1][[1, 4, 0, 0, 0, 5]] = -4.0388966513684164E+00 +v_z[1][[0, 5, 0, 0, 0, 5]] = 3.5989919896820101E+02 +v_z[1][[0, 4, 1, 0, 0, 5]] = -4.8864686556897972E+01 +v_z[1][[1, 3, 0, 1, 0, 5]] = -7.2223547402180813E+01 +v_z[1][[0, 4, 0, 1, 0, 5]] = 3.8193290024622829E+03 +v_z[1][[0, 3, 1, 1, 0, 5]] = -8.7379829455133643E+02 +v_z[1][[1, 2, 0, 2, 0, 5]] = -3.6220124527027258E+02 +v_z[1][[0, 3, 0, 2, 0, 5]] = 2.7628865489198437E+04 +v_z[1][[0, 2, 1, 2, 0, 5]] = -4.3821003230309043E+03 +v_z[1][[1, 1, 0, 3, 0, 5]] = -1.1572121117336978E+03 +v_z[1][[0, 2, 0, 3, 0, 5]] = 1.0900660089479947E+05 +v_z[1][[0, 1, 1, 3, 0, 5]] = -1.4000558073342732E+04 +v_z[1][[1, 0, 0, 4, 0, 5]] = -2.3501150378704615E+03 +v_z[1][[0, 1, 0, 4, 0, 5]] = 2.7029559448328731E+05 +v_z[1][[0, 0, 1, 4, 0, 5]] = -2.8432922307948531E+04 +v_z[1][[0, 0, 0, 5, 0, 5]] = 4.7513838325070945E+05 +v_z[1][[1, 3, 0, 0, 0, 6]] = 3.7406639805915991E+00 +v_z[1][[0, 4, 0, 0, 0, 6]] = -1.4873333161112899E+02 +v_z[1][[0, 3, 1, 0, 0, 6]] = 4.5256511543655577E+01 +v_z[1][[1, 2, 0, 1, 0, 6]] = 2.7677148032979854E+01 +v_z[1][[0, 3, 0, 1, 0, 6]] = -2.6596493431593990E+03 +v_z[1][[0, 2, 1, 1, 0, 6]] = 3.3485262935911101E+02 +v_z[1][[1, 1, 0, 2, 0, 6]] = 1.3355683466347955E+02 +v_z[1][[0, 2, 0, 2, 0, 6]] = -1.3338147165636381E+04 +v_z[1][[0, 1, 1, 2, 0, 6]] = 1.6158405195020823E+03 +v_z[1][[1, 0, 0, 3, 0, 6]] = 3.2129499634539292E+02 +v_z[1][[0, 1, 0, 3, 0, 6]] = -4.2614611765465932E+04 +v_z[1][[0, 0, 1, 3, 0, 6]] = 3.8871951039891046E+03 +v_z[1][[0, 0, 0, 4, 0, 6]] = -8.6543546276051464E+04 +v_z[1][[1, 2, 0, 0, 0, 7]] = -5.3193825568122666E-01 +v_z[1][[0, 3, 0, 0, 0, 7]] = 1.1807215066647414E+02 +v_z[1][[0, 2, 1, 0, 0, 7]] = -6.4356675535827828E+00 +v_z[1][[1, 1, 0, 1, 0, 7]] = -8.5072155451097018E+00 +v_z[1][[0, 2, 0, 1, 0, 7]] = 8.7361506126286884E+02 +v_z[1][[0, 1, 1, 1, 0, 7]] = -1.0292474825839125E+02 +v_z[1][[1, 0, 0, 2, 0, 7]] = -2.5062672316519023E+01 +v_z[1][[0, 1, 0, 2, 0, 7]] = 4.2156533670875087E+03 +v_z[1][[0, 0, 1, 2, 0, 7]] = -3.0322133313562523E+02 +v_z[1][[0, 0, 0, 3, 0, 7]] = 1.0141512686974531E+04 +v_z[1][[1, 1, 0, 0, 0, 8]] = 2.2849095286856613E-01 +v_z[1][[0, 2, 0, 0, 0, 8]] = -1.4691564765356519E+01 +v_z[1][[0, 1, 1, 0, 0, 8]] = 2.7644031914573519E+00 +v_z[1][[1, 0, 0, 1, 0, 8]] = 8.8982127049838522E-01 +v_z[1][[0, 1, 0, 1, 0, 8]] = -2.3496017971816880E+02 +v_z[1][[0, 0, 1, 1, 0, 8]] = 1.0765523663456506E+01 +v_z[1][[0, 0, 0, 2, 0, 8]] = -6.9220416016051286E+02 +v_z[1][[1, 0, 0, 0, 0, 9]] = -3.7212339881573755E-15 +v_z[1][[0, 1, 0, 0, 0, 9]] = 5.6094891908377535E+00 +v_z[1][[0, 0, 0, 1, 0, 9]] = 2.1845253547128063E+01 +v_z[1][[0, 0, 0, 0, 0, 10]] = -1.4466546441382276E-13 +v_z[2][[0, 0, 0, 0, 0, 0]] = 8.1555963638229567E-01 +v_z[2][[0, 1, 0, 0, 0, 0]] = 5.4784266868711706E-01 +v_z[2][[0, 0, 0, 1, 0, 0]] = 1.8636225441262336E-01 +v_z[2][[0, 0, 0, 0, 0, 1]] = 8.1555963638229567E-01 +v_z[2][[0, 2, 0, 0, 0, 0]] = -4.0777981819114784E-01 +v_z[2][[0, 0, 0, 2, 0, 0]] = -4.0777981819114784E-01 +v_z[2][[0, 0, 0, 1, 0, 1]] = -4.8360018722269390E-18 +v_z[2][[0, 0, 0, 0, 0, 2]] = -5.3075002763572164E-17 +v_z[2][[0, 2, 0, 1, 0, 0]] = 2.4180009361134695E-18 +v_z[2][[0, 0, 0, 3, 0, 0]] = -1.1606404493344653E-16 +v_z[2][[0, 2, 0, 0, 0, 1]] = 4.0777981819114784E-01 +v_z[2][[0, 0, 0, 2, 0, 1]] = 4.0777981819114789E-01 +v_z[2][[0, 0, 0, 1, 0, 2]] = -2.9016011233361634E-17 +v_z[2][[0, 0, 0, 0, 0, 3]] = 5.1866002295515430E-17 +v_z[2][[0, 4, 0, 0, 0, 0]] = -1.0194495454778696E-01 +v_z[2][[0, 2, 0, 2, 0, 0]] = -2.0388990909557395E-01 +v_z[2][[0, 0, 0, 4, 0, 0]] = -1.0194495454778749E-01 +v_z[2][[0, 0, 0, 3, 0, 1]] = 4.6425617973378614E-16 +v_z[2][[0, 2, 0, 0, 0, 2]] = -4.0777981819114784E-01 +v_z[2][[0, 0, 0, 2, 0, 2]] = -4.0777981819114806E-01 +v_z[2][[0, 0, 0, 1, 0, 3]] = 3.8688014977815512E-17 +v_z[2][[0, 0, 0, 0, 0, 4]] = -8.5596997570179838E-17 +v_z[2][[0, 2, 0, 3, 0, 0]] = -2.3212808986689307E-16 +v_z[2][[0, 0, 0, 5, 0, 0]] = -1.2380164792900964E-15 +v_z[2][[0, 4, 0, 0, 0, 1]] = 3.0583486364336088E-01 +v_z[2][[0, 2, 0, 2, 0, 1]] = 6.1166972728672198E-01 +v_z[2][[0, 0, 0, 4, 0, 1]] = 3.0583486364336304E-01 +v_z[2][[0, 2, 0, 1, 0, 2]] = -1.9344007488907756E-17 +v_z[2][[0, 0, 0, 3, 0, 2]] = -1.2380164792900964E-15 +v_z[2][[0, 2, 0, 0, 0, 3]] = 4.0777981819114795E-01 +v_z[2][[0, 0, 0, 2, 0, 3]] = 4.0777981819114817E-01 +v_z[2][[0, 0, 0, 1, 0, 4]] = 3.8688014977815512E-17 +v_z[2][[0, 0, 0, 0, 0, 5]] = 7.2540028083404084E-18 +v_z[2][[0, 6, 0, 0, 0, 0]] = -5.0972477273893479E-02 +v_z[2][[0, 4, 0, 2, 0, 0]] = -1.5291743182168044E-01 +v_z[2][[0, 2, 0, 4, 0, 0]] = -1.5291743182168091E-01 +v_z[2][[0, 0, 0, 6, 0, 0]] = -5.0972477273898385E-02 +v_z[2][[0, 4, 0, 1, 0, 1]] = -3.8688014977815512E-17 +v_z[2][[0, 4, 0, 0, 0, 2]] = -6.1166972728672175E-01 +v_z[2][[0, 2, 0, 2, 0, 2]] = -1.2233394545734440E+00 +v_z[2][[0, 0, 0, 4, 0, 2]] = -6.1166972728672608E-01 +v_z[2][[0, 0, 0, 3, 0, 3]] = 2.4760329585801927E-15 +v_z[2][[0, 2, 0, 0, 0, 4]] = -4.0777981819114806E-01 +v_z[2][[0, 0, 0, 2, 0, 4]] = -4.0777981819114767E-01 +v_z[2][[0, 0, 0, 1, 0, 5]] = -3.8688014977815512E-17 +v_z[2][[0, 0, 0, 0, 0, 6]] = -1.5668598952367885E-16 +v_z[2][[0, 0, 0, 7, 0, 0]] = -1.9808263668641542E-14 +v_z[2][[0, 6, 0, 0, 0, 1]] = 2.5486238636946740E-01 +v_z[2][[0, 4, 0, 2, 0, 1]] = 7.6458715910840203E-01 +v_z[2][[0, 2, 0, 4, 0, 1]] = 7.6458715910840636E-01 +v_z[2][[0, 0, 0, 6, 0, 1]] = 2.5486238636950181E-01 +v_z[2][[0, 4, 0, 1, 0, 2]] = 7.7376029955631023E-17 +v_z[2][[0, 2, 0, 3, 0, 2]] = 4.9520659171603855E-15 +v_z[2][[0, 4, 0, 0, 0, 3]] = 1.0194495454778696E+00 +v_z[2][[0, 2, 0, 2, 0, 3]] = 2.0388990909557396E+00 +v_z[2][[0, 0, 0, 4, 0, 3]] = 1.0194495454779280E+00 +v_z[2][[0, 2, 0, 1, 0, 4]] = 1.5475205991126205E-16 +v_z[2][[0, 2, 0, 0, 0, 5]] = 4.0777981819114850E-01 +v_z[2][[0, 0, 0, 2, 0, 5]] = 4.0777981819114567E-01 +v_z[2][[0, 0, 0, 0, 0, 7]] = 2.4180009361134692E-17 +v_z[2][[0, 8, 0, 0, 0, 0]] = -3.1857798296183425E-02 +v_z[2][[0, 6, 0, 2, 0, 0]] = -1.2743119318473370E-01 +v_z[2][[0, 4, 0, 4, 0, 0]] = -1.9114678977710037E-01 +v_z[2][[0, 2, 0, 6, 0, 0]] = -1.2743119318475091E-01 +v_z[2][[0, 0, 0, 8, 0, 0]] = -3.1857798296663124E-02 +v_z[2][[0, 6, 0, 1, 0, 1]] = -5.8032022466723267E-17 +v_z[2][[0, 4, 0, 3, 0, 1]] = -1.2380164792900964E-15 +v_z[2][[0, 2, 0, 5, 0, 1]] = -7.9233054674566168E-14 +v_z[2][[0, 0, 0, 7, 0, 1]] = -3.1693221869826467E-13 +v_z[2][[0, 6, 0, 0, 0, 2]] = -7.6458715910840214E-01 +v_z[2][[0, 4, 0, 2, 0, 2]] = -2.2937614773252069E+00 +v_z[2][[0, 2, 0, 4, 0, 2]] = -2.2937614773251997E+00 +v_z[2][[0, 0, 0, 6, 0, 2]] = -7.6458715910787156E-01 +v_z[2][[0, 4, 0, 1, 0, 3]] = -1.5475205991126205E-16 +v_z[2][[0, 2, 0, 3, 0, 3]] = -9.9041318343207710E-15 +v_z[2][[0, 0, 0, 5, 0, 3]] = 6.3386443739652934E-13 +v_z[2][[0, 4, 0, 0, 0, 4]] = -1.5291743182168047E+00 +v_z[2][[0, 2, 0, 2, 0, 4]] = -3.0583486364336090E+00 +v_z[2][[0, 0, 0, 4, 0, 4]] = -1.5291743182168529E+00 +v_z[2][[0, 2, 0, 1, 0, 5]] = -3.0950411982252409E-16 +v_z[2][[0, 2, 0, 0, 0, 6]] = -4.0777981819114795E-01 +v_z[2][[0, 0, 0, 2, 0, 6]] = -4.0777981819114495E-01 +v_z[2][[0, 0, 0, 1, 0, 7]] = 4.6425617973378614E-16 +v_z[2][[0, 0, 0, 0, 0, 8]] = 6.0256394873358070E-16 +v_z[2][[0, 8, 0, 1, 0, 0]] = 4.8360018722269390E-18 +v_z[2][[0, 0, 0, 9, 0, 0]] = -3.8031866243791761E-12 +v_z[2][[0, 8, 0, 0, 0, 1]] = 2.2300458807328399E-01 +v_z[2][[0, 6, 0, 2, 0, 1]] = 8.9201835229313575E-01 +v_z[2][[0, 4, 0, 4, 0, 1]] = 1.3380275284397261E+00 +v_z[2][[0, 2, 0, 6, 0, 1]] = 8.9201835229230564E-01 +v_z[2][[0, 0, 0, 8, 0, 1]] = 2.2300458806681700E-01 +v_z[2][[0, 6, 0, 1, 0, 2]] = 7.7376029955631023E-17 +v_z[2][[0, 2, 0, 5, 0, 2]] = -3.1693221869826467E-13 +v_z[2][[0, 0, 0, 7, 0, 2]] = 1.2677288747930585E-11 +v_z[2][[0, 6, 0, 0, 0, 3]] = 1.7840367045862719E+00 +v_z[2][[0, 4, 0, 2, 0, 3]] = 5.3521101137588154E+00 +v_z[2][[0, 2, 0, 4, 0, 3]] = 5.3521101137584290E+00 +v_z[2][[0, 0, 0, 6, 0, 3]] = 1.7840367045915837E+00 +v_z[2][[0, 4, 0, 1, 0, 4]] = -3.0950411982252409E-16 +v_z[2][[0, 2, 0, 3, 0, 4]] = -3.9616527337283084E-14 +v_z[2][[0, 0, 0, 5, 0, 4]] = -1.2677288747930587E-12 +v_z[2][[0, 4, 0, 0, 0, 5]] = 2.1408440455035276E+00 +v_z[2][[0, 2, 0, 2, 0, 5]] = 4.2816880910070463E+00 +v_z[2][[0, 0, 0, 4, 0, 5]] = 2.1408440455035951E+00 +v_z[2][[0, 2, 0, 1, 0, 6]] = -6.1900823964504819E-16 +v_z[2][[0, 0, 0, 3, 0, 6]] = 3.9616527337283084E-14 +v_z[2][[0, 2, 0, 0, 0, 7]] = 4.0777981819114800E-01 +v_z[2][[0, 0, 0, 2, 0, 7]] = 4.0777981819114251E-01 +v_z[2][[0, 0, 0, 1, 0, 8]] = -6.1900823964504819E-16 +v_z[2][[0, 0, 0, 0, 0, 9]] = 4.8360018722269383E-17 +v_z[2][[0, 10, 0, 0, 0, 0]] = -2.2300458807328397E-02 +v_z[2][[0, 8, 0, 2, 0, 0]] = -1.1150229403664200E-01 +v_z[2][[0, 6, 0, 4, 0, 0]] = -2.2300458807328438E-01 +v_z[2][[0, 4, 0, 6, 0, 0]] = -2.2300458807323487E-01 +v_z[2][[0, 2, 0, 8, 0, 0]] = -1.1150229403340850E-01 +v_z[2][[0, 0, 0, 10, 0, 0]] = -2.2300458833811095E-02 +v_z[2][[0, 8, 0, 1, 0, 1]] = -7.7376029955631023E-17 +v_z[2][[0, 6, 0, 3, 0, 1]] = 4.9520659171603855E-15 +v_z[2][[0, 4, 0, 5, 0, 1]] = 1.5846610934913234E-13 +v_z[2][[0, 2, 0, 7, 0, 1]] = -7.6063732487583521E-12 +v_z[2][[0, 0, 0, 9, 0, 1]] = -2.0283661996688939E-11 +v_z[2][[0, 8, 0, 0, 0, 2]] = -8.9201835229313586E-01 +v_z[2][[0, 6, 0, 2, 0, 2]] = -3.5680734091725430E+00 +v_z[2][[0, 4, 0, 4, 0, 2]] = -5.3521101137585081E+00 +v_z[2][[0, 2, 0, 6, 0, 2]] = -3.5680734091755610E+00 +v_z[2][[0, 0, 0, 8, 0, 2]] = -8.9201835219627512E-01 +v_z[2][[0, 6, 0, 1, 0, 3]] = -3.0950411982252409E-16 +v_z[2][[0, 2, 0, 5, 0, 3]] = -2.5354577495861174E-12 +v_z[2][[0, 6, 0, 0, 0, 4]] = -3.5680734091725443E+00 +v_z[2][[0, 4, 0, 2, 0, 4]] = -1.0704220227517652E+01 +v_z[2][[0, 2, 0, 4, 0, 4]] = -1.0704220227517176E+01 +v_z[2][[0, 0, 0, 6, 0, 4]] = -3.5680734091806330E+00 +v_z[2][[0, 0, 0, 5, 0, 5]] = 1.0141830998344469E-11 +v_z[2][[0, 4, 0, 0, 0, 6]] = -2.8544587273380353E+00 +v_z[2][[0, 2, 0, 2, 0, 6]] = -5.7089174546760839E+00 +v_z[2][[0, 0, 0, 4, 0, 6]] = -2.8544587273391810E+00 +v_z[2][[0, 2, 0, 1, 0, 7]] = -1.2380164792900964E-15 +v_z[2][[0, 0, 0, 3, 0, 7]] = -1.5846610934913234E-13 +v_z[2][[0, 2, 0, 0, 0, 8]] = -4.0777981819115044E-01 +v_z[2][[0, 0, 0, 2, 0, 8]] = -4.0777981819114045E-01 +v_z[2][[0, 0, 0, 1, 0, 9]] = 6.1900823964504819E-16 +v_z[2][[0, 0, 0, 0, 0, 10]] = 5.8032022466723267E-17 +v_z[3][[0, 0, 0, 0, 0, 0]] = -4.6658276726731325E+00 +v_z[3][[1, 0, 0, 0, 0, 0]] = -6.8423966858081142E-01 +v_z[3][[0, 1, 0, 0, 0, 0]] = 4.8883780394693792E+00 +v_z[3][[0, 0, 1, 0, 0, 0]] = 2.0114356699449174E+00 +v_z[3][[0, 0, 0, 1, 0, 0]] = -1.4370195719809907E+01 +v_z[3][[1, 1, 0, 0, 0, 0]] = -1.9911797994806493E-01 +v_z[3][[0, 2, 0, 0, 0, 0]] = 1.4225482753148295E+00 +v_z[3][[0, 1, 1, 0, 0, 0]] = -2.4090335846321635E+00 +v_z[3][[1, 0, 0, 1, 0, 0]] = 5.8534023352610209E-01 +v_z[3][[0, 1, 0, 1, 0, 0]] = 1.3028917991211632E+01 +v_z[3][[0, 0, 1, 1, 0, 0]] = 7.0817526441791134E+00 +v_z[3][[0, 0, 0, 2, 0, 0]] = -5.0593798776036557E+01 +v_z[3][[0, 1, 0, 0, 0, 1]] = -4.8883780394693792E+00 +v_z[3][[0, 0, 0, 1, 0, 1]] = 1.4370195719809907E+01 +v_z[3][[0, 0, 0, 0, 0, 2]] = -2.9908780050024673E-15 +v_z[3][[1, 2, 0, 0, 0, 0]] = -5.7944564980911231E-02 +v_z[3][[0, 3, 0, 0, 0, 0]] = 2.8581593753950005E+00 +v_z[3][[0, 2, 1, 0, 0, 0]] = -7.0104368838175568E-01 +v_z[3][[1, 1, 0, 1, 0, 0]] = -5.3070605635906531E-01 +v_z[3][[0, 2, 0, 1, 0, 0]] = 1.6148280707295586E+00 +v_z[3][[0, 1, 1, 1, 0, 0]] = -6.4207597609725653E+00 +v_z[3][[1, 0, 0, 2, 0, 0]] = 2.0608338653114426E+00 +v_z[3][[0, 1, 0, 2, 0, 0]] = 3.3592581872007251E+01 +v_z[3][[0, 0, 1, 2, 0, 0]] = 2.4933047207376632E+01 +v_z[3][[0, 0, 0, 3, 0, 0]] = -1.8531297617831805E+02 +v_z[3][[1, 1, 0, 0, 0, 1]] = 1.9911797994806493E-01 +v_z[3][[0, 2, 0, 0, 0, 1]] = -2.8450965506296599E+00 +v_z[3][[0, 1, 1, 0, 0, 1]] = 2.4090335846321635E+00 +v_z[3][[1, 0, 0, 1, 0, 1]] = -5.8534023352610187E-01 +v_z[3][[0, 1, 0, 1, 0, 1]] = -2.6057835982423267E+01 +v_z[3][[0, 0, 1, 1, 0, 1]] = -7.0817526441791134E+00 +v_z[3][[0, 0, 0, 2, 0, 1]] = 1.0118759755207309E+02 +v_z[3][[1, 0, 0, 0, 0, 2]] = 1.1348938017852014E-16 +v_z[3][[0, 1, 0, 0, 0, 2]] = 4.8883780394693819E+00 +v_z[3][[0, 0, 0, 1, 0, 2]] = -1.4370195719809935E+01 +v_z[3][[0, 0, 0, 0, 0, 3]] = 4.6363579969391675E-15 +v_z[3][[1, 3, 0, 0, 0, 0]] = -1.1642121714057356E-01 +v_z[3][[0, 4, 0, 0, 0, 0]] = 1.5430162118617257E+00 +v_z[3][[0, 3, 1, 0, 0, 0]] = -1.4085248460663733E+00 +v_z[3][[1, 2, 0, 1, 0, 0]] = -6.5776685193112305E-02 +v_z[3][[0, 3, 0, 1, 0, 0]] = 1.7047235097162371E+01 +v_z[3][[0, 2, 1, 1, 0, 0]] = -7.9580077980559594E-01 +v_z[3][[1, 1, 0, 2, 0, 0]] = -1.3683244195901194E+00 +v_z[3][[0, 2, 0, 2, 0, 0]] = -9.1245776304085222E+00 +v_z[3][[0, 1, 1, 2, 0, 0]] = -1.6554705317544272E+01 +v_z[3][[1, 0, 0, 3, 0, 0]] = 7.5483412241978947E+00 +v_z[3][[0, 1, 0, 3, 0, 0]] = 7.0858159706055531E+01 +v_z[3][[0, 0, 1, 3, 0, 0]] = 9.1323784633105760E+01 +v_z[3][[0, 0, 0, 4, 0, 0]] = -6.7773668588511680E+02 +v_z[3][[1, 2, 0, 0, 0, 1]] = 1.1588912996182243E-01 +v_z[3][[0, 3, 0, 0, 0, 1]] = -8.5744781261849994E+00 +v_z[3][[0, 2, 1, 0, 0, 1]] = 1.4020873767635114E+00 +v_z[3][[1, 1, 0, 1, 0, 1]] = 1.0614121127181306E+00 +v_z[3][[0, 2, 0, 1, 0, 1]] = -4.8444842121886591E+00 +v_z[3][[0, 1, 1, 1, 0, 1]] = 1.2841519521945131E+01 +v_z[3][[1, 0, 0, 2, 0, 1]] = -4.1216677306228862E+00 +v_z[3][[0, 1, 0, 2, 0, 1]] = -1.0077774561602180E+02 +v_z[3][[0, 0, 1, 2, 0, 1]] = -4.9866094414753263E+01 +v_z[3][[0, 0, 0, 3, 0, 1]] = 5.5593892853495402E+02 +v_z[3][[1, 1, 0, 0, 0, 2]] = -1.9911797994806507E-01 +v_z[3][[0, 2, 0, 0, 0, 2]] = 4.2676448259444886E+00 +v_z[3][[0, 1, 1, 0, 0, 2]] = -2.4090335846321631E+00 +v_z[3][[1, 0, 0, 1, 0, 2]] = 5.8534023352610287E-01 +v_z[3][[0, 1, 0, 1, 0, 2]] = 3.9086753973634913E+01 +v_z[3][[0, 0, 1, 1, 0, 2]] = 7.0817526441791134E+00 +v_z[3][[0, 0, 0, 2, 0, 2]] = -1.5178139632810982E+02 +v_z[3][[1, 0, 0, 0, 0, 3]] = -1.6596405413960474E-16 +v_z[3][[0, 1, 0, 0, 0, 3]] = -4.8883780394693872E+00 +v_z[3][[0, 0, 0, 1, 0, 3]] = 1.4370195719809978E+01 +v_z[3][[0, 0, 0, 0, 0, 4]] = -1.9572025000280723E-15 +v_z[3][[1, 4, 0, 0, 0, 0]] = -6.2851577486910795E-02 +v_z[3][[0, 5, 0, 0, 0, 0]] = 2.4891542136899751E+00 +v_z[3][[0, 4, 1, 0, 0, 0]] = -7.6041129511544314E-01 +v_z[3][[1, 3, 0, 1, 0, 0]] = -6.9438390174405951E-01 +v_z[3][[0, 4, 0, 1, 0, 0]] = 9.4045575769822491E+00 +v_z[3][[0, 3, 1, 1, 0, 0]] = -8.4010200403080937E+00 +v_z[3][[1, 2, 0, 2, 0, 0]] = 3.7167081820935799E-01 +v_z[3][[0, 3, 0, 2, 0, 0]] = 7.6811129081828000E+01 +v_z[3][[0, 2, 1, 2, 0, 0]] = 4.4966681749563335E+00 +v_z[3][[1, 1, 0, 3, 0, 0]] = -2.8862607412086341E+00 +v_z[3][[0, 2, 0, 3, 0, 0]] = -1.0694677343791216E+02 +v_z[3][[0, 1, 1, 3, 0, 0]] = -3.4919493766411421E+01 +v_z[3][[1, 0, 0, 4, 0, 0]] = 2.7606203681576986E+01 +v_z[3][[0, 1, 0, 4, 0, 0]] = 6.9655297916990961E+01 +v_z[3][[0, 0, 1, 4, 0, 0]] = 3.3399430744757893E+02 +v_z[3][[0, 0, 0, 5, 0, 0]] = -2.4805910015441850E+03 +v_z[3][[1, 3, 0, 0, 0, 1]] = 3.4926365142172067E-01 +v_z[3][[0, 4, 0, 0, 0, 1]] = -6.1720648474469009E+00 +v_z[3][[0, 3, 1, 0, 0, 1]] = 4.2255745381991199E+00 +v_z[3][[1, 2, 0, 1, 0, 1]] = 1.9733005557933692E-01 +v_z[3][[0, 3, 0, 1, 0, 1]] = -6.8188940388649499E+01 +v_z[3][[0, 2, 1, 1, 0, 1]] = 2.3874023394167878E+00 +v_z[3][[1, 1, 0, 2, 0, 1]] = 4.1049732587703582E+00 +v_z[3][[0, 2, 0, 2, 0, 1]] = 3.6498310521634096E+01 +v_z[3][[0, 1, 1, 2, 0, 1]] = 4.9664115952632827E+01 +v_z[3][[1, 0, 0, 3, 0, 1]] = -2.2645023672593688E+01 +v_z[3][[0, 1, 0, 3, 0, 1]] = -2.8343263882422224E+02 +v_z[3][[0, 0, 1, 3, 0, 1]] = -2.7397135389931731E+02 +v_z[3][[0, 0, 0, 4, 0, 1]] = 2.7109467435404663E+03 +v_z[3][[1, 2, 0, 0, 0, 2]] = -1.7383369494273357E-01 +v_z[3][[0, 3, 0, 0, 0, 2]] = 1.7148956252370009E+01 +v_z[3][[0, 2, 1, 0, 0, 2]] = -2.1031310651452677E+00 +v_z[3][[1, 1, 0, 1, 0, 2]] = -1.5921181690771964E+00 +v_z[3][[0, 2, 0, 1, 0, 2]] = 9.6889684243773306E+00 +v_z[3][[0, 1, 1, 1, 0, 2]] = -1.9262279282917689E+01 +v_z[3][[1, 0, 0, 2, 0, 2]] = 6.1825015959343395E+00 +v_z[3][[0, 1, 0, 2, 0, 2]] = 2.0155549123204358E+02 +v_z[3][[0, 0, 1, 2, 0, 2]] = 7.4799141622129895E+01 +v_z[3][[0, 0, 0, 3, 0, 2]] = -1.1118778570699096E+03 +v_z[3][[1, 1, 0, 0, 0, 3]] = 1.9911797994806527E-01 +v_z[3][[0, 2, 0, 0, 0, 3]] = -5.6901931012593172E+00 +v_z[3][[0, 1, 1, 0, 0, 3]] = 2.4090335846321631E+00 +v_z[3][[1, 0, 0, 1, 0, 3]] = -5.8534023352610554E-01 +v_z[3][[0, 1, 0, 1, 0, 3]] = -5.2115671964846577E+01 +v_z[3][[0, 0, 1, 1, 0, 3]] = -7.0817526441791152E+00 +v_z[3][[0, 0, 0, 2, 0, 3]] = 2.0237519510414688E+02 +v_z[3][[1, 0, 0, 0, 0, 4]] = 1.1837663651818530E-16 +v_z[3][[0, 1, 0, 0, 0, 4]] = 4.8883780394693881E+00 +v_z[3][[0, 0, 0, 1, 0, 4]] = -1.4370195719810029E+01 +v_z[3][[0, 0, 0, 0, 0, 5]] = 6.4768768996221705E-15 +v_z[3][[1, 5, 0, 0, 0, 0]] = -1.0139055425078426E-01 +v_z[3][[0, 6, 0, 0, 0, 0]] = 1.6736859278404346E+00 +v_z[3][[0, 5, 1, 0, 0, 0]] = -1.2266760159896968E+00 +v_z[3][[1, 4, 0, 1, 0, 0]] = -3.8307522288870377E-01 +v_z[3][[0, 5, 0, 1, 0, 0]] = 2.1652694732616098E+01 +v_z[3][[0, 4, 1, 1, 0, 0]] = -4.6346446344023757E+00 +v_z[3][[1, 3, 0, 2, 0, 0]] = -3.1287426497734154E+00 +v_z[3][[0, 4, 0, 2, 0, 0]] = 4.5704197357211484E+01 +v_z[3][[0, 3, 1, 2, 0, 0]] = -3.7853166865900754E+01 +v_z[3][[1, 2, 0, 3, 0, 0]] = 4.3562558617565301E+00 +v_z[3][[0, 3, 0, 3, 0, 0]] = 2.8652017396875630E+02 +v_z[3][[0, 2, 1, 3, 0, 0]] = 5.2704264461498497E+01 +v_z[3][[1, 1, 0, 4, 0, 0]] = -2.8372646513681588E+00 +v_z[3][[0, 2, 0, 4, 0, 0]] = -7.1216348792350163E+02 +v_z[3][[0, 1, 1, 4, 0, 0]] = -3.4326713415926349E+01 +v_z[3][[1, 0, 0, 5, 0, 0]] = 1.0104174949579699E+02 +v_z[3][[0, 1, 0, 5, 0, 0]] = -4.3957108366176982E+02 +v_z[3][[0, 0, 1, 5, 0, 0]] = 1.2224559934208469E+03 +v_z[3][[0, 0, 0, 6, 0, 0]] = -9.0787216320293410E+03 +v_z[3][[1, 4, 0, 0, 0, 1]] = 2.5140630994764335E-01 +v_z[3][[0, 5, 0, 0, 0, 1]] = -1.2445771068449877E+01 +v_z[3][[0, 4, 1, 0, 0, 1]] = 3.0416451804617726E+00 +v_z[3][[1, 3, 0, 1, 0, 1]] = 2.7775356069762380E+00 +v_z[3][[0, 4, 0, 1, 0, 1]] = -4.7022787884911224E+01 +v_z[3][[0, 3, 1, 1, 0, 1]] = 3.3604080161232375E+01 +v_z[3][[1, 2, 0, 2, 0, 1]] = -1.4866832728374302E+00 +v_z[3][[0, 3, 0, 2, 0, 1]] = -3.8405564540913997E+02 +v_z[3][[0, 2, 1, 2, 0, 1]] = -1.7986672699825334E+01 +v_z[3][[1, 1, 0, 3, 0, 1]] = 1.1545042964834536E+01 +v_z[3][[0, 2, 0, 3, 0, 1]] = 5.3473386718956044E+02 +v_z[3][[0, 1, 1, 3, 0, 1]] = 1.3967797506564557E+02 +v_z[3][[1, 0, 0, 4, 0, 1]] = -1.1042481472630799E+02 +v_z[3][[0, 1, 0, 4, 0, 1]] = -3.4827648958495416E+02 +v_z[3][[0, 0, 1, 4, 0, 1]] = -1.3359772297903157E+03 +v_z[3][[0, 0, 0, 5, 0, 1]] = 1.2402955007720926E+04 +v_z[3][[1, 3, 0, 0, 0, 2]] = -6.9852730284344156E-01 +v_z[3][[0, 4, 0, 0, 0, 2]] = 1.5430162118617256E+01 +v_z[3][[0, 3, 1, 0, 0, 2]] = -8.4511490763982398E+00 +v_z[3][[1, 2, 0, 1, 0, 2]] = -3.9466011115867428E-01 +v_z[3][[0, 3, 0, 1, 0, 2]] = 1.7047235097162380E+02 +v_z[3][[0, 2, 1, 1, 0, 2]] = -4.7748046788335792E+00 +v_z[3][[1, 1, 0, 2, 0, 2]] = -8.2099465175407218E+00 +v_z[3][[0, 2, 0, 2, 0, 2]] = -9.1245776304085538E+01 +v_z[3][[0, 1, 1, 2, 0, 2]] = -9.9328231905265596E+01 +v_z[3][[1, 0, 0, 3, 0, 2]] = 4.5290047345187439E+01 +v_z[3][[0, 1, 0, 3, 0, 2]] = 7.0858159706055653E+02 +v_z[3][[0, 0, 1, 3, 0, 2]] = 5.4794270779863461E+02 +v_z[3][[0, 0, 0, 4, 0, 2]] = -6.7773668588511719E+03 +v_z[3][[1, 2, 0, 0, 0, 3]] = 2.3177825992364506E-01 +v_z[3][[0, 3, 0, 0, 0, 3]] = -2.8581593753950028E+01 +v_z[3][[0, 2, 1, 0, 0, 3]] = 2.8041747535270241E+00 +v_z[3][[1, 1, 0, 1, 0, 3]] = 2.1228242254362648E+00 +v_z[3][[0, 2, 0, 1, 0, 3]] = -1.6148280707295449E+01 +v_z[3][[0, 1, 1, 1, 0, 3]] = 2.5683039043890250E+01 +v_z[3][[1, 0, 0, 2, 0, 3]] = -8.2433354612458025E+00 +v_z[3][[0, 1, 0, 2, 0, 3]] = -3.3592581872007253E+02 +v_z[3][[0, 0, 1, 2, 0, 3]] = -9.9732188829506555E+01 +v_z[3][[0, 0, 0, 3, 0, 3]] = 1.8531297617831863E+03 +v_z[3][[1, 1, 0, 0, 0, 4]] = -1.9911797994806540E-01 +v_z[3][[0, 2, 0, 0, 0, 4]] = 7.1127413765741458E+00 +v_z[3][[0, 1, 1, 0, 0, 4]] = -2.4090335846321631E+00 +v_z[3][[1, 0, 0, 1, 0, 4]] = 5.8534023352610542E-01 +v_z[3][[0, 1, 0, 1, 0, 4]] = 6.5144589956058255E+01 +v_z[3][[0, 0, 1, 1, 0, 4]] = 7.0817526441791170E+00 +v_z[3][[0, 0, 0, 2, 0, 4]] = -2.5296899388018446E+02 +v_z[3][[1, 0, 0, 0, 0, 5]] = -2.4040604895305627E-16 +v_z[3][[0, 1, 0, 0, 0, 5]] = -4.8883780394693952E+00 +v_z[3][[0, 0, 0, 1, 0, 5]] = 1.4370195719810091E+01 +v_z[3][[0, 0, 0, 0, 0, 6]] = 1.7035339554873419E-15 +v_z[3][[1, 6, 0, 0, 0, 0]] = -6.8174138400978829E-02 +v_z[3][[0, 7, 0, 0, 0, 0]] = 2.3944236236712908E+00 +v_z[3][[0, 6, 1, 0, 0, 0]] = -8.2480642408162030E-01 +v_z[3][[1, 5, 0, 1, 0, 0]] = -8.8197778501979773E-01 +v_z[3][[0, 6, 0, 1, 0, 0]] = 1.6199685125506132E+01 +v_z[3][[0, 5, 1, 1, 0, 0]] = -1.0670629069089385E+01 +v_z[3][[1, 4, 0, 2, 0, 0]] = -1.8616660535328640E+00 +v_z[3][[0, 5, 0, 2, 0, 0]] = 1.3501415232478138E+02 +v_z[3][[0, 4, 1, 2, 0, 0]] = -2.2523410731165718E+01 +v_z[3][[1, 3, 0, 3, 0, 0]] = -1.1670807330036041E+01 +v_z[3][[0, 4, 0, 3, 0, 0]] = 1.7006604714323853E+02 +v_z[3][[0, 3, 1, 3, 0, 0]] = -1.4119953820926253E+02 +v_z[3][[1, 2, 0, 4, 0, 0]] = 2.9008508336128550E+01 +v_z[3][[0, 3, 0, 4, 0, 0]] = 8.8442576608850811E+02 +v_z[3][[0, 2, 1, 4, 0, 0]] = 3.5096012344059830E+02 +v_z[3][[1, 1, 0, 5, 0, 0]] = 1.7905019930049804E+01 +v_z[3][[0, 2, 0, 5, 0, 0]] = -3.9778538364504307E+03 +v_z[3][[0, 1, 1, 5, 0, 0]] = 2.1662430663594205E+02 +v_z[3][[1, 0, 0, 6, 0, 0]] = 3.6980296885481499E+02 +v_z[3][[0, 1, 0, 6, 0, 0]] = -4.1502497781845068E+03 +v_z[3][[0, 0, 1, 6, 0, 0]] = 4.4740699554117991E+03 +v_z[3][[0, 0, 0, 7, 0, 0]] = -3.3228224108857685E+04 +v_z[3][[1, 5, 0, 0, 0, 1]] = 5.0695277125392113E-01 +v_z[3][[0, 6, 0, 0, 0, 1]] = -1.0042115567042607E+01 +v_z[3][[0, 5, 1, 0, 0, 1]] = 6.1333800799484841E+00 +v_z[3][[1, 4, 0, 1, 0, 1]] = 1.9153761144435197E+00 +v_z[3][[0, 5, 0, 1, 0, 1]] = -1.2991616839569653E+02 +v_z[3][[0, 4, 1, 1, 0, 1]] = 2.3173223172011870E+01 +v_z[3][[1, 3, 0, 2, 0, 1]] = 1.5643713248867087E+01 +v_z[3][[0, 4, 0, 2, 0, 1]] = -2.7422518414326908E+02 +v_z[3][[0, 3, 1, 2, 0, 1]] = 1.8926583432950369E+02 +v_z[3][[1, 2, 0, 3, 0, 1]] = -2.1781279308782615E+01 +v_z[3][[0, 3, 0, 3, 0, 1]] = -1.7191210438125370E+03 +v_z[3][[0, 2, 1, 3, 0, 1]] = -2.6352132230749271E+02 +v_z[3][[1, 1, 0, 4, 0, 1]] = 1.4186323256840808E+01 +v_z[3][[0, 2, 0, 4, 0, 1]] = 4.2729809275410071E+03 +v_z[3][[0, 1, 1, 4, 0, 1]] = 1.7163356707963203E+02 +v_z[3][[1, 0, 0, 5, 0, 1]] = -5.0520874747898517E+02 +v_z[3][[0, 1, 0, 5, 0, 1]] = 2.6374265019706136E+03 +v_z[3][[0, 0, 1, 5, 0, 1]] = -6.1122799671042349E+03 +v_z[3][[0, 0, 0, 6, 0, 1]] = 5.4472329792176010E+04 +v_z[3][[1, 4, 0, 0, 0, 2]] = -6.2851577486910826E-01 +v_z[3][[0, 5, 0, 0, 0, 2]] = 3.7337313205349631E+01 +v_z[3][[0, 4, 1, 0, 0, 2]] = -7.6041129511544323E+00 +v_z[3][[1, 3, 0, 1, 0, 2]] = -6.9438390174405971E+00 +v_z[3][[0, 4, 0, 1, 0, 2]] = 1.4106836365473364E+02 +v_z[3][[0, 3, 1, 1, 0, 2]] = -8.4010200403080944E+01 +v_z[3][[1, 2, 0, 2, 0, 2]] = 3.7167081820935906E+00 +v_z[3][[0, 3, 0, 2, 0, 2]] = 1.1521669362274206E+03 +v_z[3][[0, 2, 1, 2, 0, 2]] = 4.4966681749563179E+01 +v_z[3][[1, 1, 0, 3, 0, 2]] = -2.8862607412086362E+01 +v_z[3][[0, 2, 0, 3, 0, 2]] = -1.6042016015686836E+03 +v_z[3][[0, 1, 1, 3, 0, 2]] = -3.4919493766411370E+02 +v_z[3][[1, 0, 0, 4, 0, 2]] = 2.7606203681577028E+02 +v_z[3][[0, 1, 0, 4, 0, 2]] = 1.0448294687548539E+03 +v_z[3][[0, 0, 1, 4, 0, 2]] = 3.3399430744757892E+03 +v_z[3][[0, 0, 0, 5, 0, 2]] = -3.7208865023162783E+04 +v_z[3][[1, 3, 0, 0, 0, 3]] = 1.1642121714057363E+00 +v_z[3][[0, 4, 0, 0, 0, 3]] = -3.0860324237234504E+01 +v_z[3][[0, 3, 1, 0, 0, 3]] = 1.4085248460663735E+01 +v_z[3][[1, 2, 0, 1, 0, 3]] = 6.5776685193112172E-01 +v_z[3][[0, 3, 0, 1, 0, 3]] = -3.4094470194324799E+02 +v_z[3][[0, 2, 1, 1, 0, 3]] = 7.9580077980559807E+00 +v_z[3][[1, 1, 0, 2, 0, 3]] = 1.3683244195901203E+01 +v_z[3][[0, 2, 0, 2, 0, 3]] = 1.8249155260817201E+02 +v_z[3][[0, 1, 1, 2, 0, 3]] = 1.6554705317544256E+02 +v_z[3][[1, 0, 0, 3, 0, 3]] = -7.5483412241979181E+01 +v_z[3][[0, 1, 0, 3, 0, 3]] = -1.4171631941211069E+03 +v_z[3][[0, 0, 1, 3, 0, 3]] = -9.1323784633105777E+02 +v_z[3][[0, 0, 0, 4, 0, 3]] = 1.3554733717702378E+04 +v_z[3][[1, 2, 0, 0, 0, 4]] = -2.8972282490455620E-01 +v_z[3][[0, 3, 0, 0, 0, 4]] = 4.2872390630925061E+01 +v_z[3][[0, 2, 1, 0, 0, 4]] = -3.5052184419087822E+00 +v_z[3][[1, 1, 0, 1, 0, 4]] = -2.6535302817953328E+00 +v_z[3][[0, 2, 0, 1, 0, 4]] = 2.4222421060943333E+01 +v_z[3][[0, 1, 1, 1, 0, 4]] = -3.2103798804862805E+01 +v_z[3][[1, 0, 0, 2, 0, 4]] = 1.0304169326557250E+01 +v_z[3][[0, 1, 0, 2, 0, 4]] = 5.0388872808010780E+02 +v_z[3][[0, 0, 1, 2, 0, 4]] = 1.2466523603688321E+02 +v_z[3][[0, 0, 0, 3, 0, 4]] = -2.7796946426747900E+03 +v_z[3][[1, 1, 0, 0, 0, 5]] = 1.9911797994806568E-01 +v_z[3][[0, 2, 0, 0, 0, 5]] = -8.5352896518890091E+00 +v_z[3][[0, 1, 1, 0, 0, 5]] = 2.4090335846321627E+00 +v_z[3][[1, 0, 0, 1, 0, 5]] = -5.8534023352610642E-01 +v_z[3][[0, 1, 0, 1, 0, 5]] = -7.8173507947269826E+01 +v_z[3][[0, 0, 1, 1, 0, 5]] = -7.0817526441791188E+00 +v_z[3][[0, 0, 0, 2, 0, 5]] = 3.0356279265622265E+02 +v_z[3][[1, 0, 0, 0, 0, 6]] = -1.2933496426824239E-16 +v_z[3][[0, 1, 0, 0, 0, 6]] = 4.8883780394693961E+00 +v_z[3][[0, 0, 0, 1, 0, 6]] = -1.4370195719810257E+01 +v_z[3][[0, 0, 0, 0, 0, 7]] = 1.0105393170925861E-14 +v_z[3][[1, 7, 0, 0, 0, 0]] = -9.7531899381723505E-02 +v_z[3][[0, 8, 0, 0, 0, 0]] = 1.8154213568963600E+00 +v_z[3][[0, 7, 1, 0, 0, 0]] = -1.1799919888943220E+00 +v_z[3][[1, 6, 0, 1, 0, 0]] = -6.5986070470434477E-01 +v_z[3][[0, 7, 0, 1, 0, 0]] = 2.6915923473076582E+01 +v_z[3][[0, 6, 1, 1, 0, 0]] = -7.9833403253007491E+00 +v_z[3][[1, 5, 0, 2, 0, 0]] = -5.4995225529302436E+00 +v_z[3][[0, 6, 0, 2, 0, 0]] = 1.1636365808974371E+02 +v_z[3][[0, 5, 1, 2, 0, 0]] = -6.6536103534731083E+01 +v_z[3][[1, 4, 0, 3, 0, 0]] = -6.9272890704234165E+00 +v_z[3][[0, 5, 0, 3, 0, 0]] = 6.9448914761986168E+02 +v_z[3][[0, 4, 1, 3, 0, 0]] = -8.3809970478095465E+01 +v_z[3][[1, 3, 0, 4, 0, 0]] = -3.6025256339764653E+01 +v_z[3][[0, 4, 0, 4, 0, 0]] = 4.2687799892127913E+02 +v_z[3][[0, 3, 1, 4, 0, 0]] = -4.3585241493566491E+02 +v_z[3][[1, 2, 0, 5, 0, 0]] = 1.6202965769984559E+02 +v_z[3][[0, 3, 0, 5, 0, 0]] = 1.9020206596320597E+03 +v_z[3][[0, 2, 1, 5, 0, 0]] = 1.9603196416877513E+03 +v_z[3][[1, 1, 0, 6, 0, 0]] = 1.6905185021281932E+02 +v_z[3][[0, 2, 0, 6, 0, 0]] = -2.0288173238434756E+04 +v_z[3][[0, 1, 1, 6, 0, 0]] = 2.0452778037076941E+03 +v_z[3][[1, 0, 0, 7, 0, 0]] = 1.3534830588788498E+03 +v_z[3][[0, 1, 0, 7, 0, 0]] = -2.4491705232851138E+04 +v_z[3][[0, 0, 1, 7, 0, 0]] = 1.6375146764346662E+04 +v_z[3][[0, 0, 0, 8, 0, 0]] = -1.2161535326102954E+05 +v_z[3][[1, 6, 0, 0, 0, 1]] = 4.0904483040587314E-01 +v_z[3][[0, 7, 0, 0, 0, 1]] = -1.6760965365699040E+01 +v_z[3][[0, 6, 1, 0, 0, 1]] = 4.9488385444897229E+00 +v_z[3][[1, 5, 0, 1, 0, 1]] = 5.2918667101187875E+00 +v_z[3][[0, 6, 0, 1, 0, 1]] = -1.1339779587854296E+02 +v_z[3][[0, 5, 1, 1, 0, 1]] = 6.4023774414536319E+01 +v_z[3][[1, 4, 0, 2, 0, 1]] = 1.1169996321197186E+01 +v_z[3][[0, 5, 0, 2, 0, 1]] = -9.4509906627346959E+02 +v_z[3][[0, 4, 1, 2, 0, 1]] = 1.3514046438699427E+02 +v_z[3][[1, 3, 0, 3, 0, 1]] = 7.0024843980216247E+01 +v_z[3][[0, 4, 0, 3, 0, 1]] = -1.1904623300026672E+03 +v_z[3][[0, 3, 1, 3, 0, 1]] = 8.4719722925557608E+02 +v_z[3][[1, 2, 0, 4, 0, 1]] = -1.7405105001677128E+02 +v_z[3][[0, 3, 0, 4, 0, 1]] = -6.1909803626195471E+03 +v_z[3][[0, 2, 1, 4, 0, 1]] = -2.1057607406435909E+03 +v_z[3][[1, 1, 0, 5, 0, 1]] = -1.0743011958029876E+02 +v_z[3][[0, 2, 0, 5, 0, 1]] = 2.7844976855153032E+04 +v_z[3][[0, 1, 1, 5, 0, 1]] = -1.2997458398156505E+03 +v_z[3][[1, 0, 0, 6, 0, 1]] = -2.2188178131288910E+03 +v_z[3][[0, 1, 0, 6, 0, 1]] = 2.9051748447291324E+04 +v_z[3][[0, 0, 1, 6, 0, 1]] = -2.6844419732470804E+04 +v_z[3][[0, 0, 0, 7, 0, 1]] = 2.3259756876200356E+05 +v_z[3][[1, 5, 0, 0, 0, 2]] = -1.5208583137617637E+00 +v_z[3][[0, 6, 0, 0, 0, 2]] = 3.5147404484649137E+01 +v_z[3][[0, 5, 1, 0, 0, 2]] = -1.8400140239845456E+01 +v_z[3][[1, 4, 0, 1, 0, 2]] = -5.7461283433305610E+00 +v_z[3][[0, 5, 0, 1, 0, 2]] = 4.5470658938493813E+02 +v_z[3][[0, 4, 1, 1, 0, 2]] = -6.9519669516035648E+01 +v_z[3][[1, 3, 0, 2, 0, 2]] = -4.6931139746601268E+01 +v_z[3][[0, 4, 0, 2, 0, 2]] = 9.5978814450144205E+02 +v_z[3][[0, 3, 1, 2, 0, 2]] = -5.6779750298851093E+02 +v_z[3][[1, 2, 0, 3, 0, 2]] = 6.5343837926347931E+01 +v_z[3][[0, 3, 0, 3, 0, 2]] = 6.0169236533438789E+03 +v_z[3][[0, 2, 1, 3, 0, 2]] = 7.9056396692247745E+02 +v_z[3][[1, 1, 0, 4, 0, 2]] = -4.2558969770522367E+01 +v_z[3][[0, 2, 0, 4, 0, 2]] = -1.4955433246393530E+04 +v_z[3][[0, 1, 1, 4, 0, 2]] = -5.1490070123889291E+02 +v_z[3][[1, 0, 0, 5, 0, 2]] = 1.5156262424369575E+03 +v_z[3][[0, 1, 0, 5, 0, 2]] = -9.2309927568972889E+03 +v_z[3][[0, 0, 1, 5, 0, 2]] = 1.8336839901312705E+04 +v_z[3][[0, 0, 0, 6, 0, 2]] = -1.9065315427261608E+05 +v_z[3][[1, 4, 0, 0, 0, 3]] = 1.2570315497382163E+00 +v_z[3][[0, 5, 0, 0, 0, 3]] = -8.7120397479149148E+01 +v_z[3][[0, 4, 1, 0, 0, 3]] = 1.5208225902308870E+01 +v_z[3][[1, 3, 0, 1, 0, 3]] = 1.3887678034881201E+01 +v_z[3][[0, 4, 0, 1, 0, 3]] = -3.2915951519437806E+02 +v_z[3][[0, 3, 1, 1, 0, 3]] = 1.6802040080616183E+02 +v_z[3][[1, 2, 0, 2, 0, 3]] = -7.4334163641871882E+00 +v_z[3][[0, 3, 0, 2, 0, 3]] = -2.6883895178639827E+03 +v_z[3][[0, 2, 1, 2, 0, 3]] = -8.9933363499126358E+01 +v_z[3][[1, 1, 0, 3, 0, 3]] = 5.7725214824172838E+01 +v_z[3][[0, 2, 0, 3, 0, 3]] = 3.7431370703269331E+03 +v_z[3][[0, 1, 1, 3, 0, 3]] = 6.9838987532822648E+02 +v_z[3][[1, 0, 0, 4, 0, 3]] = -5.5212407363154216E+02 +v_z[3][[0, 1, 0, 4, 0, 3]] = -2.4379354270946551E+03 +v_z[3][[0, 0, 1, 4, 0, 3]] = -6.6798861489515784E+03 +v_z[3][[0, 0, 0, 5, 0, 3]] = 8.6820685054046655E+04 +v_z[3][[1, 3, 0, 0, 0, 4]] = -1.7463182571086058E+00 +v_z[3][[0, 4, 0, 0, 0, 4]] = 5.4005567415160456E+01 +v_z[3][[0, 3, 1, 0, 0, 4]] = -2.1127872690995602E+01 +v_z[3][[1, 2, 0, 1, 0, 4]] = -9.8665027789668436E-01 +v_z[3][[0, 3, 0, 1, 0, 4]] = 5.9665322840068382E+02 +v_z[3][[0, 2, 1, 1, 0, 4]] = -1.1937011697084003E+01 +v_z[3][[1, 1, 0, 2, 0, 4]] = -2.0524866293851829E+01 +v_z[3][[0, 2, 0, 2, 0, 4]] = -3.1936021706429921E+02 +v_z[3][[0, 1, 1, 2, 0, 4]] = -2.4832057976316366E+02 +v_z[3][[1, 0, 0, 3, 0, 4]] = 1.1322511836296886E+02 +v_z[3][[0, 1, 0, 3, 0, 4]] = 2.4800355897119393E+03 +v_z[3][[0, 0, 1, 3, 0, 4]] = 1.3698567694965870E+03 +v_z[3][[0, 0, 0, 4, 0, 4]] = -2.3720784005979280E+04 +v_z[3][[1, 2, 0, 0, 0, 5]] = 3.4766738988546919E-01 +v_z[3][[0, 3, 0, 0, 0, 5]] = -6.0021346883295102E+01 +v_z[3][[0, 2, 1, 0, 0, 5]] = 4.2062621302905416E+00 +v_z[3][[1, 1, 0, 1, 0, 5]] = 3.1842363381544017E+00 +v_z[3][[0, 2, 0, 1, 0, 5]] = -3.3911389485320768E+01 +v_z[3][[0, 1, 1, 1, 0, 5]] = 3.8524558565835363E+01 +v_z[3][[1, 0, 0, 2, 0, 5]] = -1.2365003191868691E+01 +v_z[3][[0, 1, 0, 2, 0, 5]] = -7.0544421931214902E+02 +v_z[3][[0, 0, 1, 2, 0, 5]] = -1.4959828324425987E+02 +v_z[3][[0, 0, 0, 3, 0, 5]] = 3.8915724997447123E+03 +v_z[3][[1, 1, 0, 0, 0, 6]] = -1.9911797994806563E-01 +v_z[3][[0, 2, 0, 0, 0, 6]] = 9.9578379272038084E+00 +v_z[3][[0, 1, 1, 0, 0, 6]] = -2.4090335846321644E+00 +v_z[3][[1, 0, 0, 1, 0, 6]] = 5.8534023352610731E-01 +v_z[3][[0, 1, 0, 1, 0, 6]] = 9.1202425938481582E+01 +v_z[3][[0, 0, 1, 1, 0, 6]] = 7.0817526441791214E+00 +v_z[3][[0, 0, 0, 2, 0, 6]] = -3.5415659143226151E+02 +v_z[3][[1, 0, 0, 0, 0, 7]] = -2.3675327303637054E-16 +v_z[3][[0, 1, 0, 0, 0, 7]] = -4.8883780394694138E+00 +v_z[3][[0, 0, 0, 1, 0, 7]] = 1.4370195719810486E+01 +v_z[3][[0, 0, 0, 0, 0, 8]] = -5.3747785298076987E-14 +v_z[3][[1, 8, 0, 0, 0, 0]] = -7.3947438275256142E-02 +v_z[3][[0, 9, 0, 0, 0, 0]] = 2.4062421715047946E+00 +v_z[3][[0, 8, 1, 0, 0, 0]] = -8.9465482900675231E-01 +v_z[3][[1, 7, 0, 1, 0, 0]] = -1.0963645338234680E+00 +v_z[3][[0, 8, 0, 1, 0, 0]] = 2.3039339797884143E+01 +v_z[3][[0, 7, 1, 1, 0, 0]] = -1.3264392214450979E+01 +v_z[3][[1, 6, 0, 2, 0, 0]] = -4.7398332025712531E+00 +v_z[3][[0, 7, 0, 2, 0, 0]] = 2.1095387350517970E+02 +v_z[3][[0, 6, 1, 2, 0, 0]] = -5.7344983981491751E+01 +v_z[3][[1, 5, 0, 3, 0, 0]] = -2.8288580599410913E+01 +v_z[3][[0, 6, 0, 3, 0, 0]] = 6.8037847699461577E+02 +v_z[3][[0, 5, 1, 3, 0, 0]] = -3.4225006070938167E+02 +v_z[3][[1, 4, 0, 4, 0, 0]] = -1.7387993347319679E+01 +v_z[3][[0, 5, 0, 4, 0, 0]] = 3.1152645558300051E+03 +v_z[3][[0, 4, 1, 4, 0, 0]] = -2.1036904830984804E+02 +v_z[3][[1, 3, 0, 5, 0, 0]] = -7.7474881956247941E+01 +v_z[3][[0, 4, 0, 5, 0, 0]] = -2.2091182228993137E+02 +v_z[3][[0, 3, 1, 5, 0, 0]] = -9.3733168971828582E+02 +v_z[3][[1, 2, 0, 6, 0, 0]] = 8.2639682108382658E+02 +v_z[3][[0, 3, 0, 6, 0, 0]] = -8.0610949868853197E+02 +v_z[3][[0, 2, 1, 6, 0, 0]] = 9.9981814637906664E+03 +v_z[3][[1, 1, 0, 7, 0, 0]] = 9.9761901229270006E+02 +v_z[3][[0, 2, 0, 7, 0, 0]] = -9.7830173730697483E+04 +v_z[3][[0, 1, 1, 7, 0, 0]] = 1.2069717189314295E+04 +v_z[3][[1, 0, 0, 8, 0, 0]] = 4.9537501552630520E+03 +v_z[3][[0, 1, 0, 8, 0, 0]] = -1.2368400389125964E+05 +v_z[3][[0, 0, 1, 8, 0, 0]] = 5.9933063287494202E+04 +v_z[3][[0, 0, 0, 9, 0, 0]] = -4.4511301048900193E+05 +v_z[3][[1, 7, 0, 0, 0, 1]] = 6.8272329567206413E-01 +v_z[3][[0, 8, 0, 0, 0, 1]] = -1.4523370855170885E+01 +v_z[3][[0, 7, 1, 0, 0, 1]] = 8.2599439222602538E+00 +v_z[3][[1, 6, 0, 1, 0, 1]] = 4.6190249329304169E+00 +v_z[3][[0, 7, 0, 1, 0, 1]] = -2.1532738778461257E+02 +v_z[3][[0, 6, 1, 1, 0, 1]] = 5.5883382277105255E+01 +v_z[3][[1, 5, 0, 2, 0, 1]] = 3.8496657870511683E+01 +v_z[3][[0, 6, 0, 2, 0, 1]] = -9.3090926471794967E+02 +v_z[3][[0, 5, 1, 2, 0, 1]] = 4.6575272474311760E+02 +v_z[3][[1, 4, 0, 3, 0, 1]] = 4.8491023492963905E+01 +v_z[3][[0, 5, 0, 3, 0, 1]] = -5.5559131809588953E+03 +v_z[3][[0, 4, 1, 3, 0, 1]] = 5.8666979334666894E+02 +v_z[3][[1, 3, 0, 4, 0, 1]] = 2.5217679437835272E+02 +v_z[3][[0, 4, 0, 4, 0, 1]] = -3.4150239913702130E+03 +v_z[3][[0, 3, 1, 4, 0, 1]] = 3.0509669045496539E+03 +v_z[3][[1, 2, 0, 5, 0, 1]] = -1.1342076038989176E+03 +v_z[3][[0, 3, 0, 5, 0, 1]] = -1.5216165277056416E+04 +v_z[3][[0, 2, 1, 5, 0, 1]] = -1.3722237491814260E+04 +v_z[3][[1, 1, 0, 6, 0, 1]] = -1.1833629514897334E+03 +v_z[3][[0, 2, 0, 6, 0, 1]] = 1.6230538590747834E+05 +v_z[3][[0, 1, 1, 6, 0, 1]] = -1.4316944625953867E+04 +v_z[3][[1, 0, 0, 7, 0, 1]] = -9.4743814121519499E+03 +v_z[3][[0, 1, 0, 7, 0, 1]] = 1.9593364186280617E+05 +v_z[3][[0, 0, 1, 7, 0, 1]] = -1.1462602735042667E+05 +v_z[3][[0, 0, 0, 8, 0, 1]] = 9.7292282608823781E+05 +v_z[3][[1, 6, 0, 0, 0, 2]] = -1.4316569064205560E+00 +v_z[3][[0, 7, 0, 0, 0, 2]] = 6.7043861462796187E+01 +v_z[3][[0, 6, 1, 0, 0, 2]] = -1.7320934905714029E+01 +v_z[3][[1, 5, 0, 1, 0, 2]] = -1.8521533485415759E+01 +v_z[3][[0, 6, 0, 1, 0, 2]] = 4.5359118351417175E+02 +v_z[3][[0, 5, 1, 1, 0, 2]] = -2.2408321045087706E+02 +v_z[3][[1, 4, 0, 2, 0, 2]] = -3.9094987124190112E+01 +v_z[3][[0, 5, 0, 2, 0, 2]] = 3.7803962650938784E+03 +v_z[3][[0, 4, 1, 2, 0, 2]] = -4.7299162535448068E+02 +v_z[3][[1, 3, 0, 3, 0, 2]] = -2.4508695393075681E+02 +v_z[3][[0, 4, 0, 3, 0, 2]] = 4.7618493200106604E+03 +v_z[3][[0, 3, 1, 3, 0, 2]] = -2.9651903023945115E+03 +v_z[3][[1, 2, 0, 4, 0, 2]] = 6.0917867505869913E+02 +v_z[3][[0, 3, 0, 4, 0, 2]] = 2.4763921450478141E+04 +v_z[3][[0, 2, 1, 4, 0, 2]] = 7.3701625922525582E+03 +v_z[3][[1, 1, 0, 5, 0, 2]] = 3.7600541853104505E+02 +v_z[3][[0, 2, 0, 5, 0, 2]] = -1.1137990742061229E+05 +v_z[3][[0, 1, 1, 5, 0, 2]] = 4.5491104393548012E+03 +v_z[3][[1, 0, 0, 6, 0, 2]] = 7.7658623459511173E+03 +v_z[3][[0, 1, 0, 6, 0, 2]] = -1.1620699378916669E+05 +v_z[3][[0, 0, 1, 6, 0, 2]] = 9.3955469063647804E+04 +v_z[3][[0, 0, 0, 7, 0, 2]] = -9.3039027504801296E+05 +v_z[3][[1, 5, 0, 0, 0, 3]] = 3.5486693987774500E+00 +v_z[3][[0, 6, 0, 0, 0, 3]] = -9.3726411959064393E+01 +v_z[3][[0, 5, 1, 0, 0, 3]] = 4.2933660559639392E+01 +v_z[3][[1, 4, 0, 1, 0, 3]] = 1.3407632801104645E+01 +v_z[3][[0, 5, 0, 1, 0, 3]] = -1.2125509050265021E+03 +v_z[3][[0, 4, 1, 1, 0, 3]] = 1.6221256220408327E+02 +v_z[3][[1, 3, 0, 2, 0, 3]] = 1.0950599274206969E+02 +v_z[3][[0, 4, 0, 2, 0, 3]] = -2.5594350520038420E+03 +v_z[3][[0, 3, 1, 2, 0, 3]] = 1.3248608403065257E+03 +v_z[3][[1, 2, 0, 3, 0, 3]] = -1.5246895516147868E+02 +v_z[3][[0, 3, 0, 3, 0, 3]] = -1.6045129742250359E+04 +v_z[3][[0, 2, 1, 3, 0, 3]] = -1.8446492561524456E+03 +v_z[3][[1, 1, 0, 4, 0, 3]] = 9.9304262797886850E+01 +v_z[3][[0, 2, 0, 4, 0, 3]] = 3.9881155323716055E+04 +v_z[3][[0, 1, 1, 4, 0, 3]] = 1.2014349695573983E+03 +v_z[3][[1, 0, 0, 5, 0, 3]] = -3.5364612323529195E+03 +v_z[3][[0, 1, 0, 5, 0, 3]] = 2.4615980685058701E+04 +v_z[3][[0, 0, 1, 5, 0, 3]] = -4.2785959769729634E+04 +v_z[3][[0, 0, 0, 6, 0, 3]] = 5.0840841139364539E+05 +v_z[3][[1, 4, 0, 0, 0, 4]] = -2.1998052120418814E+00 +v_z[3][[0, 5, 0, 0, 0, 4]] = 1.7424079495829841E+02 +v_z[3][[0, 4, 1, 0, 0, 4]] = -2.6614395329040526E+01 +v_z[3][[1, 3, 0, 1, 0, 4]] = -2.4303436561042112E+01 +v_z[3][[0, 4, 0, 1, 0, 4]] = 6.5831903038875805E+02 +v_z[3][[0, 3, 1, 1, 0, 4]] = -2.9403570141078319E+02 +v_z[3][[1, 2, 0, 2, 0, 4]] = 1.3008478637327627E+01 +v_z[3][[0, 3, 0, 2, 0, 4]] = 5.3767790357279646E+03 +v_z[3][[0, 2, 1, 2, 0, 4]] = 1.5738338612347070E+02 +v_z[3][[1, 1, 0, 3, 0, 4]] = -1.0101912594230248E+02 +v_z[3][[0, 2, 0, 3, 0, 4]] = -7.4862741406539126E+03 +v_z[3][[0, 1, 1, 3, 0, 4]] = -1.2221822818243954E+03 +v_z[3][[1, 0, 0, 4, 0, 4]] = 9.6621712885520026E+02 +v_z[3][[0, 1, 0, 4, 0, 4]] = 4.8758708541891456E+03 +v_z[3][[0, 0, 1, 4, 0, 4]] = 1.1689800760665261E+04 +v_z[3][[0, 0, 0, 5, 0, 4]] = -1.7364137010809354E+05 +v_z[3][[1, 3, 0, 0, 0, 5]] = 2.4448455599520482E+00 +v_z[3][[0, 4, 0, 0, 0, 5]] = -8.6408907864256776E+01 +v_z[3][[0, 3, 1, 0, 0, 5]] = 2.9579021767393851E+01 +v_z[3][[1, 2, 0, 1, 0, 5]] = 1.3813103890553666E+00 +v_z[3][[0, 3, 0, 1, 0, 5]] = -9.5464516544109472E+02 +v_z[3][[0, 2, 1, 1, 0, 5]] = 1.6711816375917635E+01 +v_z[3][[1, 1, 0, 2, 0, 5]] = 2.8734812811392544E+01 +v_z[3][[0, 2, 0, 2, 0, 5]] = 5.1097634730288411E+02 +v_z[3][[0, 1, 1, 2, 0, 5]] = 3.4764881166842912E+02 +v_z[3][[1, 0, 0, 3, 0, 5]] = -1.5851516570815636E+02 +v_z[3][[0, 1, 0, 3, 0, 5]] = -3.9680569435389975E+03 +v_z[3][[0, 0, 1, 3, 0, 5]] = -1.9177994772952218E+03 +v_z[3][[0, 0, 0, 4, 0, 5]] = 3.7953254409567162E+04 +v_z[3][[1, 2, 0, 0, 0, 6]] = -4.0561195486637880E-01 +v_z[3][[0, 3, 0, 0, 0, 6]] = 8.0028462511060155E+01 +v_z[3][[0, 2, 1, 0, 0, 6]] = -4.9073058186722989E+00 +v_z[3][[1, 1, 0, 1, 0, 6]] = -3.7149423945134705E+00 +v_z[3][[0, 2, 0, 1, 0, 6]] = 4.5215185980427236E+01 +v_z[3][[0, 1, 1, 1, 0, 6]] = -4.4945318326807907E+01 +v_z[3][[1, 0, 0, 2, 0, 6]] = 1.4425837057180118E+01 +v_z[3][[0, 1, 0, 2, 0, 6]] = 9.4059229241619698E+02 +v_z[3][[0, 0, 1, 2, 0, 6]] = 1.7453133045163653E+02 +v_z[3][[0, 0, 0, 3, 0, 6]] = -5.1887633329929322E+03 +v_z[3][[1, 1, 0, 0, 0, 7]] = 1.9911797994806596E-01 +v_z[3][[0, 2, 0, 0, 0, 7]] = -1.1380386202518560E+01 +v_z[3][[0, 1, 1, 0, 0, 7]] = 2.4090335846321644E+00 +v_z[3][[1, 0, 0, 1, 0, 7]] = -5.8534023352611486E-01 +v_z[3][[0, 1, 0, 1, 0, 7]] = -1.0423134392969297E+02 +v_z[3][[0, 0, 1, 1, 0, 7]] = -7.0817526441791241E+00 +v_z[3][[0, 0, 0, 2, 0, 7]] = 4.0475039020830764E+02 +v_z[3][[1, 0, 0, 0, 0, 8]] = 1.7462246790302828E-15 +v_z[3][[0, 1, 0, 0, 0, 8]] = 4.8883780394695009E+00 +v_z[3][[0, 0, 0, 1, 0, 8]] = -1.4370195719811198E+01 +v_z[3][[0, 0, 0, 0, 0, 9]] = 8.0918353229703886E-14 +v_z[3][[1, 9, 0, 0, 0, 0]] = -9.8013303510358002E-02 +v_z[3][[0, 10, 0, 0, 0, 0]] = 1.9691595945530533E+00 +v_z[3][[0, 9, 1, 0, 0, 0]] = -1.1858162681179443E+00 +v_z[3][[1, 8, 0, 1, 0, 0]] = -9.3845990691622905E-01 +v_z[3][[0, 9, 0, 1, 0, 0]] = 3.2915299179007832E+01 +v_z[3][[0, 8, 1, 1, 0, 0]] = -1.1353979355262840E+01 +v_z[3][[1, 7, 0, 2, 0, 0]] = -8.5927702021856192E+00 +v_z[3][[0, 8, 0, 2, 0, 0]] = 2.0569049838702117E+02 +v_z[3][[0, 7, 1, 2, 0, 0]] = -1.0395983329828286E+02 +v_z[3][[1, 6, 0, 3, 0, 0]] = -2.7713811584427830E+01 +v_z[3][[0, 7, 0, 3, 0, 0]] = 1.3523006950409115E+03 +v_z[3][[0, 6, 1, 3, 0, 0]] = -3.3529620420249398E+02 +v_z[3][[1, 5, 0, 4, 0, 0]] = -1.2689386548099395E+02 +v_z[3][[0, 6, 0, 4, 0, 0]] = 3.4448842817765822E+03 +v_z[3][[0, 5, 1, 4, 0, 0]] = -1.5352284294328506E+03 +v_z[3][[1, 4, 0, 5, 0, 0]] = 8.9983866726065571E+00 +v_z[3][[0, 5, 0, 5, 0, 0]] = 1.2240947340486435E+04 +v_z[3][[0, 4, 1, 5, 0, 0]] = 1.0886719374848508E+02 +v_z[3][[1, 3, 0, 6, 0, 0]] = 3.2835204990265993E+01 +v_z[3][[0, 4, 0, 6, 0, 0]] = -1.2390498478914637E+04 +v_z[3][[0, 3, 1, 6, 0, 0]] = 3.9725750331778545E+02 +v_z[3][[1, 2, 0, 7, 0, 0]] = 3.9849100077658695E+03 +v_z[3][[0, 3, 0, 7, 0, 0]] = -4.2659825384033880E+04 +v_z[3][[0, 2, 1, 7, 0, 0]] = 4.8211527873819359E+04 +v_z[3][[1, 1, 0, 8, 0, 0]] = 5.0380123648107447E+03 +v_z[3][[0, 2, 0, 8, 0, 0]] = -4.5387389318823919E+05 +v_z[3][[0, 1, 1, 8, 0, 0]] = 6.0952511620431425E+04 +v_z[3][[1, 0, 0, 9, 0, 0]] = 1.8130758869620873E+04 +v_z[3][[0, 1, 0, 9, 0, 0]] = -5.7728637645122502E+05 +v_z[3][[0, 0, 1, 9, 0, 0]] = 2.1935541452949526E+05 +v_z[3][[0, 0, 0, 10, 0, 0]] = -1.6291163831508628E+06 +v_z[3][[1, 8, 0, 0, 0, 1]] = 5.9157950620204913E-01 +v_z[3][[0, 9, 0, 0, 0, 1]] = -2.1656179543543153E+01 +v_z[3][[0, 8, 1, 0, 0, 1]] = 7.1572386320540158E+00 +v_z[3][[1, 7, 0, 1, 0, 1]] = 8.7709162705877368E+00 +v_z[3][[0, 8, 0, 1, 0, 1]] = -2.0735405818095745E+02 +v_z[3][[0, 7, 1, 1, 0, 1]] = 1.0611513771560784E+02 +v_z[3][[1, 6, 0, 2, 0, 1]] = 3.7918665620570067E+01 +v_z[3][[0, 7, 0, 2, 0, 1]] = -1.8985848615466186E+03 +v_z[3][[0, 6, 1, 2, 0, 1]] = 4.5875987185193389E+02 +v_z[3][[1, 5, 0, 3, 0, 1]] = 2.2630864479528731E+02 +v_z[3][[0, 6, 0, 3, 0, 1]] = -6.1234062929515285E+03 +v_z[3][[0, 5, 1, 3, 0, 1]] = 2.7380004856750534E+03 +v_z[3][[1, 4, 0, 4, 0, 1]] = 1.3910394677855675E+02 +v_z[3][[0, 5, 0, 4, 0, 1]] = -2.8037381002470127E+04 +v_z[3][[0, 4, 1, 4, 0, 1]] = 1.6829523864787880E+03 +v_z[3][[1, 3, 0, 5, 0, 1]] = 6.1979905564998444E+02 +v_z[3][[0, 4, 0, 5, 0, 1]] = 1.9882064006092410E+03 +v_z[3][[0, 3, 1, 5, 0, 1]] = 7.4986535177462647E+03 +v_z[3][[1, 2, 0, 6, 0, 1]] = -6.6111745686705945E+03 +v_z[3][[0, 3, 0, 6, 0, 1]] = 7.2549854881971642E+03 +v_z[3][[0, 2, 1, 6, 0, 1]] = -7.9985451710325317E+04 +v_z[3][[1, 1, 0, 7, 0, 1]] = -7.9809520983416151E+03 +v_z[3][[0, 2, 0, 7, 0, 1]] = 8.8047156357627816E+05 +v_z[3][[0, 1, 1, 7, 0, 1]] = -9.6557737514514272E+04 +v_z[3][[1, 0, 0, 8, 0, 1]] = -3.9630001242104299E+04 +v_z[3][[0, 1, 0, 8, 0, 1]] = 1.1131560350213232E+06 +v_z[3][[0, 0, 1, 8, 0, 1]] = -4.7946450629995367E+05 +v_z[3][[0, 0, 0, 9, 0, 1]] = 4.0060170944010336E+06 +v_z[3][[1, 7, 0, 0, 0, 2]] = -2.7308931826882574E+00 +v_z[3][[0, 8, 0, 0, 0, 2]] = 6.5355168848269017E+01 +v_z[3][[0, 7, 1, 0, 0, 2]] = -3.3039775689041015E+01 +v_z[3][[1, 6, 0, 1, 0, 2]] = -1.8476099731721668E+01 +v_z[3][[0, 7, 0, 1, 0, 2]] = 9.6897324503075708E+02 +v_z[3][[0, 6, 1, 1, 0, 2]] = -2.2353352910842096E+02 +v_z[3][[1, 5, 0, 2, 0, 2]] = -1.5398663148204682E+02 +v_z[3][[0, 6, 0, 2, 0, 2]] = 4.1890916912307730E+03 +v_z[3][[0, 5, 1, 2, 0, 2]] = -1.8630108989724704E+03 +v_z[3][[1, 4, 0, 3, 0, 2]] = -1.9396409397185562E+02 +v_z[3][[0, 5, 0, 3, 0, 2]] = 2.5001609314315047E+04 +v_z[3][[0, 4, 1, 3, 0, 2]] = -2.3466791733866721E+03 +v_z[3][[1, 3, 0, 4, 0, 2]] = -1.0087071775134114E+03 +v_z[3][[0, 4, 0, 4, 0, 2]] = 1.5367607961165882E+04 +v_z[3][[0, 3, 1, 4, 0, 2]] = -1.2203867618198594E+04 +v_z[3][[1, 2, 0, 5, 0, 2]] = 4.5368304155956785E+03 +v_z[3][[0, 3, 0, 5, 0, 2]] = 6.8472743746755004E+04 +v_z[3][[0, 2, 1, 5, 0, 2]] = 5.4888949967257009E+04 +v_z[3][[1, 1, 0, 6, 0, 2]] = 4.7334518059589482E+03 +v_z[3][[0, 2, 0, 6, 0, 2]] = -7.3037423658365128E+05 +v_z[3][[0, 1, 1, 6, 0, 2]] = 5.7267778503815527E+04 +v_z[3][[1, 0, 0, 7, 0, 2]] = 3.7897525648607618E+04 +v_z[3][[0, 1, 0, 7, 0, 2]] = -8.8170138838263927E+05 +v_z[3][[0, 0, 1, 7, 0, 2]] = 4.5850410940170666E+05 +v_z[3][[0, 0, 0, 8, 0, 2]] = -4.3781527173970398E+06 +v_z[3][[1, 6, 0, 0, 0, 3]] = 3.8177517504548164E+00 +v_z[3][[0, 7, 0, 0, 0, 3]] = -2.0113158438838855E+02 +v_z[3][[0, 6, 1, 0, 0, 3]] = 4.6189159748570745E+01 +v_z[3][[1, 5, 0, 1, 0, 3]] = 4.9390755961108695E+01 +v_z[3][[0, 6, 0, 1, 0, 3]] = -1.3607735505425169E+03 +v_z[3][[0, 5, 1, 1, 0, 3]] = 5.9755522786900542E+02 +v_z[3][[1, 4, 0, 2, 0, 3]] = 1.0425329899784035E+02 +v_z[3][[0, 5, 0, 2, 0, 3]] = -1.1341188795281643E+04 +v_z[3][[0, 4, 1, 2, 0, 3]] = 1.2613110009452807E+03 +v_z[3][[1, 3, 0, 3, 0, 3]] = 6.5356521048201876E+02 +v_z[3][[0, 4, 0, 3, 0, 3]] = -1.4285547960031934E+04 +v_z[3][[0, 3, 1, 3, 0, 3]] = 7.9071741397187016E+03 +v_z[3][[1, 2, 0, 4, 0, 3]] = -1.6244764668231919E+03 +v_z[3][[0, 3, 0, 4, 0, 3]] = -7.4291764351434336E+04 +v_z[3][[0, 2, 1, 4, 0, 3]] = -1.9653766912673491E+04 +v_z[3][[1, 1, 0, 5, 0, 3]] = -1.0026811160827765E+03 +v_z[3][[0, 2, 0, 5, 0, 3]] = 3.3413972226183623E+05 +v_z[3][[0, 1, 1, 5, 0, 3]] = -1.2130961171612958E+04 +v_z[3][[1, 0, 0, 6, 0, 3]] = -2.0708966255869847E+04 +v_z[3][[0, 1, 0, 6, 0, 3]] = 3.4862098136748734E+05 +v_z[3][[0, 0, 1, 6, 0, 3]] = -2.5054791750306077E+05 +v_z[3][[0, 0, 0, 7, 0, 3]] = 2.7911708251440637E+06 +v_z[3][[1, 5, 0, 0, 0, 4]] = -7.0973387975549018E+00 +v_z[3][[0, 6, 0, 0, 0, 4]] = 2.1088442690789492E+02 +v_z[3][[0, 5, 1, 0, 0, 4]] = -8.5867321119278799E+01 +v_z[3][[1, 4, 0, 1, 0, 4]] = -2.6815265602209301E+01 +v_z[3][[0, 5, 0, 1, 0, 4]] = 2.7282395363096307E+03 +v_z[3][[0, 4, 1, 1, 0, 4]] = -3.2442512440816648E+02 +v_z[3][[1, 3, 0, 2, 0, 4]] = -2.1901198548413944E+02 +v_z[3][[0, 4, 0, 2, 0, 4]] = 5.7587288670086482E+03 +v_z[3][[0, 3, 1, 2, 0, 4]] = -2.6497216806130509E+03 +v_z[3][[1, 2, 0, 3, 0, 4]] = 3.0493791032295871E+02 +v_z[3][[0, 3, 0, 3, 0, 4]] = 3.6101541920063370E+04 +v_z[3][[0, 2, 1, 3, 0, 4]] = 3.6892985123048929E+03 +v_z[3][[1, 1, 0, 4, 0, 4]] = -1.9860852559577370E+02 +v_z[3][[0, 2, 0, 4, 0, 4]] = -8.9732599478361590E+04 +v_z[3][[0, 1, 1, 4, 0, 4]] = -2.4028699391147820E+03 +v_z[3][[1, 0, 0, 5, 0, 4]] = 7.0729224647058609E+03 +v_z[3][[0, 1, 0, 5, 0, 4]] = -5.5385956541385865E+04 +v_z[3][[0, 0, 1, 5, 0, 4]] = 8.5571919539459297E+04 +v_z[3][[0, 0, 0, 6, 0, 4]] = -1.1439189256356955E+06 +v_z[3][[1, 4, 0, 0, 0, 5]] = 3.5196883392670104E+00 +v_z[3][[0, 5, 0, 0, 0, 5]] = -3.1363343092493733E+02 +v_z[3][[0, 4, 1, 0, 0, 5]] = 4.2583032526464855E+01 +v_z[3][[1, 3, 0, 1, 0, 5]] = 3.8885498497667385E+01 +v_z[3][[0, 4, 0, 1, 0, 5]] = -1.1849742546997636E+03 +v_z[3][[0, 3, 1, 1, 0, 5]] = 4.7045712225725322E+02 +v_z[3][[1, 2, 0, 2, 0, 5]] = -2.0813565819723976E+01 +v_z[3][[0, 3, 0, 2, 0, 5]] = -9.6782022643103446E+03 +v_z[3][[0, 2, 1, 2, 0, 5]] = -2.5181341779755348E+02 +v_z[3][[1, 1, 0, 3, 0, 5]] = 1.6163060150768376E+02 +v_z[3][[0, 2, 0, 3, 0, 5]] = 1.3475293453176981E+04 +v_z[3][[0, 1, 1, 3, 0, 5]] = 1.9554916509190298E+03 +v_z[3][[1, 0, 0, 4, 0, 5]] = -1.5459474061683202E+03 +v_z[3][[0, 1, 0, 4, 0, 5]] = -8.7765675375386090E+03 +v_z[3][[0, 0, 1, 4, 0, 5]] = -1.8703681217064423E+04 +v_z[3][[0, 0, 0, 5, 0, 5]] = 3.1255446619457408E+05 +v_z[3][[1, 3, 0, 0, 0, 6]] = -3.2597940799360661E+00 +v_z[3][[0, 4, 0, 0, 0, 6]] = 1.2961336179638513E+02 +v_z[3][[0, 3, 1, 0, 0, 6]] = -3.9438695689858463E+01 +v_z[3][[1, 2, 0, 1, 0, 6]] = -1.8417471854071525E+00 +v_z[3][[0, 3, 0, 1, 0, 6]] = 1.4319677481616418E+03 +v_z[3][[0, 2, 1, 1, 0, 6]] = -2.2282421834556857E+01 +v_z[3][[1, 1, 0, 2, 0, 6]] = -3.8313083748523347E+01 +v_z[3][[0, 2, 0, 2, 0, 6]] = -7.6646452095434336E+02 +v_z[3][[0, 1, 1, 2, 0, 6]] = -4.6353174889123886E+02 +v_z[3][[1, 0, 0, 3, 0, 6]] = 2.1135355427754106E+02 +v_z[3][[0, 1, 0, 3, 0, 6]] = 5.9520854153084065E+03 +v_z[3][[0, 0, 1, 3, 0, 6]] = 2.5570659697269630E+03 +v_z[3][[0, 0, 0, 4, 0, 6]] = -5.6929881614350321E+04 +v_z[3][[1, 2, 0, 0, 0, 7]] = 4.6355651984728818E-01 +v_z[3][[0, 3, 0, 0, 0, 7]] = -1.0289373751422039E+02 +v_z[3][[0, 2, 1, 0, 0, 7]] = 5.6083495070540597E+00 +v_z[3][[1, 1, 0, 1, 0, 7]] = 4.2456484508725474E+00 +v_z[3][[0, 2, 0, 1, 0, 7]] = -5.8133810546263696E+01 +v_z[3][[0, 1, 1, 1, 0, 7]] = 5.1366078087780437E+01 +v_z[3][[1, 0, 0, 2, 0, 7]] = -1.6486670922491584E+01 +v_z[3][[0, 1, 0, 2, 0, 7]] = -1.2093329473922688E+03 +v_z[3][[0, 0, 1, 2, 0, 7]] = -1.9946437765901325E+02 +v_z[3][[0, 0, 0, 3, 0, 7]] = 6.6712671424195878E+03 +v_z[3][[1, 1, 0, 0, 0, 8]] = -1.9911797994806765E-01 +v_z[3][[0, 2, 0, 0, 0, 8]] = 1.2802934477833471E+01 +v_z[3][[0, 1, 1, 0, 0, 8]] = -2.4090335846321573E+00 +v_z[3][[1, 0, 0, 1, 0, 8]] = 5.8534023352613507E-01 +v_z[3][[0, 1, 0, 1, 0, 8]] = 1.1726026192090642E+02 +v_z[3][[0, 0, 1, 1, 0, 8]] = 7.0817526441791214E+00 +v_z[3][[0, 0, 0, 2, 0, 8]] = -4.5534418898435518E+02 +v_z[3][[1, 0, 0, 0, 0, 9]] = -2.4478938005307911E-15 +v_z[3][[0, 1, 0, 0, 0, 9]] = -4.8883780394696998E+00 +v_z[3][[0, 0, 0, 1, 0, 9]] = 1.4370195719811958E+01 +v_z[3][[0, 0, 0, 0, 0, 10]] = -9.2722592696757856E-14 +v_z[4][[0, 0, 0, 0, 0, 0]] = 5.1056863393444984E-01 +v_z[4][[0, 1, 0, 0, 0, 0]] = -8.3281830218258979E-01 +v_z[4][[0, 0, 0, 1, 0, 0]] = 2.1385356109267489E-01 +v_z[4][[0, 0, 0, 0, 0, 1]] = 5.1056863393444984E-01 +v_z[4][[0, 2, 0, 0, 0, 0]] = -2.5528431696722492E-01 +v_z[4][[0, 0, 0, 2, 0, 0]] = -2.5528431696722492E-01 +v_z[4][[0, 0, 0, 1, 0, 1]] = 7.3515830342890819E-18 +v_z[4][[0, 0, 0, 0, 0, 2]] = -1.6481295189900569E-17 +v_z[4][[0, 2, 0, 1, 0, 0]] = -3.6757915171445410E-18 +v_z[4][[0, 0, 0, 3, 0, 0]] = 1.7643799282293797E-16 +v_z[4][[0, 2, 0, 0, 0, 1]] = 2.5528431696722492E-01 +v_z[4][[0, 0, 0, 2, 0, 1]] = 2.5528431696722481E-01 +v_z[4][[0, 0, 0, 1, 0, 2]] = 4.4109498205734491E-17 +v_z[4][[0, 0, 0, 0, 0, 3]] = 1.8319190948472838E-17 +v_z[4][[0, 4, 0, 0, 0, 0]] = -6.3821079241806231E-02 +v_z[4][[0, 2, 0, 2, 0, 0]] = -1.2764215848361241E-01 +v_z[4][[0, 0, 0, 4, 0, 0]] = -6.3821079241805440E-02 +v_z[4][[0, 0, 0, 3, 0, 1]] = -7.0575197129175186E-16 +v_z[4][[0, 2, 0, 0, 0, 2]] = -2.5528431696722492E-01 +v_z[4][[0, 0, 0, 2, 0, 2]] = -2.5528431696722459E-01 +v_z[4][[0, 0, 0, 1, 0, 3]] = -5.8812664274312655E-17 +v_z[4][[0, 0, 0, 0, 0, 4]] = -6.4206818275529741E-17 +v_z[4][[0, 2, 0, 3, 0, 0]] = 3.5287598564587593E-16 +v_z[4][[0, 0, 0, 5, 0, 0]] = 1.8820052567780050E-15 +v_z[4][[0, 4, 0, 0, 0, 1]] = 1.9146323772541871E-01 +v_z[4][[0, 2, 0, 2, 0, 1]] = 3.8292647545083708E-01 +v_z[4][[0, 0, 0, 4, 0, 1]] = 1.9146323772541538E-01 +v_z[4][[0, 2, 0, 1, 0, 2]] = 2.9406332137156328E-17 +v_z[4][[0, 0, 0, 3, 0, 2]] = 1.8820052567780050E-15 +v_z[4][[0, 2, 0, 0, 0, 3]] = 2.5528431696722498E-01 +v_z[4][[0, 0, 0, 2, 0, 3]] = 2.5528431696722464E-01 +v_z[4][[0, 0, 0, 1, 0, 4]] = -5.8812664274312655E-17 +v_z[4][[0, 0, 0, 0, 0, 5]] = -1.1027374551433623E-17 +v_z[4][[0, 6, 0, 0, 0, 0]] = -3.1910539620903115E-02 +v_z[4][[0, 4, 0, 2, 0, 0]] = -9.5731618862709339E-02 +v_z[4][[0, 2, 0, 4, 0, 0]] = -9.5731618862708631E-02 +v_z[4][[0, 0, 0, 6, 0, 0]] = -3.1910539620895663E-02 +v_z[4][[0, 4, 0, 1, 0, 1]] = 5.8812664274312655E-17 +v_z[4][[0, 4, 0, 0, 0, 2]] = -3.8292647545083741E-01 +v_z[4][[0, 2, 0, 2, 0, 2]] = -7.6585295090167416E-01 +v_z[4][[0, 0, 0, 4, 0, 2]] = -3.8292647545083075E-01 +v_z[4][[0, 0, 0, 3, 0, 3]] = -3.7640105135560099E-15 +v_z[4][[0, 2, 0, 0, 0, 4]] = -2.5528431696722503E-01 +v_z[4][[0, 0, 0, 2, 0, 4]] = -2.5528431696722564E-01 +v_z[4][[0, 0, 0, 1, 0, 5]] = 5.8812664274312655E-17 +v_z[4][[0, 0, 0, 0, 0, 6]] = -1.5046838565392672E-16 +v_z[4][[0, 0, 0, 7, 0, 0]] = 3.0112084108448080E-14 +v_z[4][[0, 6, 0, 0, 0, 1]] = 1.5955269810451558E-01 +v_z[4][[0, 4, 0, 2, 0, 1]] = 4.7865809431354689E-01 +v_z[4][[0, 2, 0, 4, 0, 1]] = 4.7865809431354034E-01 +v_z[4][[0, 0, 0, 6, 0, 1]] = 1.5955269810446326E-01 +v_z[4][[0, 4, 0, 1, 0, 2]] = -1.1762532854862531E-16 +v_z[4][[0, 2, 0, 3, 0, 2]] = -7.5280210271120199E-15 +v_z[4][[0, 4, 0, 0, 0, 3]] = 6.3821079241806233E-01 +v_z[4][[0, 2, 0, 2, 0, 3]] = 1.2764215848361238E+00 +v_z[4][[0, 0, 0, 4, 0, 3]] = 6.3821079241797352E-01 +v_z[4][[0, 2, 0, 1, 0, 4]] = -2.3525065709725062E-16 +v_z[4][[0, 2, 0, 0, 0, 5]] = 2.5528431696722548E-01 +v_z[4][[0, 0, 0, 2, 0, 5]] = 2.5528431696722975E-01 +v_z[4][[0, 0, 0, 0, 0, 7]] = -3.6757915171445406E-17 +v_z[4][[0, 8, 0, 0, 0, 0]] = -1.9944087263064448E-02 +v_z[4][[0, 6, 0, 2, 0, 0]] = -7.9776349052257806E-02 +v_z[4][[0, 4, 0, 4, 0, 0]] = -1.1966452357838696E-01 +v_z[4][[0, 2, 0, 6, 0, 0]] = -7.9776349052231632E-02 +v_z[4][[0, 0, 0, 8, 0, 0]] = -1.9944087262335215E-02 +v_z[4][[0, 6, 0, 1, 0, 1]] = 8.8218996411468983E-17 +v_z[4][[0, 4, 0, 3, 0, 1]] = 1.8820052567780050E-15 +v_z[4][[0, 2, 0, 5, 0, 1]] = 1.2044833643379232E-13 +v_z[4][[0, 0, 0, 7, 0, 1]] = 4.8179334573516927E-13 +v_z[4][[0, 6, 0, 0, 0, 2]] = -4.7865809431354672E-01 +v_z[4][[0, 4, 0, 2, 0, 2]] = -1.4359742829406397E+00 +v_z[4][[0, 2, 0, 4, 0, 2]] = -1.4359742829406510E+00 +v_z[4][[0, 0, 0, 6, 0, 2]] = -4.7865809431435336E-01 +v_z[4][[0, 4, 0, 1, 0, 3]] = 2.3525065709725062E-16 +v_z[4][[0, 2, 0, 3, 0, 3]] = 1.5056042054224040E-14 +v_z[4][[0, 0, 0, 5, 0, 3]] = -9.6358669147033854E-13 +v_z[4][[0, 4, 0, 0, 0, 4]] = -9.5731618862709378E-01 +v_z[4][[0, 2, 0, 2, 0, 4]] = -1.9146323772541880E+00 +v_z[4][[0, 0, 0, 4, 0, 4]] = -9.5731618862702061E-01 +v_z[4][[0, 2, 0, 1, 0, 5]] = 4.7050131419450124E-16 +v_z[4][[0, 2, 0, 0, 0, 6]] = -2.5528431696722476E-01 +v_z[4][[0, 0, 0, 2, 0, 6]] = -2.5528431696722931E-01 +v_z[4][[0, 0, 0, 1, 0, 7]] = -7.0575197129175186E-16 +v_z[4][[0, 0, 0, 0, 0, 8]] = 6.3863145778715229E-16 +v_z[4][[0, 8, 0, 1, 0, 0]] = -7.3515830342890819E-18 +v_z[4][[0, 0, 0, 9, 0, 0]] = 5.7815201488220313E-12 +v_z[4][[0, 8, 0, 0, 0, 1]] = 1.3960861084145115E-01 +v_z[4][[0, 6, 0, 2, 0, 1]] = 5.5843444336580494E-01 +v_z[4][[0, 4, 0, 4, 0, 1]] = 8.3765166504867306E-01 +v_z[4][[0, 2, 0, 6, 0, 1]] = 5.5843444336706682E-01 +v_z[4][[0, 0, 0, 8, 0, 1]] = 1.3960861085128212E-01 +v_z[4][[0, 6, 0, 1, 0, 2]] = -1.1762532854862531E-16 +v_z[4][[0, 2, 0, 5, 0, 2]] = 4.8179334573516927E-13 +v_z[4][[0, 0, 0, 7, 0, 2]] = -1.9271733829406769E-11 +v_z[4][[0, 6, 0, 0, 0, 3]] = 1.1168688867316092E+00 +v_z[4][[0, 4, 0, 2, 0, 3]] = 3.3506066601948277E+00 +v_z[4][[0, 2, 0, 4, 0, 3]] = 3.3506066601954148E+00 +v_z[4][[0, 0, 0, 6, 0, 3]] = 1.1168688867235341E+00 +v_z[4][[0, 4, 0, 1, 0, 4]] = 4.7050131419450124E-16 +v_z[4][[0, 2, 0, 3, 0, 4]] = 6.0224168216896159E-14 +v_z[4][[0, 0, 0, 5, 0, 4]] = 1.9271733829406771E-12 +v_z[4][[0, 4, 0, 0, 0, 5]] = 1.3402426640779317E+00 +v_z[4][[0, 2, 0, 2, 0, 5]] = 2.6804853281558767E+00 +v_z[4][[0, 0, 0, 4, 0, 5]] = 1.3402426640778293E+00 +v_z[4][[0, 2, 0, 1, 0, 6]] = 9.4100262838900248E-16 +v_z[4][[0, 0, 0, 3, 0, 6]] = -6.0224168216896159E-14 +v_z[4][[0, 2, 0, 0, 0, 7]] = 2.5528431696722470E-01 +v_z[4][[0, 0, 0, 2, 0, 7]] = 2.5528431696723308E-01 +v_z[4][[0, 0, 0, 1, 0, 8]] = 9.4100262838900248E-16 +v_z[4][[0, 0, 0, 0, 0, 9]] = -7.3515830342890813E-17 +v_z[4][[0, 10, 0, 0, 0, 0]] = -1.3960861084145113E-02 +v_z[4][[0, 8, 0, 2, 0, 0]] = -6.9804305420725563E-02 +v_z[4][[0, 6, 0, 4, 0, 0]] = -1.3960861084145054E-01 +v_z[4][[0, 4, 0, 6, 0, 0]] = -1.3960861084152582E-01 +v_z[4][[0, 2, 0, 8, 0, 0]] = -6.9804305425641061E-02 +v_z[4][[0, 0, 0, 10, 0, 0]] = -1.3960861043886700E-02 +v_z[4][[0, 8, 0, 1, 0, 1]] = 1.1762532854862531E-16 +v_z[4][[0, 6, 0, 3, 0, 1]] = -7.5280210271120199E-15 +v_z[4][[0, 4, 0, 5, 0, 1]] = -2.4089667286758464E-13 +v_z[4][[0, 2, 0, 7, 0, 1]] = 1.1563040297644063E-11 +v_z[4][[0, 0, 0, 9, 0, 1]] = 3.0834774127050833E-11 +v_z[4][[0, 8, 0, 0, 0, 2]] = -5.5843444336580461E-01 +v_z[4][[0, 6, 0, 2, 0, 2]] = -2.2337377734632198E+00 +v_z[4][[0, 4, 0, 4, 0, 2]] = -3.3506066601952944E+00 +v_z[4][[0, 2, 0, 6, 0, 2]] = -2.2337377734586314E+00 +v_z[4][[0, 0, 0, 8, 0, 2]] = -5.5843444351305016E-01 +v_z[4][[0, 6, 0, 1, 0, 3]] = 4.7050131419450124E-16 +v_z[4][[0, 2, 0, 5, 0, 3]] = 3.8543467658813542E-12 +v_z[4][[0, 6, 0, 0, 0, 4]] = -2.2337377734632189E+00 +v_z[4][[0, 4, 0, 2, 0, 4]] = -6.7012133203896260E+00 +v_z[4][[0, 2, 0, 4, 0, 4]] = -6.7012133203903490E+00 +v_z[4][[0, 0, 0, 6, 0, 4]] = -2.2337377734509234E+00 +v_z[4][[0, 0, 0, 5, 0, 5]] = -1.5417387063525417E-11 +v_z[4][[0, 4, 0, 0, 0, 6]] = -1.7869902187705740E+00 +v_z[4][[0, 2, 0, 2, 0, 6]] = -3.5739804375411270E+00 +v_z[4][[0, 0, 0, 4, 0, 6]] = -1.7869902187688320E+00 +v_z[4][[0, 2, 0, 1, 0, 7]] = 1.8820052567780050E-15 +v_z[4][[0, 0, 0, 3, 0, 7]] = 2.4089667286758464E-13 +v_z[4][[0, 2, 0, 0, 0, 8]] = -2.5528431696722725E-01 +v_z[4][[0, 0, 0, 2, 0, 8]] = -2.5528431696724246E-01 +v_z[4][[0, 0, 0, 1, 0, 9]] = -9.4100262838900248E-16 +v_z[4][[0, 0, 0, 0, 0, 10]] = -8.8218996411468983E-17 +v_z[5][[0, 0, 0, 0, 0, 0]] = 5.4978140034254439E+00 +v_z[5][[1, 0, 0, 0, 0, 0]] = -2.9100619138474915E-01 +v_z[5][[0, 1, 0, 0, 0, 0]] = 2.0790204670029593E+00 +v_z[5][[0, 0, 1, 0, 0, 0]] = -3.5207452815893663E+00 +v_z[5][[0, 0, 0, 1, 0, 0]] = 2.5153078237606248E+01 +v_z[5][[0, 0, 0, 0, 1, 0]] = 1.0000000000000000E+00 +v_z[5][[0, 0, 0, 0, 0, 1]] = -4.2879710302052843E-03 +v_z[5][[1, 1, 0, 0, 0, 0]] = -8.4684603424257252E-02 +v_z[5][[0, 2, 0, 0, 0, 0]] = 4.1771319416822728E+00 +v_z[5][[0, 1, 1, 0, 0, 0]] = -1.0245586752311477E+00 +v_z[5][[1, 0, 0, 1, 0, 0]] = -1.0245586752311482E+00 +v_z[5][[0, 1, 0, 1, 0, 0]] = 1.4639402999056788E+01 +v_z[5][[0, 0, 1, 1, 0, 0]] = -1.2395647337833786E+01 +v_z[5][[0, 0, 0, 2, 0, 0]] = 9.2129705636269378E+01 +v_z[5][[1, 0, 0, 0, 0, 1]] = -5.5511151231257827E-17 +v_z[5][[0, 1, 0, 0, 0, 1]] = -2.0790204670029588E+00 +v_z[5][[0, 0, 1, 0, 0, 1]] = 4.4408920985006262E-16 +v_z[5][[0, 0, 0, 1, 0, 1]] = -2.5153078237606252E+01 +v_z[5][[0, 0, 0, 0, 1, 1]] = 2.2204460492503131E-16 +v_z[5][[0, 0, 0, 0, 0, 2]] = 6.4152051665264213E-03 +v_z[5][[1, 2, 0, 0, 0, 0]] = -1.7014683960379556E-01 +v_z[5][[0, 3, 0, 0, 0, 0]] = 2.2550814907620169E+00 +v_z[5][[0, 2, 1, 0, 0, 0]] = -2.0585255587239035E+00 +v_z[5][[1, 1, 0, 1, 0, 0]] = -5.9630583585844110E-01 +v_z[5][[0, 2, 0, 1, 0, 0]] = 3.1543313603959199E+01 +v_z[5][[0, 1, 1, 1, 0, 0]] = -7.2144202430630324E+00 +v_z[5][[1, 0, 0, 2, 0, 0]] = -3.7527132172238939E+00 +v_z[5][[0, 1, 0, 2, 0, 0]] = 7.9391434018324674E+01 +v_z[5][[0, 0, 1, 2, 0, 0]] = -4.5402289517718778E+01 +v_z[5][[0, 0, 0, 3, 0, 0]] = 3.3694176553191681E+02 +v_z[5][[1, 1, 0, 0, 0, 1]] = 8.4684603424257293E-02 +v_z[5][[0, 2, 0, 0, 0, 1]] = -8.3542638833645437E+00 +v_z[5][[0, 1, 1, 0, 0, 1]] = 1.0245586752311477E+00 +v_z[5][[1, 0, 0, 1, 0, 1]] = 1.0245586752311482E+00 +v_z[5][[0, 1, 0, 1, 0, 1]] = -2.9278805998113565E+01 +v_z[5][[0, 0, 1, 1, 0, 1]] = 1.2395647337833786E+01 +v_z[5][[0, 0, 0, 2, 0, 1]] = -1.8425941127253878E+02 +v_z[5][[1, 0, 0, 0, 0, 2]] = -2.6422006943471743E-16 +v_z[5][[0, 1, 0, 0, 0, 2]] = 2.0790204670029628E+00 +v_z[5][[0, 0, 1, 0, 0, 2]] = 3.1918911957973251E-16 +v_z[5][[0, 0, 0, 1, 0, 2]] = 2.5153078237606298E+01 +v_z[5][[0, 0, 0, 0, 1, 2]] = -1.1969591984239969E-16 +v_z[5][[0, 0, 0, 0, 0, 3]] = -8.5257606361732411E-03 +v_z[5][[1, 3, 0, 0, 0, 0]] = -9.1856085481380967E-02 +v_z[5][[0, 4, 0, 0, 0, 0]] = 3.6378396751722311E+00 +v_z[5][[0, 3, 1, 0, 0, 0]] = -1.1113230203279798E+00 +v_z[5][[1, 2, 0, 1, 0, 0]] = -1.2848517105216446E+00 +v_z[5][[0, 3, 0, 1, 0, 0]] = 2.4438568573271166E+01 +v_z[5][[0, 2, 1, 1, 0, 0]] = -1.5544808774808001E+01 +v_z[5][[1, 1, 0, 2, 0, 0]] = -3.2338460403984737E+00 +v_z[5][[0, 2, 0, 2, 0, 0]] = 1.8409885222493961E+02 +v_z[5][[0, 1, 1, 2, 0, 0]] = -3.9124762720481627E+01 +v_z[5][[1, 0, 0, 3, 0, 0]] = -1.3724626690314659E+01 +v_z[5][[0, 1, 0, 3, 0, 0]] = 3.8488885812405482E+02 +v_z[5][[0, 0, 1, 3, 0, 0]] = -1.6604772026177963E+02 +v_z[5][[0, 0, 0, 4, 0, 0]] = 1.2332440150134682E+03 +v_z[5][[1, 2, 0, 0, 0, 1]] = 3.4029367920759113E-01 +v_z[5][[0, 3, 0, 0, 0, 1]] = -6.7652444722860512E+00 +v_z[5][[0, 2, 1, 0, 0, 1]] = 4.1170511174478062E+00 +v_z[5][[1, 1, 0, 1, 0, 1]] = 1.1926116717168820E+00 +v_z[5][[0, 2, 0, 1, 0, 1]] = -9.4629940811877589E+01 +v_z[5][[0, 1, 1, 1, 0, 1]] = 1.4428840486126067E+01 +v_z[5][[1, 0, 0, 2, 0, 1]] = 7.5054264344477852E+00 +v_z[5][[0, 1, 0, 2, 0, 1]] = -2.3817430205497402E+02 +v_z[5][[0, 0, 1, 2, 0, 1]] = 9.0804579035437570E+01 +v_z[5][[0, 0, 0, 3, 0, 1]] = -1.0108252965957502E+03 +v_z[5][[1, 1, 0, 0, 0, 2]] = -8.4684603424257390E-02 +v_z[5][[0, 2, 0, 0, 0, 2]] = 1.2531395825046827E+01 +v_z[5][[0, 1, 1, 0, 0, 2]] = -1.0245586752311484E+00 +v_z[5][[1, 0, 0, 1, 0, 2]] = -1.0245586752311493E+00 +v_z[5][[0, 1, 0, 1, 0, 2]] = 4.3918208997170396E+01 +v_z[5][[0, 0, 1, 1, 0, 2]] = -1.2395647337833784E+01 +v_z[5][[0, 0, 0, 2, 0, 2]] = 2.7638911690880843E+02 +v_z[5][[1, 0, 0, 0, 0, 3]] = 2.2865823817719289E-16 +v_z[5][[0, 1, 0, 0, 0, 3]] = -2.0790204670029686E+00 +v_z[5][[0, 0, 1, 0, 0, 3]] = 1.8908485888147197E-16 +v_z[5][[0, 0, 0, 1, 0, 3]] = -2.5153078237606376E+01 +v_z[5][[0, 0, 0, 0, 1, 3]] = 2.7018318138338770E-16 +v_z[5][[0, 0, 0, 0, 0, 4]] = 1.0615558331213077E-02 +v_z[5][[1, 4, 0, 0, 0, 0]] = -1.4817988331644005E-01 +v_z[5][[0, 5, 0, 0, 0, 0]] = 2.4460521724965796E+00 +v_z[5][[0, 4, 1, 0, 0, 0]] = -1.7927578191044640E+00 +v_z[5][[1, 3, 0, 1, 0, 0]] = -9.9545460024614640E-01 +v_z[5][[0, 4, 0, 1, 0, 0]] = 3.8835473216624251E+01 +v_z[5][[0, 3, 1, 1, 0, 0]] = -1.2043530999034003E+01 +v_z[5][[1, 2, 0, 2, 0, 0]] = -7.4988863933621523E+00 +v_z[5][[0, 3, 0, 2, 0, 0]] = 1.8095889368872000E+02 +v_z[5][[0, 2, 1, 2, 0, 0]] = -9.0725454193852315E+01 +v_z[5][[1, 1, 0, 3, 0, 0]] = -1.5677652447374554E+01 +v_z[5][[0, 2, 0, 3, 0, 0]] = 9.5070101515342105E+02 +v_z[5][[0, 1, 1, 3, 0, 0]] = -1.8967644852447160E+02 +v_z[5][[1, 0, 0, 4, 0, 0]] = -5.0233647044035905E+01 +v_z[5][[0, 1, 0, 4, 0, 0]] = 1.7539328696012308E+03 +v_z[5][[0, 0, 1, 4, 0, 0]] = -6.0775296554938973E+02 +v_z[5][[0, 0, 0, 5, 0, 0]] = 4.5135530644526725E+03 +v_z[5][[1, 3, 0, 0, 0, 1]] = 2.7556825644414296E-01 +v_z[5][[0, 4, 0, 0, 0, 1]] = -1.4551358700688930E+01 +v_z[5][[0, 3, 1, 0, 0, 1]] = 3.3339690609839394E+00 +v_z[5][[1, 2, 0, 1, 0, 1]] = 3.8545551315649336E+00 +v_z[5][[0, 3, 0, 1, 0, 1]] = -9.7754274293084620E+01 +v_z[5][[0, 2, 1, 1, 0, 1]] = 4.6634426324424005E+01 +v_z[5][[1, 1, 0, 2, 0, 1]] = 9.7015381211954210E+00 +v_z[5][[0, 2, 0, 2, 0, 1]] = -7.3639540889975831E+02 +v_z[5][[0, 1, 1, 2, 0, 1]] = 1.1737428816144487E+02 +v_z[5][[1, 0, 0, 3, 0, 1]] = 4.1173880070943980E+01 +v_z[5][[0, 1, 0, 3, 0, 1]] = -1.5395554324962191E+03 +v_z[5][[0, 0, 1, 3, 0, 1]] = 4.9814316078533869E+02 +v_z[5][[0, 0, 0, 4, 0, 1]] = -4.9329760600538702E+03 +v_z[5][[1, 2, 0, 0, 0, 2]] = -5.1044051881138730E-01 +v_z[5][[0, 3, 0, 0, 0, 2]] = 1.3530488944572106E+01 +v_z[5][[0, 2, 1, 0, 0, 2]] = -6.1755766761717101E+00 +v_z[5][[1, 1, 0, 1, 0, 2]] = -1.7889175075753250E+00 +v_z[5][[0, 2, 0, 1, 0, 2]] = 1.8925988162375532E+02 +v_z[5][[0, 1, 1, 1, 0, 2]] = -2.1643260729189109E+01 +v_z[5][[1, 0, 0, 2, 0, 2]] = -1.1258139651671700E+01 +v_z[5][[0, 1, 0, 2, 0, 2]] = 4.7634860410994838E+02 +v_z[5][[0, 0, 1, 2, 0, 2]] = -1.3620686855315631E+02 +v_z[5][[0, 0, 0, 3, 0, 2]] = 2.0216505931915030E+03 +v_z[5][[1, 1, 0, 0, 0, 3]] = 8.4684603424257571E-02 +v_z[5][[0, 2, 0, 0, 0, 3]] = -1.6708527766729123E+01 +v_z[5][[0, 1, 1, 0, 0, 3]] = 1.0245586752311504E+00 +v_z[5][[1, 0, 0, 1, 0, 3]] = 1.0245586752311548E+00 +v_z[5][[0, 1, 0, 1, 0, 3]] = -5.8557611996227308E+01 +v_z[5][[0, 0, 1, 1, 0, 3]] = 1.2395647337833795E+01 +v_z[5][[0, 0, 0, 2, 0, 3]] = -3.6851882254507893E+02 +v_z[5][[1, 0, 0, 0, 0, 4]] = -2.0513105103425744E-16 +v_z[5][[0, 1, 0, 0, 0, 4]] = 2.0790204670029744E+00 +v_z[5][[0, 0, 1, 0, 0, 4]] = 5.7419347054832315E-16 +v_z[5][[0, 0, 0, 1, 0, 4]] = 2.5153078237606479E+01 +v_z[5][[0, 0, 0, 0, 1, 4]] = -3.8575913297034248E-16 +v_z[5][[0, 0, 0, 0, 0, 5]] = -1.2680573016581917E-02 +v_z[5][[1, 5, 0, 0, 0, 0]] = -9.9634881652476415E-02 +v_z[5][[0, 6, 0, 0, 0, 0]] = 3.4993931711641166E+00 +v_z[5][[0, 5, 1, 0, 0, 0]] = -1.2054349695807027E+00 +v_z[5][[1, 4, 0, 1, 0, 0]] = -1.5818827665915940E+00 +v_z[5][[0, 5, 0, 1, 0, 0]] = 3.3962499457750638E+01 +v_z[5][[0, 4, 1, 1, 0, 0]] = -1.9138446024130758E+01 +v_z[5][[1, 3, 0, 2, 0, 0]] = -7.3709866696082793E+00 +v_z[5][[0, 4, 0, 2, 0, 0]] = 2.9715835621794565E+02 +v_z[5][[0, 3, 1, 2, 0, 0]] = -8.9178056364341316E+01 +v_z[5][[1, 2, 0, 3, 0, 0]] = -3.8724841684394718E+01 +v_z[5][[0, 3, 0, 3, 0, 0]] = 1.1220936167800312E+03 +v_z[5][[0, 2, 1, 3, 0, 0]] = -4.6851341200630185E+02 +v_z[5][[1, 1, 0, 4, 0, 0]] = -7.1442831781769911E+01 +v_z[5][[0, 2, 0, 4, 0, 0]] = 4.5911469856944595E+03 +v_z[5][[0, 1, 1, 4, 0, 0]] = -8.6435278817312133E+02 +v_z[5][[1, 0, 0, 5, 0, 0]] = -1.8385025898687647E+02 +v_z[5][[0, 1, 0, 5, 0, 0]] = 7.6828971162092921E+03 +v_z[5][[0, 0, 1, 5, 0, 0]] = -2.2243167018780773E+03 +v_z[5][[0, 0, 0, 6, 0, 0]] = 1.6519655391100547E+04 +v_z[5][[1, 4, 0, 0, 0, 1]] = 5.9271953326576021E-01 +v_z[5][[0, 5, 0, 0, 0, 1]] = -1.2230260862482897E+01 +v_z[5][[0, 4, 1, 0, 0, 1]] = 7.1710312764178576E+00 +v_z[5][[1, 3, 0, 1, 0, 1]] = 3.9818184009845856E+00 +v_z[5][[0, 4, 0, 1, 0, 1]] = -1.9417736608312123E+02 +v_z[5][[0, 3, 1, 1, 0, 1]] = 4.8174123996136004E+01 +v_z[5][[1, 2, 0, 2, 0, 1]] = 2.9995545573448613E+01 +v_z[5][[0, 3, 0, 2, 0, 1]] = -9.0479446844359995E+02 +v_z[5][[0, 2, 1, 2, 0, 1]] = 3.6290181677540926E+02 +v_z[5][[1, 1, 0, 3, 0, 1]] = 6.2710609789498214E+01 +v_z[5][[0, 2, 0, 3, 0, 1]] = -4.7535050757671042E+03 +v_z[5][[0, 1, 1, 3, 0, 1]] = 7.5870579409788604E+02 +v_z[5][[1, 0, 0, 4, 0, 1]] = 2.0093458817614368E+02 +v_z[5][[0, 1, 0, 4, 0, 1]] = -8.7696643480061539E+03 +v_z[5][[0, 0, 1, 4, 0, 1]] = 2.4310118621975580E+03 +v_z[5][[0, 0, 0, 5, 0, 1]] = -2.2567765322263363E+04 +v_z[5][[1, 3, 0, 0, 0, 2]] = -5.5113651288828613E-01 +v_z[5][[0, 4, 0, 0, 0, 2]] = 3.6378396751722320E+01 +v_z[5][[0, 3, 1, 0, 0, 2]] = -6.6679381219678788E+00 +v_z[5][[1, 2, 0, 1, 0, 2]] = -7.7091102631298716E+00 +v_z[5][[0, 3, 0, 1, 0, 2]] = 2.4438568573271178E+02 +v_z[5][[0, 2, 1, 1, 0, 2]] = -9.3268852648847997E+01 +v_z[5][[1, 1, 0, 2, 0, 2]] = -1.9403076242390856E+01 +v_z[5][[0, 2, 0, 2, 0, 2]] = 1.8409885222493972E+03 +v_z[5][[0, 1, 1, 2, 0, 2]] = -2.3474857632288990E+02 +v_z[5][[1, 0, 0, 3, 0, 2]] = -8.2347760141888088E+01 +v_z[5][[0, 1, 0, 3, 0, 2]] = 3.8488885812405488E+03 +v_z[5][[0, 0, 1, 3, 0, 2]] = -9.9628632157067761E+02 +v_z[5][[0, 0, 0, 4, 0, 2]] = 1.2332440150134691E+04 +v_z[5][[1, 2, 0, 0, 0, 3]] = 6.8058735841518303E-01 +v_z[5][[0, 3, 0, 0, 0, 3]] = -2.2550814907620200E+01 +v_z[5][[0, 2, 1, 0, 0, 3]] = 8.2341022348956141E+00 +v_z[5][[1, 1, 0, 1, 0, 3]] = 2.3852233434337702E+00 +v_z[5][[0, 2, 0, 1, 0, 3]] = -3.1543313603959257E+02 +v_z[5][[0, 1, 1, 1, 0, 3]] = 2.8857680972252162E+01 +v_z[5][[1, 0, 0, 2, 0, 3]] = 1.5010852868895618E+01 +v_z[5][[0, 1, 0, 2, 0, 3]] = -7.9391434018324912E+02 +v_z[5][[0, 0, 1, 2, 0, 3]] = 1.8160915807087514E+02 +v_z[5][[0, 0, 0, 3, 0, 3]] = -3.3694176553191792E+03 +v_z[5][[1, 1, 0, 0, 0, 4]] = -8.4684603424257668E-02 +v_z[5][[0, 2, 0, 0, 0, 4]] = 2.0885659708411431E+01 +v_z[5][[0, 1, 1, 0, 0, 4]] = -1.0245586752311497E+00 +v_z[5][[1, 0, 0, 1, 0, 4]] = -1.0245586752311531E+00 +v_z[5][[0, 1, 0, 1, 0, 4]] = 7.3197014995284405E+01 +v_z[5][[0, 0, 1, 1, 0, 4]] = -1.2395647337833781E+01 +v_z[5][[0, 0, 0, 2, 0, 4]] = 4.6064852818135000E+02 +v_z[5][[1, 0, 0, 0, 0, 5]] = 4.6420116014966872E-16 +v_z[5][[0, 1, 0, 0, 0, 5]] = -2.0790204670029810E+00 +v_z[5][[0, 0, 1, 0, 0, 5]] = -1.7087026238371550E-16 +v_z[5][[0, 0, 0, 1, 0, 5]] = -2.5153078237606586E+01 +v_z[5][[0, 0, 0, 0, 1, 5]] = 2.1250362580715887E-16 +v_z[5][[0, 0, 0, 0, 0, 6]] = 1.4716841925778237E-02 +v_z[5][[1, 6, 0, 0, 0, 0]] = -1.4254055100899868E-01 +v_z[5][[0, 7, 0, 0, 0, 0]] = 2.6531951306794928E+00 +v_z[5][[0, 6, 1, 0, 0, 0]] = -1.7245302239517266E+00 +v_z[5][[1, 5, 0, 1, 0, 0]] = -1.3833922481880396E+00 +v_z[5][[0, 6, 0, 1, 0, 0]] = 4.7136487811566120E+01 +v_z[5][[0, 5, 1, 1, 0, 0]] = -1.6737003797818847E+01 +v_z[5][[1, 4, 0, 2, 0, 0]] = -1.2104131705253224E+01 +v_z[5][[0, 5, 0, 2, 0, 0]] = 3.0862822009114603E+02 +v_z[5][[0, 4, 1, 2, 0, 0]] = -1.4644212340026482E+02 +v_z[5][[1, 3, 0, 3, 0, 0]] = -4.5706165211009520E+01 +v_z[5][[0, 4, 0, 3, 0, 0]] = 1.9222430657825325E+03 +v_z[5][[0, 3, 1, 3, 0, 0]] = -5.5297711962921176E+02 +v_z[5][[1, 2, 0, 4, 0, 0]] = -1.8701088705802235E+02 +v_z[5][[0, 3, 0, 4, 0, 0]] = 6.2746234468478260E+03 +v_z[5][[0, 2, 1, 4, 0, 0]] = -2.2625556352677609E+03 +v_z[5][[1, 1, 0, 5, 0, 0]] = -3.1294694100508968E+02 +v_z[5][[0, 2, 0, 5, 0, 0]] = 2.1225051313112064E+04 +v_z[5][[0, 1, 1, 5, 0, 0]] = -3.7861959592287772E+03 +v_z[5][[1, 0, 0, 6, 0, 0]] = -6.7289403240816171E+02 +v_z[5][[0, 1, 0, 6, 0, 0]] = 3.2743866072015313E+04 +v_z[5][[0, 0, 1, 6, 0, 0]] = -8.1410243484421708E+03 +v_z[5][[0, 0, 0, 7, 0, 0]] = 6.0461965092007638E+04 +v_z[5][[1, 5, 0, 0, 0, 1]] = 4.9817440826238185E-01 +v_z[5][[0, 6, 0, 0, 0, 1]] = -2.0996359026984713E+01 +v_z[5][[0, 5, 1, 0, 0, 1]] = 6.0271748479035132E+00 +v_z[5][[1, 4, 0, 1, 0, 1]] = 7.9094138329579682E+00 +v_z[5][[0, 5, 0, 1, 0, 1]] = -2.0377499674650386E+02 +v_z[5][[0, 4, 1, 1, 0, 1]] = 9.5692230120653818E+01 +v_z[5][[1, 3, 0, 2, 0, 1]] = 3.6854933348041392E+01 +v_z[5][[0, 4, 0, 2, 0, 1]] = -1.7829501373076737E+03 +v_z[5][[0, 3, 1, 2, 0, 1]] = 4.4589028182170671E+02 +v_z[5][[1, 2, 0, 3, 0, 1]] = 1.9362420842197355E+02 +v_z[5][[0, 3, 0, 3, 0, 1]] = -6.7325617006801858E+03 +v_z[5][[0, 2, 1, 3, 0, 1]] = 2.3425670600315102E+03 +v_z[5][[1, 1, 0, 4, 0, 1]] = 3.5721415890884947E+02 +v_z[5][[0, 2, 0, 4, 0, 1]] = -2.7546881914166745E+04 +v_z[5][[0, 1, 1, 4, 0, 1]] = 4.3217639408656059E+03 +v_z[5][[1, 0, 0, 5, 0, 1]] = 9.1925129493438271E+02 +v_z[5][[0, 1, 0, 5, 0, 1]] = -4.6097382697255744E+04 +v_z[5][[0, 0, 1, 5, 0, 1]] = 1.1121583509390392E+04 +v_z[5][[0, 0, 0, 6, 0, 1]] = -9.9117932346603193E+04 +v_z[5][[1, 4, 0, 0, 0, 2]] = -1.4817988331644008E+00 +v_z[5][[0, 5, 0, 0, 0, 2]] = 3.6690782587448695E+01 +v_z[5][[0, 4, 1, 0, 0, 2]] = -1.7927578191044642E+01 +v_z[5][[1, 3, 0, 1, 0, 2]] = -9.9545460024614627E+00 +v_z[5][[0, 4, 0, 1, 0, 2]] = 5.8253209824936403E+02 +v_z[5][[0, 3, 1, 1, 0, 2]] = -1.2043530999034000E+02 +v_z[5][[1, 2, 0, 2, 0, 2]] = -7.4988863933621531E+01 +v_z[5][[0, 3, 0, 2, 0, 2]] = 2.7143834053308005E+03 +v_z[5][[0, 2, 1, 2, 0, 2]] = -9.0725454193852295E+02 +v_z[5][[1, 1, 0, 3, 0, 2]] = -1.5677652447374567E+02 +v_z[5][[0, 2, 0, 3, 0, 2]] = 1.4260515227301321E+04 +v_z[5][[0, 1, 1, 3, 0, 2]] = -1.8967644852447165E+03 +v_z[5][[1, 0, 0, 4, 0, 2]] = -5.0233647044035973E+02 +v_z[5][[0, 1, 0, 4, 0, 2]] = 2.6308993044018502E+04 +v_z[5][[0, 0, 1, 4, 0, 2]] = -6.0775296554938977E+03 +v_z[5][[0, 0, 0, 5, 0, 2]] = 6.7703295966790116E+04 +v_z[5][[1, 3, 0, 0, 0, 3]] = 9.1856085481381100E-01 +v_z[5][[0, 4, 0, 0, 0, 3]] = -7.2756793503444726E+01 +v_z[5][[0, 3, 1, 0, 0, 3]] = 1.1113230203279805E+01 +v_z[5][[1, 2, 0, 1, 0, 3]] = 1.2848517105216466E+01 +v_z[5][[0, 3, 0, 1, 0, 3]] = -4.8877137146542378E+02 +v_z[5][[0, 2, 1, 1, 0, 3]] = 1.5544808774808001E+02 +v_z[5][[1, 1, 0, 2, 0, 3]] = 3.2338460403984811E+01 +v_z[5][[0, 2, 0, 2, 0, 3]] = -3.6819770444988003E+03 +v_z[5][[0, 1, 1, 2, 0, 3]] = 3.9124762720481681E+02 +v_z[5][[1, 0, 0, 3, 0, 3]] = 1.3724626690314713E+02 +v_z[5][[0, 1, 0, 3, 0, 3]] = -7.6977771624811194E+03 +v_z[5][[0, 0, 1, 3, 0, 3]] = 1.6604772026177966E+03 +v_z[5][[0, 0, 0, 4, 0, 3]] = -2.4664880300269440E+04 +v_z[5][[1, 2, 0, 0, 0, 4]] = -8.5073419801898031E-01 +v_z[5][[0, 3, 0, 0, 0, 4]] = 3.3826222361430325E+01 +v_z[5][[0, 2, 1, 0, 0, 4]] = -1.0292627793619518E+01 +v_z[5][[1, 1, 0, 1, 0, 4]] = -2.9815291792922154E+00 +v_z[5][[0, 2, 0, 1, 0, 4]] = 4.7314970405938942E+02 +v_z[5][[0, 1, 1, 1, 0, 4]] = -3.6072101215315222E+01 +v_z[5][[1, 0, 0, 2, 0, 4]] = -1.8763566086119539E+01 +v_z[5][[0, 1, 0, 2, 0, 4]] = 1.1908715102748793E+03 +v_z[5][[0, 0, 1, 2, 0, 4]] = -2.2701144758859397E+02 +v_z[5][[0, 0, 0, 3, 0, 4]] = 5.0541264829787870E+03 +v_z[5][[1, 1, 0, 0, 0, 5]] = 8.4684603424257959E-02 +v_z[5][[0, 2, 0, 0, 0, 5]] = -2.5062791650093693E+01 +v_z[5][[0, 1, 1, 0, 0, 5]] = 1.0245586752311540E+00 +v_z[5][[1, 0, 0, 1, 0, 5]] = 1.0245586752311577E+00 +v_z[5][[0, 1, 0, 1, 0, 5]] = -8.7836417994341843E+01 +v_z[5][[0, 0, 1, 1, 0, 5]] = 1.2395647337833793E+01 +v_z[5][[0, 0, 0, 2, 0, 5]] = -5.5277823381762244E+02 +v_z[5][[1, 0, 0, 0, 0, 6]] = 1.5742615544489524E-16 +v_z[5][[0, 1, 0, 0, 0, 6]] = 2.0790204670029784E+00 +v_z[5][[0, 0, 1, 0, 0, 6]] = 7.1644079557842133E-16 +v_z[5][[0, 0, 0, 1, 0, 6]] = 2.5153078237606888E+01 +v_z[5][[0, 0, 0, 0, 1, 6]] = -9.4715901788333667E-16 +v_z[5][[0, 0, 0, 0, 0, 7]] = -1.6720473194997081E-02 +v_z[5][[1, 7, 0, 0, 0, 0]] = -1.0807242209243918E-01 +v_z[5][[0, 8, 0, 0, 0, 0]] = 3.5166656977015154E+00 +v_z[5][[0, 7, 1, 0, 0, 0]] = -1.3075167519333761E+00 +v_z[5][[1, 6, 0, 1, 0, 0]] = -1.9200074460494170E+00 +v_z[5][[0, 7, 0, 1, 0, 0]] = 4.4009267518748409E+01 +v_z[5][[0, 6, 1, 1, 0, 0]] = -2.3229255446862631E+01 +v_z[5][[1, 5, 0, 2, 0, 0]] = -1.2571332913153057E+01 +v_z[5][[0, 6, 0, 2, 0, 0]] = 4.3767658870419461E+02 +v_z[5][[0, 5, 1, 2, 0, 0]] = -1.5209456825182960E+02 +v_z[5][[1, 4, 0, 3, 0, 0]] = -7.8298599890883324E+01 +v_z[5][[0, 5, 0, 3, 0, 0]] = 2.2809796787303831E+03 +v_z[5][[0, 4, 1, 3, 0, 0]] = -9.4729746061110063E+02 +v_z[5][[1, 3, 0, 4, 0, 0]] = -2.5558382260606041E+02 +v_z[5][[0, 4, 0, 4, 0, 0]] = 1.1258202056635084E+04 +v_z[5][[0, 3, 1, 4, 0, 0]] = -3.0921869160547981E+03 +v_z[5][[1, 2, 0, 5, 0, 0]] = -8.6455861384640912E+02 +v_z[5][[0, 3, 0, 5, 0, 0]] = 3.2772489528973783E+04 +v_z[5][[0, 2, 1, 5, 0, 0]] = -1.0459882815114224E+04 +v_z[5][[1, 1, 0, 6, 0, 0]] = -1.3337537349417701E+03 +v_z[5][[0, 2, 0, 6, 0, 0]] = 9.5162043246978981E+04 +v_z[5][[0, 1, 1, 6, 0, 0]] = -1.6136451072581945E+04 +v_z[5][[1, 0, 0, 7, 0, 0]] = -2.4627932323576110E+03 +v_z[5][[0, 1, 0, 7, 0, 0]] = 1.3676809278716292E+05 +v_z[5][[0, 0, 1, 7, 0, 0]] = -2.9796162106012292E+04 +v_z[5][[0, 0, 0, 8, 0, 0]] = 2.2129119868953433E+05 +v_z[5][[1, 6, 0, 0, 0, 1]] = 8.5524330605399168E-01 +v_z[5][[0, 7, 0, 0, 0, 1]] = -1.8572365914756457E+01 +v_z[5][[0, 6, 1, 0, 0, 1]] = 1.0347181343710361E+01 +v_z[5][[1, 5, 0, 1, 0, 1]] = 8.3003534891282342E+00 +v_z[5][[0, 6, 0, 1, 0, 1]] = -3.2995541468096286E+02 +v_z[5][[0, 5, 1, 1, 0, 1]] = 1.0042202278691309E+02 +v_z[5][[1, 4, 0, 2, 0, 1]] = 7.2624790231519370E+01 +v_z[5][[0, 5, 0, 2, 0, 1]] = -2.1603975406380218E+03 +v_z[5][[0, 4, 1, 2, 0, 1]] = 8.7865274040158897E+02 +v_z[5][[1, 3, 0, 3, 0, 1]] = 2.7423699126605720E+02 +v_z[5][[0, 4, 0, 3, 0, 1]] = -1.3455701460477732E+04 +v_z[5][[0, 3, 1, 3, 0, 1]] = 3.3178627177752696E+03 +v_z[5][[1, 2, 0, 4, 0, 1]] = 1.1220653223481338E+03 +v_z[5][[0, 3, 0, 4, 0, 1]] = -4.3922364127934779E+04 +v_z[5][[0, 2, 1, 4, 0, 1]] = 1.3575333811606566E+04 +v_z[5][[1, 1, 0, 5, 0, 1]] = 1.8776816460305381E+03 +v_z[5][[0, 2, 0, 5, 0, 1]] = -1.4857535919178449E+05 +v_z[5][[0, 1, 1, 5, 0, 1]] = 2.2717175755372667E+04 +v_z[5][[1, 0, 0, 6, 0, 1]] = 4.0373641944489723E+03 +v_z[5][[0, 1, 0, 6, 0, 1]] = -2.2920706250410655E+05 +v_z[5][[0, 0, 1, 6, 0, 1]] = 4.8846146090653026E+04 +v_z[5][[0, 0, 0, 7, 0, 1]] = -4.2323375564405316E+05 +v_z[5][[1, 5, 0, 0, 0, 2]] = -1.4945232247871465E+00 +v_z[5][[0, 6, 0, 0, 0, 2]] = 7.3487256594446507E+01 +v_z[5][[0, 5, 1, 0, 0, 2]] = -1.8081524543710533E+01 +v_z[5][[1, 4, 0, 1, 0, 2]] = -2.3728241498873921E+01 +v_z[5][[0, 5, 0, 1, 0, 2]] = 7.1321248861276376E+02 +v_z[5][[0, 4, 1, 1, 0, 2]] = -2.8707669036196125E+02 +v_z[5][[1, 3, 0, 2, 0, 2]] = -1.1056480004412420E+02 +v_z[5][[0, 4, 0, 2, 0, 2]] = 6.2403254805768602E+03 +v_z[5][[0, 3, 1, 2, 0, 2]] = -1.3376708454651198E+03 +v_z[5][[1, 2, 0, 3, 0, 2]] = -5.8087262526592099E+02 +v_z[5][[0, 3, 0, 3, 0, 2]] = 2.3563965952380662E+04 +v_z[5][[0, 2, 1, 3, 0, 2]] = -7.0277011800945274E+03 +v_z[5][[1, 1, 0, 4, 0, 2]] = -1.0716424767265498E+03 +v_z[5][[0, 2, 0, 4, 0, 2]] = 9.6414086699583713E+04 +v_z[5][[0, 1, 1, 4, 0, 2]] = -1.2965291822596826E+04 +v_z[5][[1, 0, 0, 5, 0, 2]] = -2.7577538848031513E+03 +v_z[5][[0, 1, 0, 5, 0, 2]] = 1.6134083944039536E+05 +v_z[5][[0, 0, 1, 5, 0, 2]] = -3.3364750528171149E+04 +v_z[5][[0, 0, 0, 6, 0, 2]] = 3.4691276321311126E+05 +v_z[5][[1, 4, 0, 0, 0, 3]] = 2.9635976663288046E+00 +v_z[5][[0, 5, 0, 0, 0, 3]] = -8.5611826037380382E+01 +v_z[5][[0, 4, 1, 0, 0, 3]] = 3.5855156382089284E+01 +v_z[5][[1, 3, 0, 1, 0, 3]] = 1.9909092004922954E+01 +v_z[5][[0, 4, 0, 1, 0, 3]] = -1.3592415625818512E+03 +v_z[5][[0, 3, 1, 1, 0, 3]] = 2.4087061998068015E+02 +v_z[5][[1, 2, 0, 2, 0, 3]] = 1.4997772786724323E+02 +v_z[5][[0, 3, 0, 2, 0, 3]] = -6.3335612791052108E+03 +v_z[5][[0, 2, 1, 2, 0, 3]] = 1.8145090838770457E+03 +v_z[5][[1, 1, 0, 3, 0, 3]] = 3.1355304894749167E+02 +v_z[5][[0, 2, 0, 3, 0, 3]] = -3.3274535530369787E+04 +v_z[5][[0, 1, 1, 3, 0, 3]] = 3.7935289704894367E+03 +v_z[5][[1, 0, 0, 4, 0, 3]] = 1.0046729408807223E+03 +v_z[5][[0, 1, 0, 4, 0, 3]] = -6.1387650436043266E+04 +v_z[5][[0, 0, 1, 4, 0, 3]] = 1.2155059310987792E+04 +v_z[5][[0, 0, 0, 5, 0, 3]] = -1.5797435725584379E+05 +v_z[5][[1, 3, 0, 0, 0, 4]] = -1.3778412822207171E+00 +v_z[5][[0, 4, 0, 0, 0, 4]] = 1.2732438863102827E+02 +v_z[5][[0, 3, 1, 0, 0, 4]] = -1.6669845304919704E+01 +v_z[5][[1, 2, 0, 1, 0, 4]] = -1.9272775657824710E+01 +v_z[5][[0, 3, 0, 1, 0, 4]] = 8.5534990006449345E+02 +v_z[5][[0, 2, 1, 1, 0, 4]] = -2.3317213162211999E+02 +v_z[5][[1, 1, 0, 2, 0, 4]] = -4.8507690605977260E+01 +v_z[5][[0, 2, 0, 2, 0, 4]] = 6.4434598278729109E+03 +v_z[5][[0, 1, 1, 2, 0, 4]] = -5.8687144080722510E+02 +v_z[5][[1, 0, 0, 3, 0, 4]] = -2.0586940035472068E+02 +v_z[5][[0, 1, 0, 3, 0, 4]] = 1.3471110034342004E+04 +v_z[5][[0, 0, 1, 3, 0, 4]] = -2.4907158039266947E+03 +v_z[5][[0, 0, 0, 4, 0, 4]] = 4.3163540525471733E+04 +v_z[5][[1, 2, 0, 0, 0, 5]] = 1.0208810376227742E+00 +v_z[5][[0, 3, 0, 0, 0, 5]] = -4.7356711306002524E+01 +v_z[5][[0, 2, 1, 0, 0, 5]] = 1.2351153352343424E+01 +v_z[5][[1, 1, 0, 1, 0, 5]] = 3.5778350151506655E+00 +v_z[5][[0, 2, 0, 1, 0, 5]] = -6.6240958568314704E+02 +v_z[5][[0, 1, 1, 1, 0, 5]] = 4.3286521458378303E+01 +v_z[5][[1, 0, 0, 2, 0, 5]] = 2.2516279303343417E+01 +v_z[5][[0, 1, 0, 2, 0, 5]] = -1.6672201143848406E+03 +v_z[5][[0, 0, 1, 2, 0, 5]] = 2.7241373710631274E+02 +v_z[5][[0, 0, 0, 3, 0, 5]] = -7.0757770761703132E+03 +v_z[5][[1, 1, 0, 0, 0, 6]] = -8.4684603424257876E-02 +v_z[5][[0, 2, 0, 0, 0, 6]] = 2.9239923591776098E+01 +v_z[5][[0, 1, 1, 0, 0, 6]] = -1.0245586752311520E+00 +v_z[5][[1, 0, 0, 1, 0, 6]] = -1.0245586752311566E+00 +v_z[5][[0, 1, 0, 1, 0, 6]] = 1.0247582099339952E+02 +v_z[5][[0, 0, 1, 1, 0, 6]] = -1.2395647337833761E+01 +v_z[5][[0, 0, 0, 2, 0, 6]] = 6.4490793945389532E+02 +v_z[5][[1, 0, 0, 0, 0, 7]] = 6.4293188828390413E-16 +v_z[5][[0, 1, 0, 0, 0, 7]] = -2.0790204670029850E+00 +v_z[5][[0, 0, 1, 0, 0, 7]] = 1.1102230246251565E-15 +v_z[5][[0, 0, 0, 1, 0, 7]] = -2.5153078237607343E+01 +v_z[5][[0, 0, 0, 0, 1, 7]] = -4.2869353900076845E-16 +v_z[5][[0, 0, 0, 0, 0, 8]] = 1.8687654116278180E-02 +v_z[5][[1, 8, 0, 0, 0, 0]] = -1.4324411169210405E-01 +v_z[5][[0, 9, 0, 0, 0, 0]] = 2.8778799081282531E+00 +v_z[5][[0, 8, 1, 0, 0, 0]] = -1.7330422694981393E+00 +v_z[5][[1, 7, 0, 1, 0, 0]] = -1.7926265883230306E+00 +v_z[5][[0, 8, 0, 1, 0, 0]] = 5.6564930765138286E+01 +v_z[5][[0, 7, 1, 1, 0, 0]] = -2.1688135130243538E+01 +v_z[5][[1, 6, 0, 2, 0, 0]] = -1.7827851592017915E+01 +v_z[5][[0, 7, 0, 2, 0, 0]] = 4.6689373981867334E+02 +v_z[5][[0, 6, 1, 2, 0, 0]] = -2.1569068367513086E+02 +v_z[5][[1, 5, 0, 3, 0, 0]] = -9.2910994662082643E+01 +v_z[5][[0, 6, 0, 3, 0, 0]] = 3.3488666655922548E+03 +v_z[5][[0, 5, 1, 3, 0, 0]] = -1.1240858639732894E+03 +v_z[5][[1, 4, 0, 4, 0, 0]] = -4.5857960109968462E+02 +v_z[5][[0, 5, 0, 4, 0, 0]] = 1.4879163857825844E+04 +v_z[5][[0, 4, 1, 4, 0, 0]] = -5.5481361380047247E+03 +v_z[5][[1, 3, 0, 5, 0, 0]] = -1.3349196523243306E+03 +v_z[5][[0, 4, 0, 5, 0, 0]] = 6.1629616345595183E+04 +v_z[5][[0, 3, 1, 5, 0, 0]] = -1.6150556951580058E+04 +v_z[5][[1, 2, 0, 6, 0, 0]] = -3.8762292249241600E+03 +v_z[5][[0, 3, 0, 6, 0, 0]] = 1.6306203116672821E+05 +v_z[5][[0, 2, 1, 6, 0, 0]] = -4.6896650854988322E+04 +v_z[5][[1, 1, 0, 7, 0, 0]] = -5.5709656939881670E+03 +v_z[5][[0, 2, 0, 7, 0, 0]] = 4.1700148883533425E+05 +v_z[5][[0, 1, 1, 7, 0, 0]] = -6.7400460064688959E+04 +v_z[5][[1, 0, 0, 8, 0, 0]] = -9.0138397864433209E+03 +v_z[5][[0, 1, 0, 8, 0, 0]] = 5.6251894409106125E+05 +v_z[5][[0, 0, 1, 8, 0, 0]] = -1.0905415361133685E+05 +v_z[5][[0, 0, 0, 9, 0, 0]] = 8.0992716172496649E+05 +v_z[5][[1, 7, 0, 0, 0, 1]] = 7.5650695464707385E-01 +v_z[5][[0, 8, 0, 0, 0, 1]] = -2.8133325581612130E+01 +v_z[5][[0, 7, 1, 0, 0, 1]] = 9.1526172635336298E+00 +v_z[5][[1, 6, 0, 1, 0, 1]] = 1.3440052122345909E+01 +v_z[5][[0, 7, 0, 1, 0, 1]] = -3.5207414014998744E+02 +v_z[5][[0, 6, 1, 1, 0, 1]] = 1.6260478812803842E+02 +v_z[5][[1, 5, 0, 2, 0, 1]] = 8.7999330392071414E+01 +v_z[5][[0, 6, 0, 2, 0, 1]] = -3.5014127096335578E+03 +v_z[5][[0, 5, 1, 2, 0, 1]] = 1.0646619777628071E+03 +v_z[5][[1, 4, 0, 3, 0, 1]] = 5.4809019923618303E+02 +v_z[5][[0, 5, 0, 3, 0, 1]] = -1.8247837429843057E+04 +v_z[5][[0, 4, 1, 3, 0, 1]] = 6.6310822242777031E+03 +v_z[5][[1, 3, 0, 4, 0, 1]] = 1.7890867582424232E+03 +v_z[5][[0, 4, 0, 4, 0, 1]] = -9.0065616453080700E+04 +v_z[5][[0, 3, 1, 4, 0, 1]] = 2.1645308412383587E+04 +v_z[5][[1, 2, 0, 5, 0, 1]] = 6.0519102969248615E+03 +v_z[5][[0, 3, 0, 5, 0, 1]] = -2.6217991623179038E+05 +v_z[5][[0, 2, 1, 5, 0, 1]] = 7.3219179705799572E+04 +v_z[5][[1, 1, 0, 6, 0, 1]] = 9.3362761445923952E+03 +v_z[5][[0, 2, 0, 6, 0, 1]] = -7.6129634597583138E+05 +v_z[5][[0, 1, 1, 6, 0, 1]] = 1.1295515750807358E+05 +v_z[5][[1, 0, 0, 7, 0, 1]] = 1.7239552626503275E+04 +v_z[5][[0, 1, 0, 7, 0, 1]] = -1.0941447422972973E+06 +v_z[5][[0, 0, 1, 7, 0, 1]] = 2.0857313474208614E+05 +v_z[5][[0, 0, 0, 8, 0, 1]] = -1.7703295895162774E+06 +v_z[5][[1, 6, 0, 0, 0, 2]] = -2.9933515711889704E+00 +v_z[5][[0, 7, 0, 0, 0, 2]] = 7.4289463659025856E+01 +v_z[5][[0, 6, 1, 0, 0, 2]] = -3.6215134702986269E+01 +v_z[5][[1, 5, 0, 1, 0, 2]] = -2.9051237211948823E+01 +v_z[5][[0, 6, 0, 1, 0, 2]] = 1.3198216587238519E+03 +v_z[5][[0, 5, 1, 1, 0, 2]] = -3.5147707975419576E+02 +v_z[5][[1, 4, 0, 2, 0, 2]] = -2.5418676581031784E+02 +v_z[5][[0, 5, 0, 2, 0, 2]] = 8.6415901625520964E+03 +v_z[5][[0, 4, 1, 2, 0, 2]] = -3.0752845914055611E+03 +v_z[5][[1, 3, 0, 3, 0, 2]] = -9.5982946943120032E+02 +v_z[5][[0, 4, 0, 3, 0, 2]] = 5.3822805841910966E+04 +v_z[5][[0, 3, 1, 3, 0, 2]] = -1.1612519512213454E+04 +v_z[5][[1, 2, 0, 4, 0, 2]] = -3.9272286282184705E+03 +v_z[5][[0, 3, 0, 4, 0, 2]] = 1.7568945651173935E+05 +v_z[5][[0, 2, 1, 4, 0, 2]] = -4.7513668340622957E+04 +v_z[5][[1, 1, 0, 5, 0, 2]] = -6.5718857611068906E+03 +v_z[5][[0, 2, 0, 5, 0, 2]] = 5.9430143676713866E+05 +v_z[5][[0, 1, 1, 5, 0, 2]] = -7.9510115143804345E+04 +v_z[5][[1, 0, 0, 6, 0, 2]] = -1.4130774680571401E+04 +v_z[5][[0, 1, 0, 6, 0, 2]] = 9.1682825001642900E+05 +v_z[5][[0, 0, 1, 6, 0, 2]] = -1.7096151131728559E+05 +v_z[5][[0, 0, 0, 7, 0, 2]] = 1.6929350225762099E+06 +v_z[5][[1, 5, 0, 0, 0, 3]] = 3.4872208578366766E+00 +v_z[5][[0, 6, 0, 0, 0, 3]] = -1.9596601758519074E+02 +v_z[5][[0, 5, 1, 0, 0, 3]] = 4.2190223935324610E+01 +v_z[5][[1, 4, 0, 1, 0, 3]] = 5.5365896830705836E+01 +v_z[5][[0, 5, 0, 1, 0, 3]] = -1.9018999696340388E+03 +v_z[5][[0, 4, 1, 1, 0, 3]] = 6.6984561084457653E+02 +v_z[5][[1, 3, 0, 2, 0, 3]] = 2.5798453343629012E+02 +v_z[5][[0, 4, 0, 2, 0, 3]] = -1.6640867948204985E+04 +v_z[5][[0, 3, 1, 2, 0, 3]] = 3.1212319727519462E+03 +v_z[5][[1, 2, 0, 3, 0, 3]] = 1.3553694589538168E+03 +v_z[5][[0, 3, 0, 3, 0, 3]] = -6.2837242539681822E+04 +v_z[5][[0, 2, 1, 3, 0, 3]] = 1.6397969420220568E+04 +v_z[5][[1, 1, 0, 4, 0, 3]] = 2.5004991123619520E+03 +v_z[5][[0, 2, 0, 4, 0, 3]] = -2.5710423119889002E+05 +v_z[5][[0, 1, 1, 4, 0, 3]] = 3.0252347586059288E+04 +v_z[5][[1, 0, 0, 5, 0, 3]] = 6.4347590645407199E+03 +v_z[5][[0, 1, 0, 5, 0, 3]] = -4.3024223850772006E+05 +v_z[5][[0, 0, 1, 5, 0, 3]] = 7.7851084565732686E+04 +v_z[5][[0, 0, 0, 6, 0, 3]] = -9.2510070190163504E+05 +v_z[5][[1, 4, 0, 0, 0, 4]] = -5.1862959160754052E+00 +v_z[5][[0, 5, 0, 0, 0, 4]] = 1.7122365207476082E+02 +v_z[5][[0, 4, 1, 0, 0, 4]] = -6.2746523668656266E+01 +v_z[5][[1, 3, 0, 1, 0, 4]] = -3.4840911008615201E+01 +v_z[5][[0, 4, 0, 1, 0, 4]] = 2.7184831251637038E+03 +v_z[5][[0, 3, 1, 1, 0, 4]] = -4.2152358496619041E+02 +v_z[5][[1, 2, 0, 2, 0, 4]] = -2.6246102376767601E+02 +v_z[5][[0, 3, 0, 2, 0, 4]] = 1.2667122558210453E+04 +v_z[5][[0, 2, 1, 2, 0, 4]] = -3.1753908967848320E+03 +v_z[5][[1, 1, 0, 3, 0, 4]] = -5.4871783565811120E+02 +v_z[5][[0, 2, 0, 3, 0, 4]] = 6.6549071060739807E+04 +v_z[5][[0, 1, 1, 3, 0, 4]] = -6.6386756983565156E+03 +v_z[5][[1, 0, 0, 4, 0, 4]] = -1.7581776465412672E+03 +v_z[5][[0, 1, 0, 4, 0, 4]] = 1.2277530087208727E+05 +v_z[5][[0, 0, 1, 4, 0, 4]] = -2.1271353794228649E+04 +v_z[5][[0, 0, 0, 5, 0, 4]] = 3.1594871451168787E+05 +v_z[5][[1, 3, 0, 0, 0, 5]] = 1.9289777951090046E+00 +v_z[5][[0, 4, 0, 0, 0, 5]] = -2.0371902180964531E+02 +v_z[5][[0, 3, 1, 0, 0, 5]] = 2.3337783426887597E+01 +v_z[5][[1, 2, 0, 1, 0, 5]] = 2.6981885920954600E+01 +v_z[5][[0, 3, 0, 1, 0, 5]] = -1.3685598401031925E+03 +v_z[5][[0, 2, 1, 1, 0, 5]] = 3.2644098427096816E+02 +v_z[5][[1, 1, 0, 2, 0, 5]] = 6.7910766848368212E+01 +v_z[5][[0, 2, 0, 2, 0, 5]] = -1.0309535724596695E+04 +v_z[5][[0, 1, 1, 2, 0, 5]] = 8.2162001713011603E+02 +v_z[5][[1, 0, 0, 3, 0, 5]] = 2.8821716049660881E+02 +v_z[5][[0, 1, 0, 3, 0, 5]] = -2.1553776054947451E+04 +v_z[5][[0, 0, 1, 3, 0, 5]] = 3.4870021254973708E+03 +v_z[5][[0, 0, 0, 4, 0, 5]] = -6.9061664840755402E+04 +v_z[5][[1, 2, 0, 0, 0, 6]] = -1.1910278772265745E+00 +v_z[5][[0, 3, 0, 0, 0, 6]] = 6.3142281741336816E+01 +v_z[5][[0, 2, 1, 0, 0, 6]] = -1.4409678911067328E+01 +v_z[5][[1, 1, 0, 1, 0, 6]] = -4.1741408510091169E+00 +v_z[5][[0, 2, 0, 1, 0, 6]] = 8.8321278091086617E+02 +v_z[5][[0, 1, 1, 1, 0, 6]] = -5.0500941701441391E+01 +v_z[5][[1, 0, 0, 2, 0, 6]] = -2.6268992520567281E+01 +v_z[5][[0, 1, 0, 2, 0, 6]] = 2.2229601525131357E+03 +v_z[5][[0, 0, 1, 2, 0, 6]] = -3.1781602662403157E+02 +v_z[5][[0, 0, 0, 3, 0, 6]] = 9.4343694348937079E+03 +v_z[5][[1, 1, 0, 0, 0, 7]] = 8.4684603424258320E-02 +v_z[5][[0, 2, 0, 0, 0, 7]] = -3.3417055533458594E+01 +v_z[5][[0, 1, 1, 0, 0, 7]] = 1.0245586752311533E+00 +v_z[5][[1, 0, 0, 1, 0, 7]] = 1.0245586752311711E+00 +v_z[5][[0, 1, 0, 1, 0, 7]] = -1.1711522399245857E+02 +v_z[5][[0, 0, 1, 1, 0, 7]] = 1.2395647337833816E+01 +v_z[5][[0, 0, 0, 2, 0, 7]] = -7.3703764509018333E+02 +v_z[5][[1, 0, 0, 0, 0, 8]] = -3.7281918004172798E-15 +v_z[5][[0, 1, 0, 0, 0, 8]] = 2.0790204670029779E+00 +v_z[5][[0, 0, 1, 0, 0, 8]] = -4.6412526599759474E-15 +v_z[5][[0, 0, 0, 1, 0, 8]] = 2.5153078237608710E+01 +v_z[5][[0, 0, 0, 0, 1, 8]] = 1.1024167689832609E-15 +v_z[5][[0, 0, 0, 0, 0, 9]] = -2.0614659191799459E-02 +v_z[5][[1, 9, 0, 0, 0, 0]] = -1.1722449229843630E-01 +v_z[5][[0, 10, 0, 0, 0, 0]] = 3.6191226002153227E+00 +v_z[5][[0, 9, 1, 0, 0, 0]] = -1.4182432895414268E+00 +v_z[5][[1, 8, 0, 1, 0, 0]] = -2.3040555904058344E+00 +v_z[5][[0, 9, 0, 1, 0, 0]] = 5.4942235582501361E+01 +v_z[5][[0, 8, 1, 1, 0, 0]] = -2.7875670994627747E+01 +v_z[5][[1, 7, 0, 2, 0, 0]] = -1.9017951879430232E+01 +v_z[5][[0, 8, 0, 2, 0, 0]] = 6.1105247150460241E+02 +v_z[5][[0, 7, 1, 2, 0, 0]] = -2.3008914011891585E+02 +v_z[5][[1, 6, 0, 3, 0, 0]] = -1.3640916479538996E+02 +v_z[5][[0, 7, 0, 3, 0, 0]] = 3.9605268573249014E+03 +v_z[5][[0, 6, 1, 3, 0, 0]] = -1.6503495029902799E+03 +v_z[5][[1, 5, 0, 4, 0, 0]] = -6.0607199908952589E+02 +v_z[5][[0, 6, 0, 4, 0, 0]] = 2.2746601193742510E+04 +v_z[5][[0, 5, 1, 4, 0, 0]] = -7.3325763996432579E+03 +v_z[5][[1, 4, 0, 5, 0, 0]] = -2.5103550937809996E+03 +v_z[5][[0, 5, 0, 5, 0, 0]] = 8.9172391338259491E+04 +v_z[5][[0, 4, 1, 5, 0, 0]] = -3.0371590410108565E+04 +v_z[5][[1, 3, 0, 6, 0, 0]] = -6.6419949500615085E+03 +v_z[5][[0, 4, 0, 6, 0, 0]] = 3.2118443095543981E+05 +v_z[5][[0, 3, 1, 6, 0, 0]] = -8.0358332822725439E+04 +v_z[5][[1, 2, 0, 7, 0, 0]] = -1.6985694114041777E+04 +v_z[5][[0, 3, 0, 7, 0, 0]] = 7.8235715052174986E+05 +v_z[5][[0, 2, 1, 7, 0, 0]] = -2.0550182153157677E+05 +v_z[5][[1, 1, 0, 8, 0, 0]] = -2.2913047011823739E+04 +v_z[5][[0, 2, 0, 8, 0, 0]] = 1.7950412225431991E+06 +v_z[5][[0, 1, 1, 8, 0, 0]] = -2.7721404060113488E+05 +v_z[5][[1, 0, 0, 9, 0, 0]] = -3.2990709606666569E+04 +v_z[5][[0, 1, 0, 9, 0, 0]] = 2.2855487727843015E+06 +v_z[5][[0, 0, 1, 9, 0, 0]] = -3.9913887959306751E+05 +v_z[5][[0, 0, 0, 10, 0, 0]] = 2.9643386612610365E+06 +v_z[5][[1, 8, 0, 0, 0, 1]] = 1.1459528935368319E+00 +v_z[5][[0, 9, 0, 0, 0, 1]] = -2.5900919173154289E+01 +v_z[5][[0, 8, 1, 0, 0, 1]] = 1.3864338155985115E+01 +v_z[5][[1, 7, 0, 1, 0, 1]] = 1.4341012706584236E+01 +v_z[5][[0, 8, 0, 1, 0, 1]] = -5.0908437688624468E+02 +v_z[5][[0, 7, 1, 1, 0, 1]] = 1.7350508104194827E+02 +v_z[5][[1, 6, 0, 2, 0, 1]] = 1.4262281273614326E+02 +v_z[5][[0, 7, 0, 2, 0, 1]] = -4.2020436583680594E+03 +v_z[5][[0, 6, 1, 2, 0, 1]] = 1.7255254694010466E+03 +v_z[5][[1, 5, 0, 3, 0, 1]] = 7.4328795729666115E+02 +v_z[5][[0, 6, 0, 3, 0, 1]] = -3.0139799990330321E+04 +v_z[5][[0, 5, 1, 3, 0, 1]] = 8.9926869117863134E+03 +v_z[5][[1, 4, 0, 4, 0, 1]] = 3.6686368087974779E+03 +v_z[5][[0, 5, 0, 4, 0, 1]] = -1.3391247472043251E+05 +v_z[5][[0, 4, 1, 4, 0, 1]] = 4.4385089104037797E+04 +v_z[5][[1, 3, 0, 5, 0, 1]] = 1.0679357218594645E+04 +v_z[5][[0, 4, 0, 5, 0, 1]] = -5.5466654711035662E+05 +v_z[5][[0, 3, 1, 5, 0, 1]] = 1.2920445561264045E+05 +v_z[5][[1, 2, 0, 6, 0, 1]] = 3.1009833799393251E+04 +v_z[5][[0, 3, 0, 6, 0, 1]] = -1.4675582805005531E+06 +v_z[5][[0, 2, 1, 6, 0, 1]] = 3.7517320683990652E+05 +v_z[5][[1, 1, 0, 7, 0, 1]] = 4.4567725551905343E+04 +v_z[5][[0, 2, 0, 7, 0, 1]] = -3.7530133995180000E+06 +v_z[5][[0, 1, 1, 7, 0, 1]] = 5.3920368051751168E+05 +v_z[5][[1, 0, 0, 8, 0, 1]] = 7.2110718291546291E+04 +v_z[5][[0, 1, 0, 8, 0, 1]] = -5.0626704968195325E+06 +v_z[5][[0, 0, 1, 8, 0, 1]] = 8.7243322889069468E+05 +v_z[5][[0, 0, 0, 9, 0, 1]] = -7.2893444555247305E+06 +v_z[5][[1, 7, 0, 0, 0, 2]] = -3.0260278185882958E+00 +v_z[5][[0, 8, 0, 0, 0, 2]] = 1.2659996511725460E+02 +v_z[5][[0, 7, 1, 0, 0, 2]] = -3.6610469054134519E+01 +v_z[5][[1, 6, 0, 1, 0, 2]] = -5.3760208489383672E+01 +v_z[5][[0, 7, 0, 1, 0, 2]] = 1.5843336306749445E+03 +v_z[5][[0, 6, 1, 1, 0, 2]] = -6.5041915251215346E+02 +v_z[5][[1, 5, 0, 2, 0, 2]] = -3.5199732156828577E+02 +v_z[5][[0, 6, 0, 2, 0, 2]] = 1.5756357193351016E+04 +v_z[5][[0, 5, 1, 2, 0, 2]] = -4.2586479110512300E+03 +v_z[5][[1, 4, 0, 3, 0, 2]] = -2.1923607969447330E+03 +v_z[5][[0, 5, 0, 3, 0, 2]] = 8.2115268434293801E+04 +v_z[5][[0, 4, 1, 3, 0, 2]] = -2.6524328897110812E+04 +v_z[5][[1, 3, 0, 4, 0, 2]] = -7.1563470329696966E+03 +v_z[5][[0, 4, 0, 4, 0, 2]] = 4.0529527403886378E+05 +v_z[5][[0, 3, 1, 4, 0, 2]] = -8.6581233649534392E+04 +v_z[5][[1, 2, 0, 5, 0, 2]] = -2.4207641187699464E+04 +v_z[5][[0, 3, 0, 5, 0, 2]] = 1.1798096230430561E+06 +v_z[5][[0, 2, 1, 5, 0, 2]] = -2.9287671882319835E+05 +v_z[5][[1, 1, 0, 6, 0, 2]] = -3.7345104578369581E+04 +v_z[5][[0, 2, 0, 6, 0, 2]] = 3.4258335568912425E+06 +v_z[5][[0, 1, 1, 6, 0, 2]] = -4.5182063003229455E+05 +v_z[5][[1, 0, 0, 7, 0, 2]] = -6.8958210506012794E+04 +v_z[5][[0, 1, 0, 7, 0, 2]] = 4.9236513403378557E+06 +v_z[5][[0, 0, 1, 7, 0, 2]] = -8.3429253896834422E+05 +v_z[5][[0, 0, 0, 8, 0, 2]] = 7.9664831528231949E+06 +v_z[5][[1, 6, 0, 0, 0, 3]] = 7.9822708565039262E+00 +v_z[5][[0, 7, 0, 0, 0, 3]] = -2.2286839097707767E+02 +v_z[5][[0, 6, 1, 0, 0, 3]] = 9.6573692541296722E+01 +v_z[5][[1, 5, 0, 1, 0, 3]] = 7.7469965898530276E+01 +v_z[5][[0, 6, 0, 1, 0, 3]] = -3.9594649761715591E+03 +v_z[5][[0, 5, 1, 1, 0, 3]] = 9.3727221267785569E+02 +v_z[5][[1, 4, 0, 2, 0, 3]] = 6.7783137549418097E+02 +v_z[5][[0, 5, 0, 2, 0, 3]] = -2.5924770487656315E+04 +v_z[5][[0, 4, 1, 2, 0, 3]] = 8.2007589104148319E+03 +v_z[5][[1, 3, 0, 3, 0, 3]] = 2.5595452518165366E+03 +v_z[5][[0, 4, 0, 3, 0, 3]] = -1.6146841752573312E+05 +v_z[5][[0, 3, 1, 3, 0, 3]] = 3.0966718699235873E+04 +v_z[5][[1, 2, 0, 4, 0, 3]] = 1.0472609675249256E+04 +v_z[5][[0, 3, 0, 4, 0, 3]] = -5.2706836953521869E+05 +v_z[5][[0, 2, 1, 4, 0, 3]] = 1.2670311557499463E+05 +v_z[5][[1, 1, 0, 5, 0, 3]] = 1.7525028696285077E+04 +v_z[5][[0, 2, 0, 5, 0, 3]] = -1.7829043103014142E+06 +v_z[5][[0, 1, 1, 5, 0, 3]] = 2.1202697371681177E+05 +v_z[5][[1, 0, 0, 6, 0, 3]] = 3.7682065814857429E+04 +v_z[5][[0, 1, 0, 6, 0, 3]] = -2.7504847500492707E+06 +v_z[5][[0, 0, 1, 6, 0, 3]] = 4.5589736351276177E+05 +v_z[5][[0, 0, 0, 7, 0, 3]] = -5.0788050677286722E+06 +v_z[5][[1, 5, 0, 0, 0, 4]] = -6.9744417156733522E+00 +v_z[5][[0, 6, 0, 0, 0, 4]] = 4.4092353956667932E+02 +v_z[5][[0, 5, 1, 0, 0, 4]] = -8.4380447870649192E+01 +v_z[5][[1, 4, 0, 1, 0, 4]] = -1.1073179366141173E+02 +v_z[5][[0, 5, 0, 1, 0, 4]] = 4.2792749316765903E+03 +v_z[5][[0, 4, 1, 1, 0, 4]] = -1.3396912216891533E+03 +v_z[5][[1, 3, 0, 2, 0, 4]] = -5.1596906687258047E+02 +v_z[5][[0, 4, 0, 2, 0, 4]] = 3.7441952883461272E+04 +v_z[5][[0, 3, 1, 2, 0, 4]] = -6.2424639455038996E+03 +v_z[5][[1, 2, 0, 3, 0, 4]] = -2.7107389179076386E+03 +v_z[5][[0, 3, 0, 3, 0, 4]] = 1.4138379571428444E+05 +v_z[5][[0, 2, 1, 3, 0, 4]] = -3.2795938840441144E+04 +v_z[5][[1, 1, 0, 4, 0, 4]] = -5.0009982247239113E+03 +v_z[5][[0, 2, 0, 4, 0, 4]] = 5.7848452019750490E+05 +v_z[5][[0, 1, 1, 4, 0, 4]] = -6.0504695172118591E+04 +v_z[5][[1, 0, 0, 5, 0, 4]] = -1.2869518129081482E+04 +v_z[5][[0, 1, 0, 5, 0, 4]] = 9.6804503664237820E+05 +v_z[5][[0, 0, 1, 5, 0, 4]] = -1.5570216913146549E+05 +v_z[5][[0, 0, 0, 6, 0, 4]] = 2.0814765792786658E+06 +v_z[5][[1, 4, 0, 0, 0, 5]] = 8.2980734657206554E+00 +v_z[5][[0, 5, 0, 0, 0, 5]] = -3.0820257373456968E+02 +v_z[5][[0, 4, 1, 0, 0, 5]] = 1.0039443786985001E+02 +v_z[5][[1, 3, 0, 1, 0, 5]] = 5.5745457613784311E+01 +v_z[5][[0, 4, 0, 1, 0, 5]] = -4.8932696252946753E+03 +v_z[5][[0, 3, 1, 1, 0, 5]] = 6.7443773594590516E+02 +v_z[5][[1, 2, 0, 2, 0, 5]] = 4.1993763802828141E+02 +v_z[5][[0, 3, 0, 2, 0, 5]] = -2.2800820604778877E+04 +v_z[5][[0, 2, 1, 2, 0, 5]] = 5.0806254348557304E+03 +v_z[5][[1, 1, 0, 3, 0, 5]] = 8.7794853705297828E+02 +v_z[5][[0, 2, 0, 3, 0, 5]] = -1.1978832790933197E+05 +v_z[5][[0, 1, 1, 3, 0, 5]] = 1.0621881117370427E+04 +v_z[5][[1, 0, 0, 4, 0, 5]] = 2.8130842344660255E+03 +v_z[5][[0, 1, 0, 4, 0, 5]] = -2.2099554156976193E+05 +v_z[5][[0, 0, 1, 4, 0, 5]] = 3.4034166070765801E+04 +v_z[5][[0, 0, 0, 5, 0, 5]] = -5.6870768612104887E+05 +v_z[5][[1, 3, 0, 0, 0, 6]] = -2.5719703934786748E+00 +v_z[5][[0, 4, 0, 0, 0, 6]] = 3.0557853271446834E+02 +v_z[5][[0, 3, 1, 0, 0, 6]] = -3.1117044569183498E+01 +v_z[5][[1, 2, 0, 1, 0, 6]] = -3.5975847894606204E+01 +v_z[5][[0, 3, 0, 1, 0, 6]] = 2.0528397601548004E+03 +v_z[5][[0, 2, 1, 1, 0, 6]] = -4.3525464569462429E+02 +v_z[5][[1, 1, 0, 2, 0, 6]] = -9.0547689131157512E+01 +v_z[5][[0, 2, 0, 2, 0, 6]] = 1.5464303586895127E+04 +v_z[5][[0, 1, 1, 2, 0, 6]] = -1.0954933561734879E+03 +v_z[5][[1, 0, 0, 3, 0, 6]] = -3.8428954732881044E+02 +v_z[5][[0, 1, 0, 3, 0, 6]] = 3.2330664082421325E+04 +v_z[5][[0, 0, 1, 3, 0, 6]] = -4.6493361673298295E+03 +v_z[5][[0, 0, 0, 4, 0, 6]] = 1.0359249726113217E+05 +v_z[5][[1, 2, 0, 0, 0, 7]] = 1.3611747168303754E+00 +v_z[5][[0, 3, 0, 0, 0, 7]] = -8.1182933667433332E+01 +v_z[5][[0, 2, 1, 0, 0, 7]] = 1.6468204469791239E+01 +v_z[5][[1, 1, 0, 1, 0, 7]] = 4.7704466868675670E+00 +v_z[5][[0, 2, 0, 1, 0, 7]] = -1.1355592897425472E+03 +v_z[5][[0, 1, 1, 1, 0, 7]] = 5.7715361944504536E+01 +v_z[5][[1, 0, 0, 2, 0, 7]] = 3.0021705737791201E+01 +v_z[5][[0, 1, 0, 2, 0, 7]] = -2.8580916246597503E+03 +v_z[5][[0, 0, 1, 2, 0, 7]] = 3.6321831614175045E+02 +v_z[5][[0, 0, 0, 3, 0, 7]] = -1.2129903559149261E+04 +v_z[5][[1, 1, 0, 0, 0, 8]] = -8.4684603424260013E-02 +v_z[5][[0, 2, 0, 0, 0, 8]] = 3.7594187475140821E+01 +v_z[5][[0, 1, 1, 0, 0, 8]] = -1.0245586752311648E+00 +v_z[5][[1, 0, 0, 1, 0, 8]] = -1.0245586752312092E+00 +v_z[5][[0, 1, 0, 1, 0, 8]] = 1.3175462699151592E+02 +v_z[5][[0, 0, 1, 1, 0, 8]] = -1.2395647337833829E+01 +v_z[5][[0, 0, 0, 2, 0, 8]] = 8.2916735072647430E+02 +v_z[5][[1, 0, 0, 0, 0, 9]] = 4.9923173234267537E-15 +v_z[5][[0, 1, 0, 0, 0, 9]] = -2.0790204670028354E+00 +v_z[5][[0, 0, 1, 0, 0, 9]] = 3.2213814948889308E-15 +v_z[5][[0, 0, 0, 1, 0, 9]] = -2.5153078237610146E+01 +v_z[5][[0, 0, 0, 0, 1, 9]] = -1.3769367590565906E-15 +v_z[5][[0, 0, 0, 0, 0, 10]] = 2.2497857971639640E-02 +v_z[6][[0, 0, 0, 0, 0, 1]] = 1.0000000000000000E+00 +v_z[6][[0, 0, 0, 0, 0, 2]] = -1.1102230246251565E-16 +v_z[6][[0, 0, 0, 0, 0, 3]] = 6.2450045135165055E-17 +v_z[6][[0, 0, 0, 0, 0, 4]] = -6.9605779473569385E-17 +v_z[6][[0, 0, 0, 0, 0, 5]] = 1.2305694657710475E-16 +v_z[6][[0, 0, 0, 0, 0, 6]] = -1.3178477406561306E-16 +v_z[6][[0, 0, 0, 0, 0, 7]] = 1.5761589082508021E-16 +v_z[6][[0, 0, 0, 0, 0, 8]] = 4.9755392948075405E-16 +v_z[6][[0, 0, 0, 0, 0, 9]] = -5.9377009602526454E-16 +v_z[6][[0, 0, 0, 0, 0, 10]] = 4.0075161613674359E-16 using ReferenceFrameRotations -q_z = Quaternion{TPS64{d_z}}(0,0,0,0) -q_z.q0[[0,0,0,0,0,0]] = 7.1310241755793524E-01 -q_z.q1[[0,0,0,0,0,0]] = -5.1517596645863317E-01 -q_z.q2[[0,0,0,0,0,0]] = 3.1370642744350274E-01 -q_z.q3[[0,0,0,0,0,0]] = -3.5730511196605608E-01 \ No newline at end of file +q_z = Quaternion{TPS64{d_z}}(0, 0, 0, 0) +q_z.q0[[0, 0, 0, 0, 0, 0]] = 7.1310241755793524E-01 +q_z.q1[[0, 0, 0, 0, 0, 0]] = -5.1517596645863317E-01 +q_z.q2[[0, 0, 0, 0, 0, 0]] = 3.1370642744350274E-01 +q_z.q3[[0, 0, 0, 0, 0, 0]] = -3.5730511196605608E-01 \ No newline at end of file diff --git a/test/bmad_maps/patch_norot.jl b/test/bmad_maps/patch_norot.jl index a98ac3c8..38de2fa4 100644 --- a/test/bmad_maps/patch_norot.jl +++ b/test/bmad_maps/patch_norot.jl @@ -11,242 +11,242 @@ using GTPSA d_z = Descriptor(6, 10) v_z = zeros(TPS64{d_z}, 6) -v_z[1][[0,0,0,0,0,0]] = -1.0000000000000000E+00 -v_z[1][[1,0,0,0,0,0]] = 1.0000000000000000E+00 -v_z[1][[0,1,0,0,0,0]] = 3.0000000000000000E+00 -v_z[1][[0,1,0,0,0,1]] = -3.0000000000000000E+00 -v_z[1][[0,3,0,0,0,0]] = 1.5000000000000000E+00 -v_z[1][[0,1,0,2,0,0]] = 1.5000000000000000E+00 -v_z[1][[0,1,0,0,0,2]] = 3.0000000000000000E+00 -v_z[1][[0,3,0,0,0,1]] = -4.5000000000000000E+00 -v_z[1][[0,1,0,2,0,1]] = -4.5000000000000000E+00 -v_z[1][[0,1,0,0,0,3]] = -3.0000000000000009E+00 -v_z[1][[0,5,0,0,0,0]] = 1.1250000000000000E+00 -v_z[1][[0,3,0,2,0,0]] = 2.2500000000000000E+00 -v_z[1][[0,1,0,4,0,0]] = 1.1250000000000000E+00 -v_z[1][[0,3,0,0,0,2]] = 9.0000000000000000E+00 -v_z[1][[0,1,0,2,0,2]] = 9.0000000000000000E+00 -v_z[1][[0,1,0,0,0,4]] = 3.0000000000000013E+00 -v_z[1][[0,5,0,0,0,1]] = -5.6250000000000000E+00 -v_z[1][[0,3,0,2,0,1]] = -1.1250000000000000E+01 -v_z[1][[0,1,0,4,0,1]] = -5.6250000000000000E+00 -v_z[1][[0,3,0,0,0,3]] = -1.5000000000000000E+01 -v_z[1][[0,1,0,2,0,3]] = -1.5000000000000000E+01 -v_z[1][[0,1,0,0,0,5]] = -3.0000000000000018E+00 -v_z[1][[0,7,0,0,0,0]] = 9.3750000000000000E-01 -v_z[1][[0,5,0,2,0,0]] = 2.8125000000000000E+00 -v_z[1][[0,3,0,4,0,0]] = 2.8125000000000000E+00 -v_z[1][[0,1,0,6,0,0]] = 9.3750000000000000E-01 -v_z[1][[0,5,0,0,0,2]] = 1.6875000000000000E+01 -v_z[1][[0,3,0,2,0,2]] = 3.3750000000000000E+01 -v_z[1][[0,1,0,4,0,2]] = 1.6875000000000000E+01 -v_z[1][[0,3,0,0,0,4]] = 2.2500000000000004E+01 -v_z[1][[0,1,0,2,0,4]] = 2.2500000000000004E+01 -v_z[1][[0,1,0,0,0,6]] = 3.0000000000000044E+00 -v_z[1][[0,7,0,0,0,1]] = -6.5625000000000000E+00 -v_z[1][[0,5,0,2,0,1]] = -1.9687500000000000E+01 -v_z[1][[0,3,0,4,0,1]] = -1.9687500000000000E+01 -v_z[1][[0,1,0,6,0,1]] = -6.5625000000000000E+00 -v_z[1][[0,5,0,0,0,3]] = -3.9375000000000000E+01 -v_z[1][[0,3,0,2,0,3]] = -7.8750000000000000E+01 -v_z[1][[0,1,0,4,0,3]] = -3.9375000000000000E+01 -v_z[1][[0,3,0,0,0,5]] = -3.1500000000000007E+01 -v_z[1][[0,1,0,2,0,5]] = -3.1500000000000007E+01 -v_z[1][[0,1,0,0,0,7]] = -3.0000000000000067E+00 -v_z[1][[0,9,0,0,0,0]] = 8.2031250000000000E-01 -v_z[1][[0,7,0,2,0,0]] = 3.2812500000000000E+00 -v_z[1][[0,5,0,4,0,0]] = 4.9218750000000000E+00 -v_z[1][[0,3,0,6,0,0]] = 3.2812500000000000E+00 -v_z[1][[0,1,0,8,0,0]] = 8.2031250000000000E-01 -v_z[1][[0,7,0,0,0,2]] = 2.6250000000000000E+01 -v_z[1][[0,5,0,2,0,2]] = 7.8750000000000000E+01 -v_z[1][[0,3,0,4,0,2]] = 7.8750000000000000E+01 -v_z[1][[0,1,0,6,0,2]] = 2.6250000000000000E+01 -v_z[1][[0,5,0,0,0,4]] = 7.8750000000000000E+01 -v_z[1][[0,3,0,2,0,4]] = 1.5750000000000000E+02 -v_z[1][[0,1,0,4,0,4]] = 7.8750000000000000E+01 -v_z[1][[0,3,0,0,0,6]] = 4.2000000000000014E+01 -v_z[1][[0,1,0,2,0,6]] = 4.2000000000000014E+01 -v_z[1][[0,1,0,0,0,8]] = 3.0000000000000093E+00 -v_z[1][[0,9,0,0,0,1]] = -7.3828125000000000E+00 -v_z[1][[0,7,0,2,0,1]] = -2.9531250000000000E+01 -v_z[1][[0,5,0,4,0,1]] = -4.4296875000000000E+01 -v_z[1][[0,3,0,6,0,1]] = -2.9531250000000000E+01 -v_z[1][[0,1,0,8,0,1]] = -7.3828125000000000E+00 -v_z[1][[0,7,0,0,0,3]] = -7.8750000000000000E+01 -v_z[1][[0,5,0,2,0,3]] = -2.3625000000000000E+02 -v_z[1][[0,3,0,4,0,3]] = -2.3625000000000000E+02 -v_z[1][[0,1,0,6,0,3]] = -7.8750000000000000E+01 -v_z[1][[0,5,0,0,0,5]] = -1.4175000000000000E+02 -v_z[1][[0,3,0,2,0,5]] = -2.8350000000000000E+02 -v_z[1][[0,1,0,4,0,5]] = -1.4175000000000000E+02 -v_z[1][[0,3,0,0,0,7]] = -5.4000000000000028E+01 -v_z[1][[0,1,0,2,0,7]] = -5.4000000000000028E+01 -v_z[1][[0,1,0,0,0,9]] = -3.0000000000000142E+00 -v_z[2][[0,1,0,0,0,0]] = 1.0000000000000000E+00 -v_z[3][[0,0,0,0,0,0]] = -2.0000000000000000E+00 -v_z[3][[0,0,1,0,0,0]] = 1.0000000000000000E+00 -v_z[3][[0,0,0,1,0,0]] = 3.0000000000000000E+00 -v_z[3][[0,0,0,1,0,1]] = -3.0000000000000000E+00 -v_z[3][[0,2,0,1,0,0]] = 1.5000000000000000E+00 -v_z[3][[0,0,0,3,0,0]] = 1.5000000000000000E+00 -v_z[3][[0,0,0,1,0,2]] = 3.0000000000000000E+00 -v_z[3][[0,2,0,1,0,1]] = -4.5000000000000000E+00 -v_z[3][[0,0,0,3,0,1]] = -4.5000000000000000E+00 -v_z[3][[0,0,0,1,0,3]] = -3.0000000000000009E+00 -v_z[3][[0,4,0,1,0,0]] = 1.1250000000000000E+00 -v_z[3][[0,2,0,3,0,0]] = 2.2500000000000000E+00 -v_z[3][[0,0,0,5,0,0]] = 1.1250000000000000E+00 -v_z[3][[0,2,0,1,0,2]] = 9.0000000000000000E+00 -v_z[3][[0,0,0,3,0,2]] = 9.0000000000000000E+00 -v_z[3][[0,0,0,1,0,4]] = 3.0000000000000013E+00 -v_z[3][[0,4,0,1,0,1]] = -5.6250000000000000E+00 -v_z[3][[0,2,0,3,0,1]] = -1.1250000000000000E+01 -v_z[3][[0,0,0,5,0,1]] = -5.6250000000000000E+00 -v_z[3][[0,2,0,1,0,3]] = -1.5000000000000000E+01 -v_z[3][[0,0,0,3,0,3]] = -1.5000000000000000E+01 -v_z[3][[0,0,0,1,0,5]] = -3.0000000000000018E+00 -v_z[3][[0,6,0,1,0,0]] = 9.3750000000000000E-01 -v_z[3][[0,4,0,3,0,0]] = 2.8125000000000000E+00 -v_z[3][[0,2,0,5,0,0]] = 2.8125000000000000E+00 -v_z[3][[0,0,0,7,0,0]] = 9.3750000000000000E-01 -v_z[3][[0,4,0,1,0,2]] = 1.6875000000000000E+01 -v_z[3][[0,2,0,3,0,2]] = 3.3750000000000000E+01 -v_z[3][[0,0,0,5,0,2]] = 1.6875000000000000E+01 -v_z[3][[0,2,0,1,0,4]] = 2.2500000000000004E+01 -v_z[3][[0,0,0,3,0,4]] = 2.2500000000000004E+01 -v_z[3][[0,0,0,1,0,6]] = 3.0000000000000044E+00 -v_z[3][[0,6,0,1,0,1]] = -6.5625000000000000E+00 -v_z[3][[0,4,0,3,0,1]] = -1.9687500000000000E+01 -v_z[3][[0,2,0,5,0,1]] = -1.9687500000000000E+01 -v_z[3][[0,0,0,7,0,1]] = -6.5625000000000000E+00 -v_z[3][[0,4,0,1,0,3]] = -3.9375000000000000E+01 -v_z[3][[0,2,0,3,0,3]] = -7.8750000000000000E+01 -v_z[3][[0,0,0,5,0,3]] = -3.9375000000000000E+01 -v_z[3][[0,2,0,1,0,5]] = -3.1500000000000007E+01 -v_z[3][[0,0,0,3,0,5]] = -3.1500000000000007E+01 -v_z[3][[0,0,0,1,0,7]] = -3.0000000000000067E+00 -v_z[3][[0,8,0,1,0,0]] = 8.2031250000000000E-01 -v_z[3][[0,6,0,3,0,0]] = 3.2812500000000000E+00 -v_z[3][[0,4,0,5,0,0]] = 4.9218750000000000E+00 -v_z[3][[0,2,0,7,0,0]] = 3.2812500000000000E+00 -v_z[3][[0,0,0,9,0,0]] = 8.2031250000000000E-01 -v_z[3][[0,6,0,1,0,2]] = 2.6250000000000000E+01 -v_z[3][[0,4,0,3,0,2]] = 7.8750000000000000E+01 -v_z[3][[0,2,0,5,0,2]] = 7.8750000000000000E+01 -v_z[3][[0,0,0,7,0,2]] = 2.6250000000000000E+01 -v_z[3][[0,4,0,1,0,4]] = 7.8750000000000000E+01 -v_z[3][[0,2,0,3,0,4]] = 1.5750000000000000E+02 -v_z[3][[0,0,0,5,0,4]] = 7.8750000000000000E+01 -v_z[3][[0,2,0,1,0,6]] = 4.2000000000000014E+01 -v_z[3][[0,0,0,3,0,6]] = 4.2000000000000014E+01 -v_z[3][[0,0,0,1,0,8]] = 3.0000000000000093E+00 -v_z[3][[0,8,0,1,0,1]] = -7.3828125000000000E+00 -v_z[3][[0,6,0,3,0,1]] = -2.9531250000000000E+01 -v_z[3][[0,4,0,5,0,1]] = -4.4296875000000000E+01 -v_z[3][[0,2,0,7,0,1]] = -2.9531250000000000E+01 -v_z[3][[0,0,0,9,0,1]] = -7.3828125000000000E+00 -v_z[3][[0,6,0,1,0,3]] = -7.8750000000000000E+01 -v_z[3][[0,4,0,3,0,3]] = -2.3625000000000000E+02 -v_z[3][[0,2,0,5,0,3]] = -2.3625000000000000E+02 -v_z[3][[0,0,0,7,0,3]] = -7.8750000000000000E+01 -v_z[3][[0,4,0,1,0,5]] = -1.4175000000000000E+02 -v_z[3][[0,2,0,3,0,5]] = -2.8350000000000000E+02 -v_z[3][[0,0,0,5,0,5]] = -1.4175000000000000E+02 -v_z[3][[0,2,0,1,0,7]] = -5.4000000000000028E+01 -v_z[3][[0,0,0,3,0,7]] = -5.4000000000000028E+01 -v_z[3][[0,0,0,1,0,9]] = -3.0000000000000142E+00 -v_z[4][[0,0,0,1,0,0]] = 1.0000000000000000E+00 -v_z[5][[0,0,0,0,0,0]] = 1.1976072558829913E+00 -v_z[5][[0,0,0,0,1,0]] = 1.0000000000000000E+00 -v_z[5][[0,0,0,0,0,1]] = 1.0932242567484903E-02 -v_z[5][[0,2,0,0,0,0]] = -1.4999999999999996E+00 -v_z[5][[0,0,0,2,0,0]] = -1.4999999999999996E+00 -v_z[5][[0,0,0,0,0,2]] = -1.6355655974952997E-02 -v_z[5][[0,2,0,0,0,1]] = 2.9999999999999991E+00 -v_z[5][[0,0,0,2,0,1]] = 2.9999999999999991E+00 -v_z[5][[0,0,0,0,0,3]] = 2.1736546886705583E-02 -v_z[5][[0,4,0,0,0,0]] = -1.1250000000000000E+00 -v_z[5][[0,2,0,2,0,0]] = -2.2500000000000000E+00 -v_z[5][[0,0,0,4,0,0]] = -1.1250000000000000E+00 -v_z[5][[0,2,0,0,0,2]] = -4.4999999999999991E+00 -v_z[5][[0,0,0,2,0,2]] = -4.4999999999999991E+00 -v_z[5][[0,0,0,0,0,4]] = -2.7064515559598549E-02 -v_z[5][[0,4,0,0,0,1]] = 4.4999999999999982E+00 -v_z[5][[0,2,0,2,0,1]] = 8.9999999999999964E+00 -v_z[5][[0,0,0,4,0,1]] = 4.4999999999999982E+00 -v_z[5][[0,2,0,0,0,3]] = 5.9999999999999982E+00 -v_z[5][[0,0,0,2,0,3]] = 5.9999999999999982E+00 -v_z[5][[0,0,0,0,0,5]] = 3.2329299600053645E-02 -v_z[5][[0,6,0,0,0,0]] = -9.3749999999999989E-01 -v_z[5][[0,4,0,2,0,0]] = -2.8125000000000000E+00 -v_z[5][[0,2,0,4,0,0]] = -2.8125000000000000E+00 -v_z[5][[0,0,0,6,0,0]] = -9.3749999999999989E-01 -v_z[5][[0,4,0,0,0,2]] = -1.1249999999999996E+01 -v_z[5][[0,2,0,2,0,2]] = -2.2499999999999993E+01 -v_z[5][[0,0,0,4,0,2]] = -1.1249999999999996E+01 -v_z[5][[0,2,0,0,0,4]] = -7.5000000000000027E+00 -v_z[5][[0,0,0,2,0,4]] = -7.5000000000000027E+00 -v_z[5][[0,0,0,0,0,6]] = -3.7520795879145134E-02 -v_z[5][[0,6,0,0,0,1]] = 5.6249999999999982E+00 -v_z[5][[0,4,0,2,0,1]] = 1.6875000000000007E+01 -v_z[5][[0,2,0,4,0,1]] = 1.6875000000000007E+01 -v_z[5][[0,0,0,6,0,1]] = 5.6249999999999982E+00 -v_z[5][[0,4,0,0,0,3]] = 2.2499999999999996E+01 -v_z[5][[0,2,0,2,0,3]] = 4.4999999999999993E+01 -v_z[5][[0,0,0,4,0,3]] = 2.2499999999999996E+01 -v_z[5][[0,2,0,0,0,5]] = 9.0000000000000000E+00 -v_z[5][[0,0,0,2,0,5]] = 9.0000000000000000E+00 -v_z[5][[0,0,0,0,0,7]] = 4.2629082035072034E-02 -v_z[5][[0,8,0,0,0,0]] = -8.2031249999999989E-01 -v_z[5][[0,6,0,2,0,0]] = -3.2812499999999996E+00 -v_z[5][[0,4,0,4,0,0]] = -4.9218750000000000E+00 -v_z[5][[0,2,0,6,0,0]] = -3.2812499999999996E+00 -v_z[5][[0,0,0,8,0,0]] = -8.2031249999999989E-01 -v_z[5][[0,6,0,0,0,2]] = -1.9687500000000000E+01 -v_z[5][[0,4,0,2,0,2]] = -5.9062500000000000E+01 -v_z[5][[0,2,0,4,0,2]] = -5.9062500000000000E+01 -v_z[5][[0,0,0,6,0,2]] = -1.9687500000000000E+01 -v_z[5][[0,4,0,0,0,4]] = -3.9374999999999993E+01 -v_z[5][[0,2,0,2,0,4]] = -7.8749999999999986E+01 -v_z[5][[0,0,0,4,0,4]] = -3.9374999999999993E+01 -v_z[5][[0,2,0,0,0,6]] = -1.0500000000000007E+01 -v_z[5][[0,0,0,2,0,6]] = -1.0500000000000000E+01 -v_z[5][[0,0,0,0,0,8]] = -4.7644437515125024E-02 -v_z[5][[0,8,0,0,0,1]] = 6.5625000000000009E+00 -v_z[5][[0,6,0,2,0,1]] = 2.6250000000000004E+01 -v_z[5][[0,4,0,4,0,1]] = 3.9374999999999993E+01 -v_z[5][[0,2,0,6,0,1]] = 2.6250000000000004E+01 -v_z[5][[0,0,0,8,0,1]] = 6.5625000000000009E+00 -v_z[5][[0,6,0,0,0,3]] = 5.2499999999999993E+01 -v_z[5][[0,4,0,2,0,3]] = 1.5750000000000000E+02 -v_z[5][[0,2,0,4,0,3]] = 1.5750000000000000E+02 -v_z[5][[0,0,0,6,0,3]] = 5.2499999999999993E+01 -v_z[5][[0,4,0,0,0,5]] = 6.2999999999999979E+01 -v_z[5][[0,2,0,2,0,5]] = 1.2599999999999996E+02 -v_z[5][[0,0,0,4,0,5]] = 6.2999999999999979E+01 -v_z[5][[0,2,0,0,0,7]] = 1.2000000000000004E+01 -v_z[5][[0,0,0,2,0,7]] = 1.2000000000000011E+01 -v_z[5][[0,0,0,0,0,9]] = 5.2557364110342328E-02 -v_z[5][[0,10,0,0,0,0]] = -7.3828124999999989E-01 -v_z[5][[0,8,0,2,0,0]] = -3.6914062500000000E+00 -v_z[5][[0,6,0,4,0,0]] = -7.3828125000000000E+00 -v_z[5][[0,4,0,6,0,0]] = -7.3828125000000000E+00 -v_z[5][[0,2,0,8,0,0]] = -3.6914062500000000E+00 -v_z[5][[0,0,0,10,0,0]] = -7.3828124999999989E-01 -v_z[5][[0,8,0,0,0,2]] = -2.9531250000000000E+01 -v_z[5][[0,6,0,2,0,2]] = -1.1812500000000000E+02 -v_z[5][[0,4,0,4,0,2]] = -1.7718750000000000E+02 -v_z[5][[0,2,0,6,0,2]] = -1.1812500000000000E+02 -v_z[5][[0,0,0,8,0,2]] = -2.9531250000000000E+01 -v_z[5][[0,6,0,0,0,4]] = -1.1812500000000000E+02 -v_z[5][[0,4,0,2,0,4]] = -3.5437500000000000E+02 -v_z[5][[0,2,0,4,0,4]] = -3.5437500000000000E+02 -v_z[5][[0,0,0,6,0,4]] = -1.1812500000000000E+02 -v_z[5][[0,4,0,0,0,6]] = -9.4500000000000000E+01 -v_z[5][[0,2,0,2,0,6]] = -1.8900000000000000E+02 -v_z[5][[0,0,0,4,0,6]] = -9.4500000000000000E+01 -v_z[5][[0,2,0,0,0,8]] = -1.3500000000000011E+01 -v_z[5][[0,0,0,2,0,8]] = -1.3500000000000012E+01 -v_z[5][[0,0,0,0,0,10]] = -5.7358605937493513E-02 -v_z[6][[0,0,0,0,0,1]] = 1.0000000000000000E+00 \ No newline at end of file +v_z[1][[0, 0, 0, 0, 0, 0]] = -1.0000000000000000E+00 +v_z[1][[1, 0, 0, 0, 0, 0]] = 1.0000000000000000E+00 +v_z[1][[0, 1, 0, 0, 0, 0]] = 3.0000000000000000E+00 +v_z[1][[0, 1, 0, 0, 0, 1]] = -3.0000000000000000E+00 +v_z[1][[0, 3, 0, 0, 0, 0]] = 1.5000000000000000E+00 +v_z[1][[0, 1, 0, 2, 0, 0]] = 1.5000000000000000E+00 +v_z[1][[0, 1, 0, 0, 0, 2]] = 3.0000000000000000E+00 +v_z[1][[0, 3, 0, 0, 0, 1]] = -4.5000000000000000E+00 +v_z[1][[0, 1, 0, 2, 0, 1]] = -4.5000000000000000E+00 +v_z[1][[0, 1, 0, 0, 0, 3]] = -3.0000000000000009E+00 +v_z[1][[0, 5, 0, 0, 0, 0]] = 1.1250000000000000E+00 +v_z[1][[0, 3, 0, 2, 0, 0]] = 2.2500000000000000E+00 +v_z[1][[0, 1, 0, 4, 0, 0]] = 1.1250000000000000E+00 +v_z[1][[0, 3, 0, 0, 0, 2]] = 9.0000000000000000E+00 +v_z[1][[0, 1, 0, 2, 0, 2]] = 9.0000000000000000E+00 +v_z[1][[0, 1, 0, 0, 0, 4]] = 3.0000000000000013E+00 +v_z[1][[0, 5, 0, 0, 0, 1]] = -5.6250000000000000E+00 +v_z[1][[0, 3, 0, 2, 0, 1]] = -1.1250000000000000E+01 +v_z[1][[0, 1, 0, 4, 0, 1]] = -5.6250000000000000E+00 +v_z[1][[0, 3, 0, 0, 0, 3]] = -1.5000000000000000E+01 +v_z[1][[0, 1, 0, 2, 0, 3]] = -1.5000000000000000E+01 +v_z[1][[0, 1, 0, 0, 0, 5]] = -3.0000000000000018E+00 +v_z[1][[0, 7, 0, 0, 0, 0]] = 9.3750000000000000E-01 +v_z[1][[0, 5, 0, 2, 0, 0]] = 2.8125000000000000E+00 +v_z[1][[0, 3, 0, 4, 0, 0]] = 2.8125000000000000E+00 +v_z[1][[0, 1, 0, 6, 0, 0]] = 9.3750000000000000E-01 +v_z[1][[0, 5, 0, 0, 0, 2]] = 1.6875000000000000E+01 +v_z[1][[0, 3, 0, 2, 0, 2]] = 3.3750000000000000E+01 +v_z[1][[0, 1, 0, 4, 0, 2]] = 1.6875000000000000E+01 +v_z[1][[0, 3, 0, 0, 0, 4]] = 2.2500000000000004E+01 +v_z[1][[0, 1, 0, 2, 0, 4]] = 2.2500000000000004E+01 +v_z[1][[0, 1, 0, 0, 0, 6]] = 3.0000000000000044E+00 +v_z[1][[0, 7, 0, 0, 0, 1]] = -6.5625000000000000E+00 +v_z[1][[0, 5, 0, 2, 0, 1]] = -1.9687500000000000E+01 +v_z[1][[0, 3, 0, 4, 0, 1]] = -1.9687500000000000E+01 +v_z[1][[0, 1, 0, 6, 0, 1]] = -6.5625000000000000E+00 +v_z[1][[0, 5, 0, 0, 0, 3]] = -3.9375000000000000E+01 +v_z[1][[0, 3, 0, 2, 0, 3]] = -7.8750000000000000E+01 +v_z[1][[0, 1, 0, 4, 0, 3]] = -3.9375000000000000E+01 +v_z[1][[0, 3, 0, 0, 0, 5]] = -3.1500000000000007E+01 +v_z[1][[0, 1, 0, 2, 0, 5]] = -3.1500000000000007E+01 +v_z[1][[0, 1, 0, 0, 0, 7]] = -3.0000000000000067E+00 +v_z[1][[0, 9, 0, 0, 0, 0]] = 8.2031250000000000E-01 +v_z[1][[0, 7, 0, 2, 0, 0]] = 3.2812500000000000E+00 +v_z[1][[0, 5, 0, 4, 0, 0]] = 4.9218750000000000E+00 +v_z[1][[0, 3, 0, 6, 0, 0]] = 3.2812500000000000E+00 +v_z[1][[0, 1, 0, 8, 0, 0]] = 8.2031250000000000E-01 +v_z[1][[0, 7, 0, 0, 0, 2]] = 2.6250000000000000E+01 +v_z[1][[0, 5, 0, 2, 0, 2]] = 7.8750000000000000E+01 +v_z[1][[0, 3, 0, 4, 0, 2]] = 7.8750000000000000E+01 +v_z[1][[0, 1, 0, 6, 0, 2]] = 2.6250000000000000E+01 +v_z[1][[0, 5, 0, 0, 0, 4]] = 7.8750000000000000E+01 +v_z[1][[0, 3, 0, 2, 0, 4]] = 1.5750000000000000E+02 +v_z[1][[0, 1, 0, 4, 0, 4]] = 7.8750000000000000E+01 +v_z[1][[0, 3, 0, 0, 0, 6]] = 4.2000000000000014E+01 +v_z[1][[0, 1, 0, 2, 0, 6]] = 4.2000000000000014E+01 +v_z[1][[0, 1, 0, 0, 0, 8]] = 3.0000000000000093E+00 +v_z[1][[0, 9, 0, 0, 0, 1]] = -7.3828125000000000E+00 +v_z[1][[0, 7, 0, 2, 0, 1]] = -2.9531250000000000E+01 +v_z[1][[0, 5, 0, 4, 0, 1]] = -4.4296875000000000E+01 +v_z[1][[0, 3, 0, 6, 0, 1]] = -2.9531250000000000E+01 +v_z[1][[0, 1, 0, 8, 0, 1]] = -7.3828125000000000E+00 +v_z[1][[0, 7, 0, 0, 0, 3]] = -7.8750000000000000E+01 +v_z[1][[0, 5, 0, 2, 0, 3]] = -2.3625000000000000E+02 +v_z[1][[0, 3, 0, 4, 0, 3]] = -2.3625000000000000E+02 +v_z[1][[0, 1, 0, 6, 0, 3]] = -7.8750000000000000E+01 +v_z[1][[0, 5, 0, 0, 0, 5]] = -1.4175000000000000E+02 +v_z[1][[0, 3, 0, 2, 0, 5]] = -2.8350000000000000E+02 +v_z[1][[0, 1, 0, 4, 0, 5]] = -1.4175000000000000E+02 +v_z[1][[0, 3, 0, 0, 0, 7]] = -5.4000000000000028E+01 +v_z[1][[0, 1, 0, 2, 0, 7]] = -5.4000000000000028E+01 +v_z[1][[0, 1, 0, 0, 0, 9]] = -3.0000000000000142E+00 +v_z[2][[0, 1, 0, 0, 0, 0]] = 1.0000000000000000E+00 +v_z[3][[0, 0, 0, 0, 0, 0]] = -2.0000000000000000E+00 +v_z[3][[0, 0, 1, 0, 0, 0]] = 1.0000000000000000E+00 +v_z[3][[0, 0, 0, 1, 0, 0]] = 3.0000000000000000E+00 +v_z[3][[0, 0, 0, 1, 0, 1]] = -3.0000000000000000E+00 +v_z[3][[0, 2, 0, 1, 0, 0]] = 1.5000000000000000E+00 +v_z[3][[0, 0, 0, 3, 0, 0]] = 1.5000000000000000E+00 +v_z[3][[0, 0, 0, 1, 0, 2]] = 3.0000000000000000E+00 +v_z[3][[0, 2, 0, 1, 0, 1]] = -4.5000000000000000E+00 +v_z[3][[0, 0, 0, 3, 0, 1]] = -4.5000000000000000E+00 +v_z[3][[0, 0, 0, 1, 0, 3]] = -3.0000000000000009E+00 +v_z[3][[0, 4, 0, 1, 0, 0]] = 1.1250000000000000E+00 +v_z[3][[0, 2, 0, 3, 0, 0]] = 2.2500000000000000E+00 +v_z[3][[0, 0, 0, 5, 0, 0]] = 1.1250000000000000E+00 +v_z[3][[0, 2, 0, 1, 0, 2]] = 9.0000000000000000E+00 +v_z[3][[0, 0, 0, 3, 0, 2]] = 9.0000000000000000E+00 +v_z[3][[0, 0, 0, 1, 0, 4]] = 3.0000000000000013E+00 +v_z[3][[0, 4, 0, 1, 0, 1]] = -5.6250000000000000E+00 +v_z[3][[0, 2, 0, 3, 0, 1]] = -1.1250000000000000E+01 +v_z[3][[0, 0, 0, 5, 0, 1]] = -5.6250000000000000E+00 +v_z[3][[0, 2, 0, 1, 0, 3]] = -1.5000000000000000E+01 +v_z[3][[0, 0, 0, 3, 0, 3]] = -1.5000000000000000E+01 +v_z[3][[0, 0, 0, 1, 0, 5]] = -3.0000000000000018E+00 +v_z[3][[0, 6, 0, 1, 0, 0]] = 9.3750000000000000E-01 +v_z[3][[0, 4, 0, 3, 0, 0]] = 2.8125000000000000E+00 +v_z[3][[0, 2, 0, 5, 0, 0]] = 2.8125000000000000E+00 +v_z[3][[0, 0, 0, 7, 0, 0]] = 9.3750000000000000E-01 +v_z[3][[0, 4, 0, 1, 0, 2]] = 1.6875000000000000E+01 +v_z[3][[0, 2, 0, 3, 0, 2]] = 3.3750000000000000E+01 +v_z[3][[0, 0, 0, 5, 0, 2]] = 1.6875000000000000E+01 +v_z[3][[0, 2, 0, 1, 0, 4]] = 2.2500000000000004E+01 +v_z[3][[0, 0, 0, 3, 0, 4]] = 2.2500000000000004E+01 +v_z[3][[0, 0, 0, 1, 0, 6]] = 3.0000000000000044E+00 +v_z[3][[0, 6, 0, 1, 0, 1]] = -6.5625000000000000E+00 +v_z[3][[0, 4, 0, 3, 0, 1]] = -1.9687500000000000E+01 +v_z[3][[0, 2, 0, 5, 0, 1]] = -1.9687500000000000E+01 +v_z[3][[0, 0, 0, 7, 0, 1]] = -6.5625000000000000E+00 +v_z[3][[0, 4, 0, 1, 0, 3]] = -3.9375000000000000E+01 +v_z[3][[0, 2, 0, 3, 0, 3]] = -7.8750000000000000E+01 +v_z[3][[0, 0, 0, 5, 0, 3]] = -3.9375000000000000E+01 +v_z[3][[0, 2, 0, 1, 0, 5]] = -3.1500000000000007E+01 +v_z[3][[0, 0, 0, 3, 0, 5]] = -3.1500000000000007E+01 +v_z[3][[0, 0, 0, 1, 0, 7]] = -3.0000000000000067E+00 +v_z[3][[0, 8, 0, 1, 0, 0]] = 8.2031250000000000E-01 +v_z[3][[0, 6, 0, 3, 0, 0]] = 3.2812500000000000E+00 +v_z[3][[0, 4, 0, 5, 0, 0]] = 4.9218750000000000E+00 +v_z[3][[0, 2, 0, 7, 0, 0]] = 3.2812500000000000E+00 +v_z[3][[0, 0, 0, 9, 0, 0]] = 8.2031250000000000E-01 +v_z[3][[0, 6, 0, 1, 0, 2]] = 2.6250000000000000E+01 +v_z[3][[0, 4, 0, 3, 0, 2]] = 7.8750000000000000E+01 +v_z[3][[0, 2, 0, 5, 0, 2]] = 7.8750000000000000E+01 +v_z[3][[0, 0, 0, 7, 0, 2]] = 2.6250000000000000E+01 +v_z[3][[0, 4, 0, 1, 0, 4]] = 7.8750000000000000E+01 +v_z[3][[0, 2, 0, 3, 0, 4]] = 1.5750000000000000E+02 +v_z[3][[0, 0, 0, 5, 0, 4]] = 7.8750000000000000E+01 +v_z[3][[0, 2, 0, 1, 0, 6]] = 4.2000000000000014E+01 +v_z[3][[0, 0, 0, 3, 0, 6]] = 4.2000000000000014E+01 +v_z[3][[0, 0, 0, 1, 0, 8]] = 3.0000000000000093E+00 +v_z[3][[0, 8, 0, 1, 0, 1]] = -7.3828125000000000E+00 +v_z[3][[0, 6, 0, 3, 0, 1]] = -2.9531250000000000E+01 +v_z[3][[0, 4, 0, 5, 0, 1]] = -4.4296875000000000E+01 +v_z[3][[0, 2, 0, 7, 0, 1]] = -2.9531250000000000E+01 +v_z[3][[0, 0, 0, 9, 0, 1]] = -7.3828125000000000E+00 +v_z[3][[0, 6, 0, 1, 0, 3]] = -7.8750000000000000E+01 +v_z[3][[0, 4, 0, 3, 0, 3]] = -2.3625000000000000E+02 +v_z[3][[0, 2, 0, 5, 0, 3]] = -2.3625000000000000E+02 +v_z[3][[0, 0, 0, 7, 0, 3]] = -7.8750000000000000E+01 +v_z[3][[0, 4, 0, 1, 0, 5]] = -1.4175000000000000E+02 +v_z[3][[0, 2, 0, 3, 0, 5]] = -2.8350000000000000E+02 +v_z[3][[0, 0, 0, 5, 0, 5]] = -1.4175000000000000E+02 +v_z[3][[0, 2, 0, 1, 0, 7]] = -5.4000000000000028E+01 +v_z[3][[0, 0, 0, 3, 0, 7]] = -5.4000000000000028E+01 +v_z[3][[0, 0, 0, 1, 0, 9]] = -3.0000000000000142E+00 +v_z[4][[0, 0, 0, 1, 0, 0]] = 1.0000000000000000E+00 +v_z[5][[0, 0, 0, 0, 0, 0]] = 1.1976072558829913E+00 +v_z[5][[0, 0, 0, 0, 1, 0]] = 1.0000000000000000E+00 +v_z[5][[0, 0, 0, 0, 0, 1]] = 1.0932242567484903E-02 +v_z[5][[0, 2, 0, 0, 0, 0]] = -1.4999999999999996E+00 +v_z[5][[0, 0, 0, 2, 0, 0]] = -1.4999999999999996E+00 +v_z[5][[0, 0, 0, 0, 0, 2]] = -1.6355655974952997E-02 +v_z[5][[0, 2, 0, 0, 0, 1]] = 2.9999999999999991E+00 +v_z[5][[0, 0, 0, 2, 0, 1]] = 2.9999999999999991E+00 +v_z[5][[0, 0, 0, 0, 0, 3]] = 2.1736546886705583E-02 +v_z[5][[0, 4, 0, 0, 0, 0]] = -1.1250000000000000E+00 +v_z[5][[0, 2, 0, 2, 0, 0]] = -2.2500000000000000E+00 +v_z[5][[0, 0, 0, 4, 0, 0]] = -1.1250000000000000E+00 +v_z[5][[0, 2, 0, 0, 0, 2]] = -4.4999999999999991E+00 +v_z[5][[0, 0, 0, 2, 0, 2]] = -4.4999999999999991E+00 +v_z[5][[0, 0, 0, 0, 0, 4]] = -2.7064515559598549E-02 +v_z[5][[0, 4, 0, 0, 0, 1]] = 4.4999999999999982E+00 +v_z[5][[0, 2, 0, 2, 0, 1]] = 8.9999999999999964E+00 +v_z[5][[0, 0, 0, 4, 0, 1]] = 4.4999999999999982E+00 +v_z[5][[0, 2, 0, 0, 0, 3]] = 5.9999999999999982E+00 +v_z[5][[0, 0, 0, 2, 0, 3]] = 5.9999999999999982E+00 +v_z[5][[0, 0, 0, 0, 0, 5]] = 3.2329299600053645E-02 +v_z[5][[0, 6, 0, 0, 0, 0]] = -9.3749999999999989E-01 +v_z[5][[0, 4, 0, 2, 0, 0]] = -2.8125000000000000E+00 +v_z[5][[0, 2, 0, 4, 0, 0]] = -2.8125000000000000E+00 +v_z[5][[0, 0, 0, 6, 0, 0]] = -9.3749999999999989E-01 +v_z[5][[0, 4, 0, 0, 0, 2]] = -1.1249999999999996E+01 +v_z[5][[0, 2, 0, 2, 0, 2]] = -2.2499999999999993E+01 +v_z[5][[0, 0, 0, 4, 0, 2]] = -1.1249999999999996E+01 +v_z[5][[0, 2, 0, 0, 0, 4]] = -7.5000000000000027E+00 +v_z[5][[0, 0, 0, 2, 0, 4]] = -7.5000000000000027E+00 +v_z[5][[0, 0, 0, 0, 0, 6]] = -3.7520795879145134E-02 +v_z[5][[0, 6, 0, 0, 0, 1]] = 5.6249999999999982E+00 +v_z[5][[0, 4, 0, 2, 0, 1]] = 1.6875000000000007E+01 +v_z[5][[0, 2, 0, 4, 0, 1]] = 1.6875000000000007E+01 +v_z[5][[0, 0, 0, 6, 0, 1]] = 5.6249999999999982E+00 +v_z[5][[0, 4, 0, 0, 0, 3]] = 2.2499999999999996E+01 +v_z[5][[0, 2, 0, 2, 0, 3]] = 4.4999999999999993E+01 +v_z[5][[0, 0, 0, 4, 0, 3]] = 2.2499999999999996E+01 +v_z[5][[0, 2, 0, 0, 0, 5]] = 9.0000000000000000E+00 +v_z[5][[0, 0, 0, 2, 0, 5]] = 9.0000000000000000E+00 +v_z[5][[0, 0, 0, 0, 0, 7]] = 4.2629082035072034E-02 +v_z[5][[0, 8, 0, 0, 0, 0]] = -8.2031249999999989E-01 +v_z[5][[0, 6, 0, 2, 0, 0]] = -3.2812499999999996E+00 +v_z[5][[0, 4, 0, 4, 0, 0]] = -4.9218750000000000E+00 +v_z[5][[0, 2, 0, 6, 0, 0]] = -3.2812499999999996E+00 +v_z[5][[0, 0, 0, 8, 0, 0]] = -8.2031249999999989E-01 +v_z[5][[0, 6, 0, 0, 0, 2]] = -1.9687500000000000E+01 +v_z[5][[0, 4, 0, 2, 0, 2]] = -5.9062500000000000E+01 +v_z[5][[0, 2, 0, 4, 0, 2]] = -5.9062500000000000E+01 +v_z[5][[0, 0, 0, 6, 0, 2]] = -1.9687500000000000E+01 +v_z[5][[0, 4, 0, 0, 0, 4]] = -3.9374999999999993E+01 +v_z[5][[0, 2, 0, 2, 0, 4]] = -7.8749999999999986E+01 +v_z[5][[0, 0, 0, 4, 0, 4]] = -3.9374999999999993E+01 +v_z[5][[0, 2, 0, 0, 0, 6]] = -1.0500000000000007E+01 +v_z[5][[0, 0, 0, 2, 0, 6]] = -1.0500000000000000E+01 +v_z[5][[0, 0, 0, 0, 0, 8]] = -4.7644437515125024E-02 +v_z[5][[0, 8, 0, 0, 0, 1]] = 6.5625000000000009E+00 +v_z[5][[0, 6, 0, 2, 0, 1]] = 2.6250000000000004E+01 +v_z[5][[0, 4, 0, 4, 0, 1]] = 3.9374999999999993E+01 +v_z[5][[0, 2, 0, 6, 0, 1]] = 2.6250000000000004E+01 +v_z[5][[0, 0, 0, 8, 0, 1]] = 6.5625000000000009E+00 +v_z[5][[0, 6, 0, 0, 0, 3]] = 5.2499999999999993E+01 +v_z[5][[0, 4, 0, 2, 0, 3]] = 1.5750000000000000E+02 +v_z[5][[0, 2, 0, 4, 0, 3]] = 1.5750000000000000E+02 +v_z[5][[0, 0, 0, 6, 0, 3]] = 5.2499999999999993E+01 +v_z[5][[0, 4, 0, 0, 0, 5]] = 6.2999999999999979E+01 +v_z[5][[0, 2, 0, 2, 0, 5]] = 1.2599999999999996E+02 +v_z[5][[0, 0, 0, 4, 0, 5]] = 6.2999999999999979E+01 +v_z[5][[0, 2, 0, 0, 0, 7]] = 1.2000000000000004E+01 +v_z[5][[0, 0, 0, 2, 0, 7]] = 1.2000000000000011E+01 +v_z[5][[0, 0, 0, 0, 0, 9]] = 5.2557364110342328E-02 +v_z[5][[0, 10, 0, 0, 0, 0]] = -7.3828124999999989E-01 +v_z[5][[0, 8, 0, 2, 0, 0]] = -3.6914062500000000E+00 +v_z[5][[0, 6, 0, 4, 0, 0]] = -7.3828125000000000E+00 +v_z[5][[0, 4, 0, 6, 0, 0]] = -7.3828125000000000E+00 +v_z[5][[0, 2, 0, 8, 0, 0]] = -3.6914062500000000E+00 +v_z[5][[0, 0, 0, 10, 0, 0]] = -7.3828124999999989E-01 +v_z[5][[0, 8, 0, 0, 0, 2]] = -2.9531250000000000E+01 +v_z[5][[0, 6, 0, 2, 0, 2]] = -1.1812500000000000E+02 +v_z[5][[0, 4, 0, 4, 0, 2]] = -1.7718750000000000E+02 +v_z[5][[0, 2, 0, 6, 0, 2]] = -1.1812500000000000E+02 +v_z[5][[0, 0, 0, 8, 0, 2]] = -2.9531250000000000E+01 +v_z[5][[0, 6, 0, 0, 0, 4]] = -1.1812500000000000E+02 +v_z[5][[0, 4, 0, 2, 0, 4]] = -3.5437500000000000E+02 +v_z[5][[0, 2, 0, 4, 0, 4]] = -3.5437500000000000E+02 +v_z[5][[0, 0, 0, 6, 0, 4]] = -1.1812500000000000E+02 +v_z[5][[0, 4, 0, 0, 0, 6]] = -9.4500000000000000E+01 +v_z[5][[0, 2, 0, 2, 0, 6]] = -1.8900000000000000E+02 +v_z[5][[0, 0, 0, 4, 0, 6]] = -9.4500000000000000E+01 +v_z[5][[0, 2, 0, 0, 0, 8]] = -1.3500000000000011E+01 +v_z[5][[0, 0, 0, 2, 0, 8]] = -1.3500000000000012E+01 +v_z[5][[0, 0, 0, 0, 0, 10]] = -5.7358605937493513E-02 +v_z[6][[0, 0, 0, 0, 0, 1]] = 1.0000000000000000E+00 \ No newline at end of file diff --git a/test/lattices/esr.jl b/test/lattices/esr.jl index 7bc57e9d..2e0b4337 100644 --- a/test/lattices/esr.jl +++ b/test/lattices/esr.jl @@ -1,5543 +1,5544 @@ using Beamlines @eles begin -IP6__1 = Marker() -D000001__1 = Drift( L = 5.3) -Q1ER_6 = Quadrupole( L = 1.8, Kn1 = -0.2291420342) -D000002__1 = Drift( L = 0.5) -Q2ER_6 = Quadrupole( L = 1.4, Kn1 = 0.2267785688) -D000002__2 = Drift( L = 0.5) -D2ER_6 = SBend( L = 5.50007539103, g = -3.2977170394029E-3, e1 = -9.0688461675E-3, e2 = -9.0688461675E-3) -D000003__1 = Drift( L = 22.7) -Q3ER_6 = Quadrupole( L = 0.6, Kn1 = 0.2223634541) -D000004 = Drift( L = 3.530758) -Q4ER_6 = Quadrupole( L = 0.6, Kn1 = -0.26505565,) -D000005__1 = Drift( L = 4.6) -Q5ER_6 = Quadrupole( L = 1.2, Kn1 = -0.03480279635) -D000006__1 = Drift( L = 0.4) -D3ER_6 = SBend( L = 3.8000045358949, g = -1.4085135130897E-3, e1 = -2.676178869305E-3, e2 = -2.676178869305E-3) -D000006__2 = Drift( L = 0.4) -Q6ER_6 = Quadrupole( L = 1.2, Kn1 = 0.1490047164,) -D000005__2 = Drift( L = 4.6) -Q7ER_6 = Quadrupole( L = 1.2, Kn1 = -0.1838758976,) -D000005__3 = Drift( L = 4.6) -Q9ER_6 = Quadrupole( L = 1.2, Kn1 = 0.06052528741,) -D000007__1 = Drift( L = 0.3) -RF_CRAB__1 = Drift( L = 4) -D000007__2 = Drift( L = 0.3) -Q10ER_6 = Quadrupole( L = 1.2, Kn1 = 0.1362226534) -D000005__4 = Drift( L = 4.6) -Q11ER_6 = Quadrupole( L = 1.2, Kn1 = -0.1612034901) -D000006__3 = Drift( L = 0.4) -D5ER_6__1 = SBend( L = 3.8000383782291, g = 4.097007606343E-3, e1 = 7.78439307E-3, e2 = 7.78439307E-3) -D000006__4 = Drift( L = 0.4) -Q12ER_6 = Quadrupole( L = 1.2, Kn1 = 0.1776428377) -D000006__5 = Drift( L = 0.4) -D5ER_6__2 = SBend( L = 3.8000383782291, g = 4.097007606343E-3, e1 = 7.78439307E-3, e2 = 7.78439307E-3) -D000006__6 = Drift( L = 0.4) -Q13ER_6 = Quadrupole( L = 1.2, Kn1 = 0.108262799,) -D000006__7 = Drift( L = 0.4) -D5ER_6__3 = SBend( L = 3.8000383782291, g = 4.097007606343E-3, e1 = 7.78439307E-3, e2 = 7.78439307E-3) -D000006__8 = Drift( L = 0.4) -Q14ER_6 = Quadrupole( L = 1.2, Kn1 = -0.1762142779,) -D000006__9 = Drift( L = 0.4) -D5ER_6__4 = SBend( L = 3.8000383782291, g = 4.097007606343E-3, e1 = 7.78439307E-3, e2 = 7.78439307E-3) -D000006__10 = Drift( L = 0.4) -Q15ER_6 = Quadrupole( L = 1.2, Kn1 = 0.2658297117,) -MLRR_6 = Marker() -D000008__1 = Drift( L = 0.85) -MROT4__1 = Marker() -HSOL20_6__1 = Solenoid( L = 5.5, Ksol = 0.142634259959) -D000008__2 = Drift( L = 0.85) -HQLS7_6 = Quadrupole( L = 0.9819319, Kn1 = 0.4980048) -D000009__1 = Drift( L = 0.25) -HQLS6_6 = Quadrupole( L = 1.469939, Kn1 = -0.4983425) -D000009__2 = Drift( L = 0.25) -HQLS5_6 = Quadrupole( L = 1.530059, Kn1 = 0.3253198) -D000009__3 = Drift( L = 0.25) -HQLS4_6 = Quadrupole( L = 0.5187944, Kn1 = 0.498934) -D000009__4 = Drift( L = 0.25) -HQLS3_6 = Quadrupole( L = 1.530059, Kn1 = 0.3253198) -D000009__5 = Drift( L = 0.25) -HQLS2_6 = Quadrupole( L = 1.469939, Kn1 = -0.4983425) -D000009__6 = Drift( L = 0.25) -HQLS1_6 = Quadrupole( L = 0.9819319, Kn1 = 0.4980048) -D000008__3 = Drift( L = 0.85) -HSOL20_6__2 = Solenoid( L = 5.5, Ksol = 0.142634259959) -MROT3__1 = Marker() -D000008__4 = Drift( L = 0.85) -HQFF6_6 = Quadrupole( L = 0.5, Kn1 = 0.05714467433,) -MFF_6 = Marker() -D000010__1 = Drift( L = 0.753912) -DB23_6__1 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000010__2 = Drift( L = 0.753912) -HQFF5_6 = Quadrupole( L = 0.6, Kn1 = 0.2430267659,) -D000010__3 = Drift( L = 0.753912) -DB23_6__2 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000010__4 = Drift( L = 0.753912) -QFF4_6 = Quadrupole( L = 1, Kn1 = -0.1976684766,) -D000010__5 = Drift( L = 0.753912) -DB23_6__3 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000010__6 = Drift( L = 0.753912) -QFF3_6 = Quadrupole( L = 1.2, Kn1 = 0.274784227) -D000010__7 = Drift( L = 0.753912) -DB23_6__4 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000010__8 = Drift( L = 0.753912) -QFF2_6 = Quadrupole( L = 1.2, Kn1 = -0.1372520109) -D000010__9 = Drift( L = 0.753912) -DB23_6__5 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000010__10 = Drift( L = 0.753912) -QFF1_6 = Quadrupole( L = 1.6, Kn1 = 0.2242944837,) -D000008__5 = Drift( L = 0.85) -MROT2__1 = Marker() -HSOL5_6__1 = Solenoid( L = 1.8) -D000008__6 = Drift( L = 0.85) -HQSS5_6 = Quadrupole( L = 0.6861532, Kn1 = -0.1709619063,) -D000009__7 = Drift( L = 0.25) -HQSS4_6 = Quadrupole( L = 1.020723, Kn1 = -0.3178330623,) -D000009__8 = Drift( L = 0.25) -HQSS3_6 = Quadrupole( L = 1.634532, Kn1 = 0.1897683702,) -D000009__9 = Drift( L = 0.25) -HQSS2_6 = Quadrupole( L = 0.9550568, Kn1 = 0.3512480915) -D000009__10 = Drift( L = 0.25) -HQSS1_6 = Quadrupole( L = 0.6480402, Kn1 = -0.4953496086,) -D000008__7 = Drift( L = 0.85) -HSOL5_6__2 = Solenoid( L = 1.8) -MROT1__1 = Marker() -D000008__8 = Drift( L = 0.85) -HQD_6A = Quadrupole( L = 0.5, Kn1 = -0.06747722682,) -D000011__1 = Drift( L = 1.1) -HQF_6A = Quadrupole( L = 0.5, Kn1 = 0.3359722588) -D000012__1 = Drift( L = 0.1559) -SF1_7__1 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__1 = Drift( L = 0.1042) -SF1_7__2 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__1 = Drift( L = 0.50037) -EDGE1_002__1 = Multipole( Kn1L = -5.17873518337E-5) -D01A_002__1 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) -EDGE2_002__1 = Multipole( Kn1L = 4.78133619569E-6) -D000015__1 = Drift( L = 0.1193) -EDGE3_002__1 = Multipole( Kn1L = -4.78133619569E-6) -D23_002__1 = SBend( L = 0.611400148943, g = 3.9548203741204E-3) -EDGE3_002__2 = Multipole( Kn1L = -4.78133619569E-6) -D000015__2 = Drift( L = 0.1193) -EDGE2_002__2 = Multipole( Kn1L = 4.78133619569E-6) -D01B_002__1 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) -EDGE1_002__2 = Multipole( Kn1L = -5.17873518337E-5) -D000016__1 = Drift( L = 0.374508) -CV01_7 = VKicker( L = 0.2) -D000017__1 = Drift( L = 0.0638) -HQD_6B = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__2 = Drift( L = 0.1559) -SD1_7__1 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__2 = Drift( L = 0.1042) -SD1_7__2 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__2 = Drift( L = 0.50037) -EDGE1_002__3 = Multipole( Kn1L = -5.17873518337E-5) -D01A_002__2 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) -EDGE2_002__3 = Multipole( Kn1L = 4.78133619569E-6) -D000015__3 = Drift( L = 0.1193) -EDGE3_002__3 = Multipole( Kn1L = -4.78133619569E-6) -D23_002__2 = SBend( L = 0.611400148943, g = 3.9548203741204E-3) -EDGE3_002__4 = Multipole( Kn1L = -4.78133619569E-6) -D000015__4 = Drift( L = 0.1193) -EDGE2_002__4 = Multipole( Kn1L = 4.78133619569E-6) -D01B_002__2 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) -EDGE1_002__4 = Multipole( Kn1L = -5.17873518337E-5) -D000016__2 = Drift( L = 0.374508) -CH01_7 = HKicker( L = 0.2) -D000017__2 = Drift( L = 0.0638) -HQF_6B = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__3 = Drift( L = 0.1559) -SF2_7__1 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__3 = Drift( L = 0.1042) -SF2_7__2 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__3 = Drift( L = 0.50037) -EDGE1_002__5 = Multipole( Kn1L = -5.17873518337E-5) -D01A_002__3 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) -EDGE2_002__5 = Multipole( Kn1L = 4.78133619569E-6) -D000015__5 = Drift( L = 0.1193) -EDGE3_002__5 = Multipole( Kn1L = -4.78133619569E-6) -D23_002__3 = SBend( L = 0.611400148943, g = 3.9548203741204E-3) -EDGE3_002__6 = Multipole( Kn1L = -4.78133619569E-6) -D000015__6 = Drift( L = 0.1193) -EDGE2_002__6 = Multipole( Kn1L = 4.78133619569E-6) -D01B_002__3 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) -EDGE1_002__6 = Multipole( Kn1L = -5.17873518337E-5) -D000016__3 = Drift( L = 0.374508) -CV02_7 = VKicker( L = 0.2) -D000017__3 = Drift( L = 0.0638) -HQD_6C = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__4 = Drift( L = 0.1559) -SD2_7__1 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__4 = Drift( L = 0.1042) -SD2_7__2 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__4 = Drift( L = 0.50037) -EDGE1_002__7 = Multipole( Kn1L = -5.17873518337E-5) -D01A_002__4 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) -EDGE2_002__7 = Multipole( Kn1L = 4.78133619569E-6) -D000015__7 = Drift( L = 0.1193) -EDGE3_002__7 = Multipole( Kn1L = -4.78133619569E-6) -D23_002__4 = SBend( L = 0.611400148943, g = 3.9548203741204E-3) -EDGE3_002__8 = Multipole( Kn1L = -4.78133619569E-6) -D000015__8 = Drift( L = 0.1193) -EDGE2_002__8 = Multipole( Kn1L = 4.78133619569E-6) -D01B_002__4 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) -EDGE1_002__8 = Multipole( Kn1L = -5.17873518337E-5) -D000016__4 = Drift( L = 0.374508) -CH02_7 = HKicker( L = 0.2) -D000017__4 = Drift( L = 0.0638) -HQF_6C = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__5 = Drift( L = 0.1559) -SF1_7__3 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__5 = Drift( L = 0.1042) -SF1_7__4 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__5 = Drift( L = 0.50037) -EDGE1_000__1 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__1 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__1 = Multipole( Kn1L = 4.07894736378E-6) -D000018__1 = Drift( L = 0.1193) -EDGE3_000__1 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__1 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__2 = Multipole( Kn1L = -4.07894736378E-6) -D000018__2 = Drift( L = 0.1193) -EDGE2_000__2 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__1 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__2 = Multipole( Kn1L = -4.4179123956E-5) -D000016__5 = Drift( L = 0.374508) -CV03_7 = VKicker( L = 0.2) -D000017__5 = Drift( L = 0.0638) -HQD_7__1 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__6 = Drift( L = 0.1559) -SD1_7__3 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__6 = Drift( L = 0.1042) -SD1_7__4 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__6 = Drift( L = 0.50037) -EDGE1_000__3 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__2 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__3 = Multipole( Kn1L = 4.07894736378E-6) -D000018__3 = Drift( L = 0.1193) -EDGE3_000__3 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__2 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__4 = Multipole( Kn1L = -4.07894736378E-6) -D000018__4 = Drift( L = 0.1193) -EDGE2_000__4 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__2 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__4 = Multipole( Kn1L = -4.4179123956E-5) -D000016__6 = Drift( L = 0.374508) -CH03_7 = HKicker( L = 0.2) -D000017__6 = Drift( L = 0.0638) -HQF_7__1 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__7 = Drift( L = 0.1559) -SF2_7__3 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__7 = Drift( L = 0.1042) -SF2_7__4 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__7 = Drift( L = 0.50037) -EDGE1_000__5 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__3 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__5 = Multipole( Kn1L = 4.07894736378E-6) -D000018__5 = Drift( L = 0.1193) -EDGE3_000__5 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__3 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__6 = Multipole( Kn1L = -4.07894736378E-6) -D000018__6 = Drift( L = 0.1193) -EDGE2_000__6 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__3 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__6 = Multipole( Kn1L = -4.4179123956E-5) -D000016__7 = Drift( L = 0.374508) -CV04_7 = VKicker( L = 0.2) -D000017__7 = Drift( L = 0.0638) -HQD_7__2 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__8 = Drift( L = 0.1559) -SD2_7__3 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__8 = Drift( L = 0.1042) -SD2_7__4 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__8 = Drift( L = 0.50037) -EDGE1_000__7 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__4 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__7 = Multipole( Kn1L = 4.07894736378E-6) -D000018__7 = Drift( L = 0.1193) -EDGE3_000__7 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__4 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__8 = Multipole( Kn1L = -4.07894736378E-6) -D000018__8 = Drift( L = 0.1193) -EDGE2_000__8 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__4 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__8 = Multipole( Kn1L = -4.4179123956E-5) -D000016__8 = Drift( L = 0.374508) -CH04_7 = HKicker( L = 0.2) -D000017__8 = Drift( L = 0.0638) -HQF_7__2 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__9 = Drift( L = 0.1559) -SF1_7__5 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__9 = Drift( L = 0.1042) -SF1_7__6 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__9 = Drift( L = 0.50037) -EDGE1_000__9 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__5 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__9 = Multipole( Kn1L = 4.07894736378E-6) -D000018__9 = Drift( L = 0.1193) -EDGE3_000__9 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__5 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__10 = Multipole( Kn1L = -4.07894736378E-6) -D000018__10 = Drift( L = 0.1193) -EDGE2_000__10 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__5 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__10 = Multipole( Kn1L = -4.4179123956E-5) -D000016__9 = Drift( L = 0.374508) -CV05_7 = VKicker( L = 0.2) -D000017__9 = Drift( L = 0.0638) -HQD_7__3 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__10 = Drift( L = 0.1559) -SD1_7__5 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__10 = Drift( L = 0.1042) -SD1_7__6 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__10 = Drift( L = 0.50037) -EDGE1_000__11 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__6 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__11 = Multipole( Kn1L = 4.07894736378E-6) -D000018__11 = Drift( L = 0.1193) -EDGE3_000__11 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__6 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__12 = Multipole( Kn1L = -4.07894736378E-6) -D000018__12 = Drift( L = 0.1193) -EDGE2_000__12 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__6 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__12 = Multipole( Kn1L = -4.4179123956E-5) -D000016__10 = Drift( L = 0.374508) -CH05_7 = HKicker( L = 0.2) -D000017__10 = Drift( L = 0.0638) -HQF_7__3 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__11 = Drift( L = 0.1559) -SF2_7__5 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__11 = Drift( L = 0.1042) -SF2_7__6 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__11 = Drift( L = 0.50037) -EDGE1_000__13 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__7 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__13 = Multipole( Kn1L = 4.07894736378E-6) -D000018__13 = Drift( L = 0.1193) -EDGE3_000__13 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__7 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__14 = Multipole( Kn1L = -4.07894736378E-6) -D000018__14 = Drift( L = 0.1193) -EDGE2_000__14 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__7 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__14 = Multipole( Kn1L = -4.4179123956E-5) -D000016__11 = Drift( L = 0.374508) -CV06_7 = VKicker( L = 0.2) -D000017__11 = Drift( L = 0.0638) -HQD_7__4 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__12 = Drift( L = 0.1559) -SD2_7__5 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__12 = Drift( L = 0.1042) -SD2_7__6 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__12 = Drift( L = 0.50037) -EDGE1_000__15 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__8 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__15 = Multipole( Kn1L = 4.07894736378E-6) -D000018__15 = Drift( L = 0.1193) -EDGE3_000__15 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__8 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__16 = Multipole( Kn1L = -4.07894736378E-6) -D000018__16 = Drift( L = 0.1193) -EDGE2_000__16 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__8 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__16 = Multipole( Kn1L = -4.4179123956E-5) -D000016__12 = Drift( L = 0.374508) -CH06_7 = HKicker( L = 0.2) -D000017__12 = Drift( L = 0.0638) -HQF_7__4 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__13 = Drift( L = 0.1559) -SF1_7__7 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__13 = Drift( L = 0.1042) -SF1_7__8 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__13 = Drift( L = 0.50037) -EDGE1_000__17 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__9 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__17 = Multipole( Kn1L = 4.07894736378E-6) -D000018__17 = Drift( L = 0.1193) -EDGE3_000__17 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__9 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__18 = Multipole( Kn1L = -4.07894736378E-6) -D000018__18 = Drift( L = 0.1193) -EDGE2_000__18 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__9 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__18 = Multipole( Kn1L = -4.4179123956E-5) -D000016__13 = Drift( L = 0.374508) -CV07_7 = VKicker( L = 0.2) -D000017__13 = Drift( L = 0.0638) -HQD_7__5 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__14 = Drift( L = 0.1559) -SD1_7__7 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__14 = Drift( L = 0.1042) -SD1_7__8 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__14 = Drift( L = 0.50037) -EDGE1_000__19 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__10 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__19 = Multipole( Kn1L = 4.07894736378E-6) -D000018__19 = Drift( L = 0.1193) -EDGE3_000__19 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__10 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__20 = Multipole( Kn1L = -4.07894736378E-6) -D000018__20 = Drift( L = 0.1193) -EDGE2_000__20 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__10 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__20 = Multipole( Kn1L = -4.4179123956E-5) -D000016__14 = Drift( L = 0.374508) -CH07_7 = HKicker( L = 0.2) -D000017__14 = Drift( L = 0.0638) -HQF_7__5 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__15 = Drift( L = 0.1559) -SF2_7__7 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__15 = Drift( L = 0.1042) -SF2_7__8 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__15 = Drift( L = 0.50037) -EDGE1_000__21 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__11 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__21 = Multipole( Kn1L = 4.07894736378E-6) -D000018__21 = Drift( L = 0.1193) -EDGE3_000__21 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__11 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__22 = Multipole( Kn1L = -4.07894736378E-6) -D000018__22 = Drift( L = 0.1193) -EDGE2_000__22 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__11 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__22 = Multipole( Kn1L = -4.4179123956E-5) -D000016__15 = Drift( L = 0.374508) -CV08_7 = VKicker( L = 0.2) -D000017__15 = Drift( L = 0.0638) -HQD_7__6 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__16 = Drift( L = 0.1559) -SD2_7__7 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__16 = Drift( L = 0.1042) -SD2_7__8 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__16 = Drift( L = 0.50037) -EDGE1_000__23 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__12 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__23 = Multipole( Kn1L = 4.07894736378E-6) -D000018__23 = Drift( L = 0.1193) -EDGE3_000__23 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__12 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__24 = Multipole( Kn1L = -4.07894736378E-6) -D000018__24 = Drift( L = 0.1193) -EDGE2_000__24 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__12 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__24 = Multipole( Kn1L = -4.4179123956E-5) -D000016__16 = Drift( L = 0.374508) -CH08_7 = HKicker( L = 0.2) -D000017__16 = Drift( L = 0.0638) -HQF_7__6 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__17 = Drift( L = 0.1559) -SF1_7__9 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__17 = Drift( L = 0.1042) -SF1_7__10 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__17 = Drift( L = 0.50037) -EDGE1_000__25 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__13 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__25 = Multipole( Kn1L = 4.07894736378E-6) -D000018__25 = Drift( L = 0.1193) -EDGE3_000__25 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__13 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__26 = Multipole( Kn1L = -4.07894736378E-6) -D000018__26 = Drift( L = 0.1193) -EDGE2_000__26 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__13 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__26 = Multipole( Kn1L = -4.4179123956E-5) -D000016__17 = Drift( L = 0.374508) -CV09_7 = VKicker( L = 0.2) -D000017__17 = Drift( L = 0.0638) -HQD_7__7 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__18 = Drift( L = 0.1559) -SD1_7__9 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__18 = Drift( L = 0.1042) -SD1_7__10 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__18 = Drift( L = 0.50037) -EDGE1_000__27 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__14 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__27 = Multipole( Kn1L = 4.07894736378E-6) -D000018__27 = Drift( L = 0.1193) -EDGE3_000__27 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__14 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__28 = Multipole( Kn1L = -4.07894736378E-6) -D000018__28 = Drift( L = 0.1193) -EDGE2_000__28 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__14 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__28 = Multipole( Kn1L = -4.4179123956E-5) -D000016__18 = Drift( L = 0.374508) -CH09_7 = HKicker( L = 0.2) -D000017__18 = Drift( L = 0.0638) -HQF_7__7 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__19 = Drift( L = 0.1559) -SF2_7__9 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__19 = Drift( L = 0.1042) -SF2_7__10 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__19 = Drift( L = 0.50037) -EDGE1_000__29 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__15 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__29 = Multipole( Kn1L = 4.07894736378E-6) -D000018__29 = Drift( L = 0.1193) -EDGE3_000__29 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__15 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__30 = Multipole( Kn1L = -4.07894736378E-6) -D000018__30 = Drift( L = 0.1193) -EDGE2_000__30 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__15 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__30 = Multipole( Kn1L = -4.4179123956E-5) -D000016__19 = Drift( L = 0.374508) -CV10_7 = VKicker( L = 0.2) -D000017__19 = Drift( L = 0.0638) -HQD_7__8 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__20 = Drift( L = 0.1559) -SD2_7__9 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__20 = Drift( L = 0.1042) -SD2_7__10 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__20 = Drift( L = 0.50037) -EDGE1_000__31 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__16 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__31 = Multipole( Kn1L = 4.07894736378E-6) -D000018__31 = Drift( L = 0.1193) -EDGE3_000__31 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__16 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__32 = Multipole( Kn1L = -4.07894736378E-6) -D000018__32 = Drift( L = 0.1193) -EDGE2_000__32 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__16 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__32 = Multipole( Kn1L = -4.4179123956E-5) -D000016__20 = Drift( L = 0.374508) -CH10_7 = HKicker( L = 0.2) -D000017__20 = Drift( L = 0.0638) -HQF_7__8 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__21 = Drift( L = 0.1559) -SF1_7__11 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__21 = Drift( L = 0.1042) -SF1_7__12 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__21 = Drift( L = 0.50037) -EDGE1_000__33 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__17 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__33 = Multipole( Kn1L = 4.07894736378E-6) -D000018__33 = Drift( L = 0.1193) -EDGE3_000__33 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__17 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__34 = Multipole( Kn1L = -4.07894736378E-6) -D000018__34 = Drift( L = 0.1193) -EDGE2_000__34 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__17 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__34 = Multipole( Kn1L = -4.4179123956E-5) -D000016__21 = Drift( L = 0.374508) -CV11_7 = VKicker( L = 0.2) -D000017__21 = Drift( L = 0.0638) -HQD_7__9 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__22 = Drift( L = 0.1559) -SD1_7__11 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__22 = Drift( L = 0.1042) -SD1_7__12 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__22 = Drift( L = 0.50037) -EDGE1_000__35 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__18 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__35 = Multipole( Kn1L = 4.07894736378E-6) -D000018__35 = Drift( L = 0.1193) -EDGE3_000__35 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__18 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__36 = Multipole( Kn1L = -4.07894736378E-6) -D000018__36 = Drift( L = 0.1193) -EDGE2_000__36 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__18 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__36 = Multipole( Kn1L = -4.4179123956E-5) -D000016__22 = Drift( L = 0.374508) -CH11_7 = HKicker( L = 0.2) -D000017__22 = Drift( L = 0.0638) -HQF_7__9 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__23 = Drift( L = 0.1559) -SF2_7__11 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__23 = Drift( L = 0.1042) -SF2_7__12 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__23 = Drift( L = 0.50037) -EDGE1_000__37 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__19 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__37 = Multipole( Kn1L = 4.07894736378E-6) -D000018__37 = Drift( L = 0.1193) -EDGE3_000__37 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__19 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__38 = Multipole( Kn1L = -4.07894736378E-6) -D000018__38 = Drift( L = 0.1193) -EDGE2_000__38 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__19 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__38 = Multipole( Kn1L = -4.4179123956E-5) -D000016__23 = Drift( L = 0.374508) -CV12_7 = VKicker( L = 0.2) -D000017__23 = Drift( L = 0.0638) -HQD_7__10 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__24 = Drift( L = 0.1559) -SD2_7__11 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__24 = Drift( L = 0.1042) -SD2_7__12 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__24 = Drift( L = 0.50037) -EDGE1_000__39 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__20 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__39 = Multipole( Kn1L = 4.07894736378E-6) -D000018__39 = Drift( L = 0.1193) -EDGE3_000__39 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__20 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__40 = Multipole( Kn1L = -4.07894736378E-6) -D000018__40 = Drift( L = 0.1193) -EDGE2_000__40 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__20 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__40 = Multipole( Kn1L = -4.4179123956E-5) -D000016__24 = Drift( L = 0.374508) -CH12_7 = HKicker( L = 0.2) -D000017__24 = Drift( L = 0.0638) -HQF_7__10 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__25 = Drift( L = 0.1559) -SF1_7__13 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__25 = Drift( L = 0.1042) -SF1_7__14 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__25 = Drift( L = 0.50037) -EDGE1_000__41 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__21 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__41 = Multipole( Kn1L = 4.07894736378E-6) -D000018__41 = Drift( L = 0.1193) -EDGE3_000__41 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__21 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__42 = Multipole( Kn1L = -4.07894736378E-6) -D000018__42 = Drift( L = 0.1193) -EDGE2_000__42 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__21 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__42 = Multipole( Kn1L = -4.4179123956E-5) -D000016__25 = Drift( L = 0.374508) -CV13_7 = VKicker( L = 0.2) -D000017__25 = Drift( L = 0.0638) -HQD_7__11 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__26 = Drift( L = 0.1559) -SD1_7__13 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__26 = Drift( L = 0.1042) -SD1_7__14 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__26 = Drift( L = 0.50037) -EDGE1_000__43 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__22 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__43 = Multipole( Kn1L = 4.07894736378E-6) -D000018__43 = Drift( L = 0.1193) -EDGE3_000__43 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__22 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__44 = Multipole( Kn1L = -4.07894736378E-6) -D000018__44 = Drift( L = 0.1193) -EDGE2_000__44 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__22 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__44 = Multipole( Kn1L = -4.4179123956E-5) -D000016__26 = Drift( L = 0.374508) -CH13_7 = HKicker( L = 0.2) -D000017__26 = Drift( L = 0.0638) -HQF_7__11 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) -D000012__27 = Drift( L = 0.1559) -SF2_7__13 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__27 = Drift( L = 0.1042) -SF2_7__14 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__27 = Drift( L = 0.50037) -EDGE1_000__45 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__23 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__45 = Multipole( Kn1L = 4.07894736378E-6) -D000018__45 = Drift( L = 0.1193) -EDGE3_000__45 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__23 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__46 = Multipole( Kn1L = -4.07894736378E-6) -D000018__46 = Drift( L = 0.1193) -EDGE2_000__46 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__23 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__46 = Multipole( Kn1L = -4.4179123956E-5) -D000016__27 = Drift( L = 0.374508) -CV14_7 = VKicker( L = 0.2) -D000017__27 = Drift( L = 0.0638) -HQD_7__12 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) -D000012__28 = Drift( L = 0.1559) -SD2_7__13 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__28 = Drift( L = 0.1042) -SD2_7__14 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__28 = Drift( L = 0.50037) -EDGE1_000__47 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__24 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__47 = Multipole( Kn1L = 4.07894736378E-6) -D000018__47 = Drift( L = 0.1193) -EDGE3_000__47 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__24 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__48 = Multipole( Kn1L = -4.07894736378E-6) -D000018__48 = Drift( L = 0.1193) -EDGE2_000__48 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__24 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__48 = Multipole( Kn1L = -4.4179123956E-5) -D000016__28 = Drift( L = 0.374508) -CH14_7 = HKicker( L = 0.2) -D000017__28 = Drift( L = 0.0638) -HQF_7C = Quadrupole( L = 0.5, Kn1 = 0.3127956769,) -D000012__29 = Drift( L = 0.1559) -SF1_7__15 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__29 = Drift( L = 0.1042) -SF1_7__16 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__29 = Drift( L = 0.50037) -EDGE1_003__1 = Multipole( Kn1L = -5.47962034702E-5) -D01A_003__1 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) -EDGE2_003__1 = Multipole( Kn1L = 5.05910744438E-6) -D000015__9 = Drift( L = 0.1193) -EDGE3_003__1 = Multipole( Kn1L = -5.05910744438E-6) -D23_003__1 = SBend( L = 0.611400157595, g = 4.0680760596525E-3) -EDGE3_003__2 = Multipole( Kn1L = -5.05910744438E-6) -D000015__10 = Drift( L = 0.1193) -EDGE2_003__2 = Multipole( Kn1L = 5.05910744438E-6) -D01B_003__1 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) -EDGE1_003__2 = Multipole( Kn1L = -5.47962034702E-5) -D000016__29 = Drift( L = 0.374508) -CV15_7 = VKicker( L = 0.2) -D000017__29 = Drift( L = 0.0638) -HQD_7C = Quadrupole( L = 0.5, Kn1 = -0.3108838126,) -D000012__30 = Drift( L = 0.1559) -SD1_7__15 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__30 = Drift( L = 0.1042) -SD1_7__16 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__30 = Drift( L = 0.50037) -EDGE1_003__3 = Multipole( Kn1L = -5.47962034702E-5) -D01A_003__2 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) -EDGE2_003__3 = Multipole( Kn1L = 5.05910744438E-6) -D000015__11 = Drift( L = 0.1193) -EDGE3_003__3 = Multipole( Kn1L = -5.05910744438E-6) -D23_003__2 = SBend( L = 0.611400157595, g = 4.0680760596525E-3) -EDGE3_003__4 = Multipole( Kn1L = -5.05910744438E-6) -D000015__12 = Drift( L = 0.1193) -EDGE2_003__4 = Multipole( Kn1L = 5.05910744438E-6) -D01B_003__2 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) -EDGE1_003__4 = Multipole( Kn1L = -5.47962034702E-5) -D000016__30 = Drift( L = 0.374508) -CH15_7 = HKicker( L = 0.2) -D000017__30 = Drift( L = 0.0638) -HQF_7B = Quadrupole( L = 0.5, Kn1 = 0.3194594174,) -D000012__31 = Drift( L = 0.1559) -SF2_7__15 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000013__31 = Drift( L = 0.1042) -SF2_7__16 = Sextupole( L = 0.24, Kn2 = 2.465563152) -D000014__31 = Drift( L = 0.50037) -EDGE1_003__5 = Multipole( Kn1L = -5.47962034702E-5) -D01A_003__3 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) -EDGE2_003__5 = Multipole( Kn1L = 5.05910744438E-6) -D000015__13 = Drift( L = 0.1193) -EDGE3_003__5 = Multipole( Kn1L = -5.05910744438E-6) -D23_003__3 = SBend( L = 0.611400157595, g = 4.0680760596525E-3) -EDGE3_003__6 = Multipole( Kn1L = -5.05910744438E-6) -D000015__14 = Drift( L = 0.1193) -EDGE2_003__6 = Multipole( Kn1L = 5.05910744438E-6) -D01B_003__3 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) -EDGE1_003__6 = Multipole( Kn1L = -5.47962034702E-5) -D000016__31 = Drift( L = 0.374508) -CV16_7 = VKicker( L = 0.2) -D000017__31 = Drift( L = 0.0638) -HQD_7B = Quadrupole( L = 0.5, Kn1 = -0.3105982322,) -D000012__32 = Drift( L = 0.1559) -SD2_7__15 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000013__32 = Drift( L = 0.1042) -SD2_7__16 = Sextupole( L = 0.24, Kn2 = -4.313410584) -D000014__32 = Drift( L = 0.50037) -EDGE1_003__7 = Multipole( Kn1L = -5.47962034702E-5) -D01A_003__4 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) -EDGE2_003__7 = Multipole( Kn1L = 5.05910744438E-6) -D000015__15 = Drift( L = 0.1193) -EDGE3_003__7 = Multipole( Kn1L = -5.05910744438E-6) -D23_003__4 = SBend( L = 0.611400157595, g = 4.0680760596525E-3) -EDGE3_003__8 = Multipole( Kn1L = -5.05910744438E-6) -D000015__16 = Drift( L = 0.1193) -EDGE2_003__8 = Multipole( Kn1L = 5.05910744438E-6) -D01B_003__4 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) -EDGE1_003__8 = Multipole( Kn1L = -5.47962034702E-5) -D000016__32 = Drift( L = 0.374508) -CH16_7 = HKicker( L = 0.2) -D000017__32 = Drift( L = 0.0638) -HQF_7A = Quadrupole( L = 0.5, Kn1 = 0.3259712517) -D000011__2 = Drift( L = 1.1) -HQD_7A = Quadrupole( L = 0.5, Kn1 = -0.071909135,) -D000008__9 = Drift( L = 0.85) -MROT1__2 = Marker() -HSOL5_8__1 = Solenoid( L = 1.8) -D000008__10 = Drift( L = 0.85) -HQSS1_7 = Quadrupole( L = 0.6480402, Kn1 = -0.1976628965) -D000009__11 = Drift( L = 0.25) -HQSS2_7 = Quadrupole( L = 0.9550568, Kn1 = -0.1370256837) -D000009__12 = Drift( L = 0.25) -HQSS3_7 = Quadrupole( L = 1.634532, Kn1 = 3.239613906E-3,) -D000009__13 = Drift( L = 0.25) -HQSS4_7 = Quadrupole( L = 1.020723, Kn1 = 0.255335572,) -D000009__14 = Drift( L = 0.25) -HQSS5_7 = Quadrupole( L = 0.6861532, Kn1 = -0.1505457051,) -D000008__11 = Drift( L = 0.85) -HSOL5_8__2 = Solenoid( L = 1.8) -MROT2__2 = Marker() -D000008__12 = Drift( L = 0.85) -HQFF1_7 = Quadrupole( L = 0.8, Kn1 = -0.1943356792,) -D000019__1 = Drift( L = 0.372681) -DB23_7__1 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000019__2 = Drift( L = 0.372681) -QFF2_7 = Quadrupole( L = 1.2, Kn1 = 0.1909728817,) -D000019__3 = Drift( L = 0.372681) -DB23_7__2 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000019__4 = Drift( L = 0.372681) -QFF3_7 = Quadrupole( L = 1.2, Kn1 = -0.1633145219,) -D000019__5 = Drift( L = 0.372681) -DB23_7__3 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000019__6 = Drift( L = 0.372681) -QFF4_7 = Quadrupole( L = 1, Kn1 = 0.2524257334) -D000019__7 = Drift( L = 0.372681) -DB23_7__4 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000019__8 = Drift( L = 0.372681) -HQFF5_7 = Quadrupole( L = 0.6, Kn1 = -0.2773213506) -D000019__9 = Drift( L = 0.372681) -DB23_7__5 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000019__10 = Drift( L = 0.372681) -MFF_7 = Marker() -HQFF6_7 = Quadrupole( L = 0.5, Kn1 = 0.3016541182,) -D000008__13 = Drift( L = 0.85) -MROT3__2 = Marker() -HSOL20_8__1 = Solenoid( L = 5.5) -D000008__14 = Drift( L = 0.85) -HQLS1_7 = Quadrupole( L = 0.9819319, Kn1 = 0.3525126074,) -D000009__15 = Drift( L = 0.25) -HQLS2_7 = Quadrupole( L = 1.469939, Kn1 = -0.3544489077,) -D000009__16 = Drift( L = 0.25) -HQLS3_7 = Quadrupole( L = 1.530059, Kn1 = 0.1497450638,) -D000009__17 = Drift( L = 0.25) -HQLS4_7 = Quadrupole( L = 0.5187944, Kn1 = 0.2705914324,) -D000009__18 = Drift( L = 0.25) -HQLS5_7 = Quadrupole( L = 1.530059, Kn1 = 0.2008969574,) -D000009__19 = Drift( L = 0.25) -HQLS6_7 = Quadrupole( L = 1.469939, Kn1 = -0.3524613373,) -D000009__20 = Drift( L = 0.25) -HQLS7_7 = Quadrupole( L = 0.9819319, Kn1 = 0.3516668168,) -D000008__15 = Drift( L = 0.85) -HSOL20_8__2 = Solenoid( L = 5.5) -MROT4__2 = Marker() -D000008__16 = Drift( L = 0.85) -MLRF_8 = Marker() -Q14EF_8 = Quadrupole( L = 1.2, Kn1 = -0.0805622429) -D000006__11 = Drift( L = 0.4) -D3EF_8__1 = SBend( L = 3.8000531337057, g = 4.8206664263497E-3, e1 = 9.15939428E-3, e2 = 9.15939428E-3) -D000006__12 = Drift( L = 0.4) -Q13EF_8 = Quadrupole( L = 1.2, Kn1 = 0.2147150407,) -D000006__13 = Drift( L = 0.4) -D3EF_8__2 = SBend( L = 3.8000531337057, g = 4.8206664263497E-3, e1 = 9.15939428E-3, e2 = 9.15939428E-3) -D000006__14 = Drift( L = 0.4) -Q12EF_8 = Quadrupole( L = 1.2, Kn1 = -0.1875116872) -D000006__15 = Drift( L = 0.4) -D3EF_8__3 = SBend( L = 3.8000531337057, g = 4.8206664263497E-3, e1 = 9.15939428E-3, e2 = 9.15939428E-3) -D000006__16 = Drift( L = 0.4) -Q11EF_8 = Quadrupole( L = 1.2, Kn1 = 0.319522109) -D000006__17 = Drift( L = 0.4) -D2EF_8 = SBend( L = 3.0051217587267, g = -4.3866170409633E-3, e1 = -6.5911591585E-3, e2 = -6.5911591585E-3) -D000006__18 = Drift( L = 0.4) -Q10EF_8 = Quadrupole( L = 1.2, Kn1 = -0.2329008389,) -D000005__5 = Drift( L = 4.6) -Q9EF_8 = Quadrupole( L = 1.2, Kn1 = 0.2677564554) -D000005__6 = Drift( L = 4.6) -Q8EF_8 = Quadrupole( L = 1.2, Kn1 = -0.1860583032) -D000005__7 = Drift( L = 4.6) -Q7EF_8 = Quadrupole( L = 1.2, Kn1 = 0.05181069896) -D000005__8 = Drift( L = 4.6) -Q6EF_8 = Quadrupole( L = 1.2, Kn1 = 0.01106416249) -D000005__9 = Drift( L = 4.6) -Q5EF_8 = Quadrupole( L = 1.2, Kn1 = 0.1111051943) -D000005__10 = Drift( L = 4.6) -Q4EF_8 = Quadrupole( L = 1.2, Kn1 = -0.1192696818) -D000020 = Drift( L = 5.367456) -Q3EF_8 = Quadrupole( L = 0.6, Kn1 = 0.1942090498) -D000007__3 = Drift( L = 0.3) -RF_CRAB__2 = Drift( L = 4) -D000007__4 = Drift( L = 0.3) -Q2EF_8 = Quadrupole( L = 0.6, Kn1 = -0.1340200446) -D000006__19 = Drift( L = 0.4) -D1EF_8__1 = SBend( L = 3.0051002796571, g = -4.9731333334425E-4, e1 = -7.47238218555E-4, e2 = -7.47238218555E-4) -D000006__20 = Drift( L = 0.4) -D1EF_8__2 = SBend( L = 3.0051002796571, g = -4.9731333334425E-4, e1 = -7.47238218555E-4, e2 = -7.47238218555E-4) -D000021 = Drift( L = 16.9) -Q1EF_8 = Quadrupole( L = 1.61, Kn1 = 0.1016217263) -D000022__1 = Drift( L = 3.76) -Q0EF_8 = Quadrupole( L = 1.2, Kn1 = -0.2159418046) -D000023__1 = Drift( L = 5.8) -IP8 = Marker() -D000001__2 = Drift( L = 5.3) -Q1ER_8 = Quadrupole( L = 1.8, Kn1 = -0.2143949606) -D000002__3 = Drift( L = 0.5) -Q2ER_8 = Quadrupole( L = 1.4, Kn1 = 0.2031685787) -D000002__4 = Drift( L = 0.5) -D2ER_8 = SBend( L = 5.50007539103, g = -3.2977170394029E-3, e1 = -9.0688461675E-3, e2 = -9.0688461675E-3) -D000003__2 = Drift( L = 22.7) -Q3ER_8 = Quadrupole( L = 0.6, Kn1 = -0.1022387522) -D000006__21 = Drift( L = 0.4) -D3ER_8 = SBend( L = 3.0051041632592, g = 1.9188151700459E-3, e1 = 2.883119728015E-3, e2 = 2.883119728015E-3) -D000024 = Drift( L = 3.522083) -Q4ER_8 = Quadrupole( L = 0.6, Kn1 = 0.1693940448) -D000025 = Drift( L = 4.8) -Q5ER_8 = Quadrupole( L = 1.2, Kn1 = -0.1475150732) -D000026 = Drift( L = 2.8) -Q6ER_8 = Quadrupole( L = 1.2, Kn1 = 0.07294971889) -D000005__11 = Drift( L = 4.6) -Q7ER_8 = Quadrupole( L = 1.2, Kn1 = 0.07596588916) -D000005__12 = Drift( L = 4.6) -Q8ER_8 = Quadrupole( L = 1.2, Kn1 = -0.202860792) -D000005__13 = Drift( L = 4.6) -Q9ER_8 = Quadrupole( L = 1.2, Kn1 = 0.09499816132) -D000007__5 = Drift( L = 0.3) -RF_CRAB__3 = Drift( L = 4) -D000007__6 = Drift( L = 0.3) -Q10ER_8 = Quadrupole( L = 1.2, Kn1 = 0.1322610543) -D000005__14 = Drift( L = 4.6) -Q11ER_8 = Quadrupole( L = 1.2, Kn1 = -0.221468388) -D000006__22 = Drift( L = 0.4) -D4ER_8 = SBend( L = 3.0051224305305, g = 4.453819619468E-3, e1 = 6.69213662E-3, e2 = 6.69213662E-3) -D000006__23 = Drift( L = 0.4) -Q12ER_8 = Quadrupole( L = 1.2, Kn1 = 0.1585832349) -D000006__24 = Drift( L = 0.4) -D5ER_8__1 = SBend( L = 3.0051198496773, g = 4.1897690181481E-3, e1 = 6.295379021E-3, e2 = 6.295379021E-3) -D000006__25 = Drift( L = 0.4) -Q13ER_8 = Quadrupole( L = 1.2, Kn1 = 0.1446740057) -D000006__26 = Drift( L = 0.4) -D5ER_8__2 = SBend( L = 3.0051198496773, g = 4.1897690181481E-3, e1 = 6.295379021E-3, e2 = 6.295379021E-3) -D000006__27 = Drift( L = 0.4) -Q14ER_8 = Quadrupole( L = 1.2, Kn1 = -0.2212744801) -D000006__28 = Drift( L = 0.4) -D5ER_8__3 = SBend( L = 3.0051198496773, g = 4.1897690181481E-3, e1 = 6.295379021E-3, e2 = 6.295379021E-3) -D000006__29 = Drift( L = 0.4) -Q15ER_8 = Quadrupole( L = 1.2, Kn1 = 0.2116494718,) -MLRR_8 = Marker() -D000008__17 = Drift( L = 0.85) -MROT4__3 = Marker() -HSOL20_8__3 = Solenoid( L = 5.5) -D000008__18 = Drift( L = 0.85) -HQLS7_8 = Quadrupole( L = 0.9819319, Kn1 = 0.3360574653) -D000009__21 = Drift( L = 0.25) -HQLS6_8 = Quadrupole( L = 1.469939, Kn1 = -0.3470868863,) -D000009__22 = Drift( L = 0.25) -HQLS5_8 = Quadrupole( L = 1.530059, Kn1 = 0.1626287734) -D000009__23 = Drift( L = 0.25) -HQLS4_8 = Quadrupole( L = 0.5187944, Kn1 = 0.2546260677) -D000009__24 = Drift( L = 0.25) -HQLS3_8 = Quadrupole( L = 1.530059, Kn1 = 0.158055864) -D000009__25 = Drift( L = 0.25) -HQLS2_8 = Quadrupole( L = 1.469939, Kn1 = -0.3498818893,) -D000009__26 = Drift( L = 0.25) -HQLS1_8 = Quadrupole( L = 0.9819319, Kn1 = 0.3342207154) -D000008__19 = Drift( L = 0.85) -HSOL20_8__4 = Solenoid( L = 5.5) -MROT3__3 = Marker() -D000008__20 = Drift( L = 0.85) -HQFF6_8 = Quadrupole( L = 0.5, Kn1 = 0.3107342787,) -MFF_8 = Marker() -D000027__1 = Drift( L = 0.354127) -DB23_8__1 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000027__2 = Drift( L = 0.354127) -HQFF5_8 = Quadrupole( L = 0.6, Kn1 = -0.3351061032) -D000027__3 = Drift( L = 0.354127) -DB23_8__2 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000027__4 = Drift( L = 0.354127) -QFF4_8 = Quadrupole( L = 1, Kn1 = 0.2878909144) -D000027__5 = Drift( L = 0.354127) -DB23_8__3 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000027__6 = Drift( L = 0.354127) -QFF3_8 = Quadrupole( L = 1.2, Kn1 = -0.2004078496) -D000027__7 = Drift( L = 0.354127) -DB23_8__4 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000027__8 = Drift( L = 0.354127) -QFF2_8 = Quadrupole( L = 1.2, Kn1 = 0.2051948078) -D000027__9 = Drift( L = 0.354127) -DB23_8__5 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000027__10 = Drift( L = 0.354127) -QFF1_8 = Quadrupole( L = 1.6, Kn1 = -0.137612492,) -D000008__21 = Drift( L = 0.85) -MROT2__3 = Marker() -HSOL5_8__3 = Solenoid( L = 1.8) -D000008__22 = Drift( L = 0.85) -HQSS5_8 = Quadrupole( L = 0.6861532, Kn1 = 0.02610418854,) -D000009__27 = Drift( L = 0.25) -HQSS4_8 = Quadrupole( L = 1.020723, Kn1 = 0.02642026735,) -D000009__28 = Drift( L = 0.25) -HQSS3_8 = Quadrupole( L = 1.634532, Kn1 = 0.07061989633,) -D000009__29 = Drift( L = 0.25) -HQSS2_8 = Quadrupole( L = 0.9550568, Kn1 = -0.099348953) -D000009__30 = Drift( L = 0.25) -HQSS1_8 = Quadrupole( L = 0.6480402, Kn1 = -0.1036476643,) -D000008__23 = Drift( L = 0.85) -HSOL5_8__4 = Solenoid( L = 1.8) -MROT1__3 = Marker() -D000008__24 = Drift( L = 0.85) -HQD_8A = Quadrupole( L = 0.5, Kn1 = -0.08760720367) -D000011__3 = Drift( L = 1.1) -HQF_8A = Quadrupole( L = 0.5, Kn1 = 0.3426857894) -D000017__33 = Drift( L = 0.0638) -CH01_9 = HKicker( L = 0.2) -D000028__1 = Drift( L = 0.29394) -EDGE1_004__1 = Multipole( Kn1L = -3.4704307448E-5) -D01A_004__1 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) -EDGE2_004__1 = Multipole( Kn1L = 3.20421122147E-6) -D000029__1 = Drift( L = 0.1193) -EDGE3_004__1 = Multipole( Kn1L = -3.20421122147E-6) -D23_004__1 = SBend( L = 0.611400099814, g = 3.2375221083251E-3) -EDGE3_004__2 = Multipole( Kn1L = -3.20421122147E-6) -D000029__2 = Drift( L = 0.1193) -EDGE2_004__2 = Multipole( Kn1L = 3.20421122147E-6) -D01B_004__1 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) -EDGE1_004__2 = Multipole( Kn1L = -3.4704307448E-5) -D000014__33 = Drift( L = 0.50037) -SD1_9__1 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000013__33 = Drift( L = 0.1042) -SD1_9__2 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000012__33 = Drift( L = 0.1559) -HQD_8B = Quadrupole( L = 0.5, Kn1 = -0.3126076902,) -D000017__34 = Drift( L = 0.0638) -CV01_9 = VKicker( L = 0.2) -D000028__2 = Drift( L = 0.29394) -EDGE1_004__3 = Multipole( Kn1L = -3.4704307448E-5) -D01A_004__2 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) -EDGE2_004__3 = Multipole( Kn1L = 3.20421122147E-6) -D000029__3 = Drift( L = 0.1193) -EDGE3_004__3 = Multipole( Kn1L = -3.20421122147E-6) -D23_004__2 = SBend( L = 0.611400099814, g = 3.2375221083251E-3) -EDGE3_004__4 = Multipole( Kn1L = -3.20421122147E-6) -D000029__4 = Drift( L = 0.1193) -EDGE2_004__4 = Multipole( Kn1L = 3.20421122147E-6) -D01B_004__2 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) -EDGE1_004__4 = Multipole( Kn1L = -3.4704307448E-5) -D000014__34 = Drift( L = 0.50037) -SF1_9__1 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000013__34 = Drift( L = 0.1042) -SF1_9__2 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000012__34 = Drift( L = 0.1559) -HQF_8B = Quadrupole( L = 0.5, Kn1 = 0.3285018589,) -D000017__35 = Drift( L = 0.0638) -CH02_9 = HKicker( L = 0.2) -D000028__3 = Drift( L = 0.29394) -EDGE1_004__5 = Multipole( Kn1L = -3.4704307448E-5) -D01A_004__3 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) -EDGE2_004__5 = Multipole( Kn1L = 3.20421122147E-6) -D000029__5 = Drift( L = 0.1193) -EDGE3_004__5 = Multipole( Kn1L = -3.20421122147E-6) -D23_004__3 = SBend( L = 0.611400099814, g = 3.2375221083251E-3) -EDGE3_004__6 = Multipole( Kn1L = -3.20421122147E-6) -D000029__6 = Drift( L = 0.1193) -EDGE2_004__6 = Multipole( Kn1L = 3.20421122147E-6) -D01B_004__3 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) -EDGE1_004__6 = Multipole( Kn1L = -3.4704307448E-5) -D000014__35 = Drift( L = 0.50037) -SD2_9__1 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000013__35 = Drift( L = 0.1042) -SD2_9__2 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000012__35 = Drift( L = 0.1559) -HQD_8C = Quadrupole( L = 0.5, Kn1 = -0.3136673336,) -D000017__36 = Drift( L = 0.0638) -CV02_9 = VKicker( L = 0.2) -D000028__4 = Drift( L = 0.29394) -EDGE1_004__7 = Multipole( Kn1L = -3.4704307448E-5) -D01A_004__4 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) -EDGE2_004__7 = Multipole( Kn1L = 3.20421122147E-6) -D000029__7 = Drift( L = 0.1193) -EDGE3_004__7 = Multipole( Kn1L = -3.20421122147E-6) -D23_004__4 = SBend( L = 0.611400099814, g = 3.2375221083251E-3) -EDGE3_004__8 = Multipole( Kn1L = -3.20421122147E-6) -D000029__8 = Drift( L = 0.1193) -EDGE2_004__8 = Multipole( Kn1L = 3.20421122147E-6) -D01B_004__4 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) -EDGE1_004__8 = Multipole( Kn1L = -3.4704307448E-5) -D000014__36 = Drift( L = 0.50037) -SF2_9__1 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000013__36 = Drift( L = 0.1042) -SF2_9__2 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000012__36 = Drift( L = 0.1559) -HQF_8C = Quadrupole( L = 0.5, Kn1 = 0.3021376478,) -D000017__37 = Drift( L = 0.0638) -CH03_9 = HKicker( L = 0.2) -D000028__5 = Drift( L = 0.29394) -EDGE1_000__49 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__25 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__49 = Multipole( Kn1L = 4.07894736378E-6) -D000018__49 = Drift( L = 0.1193) -EDGE3_000__49 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__25 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__50 = Multipole( Kn1L = -4.07894736378E-6) -D000018__50 = Drift( L = 0.1193) -EDGE2_000__50 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__25 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__50 = Multipole( Kn1L = -4.4179123956E-5) -D000014__37 = Drift( L = 0.50037) -SD1_9__3 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000013__37 = Drift( L = 0.1042) -SD1_9__4 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000012__37 = Drift( L = 0.1559) -HQD_9__1 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__38 = Drift( L = 0.0638) -CV03_9 = VKicker( L = 0.2) -D000028__6 = Drift( L = 0.29394) -EDGE1_000__51 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__26 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__51 = Multipole( Kn1L = 4.07894736378E-6) -D000018__51 = Drift( L = 0.1193) -EDGE3_000__51 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__26 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__52 = Multipole( Kn1L = -4.07894736378E-6) -D000018__52 = Drift( L = 0.1193) -EDGE2_000__52 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__26 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__52 = Multipole( Kn1L = -4.4179123956E-5) -D000014__38 = Drift( L = 0.50037) -SF1_9__3 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000013__38 = Drift( L = 0.1042) -SF1_9__4 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000012__38 = Drift( L = 0.1559) -HQF_9__1 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__39 = Drift( L = 0.0638) -CH04_9 = HKicker( L = 0.2) -D000028__7 = Drift( L = 0.29394) -EDGE1_000__53 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__27 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__53 = Multipole( Kn1L = 4.07894736378E-6) -D000018__53 = Drift( L = 0.1193) -EDGE3_000__53 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__27 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__54 = Multipole( Kn1L = -4.07894736378E-6) -D000018__54 = Drift( L = 0.1193) -EDGE2_000__54 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__27 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__54 = Multipole( Kn1L = -4.4179123956E-5) -D000014__39 = Drift( L = 0.50037) -SD2_9__3 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000013__39 = Drift( L = 0.1042) -SD2_9__4 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000012__39 = Drift( L = 0.1559) -HQD_9__2 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__40 = Drift( L = 0.0638) -CV04_9 = VKicker( L = 0.2) -D000028__8 = Drift( L = 0.29394) -EDGE1_000__55 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__28 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__55 = Multipole( Kn1L = 4.07894736378E-6) -D000018__55 = Drift( L = 0.1193) -EDGE3_000__55 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__28 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__56 = Multipole( Kn1L = -4.07894736378E-6) -D000018__56 = Drift( L = 0.1193) -EDGE2_000__56 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__28 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__56 = Multipole( Kn1L = -4.4179123956E-5) -D000014__40 = Drift( L = 0.50037) -SF2_9__3 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000013__40 = Drift( L = 0.1042) -SF2_9__4 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000012__40 = Drift( L = 0.1559) -HQF_9__2 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__41 = Drift( L = 0.0638) -CH05_9 = HKicker( L = 0.2) -D000028__9 = Drift( L = 0.29394) -EDGE1_000__57 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__29 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__57 = Multipole( Kn1L = 4.07894736378E-6) -D000018__57 = Drift( L = 0.1193) -EDGE3_000__57 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__29 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__58 = Multipole( Kn1L = -4.07894736378E-6) -D000018__58 = Drift( L = 0.1193) -EDGE2_000__58 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__29 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__58 = Multipole( Kn1L = -4.4179123956E-5) -D000014__41 = Drift( L = 0.50037) -SD1_9__5 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000013__41 = Drift( L = 0.1042) -SD1_9__6 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000012__41 = Drift( L = 0.1559) -HQD_9__3 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__42 = Drift( L = 0.0638) -CV05_9 = VKicker( L = 0.2) -D000028__10 = Drift( L = 0.29394) -EDGE1_000__59 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__30 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__59 = Multipole( Kn1L = 4.07894736378E-6) -D000018__59 = Drift( L = 0.1193) -EDGE3_000__59 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__30 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__60 = Multipole( Kn1L = -4.07894736378E-6) -D000018__60 = Drift( L = 0.1193) -EDGE2_000__60 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__30 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__60 = Multipole( Kn1L = -4.4179123956E-5) -D000014__42 = Drift( L = 0.50037) -SF1_9__5 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000013__42 = Drift( L = 0.1042) -SF1_9__6 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000012__42 = Drift( L = 0.1559) -HQF_9__3 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__43 = Drift( L = 0.0638) -CH06_9 = HKicker( L = 0.2) -D000028__11 = Drift( L = 0.29394) -EDGE1_000__61 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__31 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__61 = Multipole( Kn1L = 4.07894736378E-6) -D000018__61 = Drift( L = 0.1193) -EDGE3_000__61 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__31 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__62 = Multipole( Kn1L = -4.07894736378E-6) -D000018__62 = Drift( L = 0.1193) -EDGE2_000__62 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__31 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__62 = Multipole( Kn1L = -4.4179123956E-5) -D000014__43 = Drift( L = 0.50037) -SD2_9__5 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000013__43 = Drift( L = 0.1042) -SD2_9__6 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000012__43 = Drift( L = 0.1559) -HQD_9__4 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__44 = Drift( L = 0.0638) -CV06_9 = VKicker( L = 0.2) -D000028__12 = Drift( L = 0.29394) -EDGE1_000__63 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__32 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__63 = Multipole( Kn1L = 4.07894736378E-6) -D000018__63 = Drift( L = 0.1193) -EDGE3_000__63 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__32 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__64 = Multipole( Kn1L = -4.07894736378E-6) -D000018__64 = Drift( L = 0.1193) -EDGE2_000__64 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__32 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__64 = Multipole( Kn1L = -4.4179123956E-5) -D000014__44 = Drift( L = 0.50037) -SF2_9__5 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000013__44 = Drift( L = 0.1042) -SF2_9__6 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000012__44 = Drift( L = 0.1559) -HQF_9__4 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__45 = Drift( L = 0.0638) -CH07_9 = HKicker( L = 0.2) -D000028__13 = Drift( L = 0.29394) -EDGE1_000__65 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__33 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__65 = Multipole( Kn1L = 4.07894736378E-6) -D000018__65 = Drift( L = 0.1193) -EDGE3_000__65 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__33 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__66 = Multipole( Kn1L = -4.07894736378E-6) -D000018__66 = Drift( L = 0.1193) -EDGE2_000__66 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__33 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__66 = Multipole( Kn1L = -4.4179123956E-5) -D000014__45 = Drift( L = 0.50037) -SD1_9__7 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000013__45 = Drift( L = 0.1042) -SD1_9__8 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000012__45 = Drift( L = 0.1559) -HQD_9__5 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__46 = Drift( L = 0.0638) -CV07_9 = VKicker( L = 0.2) -D000028__14 = Drift( L = 0.29394) -EDGE1_000__67 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__34 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__67 = Multipole( Kn1L = 4.07894736378E-6) -D000018__67 = Drift( L = 0.1193) -EDGE3_000__67 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__34 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__68 = Multipole( Kn1L = -4.07894736378E-6) -D000018__68 = Drift( L = 0.1193) -EDGE2_000__68 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__34 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__68 = Multipole( Kn1L = -4.4179123956E-5) -D000014__46 = Drift( L = 0.50037) -SF1_9__7 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000013__46 = Drift( L = 0.1042) -SF1_9__8 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000012__46 = Drift( L = 0.1559) -HQF_9__5 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__47 = Drift( L = 0.0638) -CH08_9 = HKicker( L = 0.2) -D000028__15 = Drift( L = 0.29394) -EDGE1_000__69 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__35 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__69 = Multipole( Kn1L = 4.07894736378E-6) -D000018__69 = Drift( L = 0.1193) -EDGE3_000__69 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__35 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__70 = Multipole( Kn1L = -4.07894736378E-6) -D000018__70 = Drift( L = 0.1193) -EDGE2_000__70 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__35 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__70 = Multipole( Kn1L = -4.4179123956E-5) -D000014__47 = Drift( L = 0.50037) -SD2_9__7 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000013__47 = Drift( L = 0.1042) -SD2_9__8 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000012__47 = Drift( L = 0.1559) -HQD_9__6 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__48 = Drift( L = 0.0638) -CV08_9 = VKicker( L = 0.2) -D000028__16 = Drift( L = 0.29394) -EDGE1_000__71 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__36 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__71 = Multipole( Kn1L = 4.07894736378E-6) -D000018__71 = Drift( L = 0.1193) -EDGE3_000__71 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__36 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__72 = Multipole( Kn1L = -4.07894736378E-6) -D000018__72 = Drift( L = 0.1193) -EDGE2_000__72 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__36 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__72 = Multipole( Kn1L = -4.4179123956E-5) -D000014__48 = Drift( L = 0.50037) -SF2_9__7 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000013__48 = Drift( L = 0.1042) -SF2_9__8 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000012__48 = Drift( L = 0.1559) -HQF_9__6 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__49 = Drift( L = 0.0638) -CH09_9 = HKicker( L = 0.2) -D000028__17 = Drift( L = 0.29394) -EDGE1_000__73 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__37 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__73 = Multipole( Kn1L = 4.07894736378E-6) -D000018__73 = Drift( L = 0.1193) -EDGE3_000__73 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__37 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__74 = Multipole( Kn1L = -4.07894736378E-6) -D000018__74 = Drift( L = 0.1193) -EDGE2_000__74 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__37 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__74 = Multipole( Kn1L = -4.4179123956E-5) -D000014__49 = Drift( L = 0.50037) -SD1_9__9 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000013__49 = Drift( L = 0.1042) -SD1_9__10 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000012__49 = Drift( L = 0.1559) -HQD_9__7 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__50 = Drift( L = 0.0638) -CV09_9 = VKicker( L = 0.2) -D000028__18 = Drift( L = 0.29394) -EDGE1_000__75 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__38 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__75 = Multipole( Kn1L = 4.07894736378E-6) -D000018__75 = Drift( L = 0.1193) -EDGE3_000__75 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__38 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__76 = Multipole( Kn1L = -4.07894736378E-6) -D000018__76 = Drift( L = 0.1193) -EDGE2_000__76 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__38 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__76 = Multipole( Kn1L = -4.4179123956E-5) -D000014__50 = Drift( L = 0.50037) -SF1_9__9 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000013__50 = Drift( L = 0.1042) -SF1_9__10 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000012__50 = Drift( L = 0.1559) -HQF_9__7 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__51 = Drift( L = 0.0638) -CH10_9 = HKicker( L = 0.2) -D000028__19 = Drift( L = 0.29394) -EDGE1_000__77 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__39 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__77 = Multipole( Kn1L = 4.07894736378E-6) -D000018__77 = Drift( L = 0.1193) -EDGE3_000__77 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__39 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__78 = Multipole( Kn1L = -4.07894736378E-6) -D000018__78 = Drift( L = 0.1193) -EDGE2_000__78 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__39 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__78 = Multipole( Kn1L = -4.4179123956E-5) -D000014__51 = Drift( L = 0.50037) -SD2_9__9 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000013__51 = Drift( L = 0.1042) -SD2_9__10 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000012__51 = Drift( L = 0.1559) -HQD_9__8 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__52 = Drift( L = 0.0638) -CV10_9 = VKicker( L = 0.2) -D000028__20 = Drift( L = 0.29394) -EDGE1_000__79 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__40 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__79 = Multipole( Kn1L = 4.07894736378E-6) -D000018__79 = Drift( L = 0.1193) -EDGE3_000__79 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__40 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__80 = Multipole( Kn1L = -4.07894736378E-6) -D000018__80 = Drift( L = 0.1193) -EDGE2_000__80 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__40 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__80 = Multipole( Kn1L = -4.4179123956E-5) -D000014__52 = Drift( L = 0.50037) -SF2_9__9 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000013__52 = Drift( L = 0.1042) -SF2_9__10 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000012__52 = Drift( L = 0.1559) -HQF_9__8 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__53 = Drift( L = 0.0638) -CH11_9 = HKicker( L = 0.2) -D000028__21 = Drift( L = 0.29394) -EDGE1_000__81 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__41 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__81 = Multipole( Kn1L = 4.07894736378E-6) -D000018__81 = Drift( L = 0.1193) -EDGE3_000__81 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__41 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__82 = Multipole( Kn1L = -4.07894736378E-6) -D000018__82 = Drift( L = 0.1193) -EDGE2_000__82 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__41 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__82 = Multipole( Kn1L = -4.4179123956E-5) -D000014__53 = Drift( L = 0.50037) -SD1_9__11 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000013__53 = Drift( L = 0.1042) -SD1_9__12 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000012__53 = Drift( L = 0.1559) -HQD_9__9 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__54 = Drift( L = 0.0638) -CV11_9 = VKicker( L = 0.2) -D000028__22 = Drift( L = 0.29394) -EDGE1_000__83 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__42 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__83 = Multipole( Kn1L = 4.07894736378E-6) -D000018__83 = Drift( L = 0.1193) -EDGE3_000__83 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__42 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__84 = Multipole( Kn1L = -4.07894736378E-6) -D000018__84 = Drift( L = 0.1193) -EDGE2_000__84 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__42 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__84 = Multipole( Kn1L = -4.4179123956E-5) -D000014__54 = Drift( L = 0.50037) -SF1_9__11 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000013__54 = Drift( L = 0.1042) -SF1_9__12 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000012__54 = Drift( L = 0.1559) -HQF_9__9 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__55 = Drift( L = 0.0638) -CH12_9 = HKicker( L = 0.2) -D000028__23 = Drift( L = 0.29394) -EDGE1_000__85 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__43 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__85 = Multipole( Kn1L = 4.07894736378E-6) -D000018__85 = Drift( L = 0.1193) -EDGE3_000__85 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__43 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__86 = Multipole( Kn1L = -4.07894736378E-6) -D000018__86 = Drift( L = 0.1193) -EDGE2_000__86 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__43 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__86 = Multipole( Kn1L = -4.4179123956E-5) -D000014__55 = Drift( L = 0.50037) -SD2_9__11 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000013__55 = Drift( L = 0.1042) -SD2_9__12 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000012__55 = Drift( L = 0.1559) -HQD_9__10 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__56 = Drift( L = 0.0638) -CV12_9 = VKicker( L = 0.2) -D000028__24 = Drift( L = 0.29394) -EDGE1_000__87 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__44 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__87 = Multipole( Kn1L = 4.07894736378E-6) -D000018__87 = Drift( L = 0.1193) -EDGE3_000__87 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__44 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__88 = Multipole( Kn1L = -4.07894736378E-6) -D000018__88 = Drift( L = 0.1193) -EDGE2_000__88 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__44 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__88 = Multipole( Kn1L = -4.4179123956E-5) -D000014__56 = Drift( L = 0.50037) -SF2_9__11 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000013__56 = Drift( L = 0.1042) -SF2_9__12 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000012__56 = Drift( L = 0.1559) -HQF_9__10 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__57 = Drift( L = 0.0638) -CH13_9 = HKicker( L = 0.2) -D000028__25 = Drift( L = 0.29394) -EDGE1_000__89 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__45 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__89 = Multipole( Kn1L = 4.07894736378E-6) -D000018__89 = Drift( L = 0.1193) -EDGE3_000__89 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__45 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__90 = Multipole( Kn1L = -4.07894736378E-6) -D000018__90 = Drift( L = 0.1193) -EDGE2_000__90 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__45 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__90 = Multipole( Kn1L = -4.4179123956E-5) -D000014__57 = Drift( L = 0.50037) -SD1_9__13 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000013__57 = Drift( L = 0.1042) -SD1_9__14 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000012__57 = Drift( L = 0.1559) -HQD_9__11 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__58 = Drift( L = 0.0638) -CV13_9 = VKicker( L = 0.2) -D000028__26 = Drift( L = 0.29394) -EDGE1_000__91 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__46 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__91 = Multipole( Kn1L = 4.07894736378E-6) -D000018__91 = Drift( L = 0.1193) -EDGE3_000__91 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__46 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__92 = Multipole( Kn1L = -4.07894736378E-6) -D000018__92 = Drift( L = 0.1193) -EDGE2_000__92 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__46 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__92 = Multipole( Kn1L = -4.4179123956E-5) -D000014__58 = Drift( L = 0.50037) -SF1_9__13 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000013__58 = Drift( L = 0.1042) -SF1_9__14 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000012__58 = Drift( L = 0.1559) -HQF_9__11 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__59 = Drift( L = 0.0638) -CH14_9 = HKicker( L = 0.2) -D000028__27 = Drift( L = 0.29394) -EDGE1_000__93 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__47 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__93 = Multipole( Kn1L = 4.07894736378E-6) -D000018__93 = Drift( L = 0.1193) -EDGE3_000__93 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__47 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__94 = Multipole( Kn1L = -4.07894736378E-6) -D000018__94 = Drift( L = 0.1193) -EDGE2_000__94 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__47 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__94 = Multipole( Kn1L = -4.4179123956E-5) -D000014__59 = Drift( L = 0.50037) -SD2_9__13 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000013__59 = Drift( L = 0.1042) -SD2_9__14 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000012__59 = Drift( L = 0.1559) -HQD_9__12 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__60 = Drift( L = 0.0638) -CV14_9 = VKicker( L = 0.2) -D000028__28 = Drift( L = 0.29394) -EDGE1_000__95 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__48 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__95 = Multipole( Kn1L = 4.07894736378E-6) -D000018__95 = Drift( L = 0.1193) -EDGE3_000__95 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__48 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__96 = Multipole( Kn1L = -4.07894736378E-6) -D000018__96 = Drift( L = 0.1193) -EDGE2_000__96 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__48 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__96 = Multipole( Kn1L = -4.4179123956E-5) -D000014__60 = Drift( L = 0.50037) -SF2_9__13 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000013__60 = Drift( L = 0.1042) -SF2_9__14 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000012__60 = Drift( L = 0.1559) -HQF_9__12 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__61 = Drift( L = 0.0638) -CH15_9 = HKicker( L = 0.2) -D000028__29 = Drift( L = 0.29394) -EDGE1_000__97 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__49 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__97 = Multipole( Kn1L = 4.07894736378E-6) -D000018__97 = Drift( L = 0.1193) -EDGE3_000__97 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__49 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__98 = Multipole( Kn1L = -4.07894736378E-6) -D000018__98 = Drift( L = 0.1193) -EDGE2_000__98 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__49 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__98 = Multipole( Kn1L = -4.4179123956E-5) -D000014__61 = Drift( L = 0.50037) -SD1_9__15 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000013__61 = Drift( L = 0.1042) -SD1_9__16 = Sextupole( L = 0.24, Kn2 = -5.8103245174) -D000012__61 = Drift( L = 0.1559) -HQD_9__13 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__62 = Drift( L = 0.0638) -CV15_9 = VKicker( L = 0.2) -D000028__30 = Drift( L = 0.29394) -EDGE1_000__99 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__50 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__99 = Multipole( Kn1L = 4.07894736378E-6) -D000018__99 = Drift( L = 0.1193) -EDGE3_000__99 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__50 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__100 = Multipole( Kn1L = -4.07894736378E-6) -D000018__100 = Drift( L = 0.1193) -EDGE2_000__100 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__50 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__100 = Multipole( Kn1L = -4.4179123956E-5) -D000014__62 = Drift( L = 0.50037) -SF1_9__15 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000013__62 = Drift( L = 0.1042) -SF1_9__16 = Sextupole( L = 0.24, Kn2 = 1.7172760006) -D000012__62 = Drift( L = 0.1559) -HQF_9__13 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__63 = Drift( L = 0.0638) -CH16_9 = HKicker( L = 0.2) -D000028__31 = Drift( L = 0.29394) -EDGE1_000__101 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__51 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__101 = Multipole( Kn1L = 4.07894736378E-6) -D000018__101 = Drift( L = 0.1193) -EDGE3_000__101 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__51 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__102 = Multipole( Kn1L = -4.07894736378E-6) -D000018__102 = Drift( L = 0.1193) -EDGE2_000__102 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__51 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__102 = Multipole( Kn1L = -4.4179123956E-5) -D000014__63 = Drift( L = 0.50037) -SD2_9__15 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000013__63 = Drift( L = 0.1042) -SD2_9__16 = Sextupole( L = 0.24, Kn2 = -2.4101857362) -D000012__63 = Drift( L = 0.1559) -HQD_9__14 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__64 = Drift( L = 0.0638) -CV16_9 = VKicker( L = 0.2) -D000028__32 = Drift( L = 0.29394) -EDGE1_000__103 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__52 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__103 = Multipole( Kn1L = 4.07894736378E-6) -D000018__103 = Drift( L = 0.1193) -EDGE3_000__103 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__52 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__104 = Multipole( Kn1L = -4.07894736378E-6) -D000018__104 = Drift( L = 0.1193) -EDGE2_000__104 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__52 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__104 = Multipole( Kn1L = -4.4179123956E-5) -D000014__64 = Drift( L = 0.50037) -SF2_9__15 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000013__64 = Drift( L = 0.1042) -SF2_9__16 = Sextupole( L = 0.24, Kn2 = 3.010408804) -D000012__64 = Drift( L = 0.1559) -HQF_9__14 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000017__65 = Drift( L = 0.0638) -CH17_9 = HKicker( L = 0.2) -D000030__1 = Drift( L = 1.507746) -DB23_9__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000014__65 = Drift( L = 0.50037) -SD17_9 = Sextupole( L = 0.24) -D000012__65 = Drift( L = 0.1559) -HQD_9__15 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) -D000017__66 = Drift( L = 0.0638) -CV17_9 = VKicker( L = 0.2) -D000030__2 = Drift( L = 1.507746) -DB23_9__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000014__66 = Drift( L = 0.50037) -SF17_9 = Sextupole( L = 0.24) -D000012__66 = Drift( L = 0.1559) -HQF_9__15 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) -D000031__1 = Drift( L = 4.09917) -HQM22_9 = Quadrupole( L = 0.6, Kn1 = -0.1685397554,) -D000031__2 = Drift( L = 4.09917) -HQM21_9 = Quadrupole( L = 0.6, Kn1 = -0.1480298273) -D000032__1 = Drift( L = 0.535) -DB23_9__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__2 = Drift( L = 0.535) -HQM20_9 = Quadrupole( L = 0.6, Kn1 = 0.277981004) -D000032__3 = Drift( L = 0.535) -DB23_9__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__4 = Drift( L = 0.535) -HQM19_9 = Quadrupole( L = 0.6, Kn1 = -0.2250375129) -D000033__1 = Drift( L = 2.888539) -HQM18_9 = Quadrupole( L = 0.6, Kn1 = 0.02025658815,) -D000033__2 = Drift( L = 2.888539) -HQM17_9 = Quadrupole( L = 0.6, Kn1 = 0.03151369613,) -D000033__3 = Drift( L = 2.888539) -HQM16_9 = Quadrupole( L = 0.6, Kn1 = -0.1023890903,) -D000033__4 = Drift( L = 2.888539) -HQM15_9 = Quadrupole( L = 0.6, Kn1 = 0.1915717998,) -D000033__5 = Drift( L = 2.888539) -HQM14_9 = Quadrupole( L = 0.6, Kn1 = -0.1029612912,) -D000033__6 = Drift( L = 2.888539) -HQM13_9 = Quadrupole( L = 0.6, Kn1 = 0.2169016275) -D000032__5 = Drift( L = 0.535) -DB23_9__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__6 = Drift( L = 0.535) -HQM12_9 = Quadrupole( L = 0.6, Kn1 = -0.1792559115,) -D000032__7 = Drift( L = 0.535) -DB23_9__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000034 = Drift( L = 14.482069) -HQFSS_10__1 = Quadrupole( L = 0.6, Kn1 = 0.2106851444) -D000035__1 = Drift( L = 8.25) -HQDSS_10__1 = Quadrupole( L = 0.6, Kn1 = -0.2091039051) -D000035__2 = Drift( L = 8.25) -HQFSS_10__2 = Quadrupole( L = 0.6, Kn1 = 0.2106851444) -D000035__3 = Drift( L = 8.25) -HQDSS_10__2 = Quadrupole( L = 0.6, Kn1 = -0.2091039051) -D000036 = Drift( L = 6.11312) -HQFLSS_10__1 = Quadrupole( L = 1.2, Kn1 = 0.1407178134) -D000007__7 = Drift( L = 0.3) -RF0__1 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__8 = Drift( L = 0.3) -RF0__2 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__9 = Drift( L = 0.3) -HQDLSS_10__1 = Quadrupole( L = 1.2, Kn1 = -0.1176261853,) -D000007__10 = Drift( L = 0.3) -RF0__3 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__11 = Drift( L = 0.3) -RF0__4 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__12 = Drift( L = 0.3) -HQFLSS_10__2 = Quadrupole( L = 1.2, Kn1 = 0.1407178134) -D000007__13 = Drift( L = 0.3) -RF0__5 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__14 = Drift( L = 0.3) -RF0__6 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__15 = Drift( L = 0.3) -HQDLSS_10__2 = Quadrupole( L = 1.2, Kn1 = -0.1176261853,) -D000007__16 = Drift( L = 0.3) -RF0__7 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__17 = Drift( L = 0.3) -RF0__8 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__18 = Drift( L = 0.3) -HQFLSS_10__3 = Quadrupole( L = 1.2, Kn1 = 0.1407178134) -D000007__19 = Drift( L = 0.3) -RF0__9 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000037 = Drift( L = 0.3,) -RF0__10 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__20 = Drift( L = 0.3) -HQDLSS_10__3 = Quadrupole( L = 1.2, Kn1 = -0.1176261853,) -D000007__21 = Drift( L = 0.3) -RF0__11 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__22 = Drift( L = 0.3) -RF0__12 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__23 = Drift( L = 0.3) -HQFLSS_10__4 = Quadrupole( L = 1.2, Kn1 = 0.1407178134) -D000007__24 = Drift( L = 0.3) -RF0__13 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__25 = Drift( L = 0.3) -RF0__14 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__26 = Drift( L = 0.3) -HQDLSS_10__4 = Quadrupole( L = 1.2, Kn1 = -0.1176261853,) -D000007__27 = Drift( L = 0.3) -RF0__15 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__28 = Drift( L = 0.3) -RF0__16 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__29 = Drift( L = 0.3) -HQFLSS_10__5 = Quadrupole( L = 1.2, Kn1 = 0.1407178134) -D000007__30 = Drift( L = 0.3) -RF0__17 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__31 = Drift( L = 0.3) -RF0__18 = RFCavity( L = 4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 -D000007__32 = Drift( L = 0.3) -HQDLSS_10__5 = Quadrupole( L = 1.2, Kn1 = -0.1176261853,) -D000035__4 = Drift( L = 8.25) -HQFSS_10__3 = Quadrupole( L = 0.6, Kn1 = 0.2106851444) -D000035__5 = Drift( L = 8.25) -HQDSS_10__3 = Quadrupole( L = 0.6, Kn1 = -0.2091039051) -D000035__6 = Drift( L = 8.25) -HQFSS_10__4 = Quadrupole( L = 0.6, Kn1 = 0.2106851444) -D000035__7 = Drift( L = 8.25) -HQDSS_10__4 = Quadrupole( L = 0.6, Kn1 = -0.2091039051) -D000038 = Drift( L = 12.120511) -DB23_10__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__8 = Drift( L = 0.535) -HQM12_10 = Quadrupole( L = 0.6, Kn1 = 0.2083558853) -D000032__9 = Drift( L = 0.535) -DB23_10__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__10 = Drift( L = 0.535) -HQM13_10 = Quadrupole( L = 0.6, Kn1 = -0.3339548025) -D000039__1 = Drift( L = 3.311504) -HQM14_10 = Quadrupole( L = 0.6, Kn1 = 0.260187069,) -D000039__2 = Drift( L = 3.311504) -HQM15_10 = Quadrupole( L = 0.6, Kn1 = -0.3169977879,) -D000039__3 = Drift( L = 3.311504) -HQM16_10 = Quadrupole( L = 0.6, Kn1 = 0.2834385625) -D000039__4 = Drift( L = 3.311504) -HQM17_10 = Quadrupole( L = 0.6, Kn1 = -0.04877659888,) -D000039__5 = Drift( L = 3.311504) -HQM18_10 = Quadrupole( L = 0.6, Kn1 = -0.3358614339) -D000039__6 = Drift( L = 3.311504) -HQM19_10 = Quadrupole( L = 0.6, Kn1 = 0.3254555367,) -D000039__7 = Drift( L = 3.311504) -HQM20_10 = Quadrupole( L = 0.6, Kn1 = -0.2765818098) -D000032__11 = Drift( L = 0.535) -DB23_10__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__12 = Drift( L = 0.535) -HQM21_10 = Quadrupole( L = 0.6, Kn1 = 0.1976841058,) -D000032__13 = Drift( L = 0.535) -DB23_10__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__14 = Drift( L = 0.535) -HQM22_10 = Quadrupole( L = 0.6, Kn1 = -0.3313145061,) -D000040 = Drift( L = 3.425026) -HQF_11__1 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__67 = Drift( L = 0.1559) -SF00_11 = Sextupole( L = 0.24) -D000014__67 = Drift( L = 0.50037) -DB23_10__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000041__1 = Drift( L = 1.201799) -CV00_11 = VKicker( L = 0.2) -D000017__67 = Drift( L = 0.0638) -HQD_11__1 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__68 = Drift( L = 0.1559) -SD00_11 = Sextupole( L = 0.24) -D000014__68 = Drift( L = 0.50037) -DB23_10__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000041__2 = Drift( L = 1.201799) -CH00_11 = HKicker( L = 0.2) -D000017__68 = Drift( L = 0.0638) -HQF_11__2 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__69 = Drift( L = 0.1559) -SF1_1__1 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__65 = Drift( L = 0.1042) -SF1_1__2 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__69 = Drift( L = 0.50037) -EDGE1_000__105 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__53 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__105 = Multipole( Kn1L = 4.07894736378E-6) -D000018__105 = Drift( L = 0.1193) -EDGE3_000__105 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__53 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__106 = Multipole( Kn1L = -4.07894736378E-6) -D000018__106 = Drift( L = 0.1193) -EDGE2_000__106 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__53 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__106 = Multipole( Kn1L = -4.4179123956E-5) -D000042__1 = Drift( L = 0.319264) -CV01_11 = VKicker( L = 0.2) -D000017__69 = Drift( L = 0.0638) -HQD_11__2 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__70 = Drift( L = 0.1559) -SD1_1__1 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__66 = Drift( L = 0.1042) -SD1_1__2 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__70 = Drift( L = 0.50037) -EDGE1_000__107 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__54 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__107 = Multipole( Kn1L = 4.07894736378E-6) -D000018__107 = Drift( L = 0.1193) -EDGE3_000__107 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__54 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__108 = Multipole( Kn1L = -4.07894736378E-6) -D000018__108 = Drift( L = 0.1193) -EDGE2_000__108 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__54 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__108 = Multipole( Kn1L = -4.4179123956E-5) -D000042__2 = Drift( L = 0.319264) -CH01_11 = HKicker( L = 0.2) -D000017__70 = Drift( L = 0.0638) -HQF_11__3 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__71 = Drift( L = 0.1559) -SF2_1__1 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__67 = Drift( L = 0.1042) -SF2_1__2 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__71 = Drift( L = 0.50037) -EDGE1_000__109 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__55 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__109 = Multipole( Kn1L = 4.07894736378E-6) -D000018__109 = Drift( L = 0.1193) -EDGE3_000__109 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__55 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__110 = Multipole( Kn1L = -4.07894736378E-6) -D000018__110 = Drift( L = 0.1193) -EDGE2_000__110 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__55 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__110 = Multipole( Kn1L = -4.4179123956E-5) -D000042__3 = Drift( L = 0.319264) -CV02_11 = VKicker( L = 0.2) -D000017__71 = Drift( L = 0.0638) -HQD_11__3 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__72 = Drift( L = 0.1559) -SD2_1__1 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__68 = Drift( L = 0.1042) -SD2_1__2 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__72 = Drift( L = 0.50037) -EDGE1_000__111 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__56 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__111 = Multipole( Kn1L = 4.07894736378E-6) -D000018__111 = Drift( L = 0.1193) -EDGE3_000__111 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__56 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__112 = Multipole( Kn1L = -4.07894736378E-6) -D000018__112 = Drift( L = 0.1193) -EDGE2_000__112 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__56 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__112 = Multipole( Kn1L = -4.4179123956E-5) -D000042__4 = Drift( L = 0.319264) -CH02_11 = HKicker( L = 0.2) -D000017__72 = Drift( L = 0.0638) -HQF_11__4 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__73 = Drift( L = 0.1559) -SF1_1__3 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__69 = Drift( L = 0.1042) -SF1_1__4 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__73 = Drift( L = 0.50037) -EDGE1_000__113 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__57 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__113 = Multipole( Kn1L = 4.07894736378E-6) -D000018__113 = Drift( L = 0.1193) -EDGE3_000__113 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__57 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__114 = Multipole( Kn1L = -4.07894736378E-6) -D000018__114 = Drift( L = 0.1193) -EDGE2_000__114 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__57 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__114 = Multipole( Kn1L = -4.4179123956E-5) -D000042__5 = Drift( L = 0.319264) -CV03_11 = VKicker( L = 0.2) -D000017__73 = Drift( L = 0.0638) -HQD_11__4 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__74 = Drift( L = 0.1559) -SD1_1__3 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__70 = Drift( L = 0.1042) -SD1_1__4 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__74 = Drift( L = 0.50037) -EDGE1_000__115 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__58 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__115 = Multipole( Kn1L = 4.07894736378E-6) -D000018__115 = Drift( L = 0.1193) -EDGE3_000__115 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__58 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__116 = Multipole( Kn1L = -4.07894736378E-6) -D000018__116 = Drift( L = 0.1193) -EDGE2_000__116 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__58 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__116 = Multipole( Kn1L = -4.4179123956E-5) -D000042__6 = Drift( L = 0.319264) -CH03_11 = HKicker( L = 0.2) -D000017__74 = Drift( L = 0.0638) -HQF_11__5 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__75 = Drift( L = 0.1559) -SF2_1__3 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__71 = Drift( L = 0.1042) -SF2_1__4 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__75 = Drift( L = 0.50037) -EDGE1_000__117 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__59 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__117 = Multipole( Kn1L = 4.07894736378E-6) -D000018__117 = Drift( L = 0.1193) -EDGE3_000__117 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__59 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__118 = Multipole( Kn1L = -4.07894736378E-6) -D000018__118 = Drift( L = 0.1193) -EDGE2_000__118 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__59 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__118 = Multipole( Kn1L = -4.4179123956E-5) -D000042__7 = Drift( L = 0.319264) -CV04_11 = VKicker( L = 0.2) -D000017__75 = Drift( L = 0.0638) -HQD_11__5 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__76 = Drift( L = 0.1559) -SD2_1__3 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__72 = Drift( L = 0.1042) -SD2_1__4 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__76 = Drift( L = 0.50037) -EDGE1_000__119 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__60 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__119 = Multipole( Kn1L = 4.07894736378E-6) -D000018__119 = Drift( L = 0.1193) -EDGE3_000__119 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__60 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__120 = Multipole( Kn1L = -4.07894736378E-6) -D000018__120 = Drift( L = 0.1193) -EDGE2_000__120 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__60 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__120 = Multipole( Kn1L = -4.4179123956E-5) -D000042__8 = Drift( L = 0.319264) -CH04_11 = HKicker( L = 0.2) -D000017__76 = Drift( L = 0.0638) -HQF_11__6 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__77 = Drift( L = 0.1559) -SF1_1__5 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__73 = Drift( L = 0.1042) -SF1_1__6 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__77 = Drift( L = 0.50037) -EDGE1_000__121 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__61 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__121 = Multipole( Kn1L = 4.07894736378E-6) -D000018__121 = Drift( L = 0.1193) -EDGE3_000__121 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__61 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__122 = Multipole( Kn1L = -4.07894736378E-6) -D000018__122 = Drift( L = 0.1193) -EDGE2_000__122 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__61 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__122 = Multipole( Kn1L = -4.4179123956E-5) -D000042__9 = Drift( L = 0.319264) -CV05_11 = VKicker( L = 0.2) -D000017__77 = Drift( L = 0.0638) -HQD_11__6 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__78 = Drift( L = 0.1559) -SD1_1__5 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__74 = Drift( L = 0.1042) -SD1_1__6 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__78 = Drift( L = 0.50037) -EDGE1_000__123 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__62 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__123 = Multipole( Kn1L = 4.07894736378E-6) -D000018__123 = Drift( L = 0.1193) -EDGE3_000__123 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__62 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__124 = Multipole( Kn1L = -4.07894736378E-6) -D000018__124 = Drift( L = 0.1193) -EDGE2_000__124 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__62 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__124 = Multipole( Kn1L = -4.4179123956E-5) -D000042__10 = Drift( L = 0.319264) -CH05_11 = HKicker( L = 0.2) -D000017__78 = Drift( L = 0.0638) -HQF_11__7 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__79 = Drift( L = 0.1559) -SF2_1__5 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__75 = Drift( L = 0.1042) -SF2_1__6 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__79 = Drift( L = 0.50037) -EDGE1_000__125 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__63 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__125 = Multipole( Kn1L = 4.07894736378E-6) -D000018__125 = Drift( L = 0.1193) -EDGE3_000__125 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__63 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__126 = Multipole( Kn1L = -4.07894736378E-6) -D000018__126 = Drift( L = 0.1193) -EDGE2_000__126 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__63 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__126 = Multipole( Kn1L = -4.4179123956E-5) -D000042__11 = Drift( L = 0.319264) -CV06_11 = VKicker( L = 0.2) -D000017__79 = Drift( L = 0.0638) -HQD_11__7 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__80 = Drift( L = 0.1559) -SD2_1__5 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__76 = Drift( L = 0.1042) -SD2_1__6 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__80 = Drift( L = 0.50037) -EDGE1_000__127 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__64 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__127 = Multipole( Kn1L = 4.07894736378E-6) -D000018__127 = Drift( L = 0.1193) -EDGE3_000__127 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__64 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__128 = Multipole( Kn1L = -4.07894736378E-6) -D000018__128 = Drift( L = 0.1193) -EDGE2_000__128 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__64 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__128 = Multipole( Kn1L = -4.4179123956E-5) -D000042__12 = Drift( L = 0.319264) -CH06_11 = HKicker( L = 0.2) -D000017__80 = Drift( L = 0.0638) -HQF_11__8 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__81 = Drift( L = 0.1559) -SF1_1__7 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__77 = Drift( L = 0.1042) -SF1_1__8 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__81 = Drift( L = 0.50037) -EDGE1_000__129 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__65 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__129 = Multipole( Kn1L = 4.07894736378E-6) -D000018__129 = Drift( L = 0.1193) -EDGE3_000__129 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__65 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__130 = Multipole( Kn1L = -4.07894736378E-6) -D000018__130 = Drift( L = 0.1193) -EDGE2_000__130 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__65 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__130 = Multipole( Kn1L = -4.4179123956E-5) -D000042__13 = Drift( L = 0.319264) -CV07_11 = VKicker( L = 0.2) -D000017__81 = Drift( L = 0.0638) -HQD_11__8 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__82 = Drift( L = 0.1559) -SD1_1__7 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__78 = Drift( L = 0.1042) -SD1_1__8 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__82 = Drift( L = 0.50037) -EDGE1_000__131 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__66 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__131 = Multipole( Kn1L = 4.07894736378E-6) -D000018__131 = Drift( L = 0.1193) -EDGE3_000__131 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__66 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__132 = Multipole( Kn1L = -4.07894736378E-6) -D000018__132 = Drift( L = 0.1193) -EDGE2_000__132 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__66 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__132 = Multipole( Kn1L = -4.4179123956E-5) -D000042__14 = Drift( L = 0.319264) -CH07_11 = HKicker( L = 0.2) -D000017__82 = Drift( L = 0.0638) -HQF_11__9 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__83 = Drift( L = 0.1559) -SF2_1__7 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__79 = Drift( L = 0.1042) -SF2_1__8 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__83 = Drift( L = 0.50037) -EDGE1_000__133 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__67 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__133 = Multipole( Kn1L = 4.07894736378E-6) -D000018__133 = Drift( L = 0.1193) -EDGE3_000__133 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__67 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__134 = Multipole( Kn1L = -4.07894736378E-6) -D000018__134 = Drift( L = 0.1193) -EDGE2_000__134 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__67 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__134 = Multipole( Kn1L = -4.4179123956E-5) -D000042__15 = Drift( L = 0.319264) -CV08_11 = VKicker( L = 0.2) -D000017__83 = Drift( L = 0.0638) -HQD_11__9 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__84 = Drift( L = 0.1559) -SD2_1__7 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__80 = Drift( L = 0.1042) -SD2_1__8 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__84 = Drift( L = 0.50037) -EDGE1_000__135 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__68 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__135 = Multipole( Kn1L = 4.07894736378E-6) -D000018__135 = Drift( L = 0.1193) -EDGE3_000__135 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__68 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__136 = Multipole( Kn1L = -4.07894736378E-6) -D000018__136 = Drift( L = 0.1193) -EDGE2_000__136 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__68 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__136 = Multipole( Kn1L = -4.4179123956E-5) -D000042__16 = Drift( L = 0.319264) -CH08_11 = HKicker( L = 0.2) -D000017__84 = Drift( L = 0.0638) -HQF_11__10 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__85 = Drift( L = 0.1559) -SF1_1__9 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__81 = Drift( L = 0.1042) -SF1_1__10 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__85 = Drift( L = 0.50037) -EDGE1_000__137 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__69 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__137 = Multipole( Kn1L = 4.07894736378E-6) -D000018__137 = Drift( L = 0.1193) -EDGE3_000__137 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__69 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__138 = Multipole( Kn1L = -4.07894736378E-6) -D000018__138 = Drift( L = 0.1193) -EDGE2_000__138 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__69 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__138 = Multipole( Kn1L = -4.4179123956E-5) -D000042__17 = Drift( L = 0.319264) -CV09_11 = VKicker( L = 0.2) -D000017__85 = Drift( L = 0.0638) -HQD_11__10 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__86 = Drift( L = 0.1559) -SD1_1__9 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__82 = Drift( L = 0.1042) -SD1_1__10 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__86 = Drift( L = 0.50037) -EDGE1_000__139 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__70 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__139 = Multipole( Kn1L = 4.07894736378E-6) -D000018__139 = Drift( L = 0.1193) -EDGE3_000__139 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__70 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__140 = Multipole( Kn1L = -4.07894736378E-6) -D000018__140 = Drift( L = 0.1193) -EDGE2_000__140 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__70 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__140 = Multipole( Kn1L = -4.4179123956E-5) -D000042__18 = Drift( L = 0.319264) -CH09_11 = HKicker( L = 0.2) -D000017__86 = Drift( L = 0.0638) -HQF_11__11 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__87 = Drift( L = 0.1559) -SF2_1__9 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__83 = Drift( L = 0.1042) -SF2_1__10 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__87 = Drift( L = 0.50037) -EDGE1_000__141 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__71 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__141 = Multipole( Kn1L = 4.07894736378E-6) -D000018__141 = Drift( L = 0.1193) -EDGE3_000__141 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__71 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__142 = Multipole( Kn1L = -4.07894736378E-6) -D000018__142 = Drift( L = 0.1193) -EDGE2_000__142 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__71 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__142 = Multipole( Kn1L = -4.4179123956E-5) -D000042__19 = Drift( L = 0.319264) -CV10_11 = VKicker( L = 0.2) -D000017__87 = Drift( L = 0.0638) -HQD_11__11 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__88 = Drift( L = 0.1559) -SD2_1__9 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__84 = Drift( L = 0.1042) -SD2_1__10 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__88 = Drift( L = 0.50037) -EDGE1_000__143 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__72 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__143 = Multipole( Kn1L = 4.07894736378E-6) -D000018__143 = Drift( L = 0.1193) -EDGE3_000__143 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__72 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__144 = Multipole( Kn1L = -4.07894736378E-6) -D000018__144 = Drift( L = 0.1193) -EDGE2_000__144 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__72 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__144 = Multipole( Kn1L = -4.4179123956E-5) -D000042__20 = Drift( L = 0.319264) -CH10_11 = HKicker( L = 0.2) -D000017__88 = Drift( L = 0.0638) -HQF_11__12 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__89 = Drift( L = 0.1559) -SF1_1__11 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__85 = Drift( L = 0.1042) -SF1_1__12 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__89 = Drift( L = 0.50037) -EDGE1_000__145 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__73 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__145 = Multipole( Kn1L = 4.07894736378E-6) -D000018__145 = Drift( L = 0.1193) -EDGE3_000__145 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__73 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__146 = Multipole( Kn1L = -4.07894736378E-6) -D000018__146 = Drift( L = 0.1193) -EDGE2_000__146 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__73 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__146 = Multipole( Kn1L = -4.4179123956E-5) -D000042__21 = Drift( L = 0.319264) -CV11_11 = VKicker( L = 0.2) -D000017__89 = Drift( L = 0.0638) -HQD_11__12 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__90 = Drift( L = 0.1559) -SD1_1__11 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__86 = Drift( L = 0.1042) -SD1_1__12 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__90 = Drift( L = 0.50037) -EDGE1_000__147 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__74 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__147 = Multipole( Kn1L = 4.07894736378E-6) -D000018__147 = Drift( L = 0.1193) -EDGE3_000__147 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__74 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__148 = Multipole( Kn1L = -4.07894736378E-6) -D000018__148 = Drift( L = 0.1193) -EDGE2_000__148 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__74 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__148 = Multipole( Kn1L = -4.4179123956E-5) -D000042__22 = Drift( L = 0.319264) -CH11_11 = HKicker( L = 0.2) -D000017__90 = Drift( L = 0.0638) -HQF_11__13 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__91 = Drift( L = 0.1559) -SF2_1__11 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__87 = Drift( L = 0.1042) -SF2_1__12 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__91 = Drift( L = 0.50037) -EDGE1_000__149 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__75 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__149 = Multipole( Kn1L = 4.07894736378E-6) -D000018__149 = Drift( L = 0.1193) -EDGE3_000__149 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__75 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__150 = Multipole( Kn1L = -4.07894736378E-6) -D000018__150 = Drift( L = 0.1193) -EDGE2_000__150 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__75 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__150 = Multipole( Kn1L = -4.4179123956E-5) -D000042__23 = Drift( L = 0.319264) -CV12_11 = VKicker( L = 0.2) -D000017__91 = Drift( L = 0.0638) -HQD_11__13 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__92 = Drift( L = 0.1559) -SD2_1__11 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__88 = Drift( L = 0.1042) -SD2_1__12 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__92 = Drift( L = 0.50037) -EDGE1_000__151 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__76 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__151 = Multipole( Kn1L = 4.07894736378E-6) -D000018__151 = Drift( L = 0.1193) -EDGE3_000__151 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__76 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__152 = Multipole( Kn1L = -4.07894736378E-6) -D000018__152 = Drift( L = 0.1193) -EDGE2_000__152 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__76 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__152 = Multipole( Kn1L = -4.4179123956E-5) -D000042__24 = Drift( L = 0.319264) -CH12_11 = HKicker( L = 0.2) -D000017__92 = Drift( L = 0.0638) -HQF_11__14 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__93 = Drift( L = 0.1559) -SF1_1__13 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__89 = Drift( L = 0.1042) -SF1_1__14 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__93 = Drift( L = 0.50037) -EDGE1_000__153 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__77 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__153 = Multipole( Kn1L = 4.07894736378E-6) -D000018__153 = Drift( L = 0.1193) -EDGE3_000__153 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__77 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__154 = Multipole( Kn1L = -4.07894736378E-6) -D000018__154 = Drift( L = 0.1193) -EDGE2_000__154 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__77 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__154 = Multipole( Kn1L = -4.4179123956E-5) -D000042__25 = Drift( L = 0.319264) -CV13_11 = VKicker( L = 0.2) -D000017__93 = Drift( L = 0.0638) -HQD_11__14 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__94 = Drift( L = 0.1559) -SD1_1__13 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__90 = Drift( L = 0.1042) -SD1_1__14 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__94 = Drift( L = 0.50037) -EDGE1_000__155 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__78 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__155 = Multipole( Kn1L = 4.07894736378E-6) -D000018__155 = Drift( L = 0.1193) -EDGE3_000__155 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__78 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__156 = Multipole( Kn1L = -4.07894736378E-6) -D000018__156 = Drift( L = 0.1193) -EDGE2_000__156 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__78 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__156 = Multipole( Kn1L = -4.4179123956E-5) -D000042__26 = Drift( L = 0.319264) -CH13_11 = HKicker( L = 0.2) -D000017__94 = Drift( L = 0.0638) -HQF_11__15 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__95 = Drift( L = 0.1559) -SF2_1__13 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__91 = Drift( L = 0.1042) -SF2_1__14 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__95 = Drift( L = 0.50037) -EDGE1_000__157 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__79 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__157 = Multipole( Kn1L = 4.07894736378E-6) -D000018__157 = Drift( L = 0.1193) -EDGE3_000__157 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__79 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__158 = Multipole( Kn1L = -4.07894736378E-6) -D000018__158 = Drift( L = 0.1193) -EDGE2_000__158 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__79 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__158 = Multipole( Kn1L = -4.4179123956E-5) -D000042__27 = Drift( L = 0.319264) -CV14_11 = VKicker( L = 0.2) -D000017__95 = Drift( L = 0.0638) -HQD_11__15 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__96 = Drift( L = 0.1559) -SD2_1__13 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__92 = Drift( L = 0.1042) -SD2_1__14 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__96 = Drift( L = 0.50037) -EDGE1_000__159 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__80 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__159 = Multipole( Kn1L = 4.07894736378E-6) -D000018__159 = Drift( L = 0.1193) -EDGE3_000__159 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__80 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__160 = Multipole( Kn1L = -4.07894736378E-6) -D000018__160 = Drift( L = 0.1193) -EDGE2_000__160 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__80 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__160 = Multipole( Kn1L = -4.4179123956E-5) -D000042__28 = Drift( L = 0.319264) -CH14_11 = HKicker( L = 0.2) -D000017__96 = Drift( L = 0.0638) -HQF_11__16 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__97 = Drift( L = 0.1559) -SF1_1__15 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__93 = Drift( L = 0.1042) -SF1_1__16 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__97 = Drift( L = 0.50037) -EDGE1_000__161 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__81 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__161 = Multipole( Kn1L = 4.07894736378E-6) -D000018__161 = Drift( L = 0.1193) -EDGE3_000__161 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__81 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__162 = Multipole( Kn1L = -4.07894736378E-6) -D000018__162 = Drift( L = 0.1193) -EDGE2_000__162 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__81 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__162 = Multipole( Kn1L = -4.4179123956E-5) -D000042__29 = Drift( L = 0.319264) -CV15_11 = VKicker( L = 0.2) -D000017__97 = Drift( L = 0.0638) -HQD_11__16 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__98 = Drift( L = 0.1559) -SD1_1__15 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__94 = Drift( L = 0.1042) -SD1_1__16 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__98 = Drift( L = 0.50037) -EDGE1_000__163 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__82 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__163 = Multipole( Kn1L = 4.07894736378E-6) -D000018__163 = Drift( L = 0.1193) -EDGE3_000__163 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__82 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__164 = Multipole( Kn1L = -4.07894736378E-6) -D000018__164 = Drift( L = 0.1193) -EDGE2_000__164 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__82 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__164 = Multipole( Kn1L = -4.4179123956E-5) -D000042__30 = Drift( L = 0.319264) -CH15_11 = HKicker( L = 0.2) -D000017__98 = Drift( L = 0.0638) -HQF_11__17 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__99 = Drift( L = 0.1559) -SF2_1__15 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__95 = Drift( L = 0.1042) -SF2_1__16 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__99 = Drift( L = 0.50037) -EDGE1_000__165 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__83 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__165 = Multipole( Kn1L = 4.07894736378E-6) -D000018__165 = Drift( L = 0.1193) -EDGE3_000__165 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__83 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__166 = Multipole( Kn1L = -4.07894736378E-6) -D000018__166 = Drift( L = 0.1193) -EDGE2_000__166 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__83 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__166 = Multipole( Kn1L = -4.4179123956E-5) -D000042__31 = Drift( L = 0.319264) -CV16_11 = VKicker( L = 0.2) -D000017__99 = Drift( L = 0.0638) -HQD_11__17 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__100 = Drift( L = 0.1559) -SD2_1__15 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__96 = Drift( L = 0.1042) -SD2_1__16 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__100 = Drift( L = 0.50037) -EDGE1_000__167 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__84 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__167 = Multipole( Kn1L = 4.07894736378E-6) -D000018__167 = Drift( L = 0.1193) -EDGE3_000__167 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__84 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__168 = Multipole( Kn1L = -4.07894736378E-6) -D000018__168 = Drift( L = 0.1193) -EDGE2_000__168 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__84 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__168 = Multipole( Kn1L = -4.4179123956E-5) -D000042__32 = Drift( L = 0.319264) -CH16_11 = HKicker( L = 0.2) -D000017__100 = Drift( L = 0.0638) -HQF_11__18 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__101 = Drift( L = 0.1559) -SF17_11 = Sextupole( L = 0.24) -D000014__101 = Drift( L = 0.50037) -DB23_11__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000043__1 = Drift( L = 1.374861) -CV17_11 = VKicker( L = 0.2) -D000017__101 = Drift( L = 0.0638) -HQD_11__18 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) -D000012__102 = Drift( L = 0.1559) -SD17_11 = Sextupole( L = 0.24) -D000014__102 = Drift( L = 0.50037) -DB23_11__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000043__2 = Drift( L = 1.374861) -CH17_11 = HKicker( L = 0.2) -D000017__102 = Drift( L = 0.0638) -HQF_11__19 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) -D000012__103 = Drift( L = 0.1559) -SF18_11 = Sextupole( L = 0.24) -D000044__1 = Drift( L = 4.055463) -HQM22_11 = Quadrupole( L = 0.6, Kn1 = -0.3288030901,) -D000044__2 = Drift( L = 4.055463) -HQM21_11 = Quadrupole( L = 0.6, Kn1 = 0.1805100149,) -D000032__15 = Drift( L = 0.535) -DB23_11__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__16 = Drift( L = 0.535) -HQM20_11 = Quadrupole( L = 0.6, Kn1 = -0.14458509) -D000032__17 = Drift( L = 0.535) -DB23_11__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__18 = Drift( L = 0.535) -HQM19_11 = Quadrupole( L = 0.6, Kn1 = 0.2557330047,) -D000045__1 = Drift( L = 3.035675) -HQM18_11 = Quadrupole( L = 0.6, Kn1 = -0.1001891766,) -D000045__2 = Drift( L = 3.035675) -HQM17_11 = Quadrupole( L = 0.6, Kn1 = -0.08890632892) -D000045__3 = Drift( L = 3.035675) -HQM16_11 = Quadrupole( L = 0.6, Kn1 = -0.1156289813,) -D000045__4 = Drift( L = 3.035675) -HQM15_11 = Quadrupole( L = 0.6, Kn1 = 0.1167136133,) -D000045__5 = Drift( L = 3.035675) -HQM14_11 = Quadrupole( L = 0.6, Kn1 = 0.01649413513,) -D000045__6 = Drift( L = 3.035675) -HQM13_11 = Quadrupole( L = 0.6, Kn1 = 0.1479132215,) -D000032__19 = Drift( L = 0.535) -DB23_11__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__20 = Drift( L = 0.535) -HQM12_11 = Quadrupole( L = 0.6, Kn1 = -0.1783631142,) -D000032__21 = Drift( L = 0.535) -DB23_11__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000046__1 = Drift( L = 2.526471) -HQFSS_12__1 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) -D000047__1 = Drift( L = 11.5) -HQDSS_12__1 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) -D000047__2 = Drift( L = 11.5) -HQFSS_12__2 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) -D000047__3 = Drift( L = 11.5) -HQDSS_12__2 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) -D000046__2 = Drift( L = 2.526471) -DB12_4M__1 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) -D000048__1 = Drift( L = 0.0975) -DB12_4M__2 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) -D000048__2 = Drift( L = 0.0975) -DB12_4M__3 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) -D000049 = Drift( L = 5.21429) -HQFSS_12__3 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) -D000047__4 = Drift( L = 11.5) -HQDSS_12__3 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) -D000047__5 = Drift( L = 11.5) -HQFSS_12__4 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) -D000050 = Drift( L = 12.836707) -IP12 = Marker() -D000051 = Drift( L = 6.263293) -HQDSS_12__4 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) -D000047__6 = Drift( L = 11.5) -HQFSS_12__5 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) -D000047__7 = Drift( L = 11.5) -HQDSS_12__5 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) -D000047__8 = Drift( L = 11.5) -HQFSS_12__6 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) -D000052 = Drift( L = 0.714288) -DB12_4P__1 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) -D000048__3 = Drift( L = 0.0975) -DB12_4P__2 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) -D000048__4 = Drift( L = 0.0975) -DB12_4P__3 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) -D000053__1 = Drift( L = 1.590529) -HQDSS_12__6 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) -MKICK_INJ = Marker() -D000047__9 = Drift( L = 11.5) -HQFSS_12__7 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) -D000047__10 = Drift( L = 11.5) -HQDSS_12__7 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) -D000047__11 = Drift( L = 11.5) -MCOLL_INJ = Marker() -HQFSS_12__8 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) -D000053__2 = Drift( L = 1.590529) -DB23_12__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__22 = Drift( L = 0.535) -HQM14_12 = Quadrupole( L = 0.6, Kn1 = -0.1363018832,) -D000032__23 = Drift( L = 0.535) -DB23_12__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__24 = Drift( L = 0.535) -HQM15_12 = Quadrupole( L = 0.6, Kn1 = 0.1895913536,) -D000054__1 = Drift( L = 4.706452) -HQM16_12 = Quadrupole( L = 0.6, Kn1 = -0.2272414187) -D000054__2 = Drift( L = 4.706452) -HQM17_12 = Quadrupole( L = 0.6, Kn1 = 0.3038863874,) -D000054__3 = Drift( L = 4.706452) -HQM18_12 = Quadrupole( L = 0.6, Kn1 = -0.3056640346,) -D000054__4 = Drift( L = 4.706452) -HQM19_12 = Quadrupole( L = 0.6, Kn1 = 0.33500458,) -D000032__25 = Drift( L = 0.535) -DB23_12__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__26 = Drift( L = 0.535) -HQM20_12 = Quadrupole( L = 0.6, Kn1 = -0.2490023496,) -D000032__27 = Drift( L = 0.535) -DB23_12__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__28 = Drift( L = 0.535) -HQM21_12 = Quadrupole( L = 0.6, Kn1 = 0.26081512,) -D000055__1 = Drift( L = 4.809451) -HQM22_12 = Quadrupole( L = 0.6, Kn1 = -0.3351370008) -D000055__2 = Drift( L = 4.809451) -SFM1_1 = Sextupole( L = 0.24) -D000056__1 = Drift( L = 0.2) -HQF_1__1 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__103 = Drift( L = 0.0638) -CH00_1 = HKicker( L = 0.2) -D000057__1 = Drift( L = 1.442045) -DB23_12__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000014__103 = Drift( L = 0.50037) -SD00_1 = Sextupole( L = 0.24) -D000012__104 = Drift( L = 0.1559) -HQD_1__1 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__104 = Drift( L = 0.0638) -CV00_1 = VKicker( L = 0.2) -D000057__2 = Drift( L = 1.442045) -DB23_12__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000014__104 = Drift( L = 0.50037) -SF00_1 = Sextupole( L = 0.24) -D000012__105 = Drift( L = 0.1559) -HQF_1__2 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__105 = Drift( L = 0.0638) -CH01_1 = HKicker( L = 0.2) -D000058__1 = Drift( L = 0.386448) -EDGE1_000__169 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__85 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__169 = Multipole( Kn1L = 4.07894736378E-6) -D000018__169 = Drift( L = 0.1193) -EDGE3_000__169 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__85 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__170 = Multipole( Kn1L = -4.07894736378E-6) -D000018__170 = Drift( L = 0.1193) -EDGE2_000__170 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__85 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__170 = Multipole( Kn1L = -4.4179123956E-5) -D000014__105 = Drift( L = 0.50037) -SD1_1__17 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__97 = Drift( L = 0.1042) -SD1_1__18 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000012__106 = Drift( L = 0.1559) -HQD_1__2 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__106 = Drift( L = 0.0638) -CV01_1 = VKicker( L = 0.2) -D000058__2 = Drift( L = 0.386448) -EDGE1_000__171 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__86 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__171 = Multipole( Kn1L = 4.07894736378E-6) -D000018__171 = Drift( L = 0.1193) -EDGE3_000__171 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__86 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__172 = Multipole( Kn1L = -4.07894736378E-6) -D000018__172 = Drift( L = 0.1193) -EDGE2_000__172 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__86 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__172 = Multipole( Kn1L = -4.4179123956E-5) -D000014__106 = Drift( L = 0.50037) -SF1_1__17 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__98 = Drift( L = 0.1042) -SF1_1__18 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000012__107 = Drift( L = 0.1559) -HQF_1__3 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__107 = Drift( L = 0.0638) -CH02_1 = HKicker( L = 0.2) -D000058__3 = Drift( L = 0.386448) -EDGE1_000__173 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__87 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__173 = Multipole( Kn1L = 4.07894736378E-6) -D000018__173 = Drift( L = 0.1193) -EDGE3_000__173 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__87 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__174 = Multipole( Kn1L = -4.07894736378E-6) -D000018__174 = Drift( L = 0.1193) -EDGE2_000__174 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__87 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__174 = Multipole( Kn1L = -4.4179123956E-5) -D000014__107 = Drift( L = 0.50037) -SD2_1__17 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__99 = Drift( L = 0.1042) -SD2_1__18 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000012__108 = Drift( L = 0.1559) -HQD_1__3 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__108 = Drift( L = 0.0638) -CV02_1 = VKicker( L = 0.2) -D000058__4 = Drift( L = 0.386448) -EDGE1_000__175 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__88 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__175 = Multipole( Kn1L = 4.07894736378E-6) -D000018__175 = Drift( L = 0.1193) -EDGE3_000__175 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__88 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__176 = Multipole( Kn1L = -4.07894736378E-6) -D000018__176 = Drift( L = 0.1193) -EDGE2_000__176 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__88 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__176 = Multipole( Kn1L = -4.4179123956E-5) -D000014__108 = Drift( L = 0.50037) -SF2_1__17 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__100 = Drift( L = 0.1042) -SF2_1__18 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000012__109 = Drift( L = 0.1559) -HQF_1__4 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__109 = Drift( L = 0.0638) -CH03_1 = HKicker( L = 0.2) -D000058__5 = Drift( L = 0.386448) -EDGE1_000__177 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__89 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__177 = Multipole( Kn1L = 4.07894736378E-6) -D000018__177 = Drift( L = 0.1193) -EDGE3_000__177 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__89 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__178 = Multipole( Kn1L = -4.07894736378E-6) -D000018__178 = Drift( L = 0.1193) -EDGE2_000__178 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__89 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__178 = Multipole( Kn1L = -4.4179123956E-5) -D000014__109 = Drift( L = 0.50037) -SD1_1__19 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__101 = Drift( L = 0.1042) -SD1_1__20 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000012__110 = Drift( L = 0.1559) -HQD_1__4 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__110 = Drift( L = 0.0638) -CV03_1 = VKicker( L = 0.2) -D000058__6 = Drift( L = 0.386448) -EDGE1_000__179 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__90 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__179 = Multipole( Kn1L = 4.07894736378E-6) -D000018__179 = Drift( L = 0.1193) -EDGE3_000__179 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__90 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__180 = Multipole( Kn1L = -4.07894736378E-6) -D000018__180 = Drift( L = 0.1193) -EDGE2_000__180 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__90 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__180 = Multipole( Kn1L = -4.4179123956E-5) -D000014__110 = Drift( L = 0.50037) -SF1_1__19 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__102 = Drift( L = 0.1042) -SF1_1__20 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000012__111 = Drift( L = 0.1559) -HQF_1__5 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__111 = Drift( L = 0.0638) -CH04_1 = HKicker( L = 0.2) -D000058__7 = Drift( L = 0.386448) -EDGE1_000__181 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__91 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__181 = Multipole( Kn1L = 4.07894736378E-6) -D000018__181 = Drift( L = 0.1193) -EDGE3_000__181 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__91 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__182 = Multipole( Kn1L = -4.07894736378E-6) -D000018__182 = Drift( L = 0.1193) -EDGE2_000__182 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__91 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__182 = Multipole( Kn1L = -4.4179123956E-5) -D000014__111 = Drift( L = 0.50037) -SD2_1__19 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__103 = Drift( L = 0.1042) -SD2_1__20 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000012__112 = Drift( L = 0.1559) -HQD_1__5 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__112 = Drift( L = 0.0638) -CV04_1 = VKicker( L = 0.2) -D000058__8 = Drift( L = 0.386448) -EDGE1_000__183 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__92 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__183 = Multipole( Kn1L = 4.07894736378E-6) -D000018__183 = Drift( L = 0.1193) -EDGE3_000__183 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__92 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__184 = Multipole( Kn1L = -4.07894736378E-6) -D000018__184 = Drift( L = 0.1193) -EDGE2_000__184 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__92 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__184 = Multipole( Kn1L = -4.4179123956E-5) -D000014__112 = Drift( L = 0.50037) -SF2_1__19 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__104 = Drift( L = 0.1042) -SF2_1__20 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000012__113 = Drift( L = 0.1559) -HQF_1__6 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__113 = Drift( L = 0.0638) -CH05_1 = HKicker( L = 0.2) -D000058__9 = Drift( L = 0.386448) -EDGE1_000__185 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__93 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__185 = Multipole( Kn1L = 4.07894736378E-6) -D000018__185 = Drift( L = 0.1193) -EDGE3_000__185 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__93 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__186 = Multipole( Kn1L = -4.07894736378E-6) -D000018__186 = Drift( L = 0.1193) -EDGE2_000__186 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__93 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__186 = Multipole( Kn1L = -4.4179123956E-5) -D000014__113 = Drift( L = 0.50037) -SD1_1__21 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__105 = Drift( L = 0.1042) -SD1_1__22 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000012__114 = Drift( L = 0.1559) -HQD_1__6 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__114 = Drift( L = 0.0638) -CV05_1 = VKicker( L = 0.2) -D000058__10 = Drift( L = 0.386448) -EDGE1_000__187 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__94 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__187 = Multipole( Kn1L = 4.07894736378E-6) -D000018__187 = Drift( L = 0.1193) -EDGE3_000__187 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__94 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__188 = Multipole( Kn1L = -4.07894736378E-6) -D000018__188 = Drift( L = 0.1193) -EDGE2_000__188 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__94 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__188 = Multipole( Kn1L = -4.4179123956E-5) -D000014__114 = Drift( L = 0.50037) -SF1_1__21 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__106 = Drift( L = 0.1042) -SF1_1__22 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000012__115 = Drift( L = 0.1559) -HQF_1__7 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__115 = Drift( L = 0.0638) -CH06_1 = HKicker( L = 0.2) -D000058__11 = Drift( L = 0.386448) -EDGE1_000__189 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__95 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__189 = Multipole( Kn1L = 4.07894736378E-6) -D000018__189 = Drift( L = 0.1193) -EDGE3_000__189 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__95 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__190 = Multipole( Kn1L = -4.07894736378E-6) -D000018__190 = Drift( L = 0.1193) -EDGE2_000__190 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__95 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__190 = Multipole( Kn1L = -4.4179123956E-5) -D000014__115 = Drift( L = 0.50037) -SD2_1__21 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__107 = Drift( L = 0.1042) -SD2_1__22 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000012__116 = Drift( L = 0.1559) -HQD_1__7 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__116 = Drift( L = 0.0638) -CV06_1 = VKicker( L = 0.2) -D000058__12 = Drift( L = 0.386448) -EDGE1_000__191 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__96 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__191 = Multipole( Kn1L = 4.07894736378E-6) -D000018__191 = Drift( L = 0.1193) -EDGE3_000__191 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__96 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__192 = Multipole( Kn1L = -4.07894736378E-6) -D000018__192 = Drift( L = 0.1193) -EDGE2_000__192 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__96 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__192 = Multipole( Kn1L = -4.4179123956E-5) -D000014__116 = Drift( L = 0.50037) -SF2_1__21 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__108 = Drift( L = 0.1042) -SF2_1__22 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000012__117 = Drift( L = 0.1559) -HQF_1__8 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__117 = Drift( L = 0.0638) -CH07_1 = HKicker( L = 0.2) -D000058__13 = Drift( L = 0.386448) -EDGE1_000__193 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__97 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__193 = Multipole( Kn1L = 4.07894736378E-6) -D000018__193 = Drift( L = 0.1193) -EDGE3_000__193 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__97 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__194 = Multipole( Kn1L = -4.07894736378E-6) -D000018__194 = Drift( L = 0.1193) -EDGE2_000__194 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__97 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__194 = Multipole( Kn1L = -4.4179123956E-5) -D000014__117 = Drift( L = 0.50037) -SD1_1__23 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__109 = Drift( L = 0.1042) -SD1_1__24 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000012__118 = Drift( L = 0.1559) -HQD_1__8 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__118 = Drift( L = 0.0638) -CV07_1 = VKicker( L = 0.2) -D000058__14 = Drift( L = 0.386448) -EDGE1_000__195 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__98 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__195 = Multipole( Kn1L = 4.07894736378E-6) -D000018__195 = Drift( L = 0.1193) -EDGE3_000__195 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__98 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__196 = Multipole( Kn1L = -4.07894736378E-6) -D000018__196 = Drift( L = 0.1193) -EDGE2_000__196 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__98 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__196 = Multipole( Kn1L = -4.4179123956E-5) -D000014__118 = Drift( L = 0.50037) -SF1_1__23 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__110 = Drift( L = 0.1042) -SF1_1__24 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000012__119 = Drift( L = 0.1559) -HQF_1__9 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__119 = Drift( L = 0.0638) -CH08_1 = HKicker( L = 0.2) -D000058__15 = Drift( L = 0.386448) -EDGE1_000__197 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__99 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__197 = Multipole( Kn1L = 4.07894736378E-6) -D000018__197 = Drift( L = 0.1193) -EDGE3_000__197 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__99 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__198 = Multipole( Kn1L = -4.07894736378E-6) -D000018__198 = Drift( L = 0.1193) -EDGE2_000__198 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__99 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__198 = Multipole( Kn1L = -4.4179123956E-5) -D000014__119 = Drift( L = 0.50037) -SD2_1__23 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__111 = Drift( L = 0.1042) -SD2_1__24 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000012__120 = Drift( L = 0.1559) -HQD_1__9 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__120 = Drift( L = 0.0638) -CV08_1 = VKicker( L = 0.2) -D000058__16 = Drift( L = 0.386448) -EDGE1_000__199 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__100 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__199 = Multipole( Kn1L = 4.07894736378E-6) -D000018__199 = Drift( L = 0.1193) -EDGE3_000__199 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__100 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__200 = Multipole( Kn1L = -4.07894736378E-6) -D000018__200 = Drift( L = 0.1193) -EDGE2_000__200 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__100 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__200 = Multipole( Kn1L = -4.4179123956E-5) -D000014__120 = Drift( L = 0.50037) -SF2_1__23 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__112 = Drift( L = 0.1042) -SF2_1__24 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000012__121 = Drift( L = 0.1559) -HQF_1__10 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__121 = Drift( L = 0.0638) -CH09_1 = HKicker( L = 0.2) -D000058__17 = Drift( L = 0.386448) -EDGE1_000__201 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__101 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__201 = Multipole( Kn1L = 4.07894736378E-6) -D000018__201 = Drift( L = 0.1193) -EDGE3_000__201 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__101 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__202 = Multipole( Kn1L = -4.07894736378E-6) -D000018__202 = Drift( L = 0.1193) -EDGE2_000__202 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__101 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__202 = Multipole( Kn1L = -4.4179123956E-5) -D000014__121 = Drift( L = 0.50037) -SD1_1__25 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__113 = Drift( L = 0.1042) -SD1_1__26 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000012__122 = Drift( L = 0.1559) -HQD_1__10 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__122 = Drift( L = 0.0638) -CV09_1 = VKicker( L = 0.2) -D000058__18 = Drift( L = 0.386448) -EDGE1_000__203 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__102 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__203 = Multipole( Kn1L = 4.07894736378E-6) -D000018__203 = Drift( L = 0.1193) -EDGE3_000__203 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__102 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__204 = Multipole( Kn1L = -4.07894736378E-6) -D000018__204 = Drift( L = 0.1193) -EDGE2_000__204 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__102 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__204 = Multipole( Kn1L = -4.4179123956E-5) -D000014__122 = Drift( L = 0.50037) -SF1_1__25 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__114 = Drift( L = 0.1042) -SF1_1__26 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000012__123 = Drift( L = 0.1559) -HQF_1__11 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__123 = Drift( L = 0.0638) -CH10_1 = HKicker( L = 0.2) -D000058__19 = Drift( L = 0.386448) -EDGE1_000__205 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__103 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__205 = Multipole( Kn1L = 4.07894736378E-6) -D000018__205 = Drift( L = 0.1193) -EDGE3_000__205 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__103 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__206 = Multipole( Kn1L = -4.07894736378E-6) -D000018__206 = Drift( L = 0.1193) -EDGE2_000__206 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__103 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__206 = Multipole( Kn1L = -4.4179123956E-5) -D000014__123 = Drift( L = 0.50037) -SD2_1__25 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__115 = Drift( L = 0.1042) -SD2_1__26 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000012__124 = Drift( L = 0.1559) -HQD_1__11 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__124 = Drift( L = 0.0638) -CV10_1 = VKicker( L = 0.2) -D000058__20 = Drift( L = 0.386448) -EDGE1_000__207 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__104 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__207 = Multipole( Kn1L = 4.07894736378E-6) -D000018__207 = Drift( L = 0.1193) -EDGE3_000__207 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__104 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__208 = Multipole( Kn1L = -4.07894736378E-6) -D000018__208 = Drift( L = 0.1193) -EDGE2_000__208 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__104 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__208 = Multipole( Kn1L = -4.4179123956E-5) -D000014__124 = Drift( L = 0.50037) -SF2_1__25 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__116 = Drift( L = 0.1042) -SF2_1__26 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000012__125 = Drift( L = 0.1559) -HQF_1__12 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__125 = Drift( L = 0.0638) -CH11_1 = HKicker( L = 0.2) -D000058__21 = Drift( L = 0.386448) -EDGE1_000__209 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__105 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__209 = Multipole( Kn1L = 4.07894736378E-6) -D000018__209 = Drift( L = 0.1193) -EDGE3_000__209 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__105 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__210 = Multipole( Kn1L = -4.07894736378E-6) -D000018__210 = Drift( L = 0.1193) -EDGE2_000__210 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__105 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__210 = Multipole( Kn1L = -4.4179123956E-5) -D000014__125 = Drift( L = 0.50037) -SD1_1__27 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__117 = Drift( L = 0.1042) -SD1_1__28 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000012__126 = Drift( L = 0.1559) -HQD_1__12 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__126 = Drift( L = 0.0638) -CV11_1 = VKicker( L = 0.2) -D000058__22 = Drift( L = 0.386448) -EDGE1_000__211 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__106 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__211 = Multipole( Kn1L = 4.07894736378E-6) -D000018__211 = Drift( L = 0.1193) -EDGE3_000__211 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__106 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__212 = Multipole( Kn1L = -4.07894736378E-6) -D000018__212 = Drift( L = 0.1193) -EDGE2_000__212 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__106 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__212 = Multipole( Kn1L = -4.4179123956E-5) -D000014__126 = Drift( L = 0.50037) -SF1_1__27 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__118 = Drift( L = 0.1042) -SF1_1__28 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000012__127 = Drift( L = 0.1559) -HQF_1__13 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__127 = Drift( L = 0.0638) -CH12_1 = HKicker( L = 0.2) -D000058__23 = Drift( L = 0.386448) -EDGE1_000__213 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__107 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__213 = Multipole( Kn1L = 4.07894736378E-6) -D000018__213 = Drift( L = 0.1193) -EDGE3_000__213 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__107 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__214 = Multipole( Kn1L = -4.07894736378E-6) -D000018__214 = Drift( L = 0.1193) -EDGE2_000__214 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__107 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__214 = Multipole( Kn1L = -4.4179123956E-5) -D000014__127 = Drift( L = 0.50037) -SD2_1__27 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__119 = Drift( L = 0.1042) -SD2_1__28 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000012__128 = Drift( L = 0.1559) -HQD_1__13 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__128 = Drift( L = 0.0638) -CV12_1 = VKicker( L = 0.2) -D000058__24 = Drift( L = 0.386448) -EDGE1_000__215 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__108 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__215 = Multipole( Kn1L = 4.07894736378E-6) -D000018__215 = Drift( L = 0.1193) -EDGE3_000__215 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__108 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__216 = Multipole( Kn1L = -4.07894736378E-6) -D000018__216 = Drift( L = 0.1193) -EDGE2_000__216 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__108 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__216 = Multipole( Kn1L = -4.4179123956E-5) -D000014__128 = Drift( L = 0.50037) -SF2_1__27 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__120 = Drift( L = 0.1042) -SF2_1__28 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000012__129 = Drift( L = 0.1559) -HQF_1__14 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__129 = Drift( L = 0.0638) -CH13_1 = HKicker( L = 0.2) -D000058__25 = Drift( L = 0.386448) -EDGE1_000__217 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__109 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__217 = Multipole( Kn1L = 4.07894736378E-6) -D000018__217 = Drift( L = 0.1193) -EDGE3_000__217 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__109 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__218 = Multipole( Kn1L = -4.07894736378E-6) -D000018__218 = Drift( L = 0.1193) -EDGE2_000__218 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__109 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__218 = Multipole( Kn1L = -4.4179123956E-5) -D000014__129 = Drift( L = 0.50037) -SD1_1__29 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__121 = Drift( L = 0.1042) -SD1_1__30 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000012__130 = Drift( L = 0.1559) -HQD_1__14 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__130 = Drift( L = 0.0638) -CV13_1 = VKicker( L = 0.2) -D000058__26 = Drift( L = 0.386448) -EDGE1_000__219 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__110 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__219 = Multipole( Kn1L = 4.07894736378E-6) -D000018__219 = Drift( L = 0.1193) -EDGE3_000__219 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__110 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__220 = Multipole( Kn1L = -4.07894736378E-6) -D000018__220 = Drift( L = 0.1193) -EDGE2_000__220 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__110 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__220 = Multipole( Kn1L = -4.4179123956E-5) -D000014__130 = Drift( L = 0.50037) -SF1_1__29 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__122 = Drift( L = 0.1042) -SF1_1__30 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000012__131 = Drift( L = 0.1559) -HQF_1__15 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__131 = Drift( L = 0.0638) -CH14_1 = HKicker( L = 0.2) -D000058__27 = Drift( L = 0.386448) -EDGE1_000__221 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__111 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__221 = Multipole( Kn1L = 4.07894736378E-6) -D000018__221 = Drift( L = 0.1193) -EDGE3_000__221 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__111 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__222 = Multipole( Kn1L = -4.07894736378E-6) -D000018__222 = Drift( L = 0.1193) -EDGE2_000__222 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__111 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__222 = Multipole( Kn1L = -4.4179123956E-5) -D000014__131 = Drift( L = 0.50037) -SD2_1__29 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__123 = Drift( L = 0.1042) -SD2_1__30 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000012__132 = Drift( L = 0.1559) -HQD_1__15 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__132 = Drift( L = 0.0638) -CV14_1 = VKicker( L = 0.2) -D000058__28 = Drift( L = 0.386448) -EDGE1_000__223 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__112 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__223 = Multipole( Kn1L = 4.07894736378E-6) -D000018__223 = Drift( L = 0.1193) -EDGE3_000__223 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__112 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__224 = Multipole( Kn1L = -4.07894736378E-6) -D000018__224 = Drift( L = 0.1193) -EDGE2_000__224 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__112 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__224 = Multipole( Kn1L = -4.4179123956E-5) -D000014__132 = Drift( L = 0.50037) -SF2_1__29 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__124 = Drift( L = 0.1042) -SF2_1__30 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000012__133 = Drift( L = 0.1559) -HQF_1__16 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__133 = Drift( L = 0.0638) -CH15_1 = HKicker( L = 0.2) -D000058__29 = Drift( L = 0.386448) -EDGE1_000__225 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__113 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__225 = Multipole( Kn1L = 4.07894736378E-6) -D000018__225 = Drift( L = 0.1193) -EDGE3_000__225 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__113 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__226 = Multipole( Kn1L = -4.07894736378E-6) -D000018__226 = Drift( L = 0.1193) -EDGE2_000__226 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__113 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__226 = Multipole( Kn1L = -4.4179123956E-5) -D000014__133 = Drift( L = 0.50037) -SD1_1__31 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__125 = Drift( L = 0.1042) -SD1_1__32 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000012__134 = Drift( L = 0.1559) -HQD_1__16 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__134 = Drift( L = 0.0638) -CV15_1 = VKicker( L = 0.2) -D000058__30 = Drift( L = 0.386448) -EDGE1_000__227 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__114 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__227 = Multipole( Kn1L = 4.07894736378E-6) -D000018__227 = Drift( L = 0.1193) -EDGE3_000__227 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__114 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__228 = Multipole( Kn1L = -4.07894736378E-6) -D000018__228 = Drift( L = 0.1193) -EDGE2_000__228 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__114 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__228 = Multipole( Kn1L = -4.4179123956E-5) -D000014__134 = Drift( L = 0.50037) -SF1_1__31 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__126 = Drift( L = 0.1042) -SF1_1__32 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000012__135 = Drift( L = 0.1559) -HQF_1__17 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__135 = Drift( L = 0.0638) -CH16_1 = HKicker( L = 0.2) -D000058__31 = Drift( L = 0.386448) -EDGE1_000__229 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__115 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__229 = Multipole( Kn1L = 4.07894736378E-6) -D000018__229 = Drift( L = 0.1193) -EDGE3_000__229 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__115 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__230 = Multipole( Kn1L = -4.07894736378E-6) -D000018__230 = Drift( L = 0.1193) -EDGE2_000__230 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__115 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__230 = Multipole( Kn1L = -4.4179123956E-5) -D000014__135 = Drift( L = 0.50037) -SD2_1__31 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__127 = Drift( L = 0.1042) -SD2_1__32 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000012__136 = Drift( L = 0.1559) -HQD_1__17 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__136 = Drift( L = 0.0638) -CV16_1 = VKicker( L = 0.2) -D000058__32 = Drift( L = 0.386448) -EDGE1_000__231 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__116 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__231 = Multipole( Kn1L = 4.07894736378E-6) -D000018__231 = Drift( L = 0.1193) -EDGE3_000__231 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__116 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__232 = Multipole( Kn1L = -4.07894736378E-6) -D000018__232 = Drift( L = 0.1193) -EDGE2_000__232 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__116 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__232 = Multipole( Kn1L = -4.4179123956E-5) -D000014__136 = Drift( L = 0.50037) -SF2_1__31 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__128 = Drift( L = 0.1042) -SF2_1__32 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000012__137 = Drift( L = 0.1559) -HQF_1__18 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000017__137 = Drift( L = 0.0638) -CH17_1 = HKicker( L = 0.2) -D000057__3 = Drift( L = 1.442045) -DB23_1__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000014__137 = Drift( L = 0.50037) -SD17_1 = Sextupole( L = 0.24) -D000012__138 = Drift( L = 0.1559) -HQD_1__18 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) -D000017__138 = Drift( L = 0.0638) -CV17_1 = VKicker( L = 0.2) -D000057__4 = Drift( L = 1.442045) -DB23_1__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000014__138 = Drift( L = 0.50037) -SF17_1 = Sextupole( L = 0.24) -D000012__139 = Drift( L = 0.1559) -HQF_1__19 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) -D000059__1 = Drift( L = 2.551335) -HQM22_1 = Quadrupole( L = 0.6, Kn1 = 0.01722745969,) -D000059__2 = Drift( L = 2.551335) -HQM21_1 = Quadrupole( L = 0.6, Kn1 = -0.07374323012) -D000059__3 = Drift( L = 2.551335) -HQM20_1 = Quadrupole( L = 0.6, Kn1 = -0.01932000017,) -D000059__4 = Drift( L = 2.551335) -HQM19_1 = Quadrupole( L = 0.6, Kn1 = -0.08634709755) -D000059__5 = Drift( L = 2.551335) -HQM18_1 = Quadrupole( L = 0.6, Kn1 = -0.08439397155) -D000032__29 = Drift( L = 0.535) -DB23_1__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__30 = Drift( L = 0.535) -HQM17_1 = Quadrupole( L = 0.6, Kn1 = 0.215697629) -D000032__31 = Drift( L = 0.535) -DB23_1__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__32 = Drift( L = 0.535) -HQM16_1 = Quadrupole( L = 0.6, Kn1 = 0.09620701749) -D000060__1 = Drift( L = 6.217138) -HQM15_1 = Quadrupole( L = 0.6, Kn1 = -0.2153529094) -D000060__2 = Drift( L = 6.217138) -HQM14_1 = Quadrupole( L = 0.6, Kn1 = 0.312179911,) -D000060__3 = Drift( L = 6.217138) -HQM13_1 = Quadrupole( L = 0.6, Kn1 = -0.1606496122) -D000032__33 = Drift( L = 0.535) -DB23_1__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__34 = Drift( L = 0.535) -HQM12_1 = Quadrupole( L = 0.6, Kn1 = 0.1379574645) -D000032__35 = Drift( L = 0.535) -DB23_1__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000061__1 = Drift( L = 1.995182) -HQDSS_2__1 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) -D000062__1 = Drift( L = 12.36) -SX41_2 = Sextupole( L = 0.24) -D000056__2 = Drift( L = 0.2) -HQFSS_2__1 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) -D000062__2 = Drift( L = 12.36) -SX42_2 = Sextupole( L = 0.24) -D000056__3 = Drift( L = 0.2) -HQDSS_2__2 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) -MCOLL_H1 = Marker() -D000062__3 = Drift( L = 12.36) -SX43_2 = Sextupole( L = 0.24) -D000056__4 = Drift( L = 0.2) -HQFSS_2__2 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) -D000062__4 = Drift( L = 12.36) -MCOLL_H2 = Marker() -SX44_2 = Sextupole( L = 0.24) -D000056__5 = Drift( L = 0.2) -HQDSS_2__3 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) -D000062__5 = Drift( L = 12.36) -SX45_2 = Sextupole( L = 0.24) -D000056__6 = Drift( L = 0.2) -HQFSS_2__3 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) -D000062__6 = Drift( L = 12.36) -MCOLL_H3 = Marker() -SX46_2 = Sextupole( L = 0.24) -D000056__7 = Drift( L = 0.2) -HQDSS_2__4 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) -D000063 = Drift( L = 6.169233) -IP2 = Marker() -D000064 = Drift( L = 6.630767) -HQFSS_2__4 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) -D000056__8 = Drift( L = 0.2) -SX47_2 = Sextupole( L = 0.24) -D000062__7 = Drift( L = 12.36) -HQDSS_2__5 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) -D000056__9 = Drift( L = 0.2) -SX48_2 = Sextupole( L = 0.24) -D000062__8 = Drift( L = 12.36) -HQFSS_2__5 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) -D000056__10 = Drift( L = 0.2) -SX49_2 = Sextupole( L = 0.24) -D000062__9 = Drift( L = 12.36) -HQDSS_2__6 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) -D000056__11 = Drift( L = 0.2) -SX50_2 = Sextupole( L = 0.24) -MLAMB = Marker() -D000062__10 = Drift( L = 12.36) -HQFSS_2__6 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) -D000056__12 = Drift( L = 0.2) -SX51_2 = Sextupole( L = 0.24) -D000062__11 = Drift( L = 12.36) -HQDSS_2__7 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) -D000056__13 = Drift( L = 0.2) -SX52_2 = Sextupole( L = 0.24) -D000062__12 = Drift( L = 12.36) -HQFSS_2__7 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) -D000061__2 = Drift( L = 1.995182) -DB23_2__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__36 = Drift( L = 0.535) -HQM12_2 = Quadrupole( L = 0.6, Kn1 = -0.08415385784) -D000032__37 = Drift( L = 0.535) -DB23_2__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__38 = Drift( L = 0.535) -HQM13_2 = Quadrupole( L = 0.6, Kn1 = -7.038584918E-4,) -D000065__1 = Drift( L = 5.927225) -HQM14_2 = Quadrupole( L = 0.6, Kn1 = -0.07676463633) -D000065__2 = Drift( L = 5.927225) -HQM15_2 = Quadrupole( L = 0.6, Kn1 = 0.3290445086,) -D000065__3 = Drift( L = 5.927225) -HQM16_2 = Quadrupole( L = 0.6, Kn1 = -0.2520023905,) -D000032__39 = Drift( L = 0.535) -DB23_2__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__40 = Drift( L = 0.535) -HQM17_2 = Quadrupole( L = 0.6, Kn1 = 0.2982328613) -D000032__41 = Drift( L = 0.535) -DB23_2__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__42 = Drift( L = 0.535) -HQM18_2 = Quadrupole( L = 0.6, Kn1 = 0.2057910441) -D000066__1 = Drift( L = 2.623669) -HQM19_2 = Quadrupole( L = 0.6, Kn1 = -0.2632180047,) -D000066__2 = Drift( L = 2.623669) -HQM20_2 = Quadrupole( L = 0.6, Kn1 = -0.06371765756,) -D000066__3 = Drift( L = 2.623669) -HQM21_2 = Quadrupole( L = 0.6, Kn1 = -2.457652622E-3,) -D000066__4 = Drift( L = 2.623669) -HQM22_2 = Quadrupole( L = 0.6, Kn1 = 0.08440660021) -D000066__5 = Drift( L = 2.623669) -HQF_3__1 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__140 = Drift( L = 0.1559) -SF00_3 = Sextupole( L = 0.24) -D000014__139 = Drift( L = 0.50037) -DB23_2__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000067__1 = Drift( L = 1.442004) -CV00_3 = HKicker( L = 0.2) -D000017__139 = Drift( L = 0.0638) -HQD_3__1 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__141 = Drift( L = 0.1559) -SD00_3 = Sextupole( L = 0.24) -D000014__140 = Drift( L = 0.50037) -DB23_2__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000067__2 = Drift( L = 1.442004) -CH00_3 = HKicker( L = 0.2) -D000017__140 = Drift( L = 0.0638) -HQF_3__2 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__142 = Drift( L = 0.1559) -SF1_1__33 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__129 = Drift( L = 0.1042) -SF1_1__34 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__141 = Drift( L = 0.50037) -EDGE1_000__233 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__117 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__233 = Multipole( Kn1L = 4.07894736378E-6) -D000018__233 = Drift( L = 0.1193) -EDGE3_000__233 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__117 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__234 = Multipole( Kn1L = -4.07894736378E-6) -D000018__234 = Drift( L = 0.1193) -EDGE2_000__234 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__117 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__234 = Multipole( Kn1L = -4.4179123956E-5) -D000068__1 = Drift( L = 0.386407) -CV01_3 = VKicker( L = 0.2) -D000017__141 = Drift( L = 0.0638) -HQD_3__2 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__143 = Drift( L = 0.1559) -SD1_1__33 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__130 = Drift( L = 0.1042) -SD1_1__34 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__142 = Drift( L = 0.50037) -EDGE1_000__235 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__118 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__235 = Multipole( Kn1L = 4.07894736378E-6) -D000018__235 = Drift( L = 0.1193) -EDGE3_000__235 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__118 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__236 = Multipole( Kn1L = -4.07894736378E-6) -D000018__236 = Drift( L = 0.1193) -EDGE2_000__236 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__118 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__236 = Multipole( Kn1L = -4.4179123956E-5) -D000068__2 = Drift( L = 0.386407) -CH01_3 = HKicker( L = 0.2) -D000017__142 = Drift( L = 0.0638) -HQF_3__3 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__144 = Drift( L = 0.1559) -SF2_1__33 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__131 = Drift( L = 0.1042) -SF2_1__34 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__143 = Drift( L = 0.50037) -EDGE1_000__237 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__119 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__237 = Multipole( Kn1L = 4.07894736378E-6) -D000018__237 = Drift( L = 0.1193) -EDGE3_000__237 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__119 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__238 = Multipole( Kn1L = -4.07894736378E-6) -D000018__238 = Drift( L = 0.1193) -EDGE2_000__238 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__119 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__238 = Multipole( Kn1L = -4.4179123956E-5) -D000068__3 = Drift( L = 0.386407) -CV02_3 = VKicker( L = 0.2) -D000017__143 = Drift( L = 0.0638) -HQD_3__3 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__145 = Drift( L = 0.1559) -SD2_1__33 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__132 = Drift( L = 0.1042) -SD2_1__34 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__144 = Drift( L = 0.50037) -EDGE1_000__239 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__120 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__239 = Multipole( Kn1L = 4.07894736378E-6) -D000018__239 = Drift( L = 0.1193) -EDGE3_000__239 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__120 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__240 = Multipole( Kn1L = -4.07894736378E-6) -D000018__240 = Drift( L = 0.1193) -EDGE2_000__240 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__120 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__240 = Multipole( Kn1L = -4.4179123956E-5) -D000068__4 = Drift( L = 0.386407) -CH02_3 = HKicker( L = 0.2) -D000017__144 = Drift( L = 0.0638) -HQF_3__4 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__146 = Drift( L = 0.1559) -SF1_1__35 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__133 = Drift( L = 0.1042) -SF1_1__36 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__145 = Drift( L = 0.50037) -EDGE1_000__241 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__121 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__241 = Multipole( Kn1L = 4.07894736378E-6) -D000018__241 = Drift( L = 0.1193) -EDGE3_000__241 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__121 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__242 = Multipole( Kn1L = -4.07894736378E-6) -D000018__242 = Drift( L = 0.1193) -EDGE2_000__242 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__121 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__242 = Multipole( Kn1L = -4.4179123956E-5) -D000068__5 = Drift( L = 0.386407) -CV03_3 = VKicker( L = 0.2) -D000017__145 = Drift( L = 0.0638) -HQD_3__4 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__147 = Drift( L = 0.1559) -SD1_1__35 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__134 = Drift( L = 0.1042) -SD1_1__36 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__146 = Drift( L = 0.50037) -EDGE1_000__243 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__122 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__243 = Multipole( Kn1L = 4.07894736378E-6) -D000018__243 = Drift( L = 0.1193) -EDGE3_000__243 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__122 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__244 = Multipole( Kn1L = -4.07894736378E-6) -D000018__244 = Drift( L = 0.1193) -EDGE2_000__244 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__122 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__244 = Multipole( Kn1L = -4.4179123956E-5) -D000068__6 = Drift( L = 0.386407) -CH03_3 = HKicker( L = 0.2) -D000017__146 = Drift( L = 0.0638) -HQF_3__5 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__148 = Drift( L = 0.1559) -SF2_1__35 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__135 = Drift( L = 0.1042) -SF2_1__36 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__147 = Drift( L = 0.50037) -EDGE1_000__245 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__123 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__245 = Multipole( Kn1L = 4.07894736378E-6) -D000018__245 = Drift( L = 0.1193) -EDGE3_000__245 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__123 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__246 = Multipole( Kn1L = -4.07894736378E-6) -D000018__246 = Drift( L = 0.1193) -EDGE2_000__246 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__123 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__246 = Multipole( Kn1L = -4.4179123956E-5) -D000068__7 = Drift( L = 0.386407) -CV04_3 = VKicker( L = 0.2) -D000017__147 = Drift( L = 0.0638) -HQD_3__5 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__149 = Drift( L = 0.1559) -SD2_1__35 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__136 = Drift( L = 0.1042) -SD2_1__36 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__148 = Drift( L = 0.50037) -EDGE1_000__247 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__124 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__247 = Multipole( Kn1L = 4.07894736378E-6) -D000018__247 = Drift( L = 0.1193) -EDGE3_000__247 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__124 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__248 = Multipole( Kn1L = -4.07894736378E-6) -D000018__248 = Drift( L = 0.1193) -EDGE2_000__248 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__124 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__248 = Multipole( Kn1L = -4.4179123956E-5) -D000068__8 = Drift( L = 0.386407) -CH04_3 = HKicker( L = 0.2) -D000017__148 = Drift( L = 0.0638) -HQF_3__6 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__150 = Drift( L = 0.1559) -SF1_1__37 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__137 = Drift( L = 0.1042) -SF1_1__38 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__149 = Drift( L = 0.50037) -EDGE1_000__249 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__125 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__249 = Multipole( Kn1L = 4.07894736378E-6) -D000018__249 = Drift( L = 0.1193) -EDGE3_000__249 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__125 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__250 = Multipole( Kn1L = -4.07894736378E-6) -D000018__250 = Drift( L = 0.1193) -EDGE2_000__250 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__125 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__250 = Multipole( Kn1L = -4.4179123956E-5) -D000068__9 = Drift( L = 0.386407) -CV05_3 = VKicker( L = 0.2) -D000017__149 = Drift( L = 0.0638) -HQD_3__6 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__151 = Drift( L = 0.1559) -SD1_1__37 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__138 = Drift( L = 0.1042) -SD1_1__38 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__150 = Drift( L = 0.50037) -EDGE1_000__251 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__126 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__251 = Multipole( Kn1L = 4.07894736378E-6) -D000018__251 = Drift( L = 0.1193) -EDGE3_000__251 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__126 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__252 = Multipole( Kn1L = -4.07894736378E-6) -D000018__252 = Drift( L = 0.1193) -EDGE2_000__252 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__126 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__252 = Multipole( Kn1L = -4.4179123956E-5) -D000068__10 = Drift( L = 0.386407) -CH05_3 = HKicker( L = 0.2) -D000017__150 = Drift( L = 0.0638) -HQF_3__7 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__152 = Drift( L = 0.1559) -SF2_1__37 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__139 = Drift( L = 0.1042) -SF2_1__38 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__151 = Drift( L = 0.50037) -EDGE1_000__253 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__127 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__253 = Multipole( Kn1L = 4.07894736378E-6) -D000018__253 = Drift( L = 0.1193) -EDGE3_000__253 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__127 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__254 = Multipole( Kn1L = -4.07894736378E-6) -D000018__254 = Drift( L = 0.1193) -EDGE2_000__254 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__127 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__254 = Multipole( Kn1L = -4.4179123956E-5) -D000068__11 = Drift( L = 0.386407) -CV06_3 = VKicker( L = 0.2) -D000017__151 = Drift( L = 0.0638) -HQD_3__7 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__153 = Drift( L = 0.1559) -SD2_1__37 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__140 = Drift( L = 0.1042) -SD2_1__38 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__152 = Drift( L = 0.50037) -EDGE1_000__255 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__128 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__255 = Multipole( Kn1L = 4.07894736378E-6) -D000018__255 = Drift( L = 0.1193) -EDGE3_000__255 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__128 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__256 = Multipole( Kn1L = -4.07894736378E-6) -D000018__256 = Drift( L = 0.1193) -EDGE2_000__256 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__128 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__256 = Multipole( Kn1L = -4.4179123956E-5) -D000068__12 = Drift( L = 0.386407) -CH06_3 = HKicker( L = 0.2) -D000017__152 = Drift( L = 0.0638) -HQF_3__8 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__154 = Drift( L = 0.1559) -SF1_1__39 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__141 = Drift( L = 0.1042) -SF1_1__40 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__153 = Drift( L = 0.50037) -EDGE1_000__257 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__129 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__257 = Multipole( Kn1L = 4.07894736378E-6) -D000018__257 = Drift( L = 0.1193) -EDGE3_000__257 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__129 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__258 = Multipole( Kn1L = -4.07894736378E-6) -D000018__258 = Drift( L = 0.1193) -EDGE2_000__258 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__129 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__258 = Multipole( Kn1L = -4.4179123956E-5) -D000068__13 = Drift( L = 0.386407) -CV07_3 = VKicker( L = 0.2) -D000017__153 = Drift( L = 0.0638) -HQD_3__8 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__155 = Drift( L = 0.1559) -SD1_1__39 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__142 = Drift( L = 0.1042) -SD1_1__40 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__154 = Drift( L = 0.50037) -EDGE1_000__259 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__130 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__259 = Multipole( Kn1L = 4.07894736378E-6) -D000018__259 = Drift( L = 0.1193) -EDGE3_000__259 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__130 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__260 = Multipole( Kn1L = -4.07894736378E-6) -D000018__260 = Drift( L = 0.1193) -EDGE2_000__260 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__130 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__260 = Multipole( Kn1L = -4.4179123956E-5) -D000068__14 = Drift( L = 0.386407) -CH07_3 = HKicker( L = 0.2) -D000017__154 = Drift( L = 0.0638) -HQF_3__9 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__156 = Drift( L = 0.1559) -SF2_1__39 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__143 = Drift( L = 0.1042) -SF2_1__40 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__155 = Drift( L = 0.50037) -EDGE1_000__261 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__131 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__261 = Multipole( Kn1L = 4.07894736378E-6) -D000018__261 = Drift( L = 0.1193) -EDGE3_000__261 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__131 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__262 = Multipole( Kn1L = -4.07894736378E-6) -D000018__262 = Drift( L = 0.1193) -EDGE2_000__262 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__131 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__262 = Multipole( Kn1L = -4.4179123956E-5) -D000068__15 = Drift( L = 0.386407) -CV08_3 = VKicker( L = 0.2) -D000017__155 = Drift( L = 0.0638) -HQD_3__9 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__157 = Drift( L = 0.1559) -SD2_1__39 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__144 = Drift( L = 0.1042) -SD2_1__40 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__156 = Drift( L = 0.50037) -EDGE1_000__263 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__132 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__263 = Multipole( Kn1L = 4.07894736378E-6) -D000018__263 = Drift( L = 0.1193) -EDGE3_000__263 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__132 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__264 = Multipole( Kn1L = -4.07894736378E-6) -D000018__264 = Drift( L = 0.1193) -EDGE2_000__264 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__132 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__264 = Multipole( Kn1L = -4.4179123956E-5) -D000068__16 = Drift( L = 0.386407) -CH08_3 = HKicker( L = 0.2) -D000017__156 = Drift( L = 0.0638) -HQF_3__10 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__158 = Drift( L = 0.1559) -SF1_1__41 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__145 = Drift( L = 0.1042) -SF1_1__42 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__157 = Drift( L = 0.50037) -EDGE1_000__265 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__133 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__265 = Multipole( Kn1L = 4.07894736378E-6) -D000018__265 = Drift( L = 0.1193) -EDGE3_000__265 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__133 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__266 = Multipole( Kn1L = -4.07894736378E-6) -D000018__266 = Drift( L = 0.1193) -EDGE2_000__266 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__133 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__266 = Multipole( Kn1L = -4.4179123956E-5) -D000068__17 = Drift( L = 0.386407) -CV09_3 = VKicker( L = 0.2) -D000017__157 = Drift( L = 0.0638) -HQD_3__10 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__159 = Drift( L = 0.1559) -SD1_1__41 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__146 = Drift( L = 0.1042) -SD1_1__42 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__158 = Drift( L = 0.50037) -EDGE1_000__267 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__134 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__267 = Multipole( Kn1L = 4.07894736378E-6) -D000018__267 = Drift( L = 0.1193) -EDGE3_000__267 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__134 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__268 = Multipole( Kn1L = -4.07894736378E-6) -D000018__268 = Drift( L = 0.1193) -EDGE2_000__268 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__134 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__268 = Multipole( Kn1L = -4.4179123956E-5) -D000068__18 = Drift( L = 0.386407) -CH09_3 = HKicker( L = 0.2) -D000017__158 = Drift( L = 0.0638) -HQF_3__11 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__160 = Drift( L = 0.1559) -SF2_1__41 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__147 = Drift( L = 0.1042) -SF2_1__42 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__159 = Drift( L = 0.50037) -EDGE1_000__269 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__135 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__269 = Multipole( Kn1L = 4.07894736378E-6) -D000018__269 = Drift( L = 0.1193) -EDGE3_000__269 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__135 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__270 = Multipole( Kn1L = -4.07894736378E-6) -D000018__270 = Drift( L = 0.1193) -EDGE2_000__270 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__135 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__270 = Multipole( Kn1L = -4.4179123956E-5) -D000068__19 = Drift( L = 0.386407) -CV10_3 = VKicker( L = 0.2) -D000017__159 = Drift( L = 0.0638) -HQD_3__11 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__161 = Drift( L = 0.1559) -SD2_1__41 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__148 = Drift( L = 0.1042) -SD2_1__42 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__160 = Drift( L = 0.50037) -EDGE1_000__271 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__136 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__271 = Multipole( Kn1L = 4.07894736378E-6) -D000018__271 = Drift( L = 0.1193) -EDGE3_000__271 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__136 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__272 = Multipole( Kn1L = -4.07894736378E-6) -D000018__272 = Drift( L = 0.1193) -EDGE2_000__272 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__136 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__272 = Multipole( Kn1L = -4.4179123956E-5) -D000068__20 = Drift( L = 0.386407) -CH10_3 = HKicker( L = 0.2) -D000017__160 = Drift( L = 0.0638) -HQF_3__12 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__162 = Drift( L = 0.1559) -SF1_1__43 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__149 = Drift( L = 0.1042) -SF1_1__44 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__161 = Drift( L = 0.50037) -EDGE1_000__273 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__137 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__273 = Multipole( Kn1L = 4.07894736378E-6) -D000018__273 = Drift( L = 0.1193) -EDGE3_000__273 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__137 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__274 = Multipole( Kn1L = -4.07894736378E-6) -D000018__274 = Drift( L = 0.1193) -EDGE2_000__274 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__137 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__274 = Multipole( Kn1L = -4.4179123956E-5) -D000068__21 = Drift( L = 0.386407) -CV11_3 = VKicker( L = 0.2) -D000017__161 = Drift( L = 0.0638) -HQD_3__12 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__163 = Drift( L = 0.1559) -SD1_1__43 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__150 = Drift( L = 0.1042) -SD1_1__44 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__162 = Drift( L = 0.50037) -EDGE1_000__275 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__138 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__275 = Multipole( Kn1L = 4.07894736378E-6) -D000018__275 = Drift( L = 0.1193) -EDGE3_000__275 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__138 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__276 = Multipole( Kn1L = -4.07894736378E-6) -D000018__276 = Drift( L = 0.1193) -EDGE2_000__276 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__138 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__276 = Multipole( Kn1L = -4.4179123956E-5) -D000068__22 = Drift( L = 0.386407) -CH11_3 = HKicker( L = 0.2) -D000017__162 = Drift( L = 0.0638) -HQF_3__13 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__164 = Drift( L = 0.1559) -SF2_1__43 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__151 = Drift( L = 0.1042) -SF2_1__44 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__163 = Drift( L = 0.50037) -EDGE1_000__277 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__139 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__277 = Multipole( Kn1L = 4.07894736378E-6) -D000018__277 = Drift( L = 0.1193) -EDGE3_000__277 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__139 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__278 = Multipole( Kn1L = -4.07894736378E-6) -D000018__278 = Drift( L = 0.1193) -EDGE2_000__278 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__139 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__278 = Multipole( Kn1L = -4.4179123956E-5) -D000068__23 = Drift( L = 0.386407) -CV12_3 = VKicker( L = 0.2) -D000017__163 = Drift( L = 0.0638) -HQD_3__13 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__165 = Drift( L = 0.1559) -SD2_1__43 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__152 = Drift( L = 0.1042) -SD2_1__44 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__164 = Drift( L = 0.50037) -EDGE1_000__279 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__140 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__279 = Multipole( Kn1L = 4.07894736378E-6) -D000018__279 = Drift( L = 0.1193) -EDGE3_000__279 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__140 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__280 = Multipole( Kn1L = -4.07894736378E-6) -D000018__280 = Drift( L = 0.1193) -EDGE2_000__280 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__140 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__280 = Multipole( Kn1L = -4.4179123956E-5) -D000068__24 = Drift( L = 0.386407) -CH12_3 = HKicker( L = 0.2) -D000017__164 = Drift( L = 0.0638) -HQF_3__14 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__166 = Drift( L = 0.1559) -SF1_1__45 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__153 = Drift( L = 0.1042) -SF1_1__46 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__165 = Drift( L = 0.50037) -EDGE1_000__281 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__141 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__281 = Multipole( Kn1L = 4.07894736378E-6) -D000018__281 = Drift( L = 0.1193) -EDGE3_000__281 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__141 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__282 = Multipole( Kn1L = -4.07894736378E-6) -D000018__282 = Drift( L = 0.1193) -EDGE2_000__282 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__141 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__282 = Multipole( Kn1L = -4.4179123956E-5) -D000068__25 = Drift( L = 0.386407) -CV13_3 = VKicker( L = 0.2) -D000017__165 = Drift( L = 0.0638) -HQD_3__14 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__167 = Drift( L = 0.1559) -SD1_1__45 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__154 = Drift( L = 0.1042) -SD1_1__46 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__166 = Drift( L = 0.50037) -EDGE1_000__283 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__142 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__283 = Multipole( Kn1L = 4.07894736378E-6) -D000018__283 = Drift( L = 0.1193) -EDGE3_000__283 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__142 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__284 = Multipole( Kn1L = -4.07894736378E-6) -D000018__284 = Drift( L = 0.1193) -EDGE2_000__284 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__142 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__284 = Multipole( Kn1L = -4.4179123956E-5) -D000068__26 = Drift( L = 0.386407) -CH13_3 = HKicker( L = 0.2) -D000017__166 = Drift( L = 0.0638) -HQF_3__15 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__168 = Drift( L = 0.1559) -SF2_1__45 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__155 = Drift( L = 0.1042) -SF2_1__46 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__167 = Drift( L = 0.50037) -EDGE1_000__285 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__143 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__285 = Multipole( Kn1L = 4.07894736378E-6) -D000018__285 = Drift( L = 0.1193) -EDGE3_000__285 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__143 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__286 = Multipole( Kn1L = -4.07894736378E-6) -D000018__286 = Drift( L = 0.1193) -EDGE2_000__286 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__143 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__286 = Multipole( Kn1L = -4.4179123956E-5) -D000068__27 = Drift( L = 0.386407) -CV14_3 = VKicker( L = 0.2) -D000017__167 = Drift( L = 0.0638) -HQD_3__15 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__169 = Drift( L = 0.1559) -SD2_1__45 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__156 = Drift( L = 0.1042) -SD2_1__46 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__168 = Drift( L = 0.50037) -EDGE1_000__287 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__144 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__287 = Multipole( Kn1L = 4.07894736378E-6) -D000018__287 = Drift( L = 0.1193) -EDGE3_000__287 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__144 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__288 = Multipole( Kn1L = -4.07894736378E-6) -D000018__288 = Drift( L = 0.1193) -EDGE2_000__288 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__144 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__288 = Multipole( Kn1L = -4.4179123956E-5) -D000068__28 = Drift( L = 0.386407) -CH14_3 = HKicker( L = 0.2) -D000017__168 = Drift( L = 0.0638) -HQF_3__16 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__170 = Drift( L = 0.1559) -SF1_1__47 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000013__157 = Drift( L = 0.1042) -SF1_1__48 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) -D000014__169 = Drift( L = 0.50037) -EDGE1_000__289 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__145 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__289 = Multipole( Kn1L = 4.07894736378E-6) -D000018__289 = Drift( L = 0.1193) -EDGE3_000__289 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__145 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__290 = Multipole( Kn1L = -4.07894736378E-6) -D000018__290 = Drift( L = 0.1193) -EDGE2_000__290 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__145 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__290 = Multipole( Kn1L = -4.4179123956E-5) -D000068__29 = Drift( L = 0.386407) -CV15_3 = VKicker( L = 0.2) -D000017__169 = Drift( L = 0.0638) -HQD_3__16 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__171 = Drift( L = 0.1559) -SD1_1__47 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000013__158 = Drift( L = 0.1042) -SD1_1__48 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) -D000014__170 = Drift( L = 0.50037) -EDGE1_000__291 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__146 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__291 = Multipole( Kn1L = 4.07894736378E-6) -D000018__291 = Drift( L = 0.1193) -EDGE3_000__291 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__146 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__292 = Multipole( Kn1L = -4.07894736378E-6) -D000018__292 = Drift( L = 0.1193) -EDGE2_000__292 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__146 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__292 = Multipole( Kn1L = -4.4179123956E-5) -D000068__30 = Drift( L = 0.386407) -CH15_3 = HKicker( L = 0.2) -D000017__170 = Drift( L = 0.0638) -HQF_3__17 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__172 = Drift( L = 0.1559) -SF2_1__47 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000013__159 = Drift( L = 0.1042) -SF2_1__48 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) -D000014__171 = Drift( L = 0.50037) -EDGE1_000__293 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__147 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__293 = Multipole( Kn1L = 4.07894736378E-6) -D000018__293 = Drift( L = 0.1193) -EDGE3_000__293 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__147 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__294 = Multipole( Kn1L = -4.07894736378E-6) -D000018__294 = Drift( L = 0.1193) -EDGE2_000__294 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__147 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__294 = Multipole( Kn1L = -4.4179123956E-5) -D000068__31 = Drift( L = 0.386407) -CV16_3 = VKicker( L = 0.2) -D000017__171 = Drift( L = 0.0638) -HQD_3__17 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__173 = Drift( L = 0.1559) -SD2_1__47 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000013__160 = Drift( L = 0.1042) -SD2_1__48 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) -D000014__172 = Drift( L = 0.50037) -EDGE1_000__295 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__148 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__295 = Multipole( Kn1L = 4.07894736378E-6) -D000018__295 = Drift( L = 0.1193) -EDGE3_000__295 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__148 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__296 = Multipole( Kn1L = -4.07894736378E-6) -D000018__296 = Drift( L = 0.1193) -EDGE2_000__296 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__148 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__296 = Multipole( Kn1L = -4.4179123956E-5) -D000068__32 = Drift( L = 0.386407) -CH16_3 = HKicker( L = 0.2) -D000017__172 = Drift( L = 0.0638) -HQF_3__18 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__174 = Drift( L = 0.1559) -SF17_3 = Sextupole( L = 0.24) -D000014__173 = Drift( L = 0.50037) -DB23_3__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000067__3 = Drift( L = 1.442004) -CV17_3 = VKicker( L = 0.2) -D000017__173 = Drift( L = 0.0638) -HQD_3__18 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) -D000012__175 = Drift( L = 0.1559) -SD17_3 = Sextupole( L = 0.24) -D000014__174 = Drift( L = 0.50037) -DB23_3__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000067__4 = Drift( L = 1.442004) -CH17_3 = HKicker( L = 0.2) -D000017__174 = Drift( L = 0.0638) -HQF_3__19 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) -D000012__176 = Drift( L = 0.1559) -SF18_3 = Sextupole( L = 0.24) -D000069__1 = Drift( L = 4.065299) -HQD22_3 = Quadrupole( L = 0.6, Kn1 = -0.2554856666,) -D000069__2 = Drift( L = 4.065299) -HQF21_3 = Quadrupole( L = 0.6, Kn1 = 0.1978933106,) -D000032__43 = Drift( L = 0.535) -DB23_3__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__44 = Drift( L = 0.535) -HQD20_3 = Quadrupole( L = 0.6, Kn1 = -0.207628952) -D000032__45 = Drift( L = 0.535) -DB23_3__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__46 = Drift( L = 0.535) -HQF19_3 = Quadrupole( L = 0.6, Kn1 = 0.1950635038,) -D000070__1 = Drift( L = 4.543623) -HQD18_3 = Quadrupole( L = 0.6, Kn1 = -0.1791108016,) -D000070__2 = Drift( L = 4.543623) -HQF17_3 = Quadrupole( L = 0.6, Kn1 = 0.1829347368,) -D000070__3 = Drift( L = 4.543623) -HQD16_3 = Quadrupole( L = 0.6, Kn1 = -0.1453526612) -D000032__47 = Drift( L = 0.535) -DB23_3__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__48 = Drift( L = 0.535) -HQF15_3 = Quadrupole( L = 0.6, Kn1 = 0.1369224329) -D000032__49 = Drift( L = 0.535) -DB23_3__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__50 = Drift( L = 0.535) -HQD14_3 = Quadrupole( L = 0.6, Kn1 = -0.1449015186) -MCOLL_V1 = Marker() -D000071__1 = Drift( L = 11.224938) -HQF13_3 = Quadrupole( L = 0.6, Kn1 = 0.1268512382,) -D000071__2 = Drift( L = 11.224938) -MCOLL_V2 = Marker() -HQD12_3 = Quadrupole( L = 0.6, Kn1 = -0.1085522138,) -D000071__3 = Drift( L = 11.224938) -HQF11_3 = Quadrupole( L = 0.6, Kn1 = 0.1203850125,) -D000056__14 = Drift( L = 0.2) -SX41_4 = Sextupole( L = 0.24) -D000072__1 = Drift( L = 10.784938) -MCOLL_V3 = Marker() -HQD10_3 = Quadrupole( L = 0.6, Kn1 = -0.1222253567,) -D000056__15 = Drift( L = 0.2) -SX42_4 = Sextupole( L = 0.24) -D000072__2 = Drift( L = 10.784938) -HQF9_3 = Quadrupole( L = 0.6, Kn1 = 0.1171029044,) -D000056__16 = Drift( L = 0.2) -SX43_4 = Sextupole( L = 0.24) -D000056__17 = Drift( L = 0.2) -DB12_4P__4 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) -D000048__5 = Drift( L = 0.0975) -DB12_4P__5 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) -D000048__6 = Drift( L = 0.0975) -DB12_4P__6 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) -D000032__51 = Drift( L = 0.535) -HQD8_3 = Quadrupole( L = 0.6, Kn1 = -0.08962195033) -D000056__18 = Drift( L = 0.2) -SX44_4 = Sextupole( L = 0.24) -D000072__3 = Drift( L = 10.784938) -HQF7_3 = Quadrupole( L = 0.6, Kn1 = 0.1075244171,) -D000056__19 = Drift( L = 0.2) -SX45_4 = Sextupole( L = 0.24) -D000072__4 = Drift( L = 10.784938) -HQD6_3 = Quadrupole( L = 0.6, Kn1 = -0.1442054796) -D000056__20 = Drift( L = 0.2) -SX46_4 = Sextupole( L = 0.24) -D000073 = Drift( L = 5.172469) -IP4 = Marker() -D000074 = Drift( L = 4.758889) -SX47_4 = Sextupole( L = 0.24) -D000056__21 = Drift( L = 0.2) -HQD4_4 = Quadrupole( L = 0.6, Kn1 = 0.08272423335) -D000075__1 = Drift( L = 9.957779) -SX48_4 = Sextupole( L = 0.24) -D000056__22 = Drift( L = 0.2) -HQF5_4 = Quadrupole( L = 0.6, Kn1 = 0.07737902144) -D000075__2 = Drift( L = 9.957779) -SX49_4 = Sextupole( L = 0.24) -D000056__23 = Drift( L = 0.2) -HQD6_4 = Quadrupole( L = 0.6, Kn1 = -0.08977116391) -D000032__52 = Drift( L = 0.535) -DB12_4M__4 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) -D000048__7 = Drift( L = 0.0975) -DB12_4M__5 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) -D000048__8 = Drift( L = 0.0975) -DB12_4M__6 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) -D000056__24 = Drift( L = 0.2) -SX50_4 = Sextupole( L = 0.24) -D000056__25 = Drift( L = 0.2) -HQF7_4 = Quadrupole( L = 0.6, Kn1 = -0.0511651397,) -D000075__3 = Drift( L = 9.957779) -SX51_4 = Sextupole( L = 0.24) -D000056__26 = Drift( L = 0.2) -HQD8_4 = Quadrupole( L = 0.6, Kn1 = 0.1278181338,) -D000075__4 = Drift( L = 9.957779) -SX52_4 = Sextupole( L = 0.24) -D000056__27 = Drift( L = 0.2) -HQF9_4 = Quadrupole( L = 0.6, Kn1 = -0.1396142326) -D000076__1 = Drift( L = 10.397779) -HQD10_4 = Quadrupole( L = 0.6, Kn1 = 0.05939249134,) -D000076__2 = Drift( L = 10.397779) -HQF11_4 = Quadrupole( L = 0.6, Kn1 = 0.1718574708,) -D000032__53 = Drift( L = 0.535) -DB23_4__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__54 = Drift( L = 0.535) -HQD12_4 = Quadrupole( L = 0.6, Kn1 = -0.2619520638,) -D000032__55 = Drift( L = 0.535) -DB23_4__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__56 = Drift( L = 0.535) -HQF13_4 = Quadrupole( L = 0.6, Kn1 = 0.2845893896) -D000077__1 = Drift( L = 4.541529) -HQD14_4 = Quadrupole( L = 0.6, Kn1 = 0.1003750764,) -D000077__2 = Drift( L = 4.541529) -HQF15_4 = Quadrupole( L = 0.6, Kn1 = -0.1076656075,) -D000077__3 = Drift( L = 4.541529) -HQD16_4 = Quadrupole( L = 0.6, Kn1 = -0.1185804289,) -D000077__4 = Drift( L = 4.541529) -HQF17_4 = Quadrupole( L = 0.6, Kn1 = 0.1115918173,) -D000077__5 = Drift( L = 4.541529) -HQD18_4 = Quadrupole( L = 0.6, Kn1 = 0.1271940476,) -D000032__57 = Drift( L = 0.535) -DB23_4__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__58 = Drift( L = 0.535) -HQF19_4 = Quadrupole( L = 0.6, Kn1 = -0.2573861159,) -D000032__59 = Drift( L = 0.535) -DB23_4__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000032__60 = Drift( L = 0.535) -HQD20_4 = Quadrupole( L = 0.6, Kn1 = 0.1950308183,) -D000078__1 = Drift( L = 4.621244) -HQF21_4 = Quadrupole( L = 0.6, Kn1 = -0.03563213932,) -D000078__2 = Drift( L = 4.621244) -HQD22_4 = Quadrupole( L = 0.6, Kn1 = -0.3301534091,) -D000078__3 = Drift( L = 4.621244) -SFM1_5 = Sextupole( L = 0.24) -D000056__28 = Drift( L = 0.2) -HQF_5__1 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__175 = Drift( L = 0.0638) -CH00_5 = HKicker( L = 0.2) -D000079__1 = Drift( L = 1.367552) -DB23_4__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000014__175 = Drift( L = 0.50037) -SD00_5 = Sextupole( L = 0.24) -D000012__177 = Drift( L = 0.1559) -HQD_5__1 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__176 = Drift( L = 0.0638) -CV00_5 = VKicker( L = 0.2) -D000079__2 = Drift( L = 1.367552) -DB23_4__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) -D000014__176 = Drift( L = 0.50037) -SF00_5 = Sextupole( L = 0.24) -D000012__178 = Drift( L = 0.1559) -HQF_5__2 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__177 = Drift( L = 0.0638) -CH01_5 = HKicker( L = 0.2) -D000080__1 = Drift( L = 0.311955) -EDGE1_000__297 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__149 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__297 = Multipole( Kn1L = 4.07894736378E-6) -D000018__297 = Drift( L = 0.1193) -EDGE3_000__297 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__149 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__298 = Multipole( Kn1L = -4.07894736378E-6) -D000018__298 = Drift( L = 0.1193) -EDGE2_000__298 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__149 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__298 = Multipole( Kn1L = -4.4179123956E-5) -D000014__177 = Drift( L = 0.50037) -SD1_5__1 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000013__161 = Drift( L = 0.1042) -SD1_5__2 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000012__179 = Drift( L = 0.1559) -HQD_5__2 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__178 = Drift( L = 0.0638) -CV01_5 = VKicker( L = 0.2) -D000080__2 = Drift( L = 0.311955) -EDGE1_000__299 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__150 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__299 = Multipole( Kn1L = 4.07894736378E-6) -D000018__299 = Drift( L = 0.1193) -EDGE3_000__299 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__150 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__300 = Multipole( Kn1L = -4.07894736378E-6) -D000018__300 = Drift( L = 0.1193) -EDGE2_000__300 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__150 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__300 = Multipole( Kn1L = -4.4179123956E-5) -D000014__178 = Drift( L = 0.50037) -SF1_5__1 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000013__162 = Drift( L = 0.1042) -SF1_5__2 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000012__180 = Drift( L = 0.1559) -HQF_5__3 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__179 = Drift( L = 0.0638) -CH02_5 = HKicker( L = 0.2) -D000080__3 = Drift( L = 0.311955) -EDGE1_000__301 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__151 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__301 = Multipole( Kn1L = 4.07894736378E-6) -D000018__301 = Drift( L = 0.1193) -EDGE3_000__301 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__151 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__302 = Multipole( Kn1L = -4.07894736378E-6) -D000018__302 = Drift( L = 0.1193) -EDGE2_000__302 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__151 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__302 = Multipole( Kn1L = -4.4179123956E-5) -D000014__179 = Drift( L = 0.50037) -SD2_5__1 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000013__163 = Drift( L = 0.1042) -SD2_5__2 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000012__181 = Drift( L = 0.1559) -HQD_5__3 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__180 = Drift( L = 0.0638) -CV02_5 = VKicker( L = 0.2) -D000080__4 = Drift( L = 0.311955) -EDGE1_000__303 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__152 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__303 = Multipole( Kn1L = 4.07894736378E-6) -D000018__303 = Drift( L = 0.1193) -EDGE3_000__303 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__152 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__304 = Multipole( Kn1L = -4.07894736378E-6) -D000018__304 = Drift( L = 0.1193) -EDGE2_000__304 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__152 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__304 = Multipole( Kn1L = -4.4179123956E-5) -D000014__180 = Drift( L = 0.50037) -SF2_5__1 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000013__164 = Drift( L = 0.1042) -SF2_5__2 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000012__182 = Drift( L = 0.1559) -HQF_5__4 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__181 = Drift( L = 0.0638) -CH03_5 = HKicker( L = 0.2) -D000080__5 = Drift( L = 0.311955) -EDGE1_000__305 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__153 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__305 = Multipole( Kn1L = 4.07894736378E-6) -D000018__305 = Drift( L = 0.1193) -EDGE3_000__305 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__153 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__306 = Multipole( Kn1L = -4.07894736378E-6) -D000018__306 = Drift( L = 0.1193) -EDGE2_000__306 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__153 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__306 = Multipole( Kn1L = -4.4179123956E-5) -D000014__181 = Drift( L = 0.50037) -SD1_5__3 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000013__165 = Drift( L = 0.1042) -SD1_5__4 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000012__183 = Drift( L = 0.1559) -HQD_5__4 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__182 = Drift( L = 0.0638) -CV03_5 = VKicker( L = 0.2) -D000080__6 = Drift( L = 0.311955) -EDGE1_000__307 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__154 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__307 = Multipole( Kn1L = 4.07894736378E-6) -D000018__307 = Drift( L = 0.1193) -EDGE3_000__307 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__154 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__308 = Multipole( Kn1L = -4.07894736378E-6) -D000018__308 = Drift( L = 0.1193) -EDGE2_000__308 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__154 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__308 = Multipole( Kn1L = -4.4179123956E-5) -D000014__182 = Drift( L = 0.50037) -SF1_5__3 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000013__166 = Drift( L = 0.1042) -SF1_5__4 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000012__184 = Drift( L = 0.1559) -HQF_5__5 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__183 = Drift( L = 0.0638) -CH04_5 = HKicker( L = 0.2) -D000080__7 = Drift( L = 0.311955) -EDGE1_000__309 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__155 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__309 = Multipole( Kn1L = 4.07894736378E-6) -D000018__309 = Drift( L = 0.1193) -EDGE3_000__309 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__155 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__310 = Multipole( Kn1L = -4.07894736378E-6) -D000018__310 = Drift( L = 0.1193) -EDGE2_000__310 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__155 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__310 = Multipole( Kn1L = -4.4179123956E-5) -D000014__183 = Drift( L = 0.50037) -SD2_5__3 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000013__167 = Drift( L = 0.1042) -SD2_5__4 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000012__185 = Drift( L = 0.1559) -HQD_5__5 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__184 = Drift( L = 0.0638) -CV04_5 = VKicker( L = 0.2) -D000080__8 = Drift( L = 0.311955) -EDGE1_000__311 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__156 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__311 = Multipole( Kn1L = 4.07894736378E-6) -D000018__311 = Drift( L = 0.1193) -EDGE3_000__311 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__156 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__312 = Multipole( Kn1L = -4.07894736378E-6) -D000018__312 = Drift( L = 0.1193) -EDGE2_000__312 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__156 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__312 = Multipole( Kn1L = -4.4179123956E-5) -D000014__184 = Drift( L = 0.50037) -SF2_5__3 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000013__168 = Drift( L = 0.1042) -SF2_5__4 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000012__186 = Drift( L = 0.1559) -HQF_5__6 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__185 = Drift( L = 0.0638) -CH05_5 = HKicker( L = 0.2) -D000080__9 = Drift( L = 0.311955) -EDGE1_000__313 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__157 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__313 = Multipole( Kn1L = 4.07894736378E-6) -D000018__313 = Drift( L = 0.1193) -EDGE3_000__313 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__157 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__314 = Multipole( Kn1L = -4.07894736378E-6) -D000018__314 = Drift( L = 0.1193) -EDGE2_000__314 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__157 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__314 = Multipole( Kn1L = -4.4179123956E-5) -D000014__185 = Drift( L = 0.50037) -SD1_5__5 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000013__169 = Drift( L = 0.1042) -SD1_5__6 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000012__187 = Drift( L = 0.1559) -HQD_5__6 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__186 = Drift( L = 0.0638) -CV05_5 = VKicker( L = 0.2) -D000080__10 = Drift( L = 0.311955) -EDGE1_000__315 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__158 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__315 = Multipole( Kn1L = 4.07894736378E-6) -D000018__315 = Drift( L = 0.1193) -EDGE3_000__315 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__158 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__316 = Multipole( Kn1L = -4.07894736378E-6) -D000018__316 = Drift( L = 0.1193) -EDGE2_000__316 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__158 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__316 = Multipole( Kn1L = -4.4179123956E-5) -D000014__186 = Drift( L = 0.50037) -SF1_5__5 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000013__170 = Drift( L = 0.1042) -SF1_5__6 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000012__188 = Drift( L = 0.1559) -HQF_5__7 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__187 = Drift( L = 0.0638) -CH06_5 = HKicker( L = 0.2) -D000080__11 = Drift( L = 0.311955) -EDGE1_000__317 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__159 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__317 = Multipole( Kn1L = 4.07894736378E-6) -D000018__317 = Drift( L = 0.1193) -EDGE3_000__317 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__159 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__318 = Multipole( Kn1L = -4.07894736378E-6) -D000018__318 = Drift( L = 0.1193) -EDGE2_000__318 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__159 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__318 = Multipole( Kn1L = -4.4179123956E-5) -D000014__187 = Drift( L = 0.50037) -SD2_5__5 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000013__171 = Drift( L = 0.1042) -SD2_5__6 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000012__189 = Drift( L = 0.1559) -HQD_5__7 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__188 = Drift( L = 0.0638) -CV06_5 = VKicker( L = 0.2) -D000080__12 = Drift( L = 0.311955) -EDGE1_000__319 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__160 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__319 = Multipole( Kn1L = 4.07894736378E-6) -D000018__319 = Drift( L = 0.1193) -EDGE3_000__319 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__160 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__320 = Multipole( Kn1L = -4.07894736378E-6) -D000018__320 = Drift( L = 0.1193) -EDGE2_000__320 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__160 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__320 = Multipole( Kn1L = -4.4179123956E-5) -D000014__188 = Drift( L = 0.50037) -SF2_5__5 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000013__172 = Drift( L = 0.1042) -SF2_5__6 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000012__190 = Drift( L = 0.1559) -HQF_5__8 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__189 = Drift( L = 0.0638) -CH07_5 = HKicker( L = 0.2) -D000080__13 = Drift( L = 0.311955) -EDGE1_000__321 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__161 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__321 = Multipole( Kn1L = 4.07894736378E-6) -D000018__321 = Drift( L = 0.1193) -EDGE3_000__321 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__161 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__322 = Multipole( Kn1L = -4.07894736378E-6) -D000018__322 = Drift( L = 0.1193) -EDGE2_000__322 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__161 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__322 = Multipole( Kn1L = -4.4179123956E-5) -D000014__189 = Drift( L = 0.50037) -SD1_5__7 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000013__173 = Drift( L = 0.1042) -SD1_5__8 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000012__191 = Drift( L = 0.1559) -HQD_5__8 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__190 = Drift( L = 0.0638) -CV07_5 = VKicker( L = 0.2) -D000080__14 = Drift( L = 0.311955) -EDGE1_000__323 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__162 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__323 = Multipole( Kn1L = 4.07894736378E-6) -D000018__323 = Drift( L = 0.1193) -EDGE3_000__323 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__162 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__324 = Multipole( Kn1L = -4.07894736378E-6) -D000018__324 = Drift( L = 0.1193) -EDGE2_000__324 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__162 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__324 = Multipole( Kn1L = -4.4179123956E-5) -D000014__190 = Drift( L = 0.50037) -SF1_5__7 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000013__174 = Drift( L = 0.1042) -SF1_5__8 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000012__192 = Drift( L = 0.1559) -HQF_5__9 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__191 = Drift( L = 0.0638) -CH08_5 = HKicker( L = 0.2) -D000080__15 = Drift( L = 0.311955) -EDGE1_000__325 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__163 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__325 = Multipole( Kn1L = 4.07894736378E-6) -D000018__325 = Drift( L = 0.1193) -EDGE3_000__325 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__163 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__326 = Multipole( Kn1L = -4.07894736378E-6) -D000018__326 = Drift( L = 0.1193) -EDGE2_000__326 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__163 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__326 = Multipole( Kn1L = -4.4179123956E-5) -D000014__191 = Drift( L = 0.50037) -SD2_5__7 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000013__175 = Drift( L = 0.1042) -SD2_5__8 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000012__193 = Drift( L = 0.1559) -HQD_5__9 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__192 = Drift( L = 0.0638) -CV08_5 = VKicker( L = 0.2) -D000080__16 = Drift( L = 0.311955) -EDGE1_000__327 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__164 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__327 = Multipole( Kn1L = 4.07894736378E-6) -D000018__327 = Drift( L = 0.1193) -EDGE3_000__327 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__164 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__328 = Multipole( Kn1L = -4.07894736378E-6) -D000018__328 = Drift( L = 0.1193) -EDGE2_000__328 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__164 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__328 = Multipole( Kn1L = -4.4179123956E-5) -D000014__192 = Drift( L = 0.50037) -SF2_5__7 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000013__176 = Drift( L = 0.1042) -SF2_5__8 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000012__194 = Drift( L = 0.1559) -HQF_5__10 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__193 = Drift( L = 0.0638) -CH09_5 = HKicker( L = 0.2) -D000080__17 = Drift( L = 0.311955) -EDGE1_000__329 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__165 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__329 = Multipole( Kn1L = 4.07894736378E-6) -D000018__329 = Drift( L = 0.1193) -EDGE3_000__329 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__165 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__330 = Multipole( Kn1L = -4.07894736378E-6) -D000018__330 = Drift( L = 0.1193) -EDGE2_000__330 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__165 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__330 = Multipole( Kn1L = -4.4179123956E-5) -D000014__193 = Drift( L = 0.50037) -SD1_5__9 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000013__177 = Drift( L = 0.1042) -SD1_5__10 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000012__195 = Drift( L = 0.1559) -HQD_5__10 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__194 = Drift( L = 0.0638) -CV09_5 = VKicker( L = 0.2) -D000080__18 = Drift( L = 0.311955) -EDGE1_000__331 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__166 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__331 = Multipole( Kn1L = 4.07894736378E-6) -D000018__331 = Drift( L = 0.1193) -EDGE3_000__331 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__166 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__332 = Multipole( Kn1L = -4.07894736378E-6) -D000018__332 = Drift( L = 0.1193) -EDGE2_000__332 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__166 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__332 = Multipole( Kn1L = -4.4179123956E-5) -D000014__194 = Drift( L = 0.50037) -SF1_5__9 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000013__178 = Drift( L = 0.1042) -SF1_5__10 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000012__196 = Drift( L = 0.1559) -HQF_5__11 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__195 = Drift( L = 0.0638) -CH10_5 = HKicker( L = 0.2) -D000080__19 = Drift( L = 0.311955) -EDGE1_000__333 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__167 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__333 = Multipole( Kn1L = 4.07894736378E-6) -D000018__333 = Drift( L = 0.1193) -EDGE3_000__333 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__167 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__334 = Multipole( Kn1L = -4.07894736378E-6) -D000018__334 = Drift( L = 0.1193) -EDGE2_000__334 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__167 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__334 = Multipole( Kn1L = -4.4179123956E-5) -D000014__195 = Drift( L = 0.50037) -SD2_5__9 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000013__179 = Drift( L = 0.1042) -SD2_5__10 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000012__197 = Drift( L = 0.1559) -HQD_5__11 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__196 = Drift( L = 0.0638) -CV10_5 = VKicker( L = 0.2) -D000080__20 = Drift( L = 0.311955) -EDGE1_000__335 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__168 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__335 = Multipole( Kn1L = 4.07894736378E-6) -D000018__335 = Drift( L = 0.1193) -EDGE3_000__335 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__168 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__336 = Multipole( Kn1L = -4.07894736378E-6) -D000018__336 = Drift( L = 0.1193) -EDGE2_000__336 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__168 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__336 = Multipole( Kn1L = -4.4179123956E-5) -D000014__196 = Drift( L = 0.50037) -SF2_5__9 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000013__180 = Drift( L = 0.1042) -SF2_5__10 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000012__198 = Drift( L = 0.1559) -HQF_5__12 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__197 = Drift( L = 0.0638) -CH11_5 = HKicker( L = 0.2) -D000080__21 = Drift( L = 0.311955) -EDGE1_000__337 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__169 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__337 = Multipole( Kn1L = 4.07894736378E-6) -D000018__337 = Drift( L = 0.1193) -EDGE3_000__337 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__169 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__338 = Multipole( Kn1L = -4.07894736378E-6) -D000018__338 = Drift( L = 0.1193) -EDGE2_000__338 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__169 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__338 = Multipole( Kn1L = -4.4179123956E-5) -D000014__197 = Drift( L = 0.50037) -SD1_5__11 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000013__181 = Drift( L = 0.1042) -SD1_5__12 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000012__199 = Drift( L = 0.1559) -HQD_5__12 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__198 = Drift( L = 0.0638) -CV11_5 = VKicker( L = 0.2) -D000080__22 = Drift( L = 0.311955) -EDGE1_000__339 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__170 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__339 = Multipole( Kn1L = 4.07894736378E-6) -D000018__339 = Drift( L = 0.1193) -EDGE3_000__339 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__170 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__340 = Multipole( Kn1L = -4.07894736378E-6) -D000018__340 = Drift( L = 0.1193) -EDGE2_000__340 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__170 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__340 = Multipole( Kn1L = -4.4179123956E-5) -D000014__198 = Drift( L = 0.50037) -SF1_5__11 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000013__182 = Drift( L = 0.1042) -SF1_5__12 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000012__200 = Drift( L = 0.1559) -HQF_5__13 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__199 = Drift( L = 0.0638) -CH12_5 = HKicker( L = 0.2) -D000080__23 = Drift( L = 0.311955) -EDGE1_000__341 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__171 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__341 = Multipole( Kn1L = 4.07894736378E-6) -D000018__341 = Drift( L = 0.1193) -EDGE3_000__341 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__171 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__342 = Multipole( Kn1L = -4.07894736378E-6) -D000018__342 = Drift( L = 0.1193) -EDGE2_000__342 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__171 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__342 = Multipole( Kn1L = -4.4179123956E-5) -D000014__199 = Drift( L = 0.50037) -SD2_5__11 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000013__183 = Drift( L = 0.1042) -SD2_5__12 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000012__201 = Drift( L = 0.1559) -HQD_5__13 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__200 = Drift( L = 0.0638) -CV12_5 = VKicker( L = 0.2) -D000080__24 = Drift( L = 0.311955) -EDGE1_000__343 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__172 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__343 = Multipole( Kn1L = 4.07894736378E-6) -D000018__343 = Drift( L = 0.1193) -EDGE3_000__343 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__172 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__344 = Multipole( Kn1L = -4.07894736378E-6) -D000018__344 = Drift( L = 0.1193) -EDGE2_000__344 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__172 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__344 = Multipole( Kn1L = -4.4179123956E-5) -D000014__200 = Drift( L = 0.50037) -SF2_5__11 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000013__184 = Drift( L = 0.1042) -SF2_5__12 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000012__202 = Drift( L = 0.1559) -HQF_5__14 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__201 = Drift( L = 0.0638) -CH13_5 = HKicker( L = 0.2) -D000080__25 = Drift( L = 0.311955) -EDGE1_000__345 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__173 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__345 = Multipole( Kn1L = 4.07894736378E-6) -D000018__345 = Drift( L = 0.1193) -EDGE3_000__345 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__173 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__346 = Multipole( Kn1L = -4.07894736378E-6) -D000018__346 = Drift( L = 0.1193) -EDGE2_000__346 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__173 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__346 = Multipole( Kn1L = -4.4179123956E-5) -D000014__201 = Drift( L = 0.50037) -SD1_5__13 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000013__185 = Drift( L = 0.1042) -SD1_5__14 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000012__203 = Drift( L = 0.1559) -HQD_5__14 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__202 = Drift( L = 0.0638) -CV13_5 = VKicker( L = 0.2) -D000080__26 = Drift( L = 0.311955) -EDGE1_000__347 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__174 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__347 = Multipole( Kn1L = 4.07894736378E-6) -D000018__347 = Drift( L = 0.1193) -EDGE3_000__347 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__174 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__348 = Multipole( Kn1L = -4.07894736378E-6) -D000018__348 = Drift( L = 0.1193) -EDGE2_000__348 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__174 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__348 = Multipole( Kn1L = -4.4179123956E-5) -D000014__202 = Drift( L = 0.50037) -SF1_5__13 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000013__186 = Drift( L = 0.1042) -SF1_5__14 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000012__204 = Drift( L = 0.1559) -HQF_5__15 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__203 = Drift( L = 0.0638) -CH14_5 = HKicker( L = 0.2) -D000080__27 = Drift( L = 0.311955) -EDGE1_000__349 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__175 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__349 = Multipole( Kn1L = 4.07894736378E-6) -D000018__349 = Drift( L = 0.1193) -EDGE3_000__349 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__175 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__350 = Multipole( Kn1L = -4.07894736378E-6) -D000018__350 = Drift( L = 0.1193) -EDGE2_000__350 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__175 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__350 = Multipole( Kn1L = -4.4179123956E-5) -D000014__203 = Drift( L = 0.50037) -SD2_5__13 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000013__187 = Drift( L = 0.1042) -SD2_5__14 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000012__205 = Drift( L = 0.1559) -HQD_5__15 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__204 = Drift( L = 0.0638) -CV14_5 = VKicker( L = 0.2) -D000080__28 = Drift( L = 0.311955) -EDGE1_000__351 = Multipole( Kn1L = -4.4179123956E-5) -D01A_000__176 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE2_000__351 = Multipole( Kn1L = 4.07894736378E-6) -D000018__351 = Drift( L = 0.1193) -EDGE3_000__351 = Multipole( Kn1L = -4.07894736378E-6) -D23_000__176 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) -EDGE3_000__352 = Multipole( Kn1L = -4.07894736378E-6) -D000018__352 = Drift( L = 0.1193) -EDGE2_000__352 = Multipole( Kn1L = 4.07894736378E-6) -D01B_000__176 = SBend( L = 3.005180646695, g = 3.65280253687E-3) -EDGE1_000__352 = Multipole( Kn1L = -4.4179123956E-5) -D000014__204 = Drift( L = 0.50037) -SF2_5__13 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000013__188 = Drift( L = 0.1042) -SF2_5__14 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000012__206 = Drift( L = 0.1559) -HQF_5C = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__205 = Drift( L = 0.0638) -CH15_5 = HKicker( L = 0.2) -D000080__29 = Drift( L = 0.311955) -EDGE1_001__1 = Multipole( Kn1L = -3.71750681571E-5) -D01A_001__1 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) -EDGE2_001__1 = Multipole( Kn1L = 3.43231997011E-6) -D000029__9 = Drift( L = 0.1193) -EDGE3_001__1 = Multipole( Kn1L = -3.43231997011E-6) -D23_001__1 = SBend( L = 0.61140010692, g = 3.3507810471287E-3) -EDGE3_001__2 = Multipole( Kn1L = -3.43231997011E-6) -D000029__10 = Drift( L = 0.1193) -EDGE2_001__2 = Multipole( Kn1L = 3.43231997011E-6) -D01B_001__1 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) -EDGE1_001__2 = Multipole( Kn1L = -3.71750681571E-5) -D000014__205 = Drift( L = 0.50037) -SD1_5__15 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000013__189 = Drift( L = 0.1042) -SD1_5__16 = Sextupole( L = 0.24, Kn2 = -1.2585512508) -D000012__207 = Drift( L = 0.1559) -HQD_5C = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__206 = Drift( L = 0.0638) -CV15_5 = VKicker( L = 0.2) -D000080__30 = Drift( L = 0.311955) -EDGE1_001__3 = Multipole( Kn1L = -3.71750681571E-5) -D01A_001__2 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) -EDGE2_001__3 = Multipole( Kn1L = 3.43231997011E-6) -D000029__11 = Drift( L = 0.1193) -EDGE3_001__3 = Multipole( Kn1L = -3.43231997011E-6) -D23_001__2 = SBend( L = 0.61140010692, g = 3.3507810471287E-3) -EDGE3_001__4 = Multipole( Kn1L = -3.43231997011E-6) -D000029__12 = Drift( L = 0.1193) -EDGE2_001__4 = Multipole( Kn1L = 3.43231997011E-6) -D01B_001__2 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) -EDGE1_001__4 = Multipole( Kn1L = -3.71750681571E-5) -D000014__206 = Drift( L = 0.50037) -SF1_5__15 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000013__190 = Drift( L = 0.1042) -SF1_5__16 = Sextupole( L = 0.24, Kn2 = 3.1529470258) -D000012__208 = Drift( L = 0.1559) -HQF_5B = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) -D000017__207 = Drift( L = 0.0638) -CH16_5 = HKicker( L = 0.2) -D000080__31 = Drift( L = 0.311955) -EDGE1_001__5 = Multipole( Kn1L = -3.71750681571E-5) -D01A_001__3 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) -EDGE2_001__5 = Multipole( Kn1L = 3.43231997011E-6) -D000029__13 = Drift( L = 0.1193) -EDGE3_001__5 = Multipole( Kn1L = -3.43231997011E-6) -D23_001__3 = SBend( L = 0.61140010692, g = 3.3507810471287E-3) -EDGE3_001__6 = Multipole( Kn1L = -3.43231997011E-6) -D000029__14 = Drift( L = 0.1193) -EDGE2_001__6 = Multipole( Kn1L = 3.43231997011E-6) -D01B_001__3 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) -EDGE1_001__6 = Multipole( Kn1L = -3.71750681571E-5) -D000014__207 = Drift( L = 0.50037) -SD2_5__15 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000013__191 = Drift( L = 0.1042) -SD2_5__16 = Sextupole( L = 0.24, Kn2 = -6.1246897208) -D000012__209 = Drift( L = 0.1559) -HQD_5B = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) -D000017__208 = Drift( L = 0.0638) -CV16_5 = VKicker( L = 0.2) -D000080__32 = Drift( L = 0.311955) -EDGE1_001__7 = Multipole( Kn1L = -3.71750681571E-5) -D01A_001__4 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) -EDGE2_001__7 = Multipole( Kn1L = 3.43231997011E-6) -D000029__15 = Drift( L = 0.1193) -EDGE3_001__7 = Multipole( Kn1L = -3.43231997011E-6) -D23_001__4 = SBend( L = 0.61140010692, g = 3.3507810471287E-3) -EDGE3_001__8 = Multipole( Kn1L = -3.43231997011E-6) -D000029__16 = Drift( L = 0.1193) -EDGE2_001__8 = Multipole( Kn1L = 3.43231997011E-6) -D01B_001__4 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) -EDGE1_001__8 = Multipole( Kn1L = -3.71750681571E-5) -D000014__208 = Drift( L = 0.50037) -SF2_5__15 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000013__192 = Drift( L = 0.1042) -SF2_5__16 = Sextupole( L = 0.24, Kn2 = 1.7622709942) -D000012__210 = Drift( L = 0.1559) -HQF_5A = Quadrupole( L = 0.5, Kn1 = 0.3153779824,) -D000011__4 = Drift( L = 1.1) -HQD_5A = Quadrupole( L = 0.5, Kn1 = -0.1030417826) -D000008__25 = Drift( L = 0.85) -MROT1__4 = Marker() -HSOL5_6__3 = Solenoid( L = 1.8) -D000008__26 = Drift( L = 0.85) -HQSS1_5 = Quadrupole( L = 0.6480402, Kn1 = -0.4317684894,) -D000009__31 = Drift( L = 0.25) -HQSS2_5 = Quadrupole( L = 0.9550568, Kn1 = -0.1999111594,) -D000009__32 = Drift( L = 0.25) -HQSS3_5 = Quadrupole( L = 1.634532, Kn1 = 0.3708753774) -D000009__33 = Drift( L = 0.25) -HQSS4_5 = Quadrupole( L = 1.020723, Kn1 = -0.288327878) -D000009__34 = Drift( L = 0.25) -HQSS5_5 = Quadrupole( L = 0.6861532, Kn1 = -0.1632518563,) -D000008__27 = Drift( L = 0.85) -HSOL5_6__4 = Solenoid( L = 1.8) -MROT2__4 = Marker() -D000008__28 = Drift( L = 0.85) -HQFF1_5 = Quadrupole( L = 0.8, Kn1 = -0.3422170623,) -D000081__1 = Drift( L = 0.566391) -DB23_5__1 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000081__2 = Drift( L = 0.566391) -QFF2_5 = Quadrupole( L = 1.2, Kn1 = 0.191103341,) -D000081__3 = Drift( L = 0.566391) -DB23_5__2 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000081__4 = Drift( L = 0.566391) -QFF3_5 = Quadrupole( L = 1.2, Kn1 = -0.1586177022,) -D000081__5 = Drift( L = 0.566391) -DB23_5__3 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000081__6 = Drift( L = 0.566391) -QFF4_5 = Quadrupole( L = 1, Kn1 = 0.3022856494,) -D000081__7 = Drift( L = 0.566391) -DB23_5__4 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000081__8 = Drift( L = 0.566391) -HQFF5_5 = Quadrupole( L = 0.6, Kn1 = -0.3354145962,) -D000081__9 = Drift( L = 0.566391) -DB23_5__5 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) -D000081__10 = Drift( L = 0.566391) -MFF_5 = Marker() -HQFF6_5 = Quadrupole( L = 0.5, Kn1 = 0.2871373468,) -D000008__29 = Drift( L = 0.85) -MROT3__4 = Marker() -HSOL20_6__3 = Solenoid( L = 5.5, Ksol = 0.142634259959) -D000008__30 = Drift( L = 0.85) -HQLS1_5 = Quadrupole( L = 0.9819319, Kn1 = 0.4980048) -D000009__35 = Drift( L = 0.25) -HQLS2_5 = Quadrupole( L = 1.469939, Kn1 = -0.4983425) -D000009__36 = Drift( L = 0.25) -HQLS3_5 = Quadrupole( L = 1.530059, Kn1 = 0.3253198) -D000009__37 = Drift( L = 0.25) -HQLS4_5 = Quadrupole( L = 0.5187944, Kn1 = 0.498934) -D000009__38 = Drift( L = 0.25) -HQLS5_5 = Quadrupole( L = 1.530059, Kn1 = 0.3253198) -D000009__39 = Drift( L = 0.25) -HQLS6_5 = Quadrupole( L = 1.469939, Kn1 = -0.4983425) -D000009__40 = Drift( L = 0.25) -HQLS7_5 = Quadrupole( L = 0.9819319, Kn1 = 0.4980048) -D000008__31 = Drift( L = 0.85) -HSOL20_6__4 = Solenoid( L = 5.5, Ksol = 0.142634259959) -MROT4__4 = Marker() -D000008__32 = Drift( L = 0.85) -MLRF_6 = Marker() -Q12EF_6 = Quadrupole( L = 1.2, Kn1 = 0.05667673526,) -D000006__30 = Drift( L = 0.4) -D3EF_6__1 = SBend( L = 3.8000341971292, g = 3.8674060652146E-3, e1 = 7.348137651E-3, e2 = 7.348137651E-3) -D000006__31 = Drift( L = 0.4) -Q11EF_6 = Quadrupole( L = 1.2, Kn1 = -0.12274232) -D000006__32 = Drift( L = 0.4) -D3EF_6__2 = SBend( L = 3.8000341971292, g = 3.8674060652146E-3, e1 = 7.348137651E-3, e2 = 7.348137651E-3) -D000006__33 = Drift( L = 0.4) -Q10EF_6 = Quadrupole( L = 1.2, Kn1 = 0.1325250342) -D000006__34 = Drift( L = 0.4) -D3EF_6__3 = SBend( L = 3.8000341971292, g = 3.8674060652146E-3, e1 = 7.348137651E-3, e2 = 7.348137651E-3) -D000006__35 = Drift( L = 0.4) -Q9EF_6 = Quadrupole( L = 1.2, Kn1 = 0.06324195501) -D000006__36 = Drift( L = 0.4) -D3EF_6__4 = SBend( L = 3.8000341971292, g = 3.8674060652146E-3, e1 = 7.348137651E-3, e2 = 7.348137651E-3) -D000006__37 = Drift( L = 0.4) -Q8EF_6 = Quadrupole( L = 1.2, Kn1 = -0.1305514285) -D000005__15 = Drift( L = 4.6) -Q7EF_6 = Quadrupole( L = 1.2, Kn1 = 0.2370467134,) -D000005__16 = Drift( L = 4.6) -Q6EF_6 = Quadrupole( L = 1.2, Kn1 = -0.2243033401) -D000005__17 = Drift( L = 4.6) -Q5EF_6 = Quadrupole( L = 1.2, Kn1 = 0.2358711172) -D000005__18 = Drift( L = 4.6) -Q4EF_6 = Quadrupole( L = 1.2, Kn1 = -0.1541105329) -D000082 = Drift( L = 12.410188) -Q3EF_6 = Quadrupole( L = 0.6, Kn1 = 0.1207364787,) -D000007__33 = Drift( L = 0.3) -RF_CRAB__4 = Drift( L = 4) -D000007__34 = Drift( L = 0.3) -Q2EF_6 = Quadrupole( L = 0.6, Kn1 = -0.07669023958) -D000006__38 = Drift( L = 0.4) -D1EF_6 = SBend( L = 3.8000633341148, g = -5.263071944473E-3, e1 = -0.0100000033605, e2 = -0.0100000033605) -D000083 = Drift( L = 20.3) -MCOLL_MASK = Marker() -Q1EF_6 = Quadrupole( L = 1.61, Kn1 = 0.1003916016) -D000022__2 = Drift( L = 3.76) -Q0EF_6 = Quadrupole( L = 1.2, Kn1 = -0.2168808898) -D000023__2 = Drift( L = 5.8) -IP6__2 = Marker() + IP6__1 = Marker() + D000001__1 = Drift(L=5.3) + Q1ER_6 = Quadrupole(L=1.8, Kn1=-0.2291420342) + D000002__1 = Drift(L=0.5) + Q2ER_6 = Quadrupole(L=1.4, Kn1=0.2267785688) + D000002__2 = Drift(L=0.5) + D2ER_6 = SBend(L=5.50007539103, g=-3.2977170394029E-3, e1=-9.0688461675E-3, e2=-9.0688461675E-3) + D000003__1 = Drift(L=22.7) + Q3ER_6 = Quadrupole(L=0.6, Kn1=0.2223634541) + D000004 = Drift(L=3.530758) + Q4ER_6 = Quadrupole(L=0.6, Kn1=-0.26505565,) + D000005__1 = Drift(L=4.6) + Q5ER_6 = Quadrupole(L=1.2, Kn1=-0.03480279635) + D000006__1 = Drift(L=0.4) + D3ER_6 = SBend(L=3.8000045358949, g=-1.4085135130897E-3, e1=-2.676178869305E-3, e2=-2.676178869305E-3) + D000006__2 = Drift(L=0.4) + Q6ER_6 = Quadrupole(L=1.2, Kn1=0.1490047164,) + D000005__2 = Drift(L=4.6) + Q7ER_6 = Quadrupole(L=1.2, Kn1=-0.1838758976,) + D000005__3 = Drift(L=4.6) + Q9ER_6 = Quadrupole(L=1.2, Kn1=0.06052528741,) + D000007__1 = Drift(L=0.3) + RF_CRAB__1 = Drift(L=4) + D000007__2 = Drift(L=0.3) + Q10ER_6 = Quadrupole(L=1.2, Kn1=0.1362226534) + D000005__4 = Drift(L=4.6) + Q11ER_6 = Quadrupole(L=1.2, Kn1=-0.1612034901) + D000006__3 = Drift(L=0.4) + D5ER_6__1 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) + D000006__4 = Drift(L=0.4) + Q12ER_6 = Quadrupole(L=1.2, Kn1=0.1776428377) + D000006__5 = Drift(L=0.4) + D5ER_6__2 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) + D000006__6 = Drift(L=0.4) + Q13ER_6 = Quadrupole(L=1.2, Kn1=0.108262799,) + D000006__7 = Drift(L=0.4) + D5ER_6__3 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) + D000006__8 = Drift(L=0.4) + Q14ER_6 = Quadrupole(L=1.2, Kn1=-0.1762142779,) + D000006__9 = Drift(L=0.4) + D5ER_6__4 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) + D000006__10 = Drift(L=0.4) + Q15ER_6 = Quadrupole(L=1.2, Kn1=0.2658297117,) + MLRR_6 = Marker() + D000008__1 = Drift(L=0.85) + MROT4__1 = Marker() + HSOL20_6__1 = Solenoid(L=5.5, Ksol=0.142634259959) + D000008__2 = Drift(L=0.85) + HQLS7_6 = Quadrupole(L=0.9819319, Kn1=0.4980048) + D000009__1 = Drift(L=0.25) + HQLS6_6 = Quadrupole(L=1.469939, Kn1=-0.4983425) + D000009__2 = Drift(L=0.25) + HQLS5_6 = Quadrupole(L=1.530059, Kn1=0.3253198) + D000009__3 = Drift(L=0.25) + HQLS4_6 = Quadrupole(L=0.5187944, Kn1=0.498934) + D000009__4 = Drift(L=0.25) + HQLS3_6 = Quadrupole(L=1.530059, Kn1=0.3253198) + D000009__5 = Drift(L=0.25) + HQLS2_6 = Quadrupole(L=1.469939, Kn1=-0.4983425) + D000009__6 = Drift(L=0.25) + HQLS1_6 = Quadrupole(L=0.9819319, Kn1=0.4980048) + D000008__3 = Drift(L=0.85) + HSOL20_6__2 = Solenoid(L=5.5, Ksol=0.142634259959) + MROT3__1 = Marker() + D000008__4 = Drift(L=0.85) + HQFF6_6 = Quadrupole(L=0.5, Kn1=0.05714467433,) + MFF_6 = Marker() + D000010__1 = Drift(L=0.753912) + DB23_6__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000010__2 = Drift(L=0.753912) + HQFF5_6 = Quadrupole(L=0.6, Kn1=0.2430267659,) + D000010__3 = Drift(L=0.753912) + DB23_6__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000010__4 = Drift(L=0.753912) + QFF4_6 = Quadrupole(L=1, Kn1=-0.1976684766,) + D000010__5 = Drift(L=0.753912) + DB23_6__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000010__6 = Drift(L=0.753912) + QFF3_6 = Quadrupole(L=1.2, Kn1=0.274784227) + D000010__7 = Drift(L=0.753912) + DB23_6__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000010__8 = Drift(L=0.753912) + QFF2_6 = Quadrupole(L=1.2, Kn1=-0.1372520109) + D000010__9 = Drift(L=0.753912) + DB23_6__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000010__10 = Drift(L=0.753912) + QFF1_6 = Quadrupole(L=1.6, Kn1=0.2242944837,) + D000008__5 = Drift(L=0.85) + MROT2__1 = Marker() + HSOL5_6__1 = Solenoid(L=1.8) + D000008__6 = Drift(L=0.85) + HQSS5_6 = Quadrupole(L=0.6861532, Kn1=-0.1709619063,) + D000009__7 = Drift(L=0.25) + HQSS4_6 = Quadrupole(L=1.020723, Kn1=-0.3178330623,) + D000009__8 = Drift(L=0.25) + HQSS3_6 = Quadrupole(L=1.634532, Kn1=0.1897683702,) + D000009__9 = Drift(L=0.25) + HQSS2_6 = Quadrupole(L=0.9550568, Kn1=0.3512480915) + D000009__10 = Drift(L=0.25) + HQSS1_6 = Quadrupole(L=0.6480402, Kn1=-0.4953496086,) + D000008__7 = Drift(L=0.85) + HSOL5_6__2 = Solenoid(L=1.8) + MROT1__1 = Marker() + D000008__8 = Drift(L=0.85) + HQD_6A = Quadrupole(L=0.5, Kn1=-0.06747722682,) + D000011__1 = Drift(L=1.1) + HQF_6A = Quadrupole(L=0.5, Kn1=0.3359722588) + D000012__1 = Drift(L=0.1559) + SF1_7__1 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__1 = Drift(L=0.1042) + SF1_7__2 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__1 = Drift(L=0.50037) + EDGE1_002__1 = Multipole(Kn1L=-5.17873518337E-5) + D01A_002__1 = SBend(L=3.005194535002, g=3.9548203740468E-3) + EDGE2_002__1 = Multipole(Kn1L=4.78133619569E-6) + D000015__1 = Drift(L=0.1193) + EDGE3_002__1 = Multipole(Kn1L=-4.78133619569E-6) + D23_002__1 = SBend(L=0.611400148943, g=3.9548203741204E-3) + EDGE3_002__2 = Multipole(Kn1L=-4.78133619569E-6) + D000015__2 = Drift(L=0.1193) + EDGE2_002__2 = Multipole(Kn1L=4.78133619569E-6) + D01B_002__1 = SBend(L=3.005194535002, g=3.9548203740468E-3) + EDGE1_002__2 = Multipole(Kn1L=-5.17873518337E-5) + D000016__1 = Drift(L=0.374508) + CV01_7 = VKicker(L=0.2) + D000017__1 = Drift(L=0.0638) + HQD_6B = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__2 = Drift(L=0.1559) + SD1_7__1 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__2 = Drift(L=0.1042) + SD1_7__2 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__2 = Drift(L=0.50037) + EDGE1_002__3 = Multipole(Kn1L=-5.17873518337E-5) + D01A_002__2 = SBend(L=3.005194535002, g=3.9548203740468E-3) + EDGE2_002__3 = Multipole(Kn1L=4.78133619569E-6) + D000015__3 = Drift(L=0.1193) + EDGE3_002__3 = Multipole(Kn1L=-4.78133619569E-6) + D23_002__2 = SBend(L=0.611400148943, g=3.9548203741204E-3) + EDGE3_002__4 = Multipole(Kn1L=-4.78133619569E-6) + D000015__4 = Drift(L=0.1193) + EDGE2_002__4 = Multipole(Kn1L=4.78133619569E-6) + D01B_002__2 = SBend(L=3.005194535002, g=3.9548203740468E-3) + EDGE1_002__4 = Multipole(Kn1L=-5.17873518337E-5) + D000016__2 = Drift(L=0.374508) + CH01_7 = HKicker(L=0.2) + D000017__2 = Drift(L=0.0638) + HQF_6B = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__3 = Drift(L=0.1559) + SF2_7__1 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__3 = Drift(L=0.1042) + SF2_7__2 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__3 = Drift(L=0.50037) + EDGE1_002__5 = Multipole(Kn1L=-5.17873518337E-5) + D01A_002__3 = SBend(L=3.005194535002, g=3.9548203740468E-3) + EDGE2_002__5 = Multipole(Kn1L=4.78133619569E-6) + D000015__5 = Drift(L=0.1193) + EDGE3_002__5 = Multipole(Kn1L=-4.78133619569E-6) + D23_002__3 = SBend(L=0.611400148943, g=3.9548203741204E-3) + EDGE3_002__6 = Multipole(Kn1L=-4.78133619569E-6) + D000015__6 = Drift(L=0.1193) + EDGE2_002__6 = Multipole(Kn1L=4.78133619569E-6) + D01B_002__3 = SBend(L=3.005194535002, g=3.9548203740468E-3) + EDGE1_002__6 = Multipole(Kn1L=-5.17873518337E-5) + D000016__3 = Drift(L=0.374508) + CV02_7 = VKicker(L=0.2) + D000017__3 = Drift(L=0.0638) + HQD_6C = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__4 = Drift(L=0.1559) + SD2_7__1 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__4 = Drift(L=0.1042) + SD2_7__2 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__4 = Drift(L=0.50037) + EDGE1_002__7 = Multipole(Kn1L=-5.17873518337E-5) + D01A_002__4 = SBend(L=3.005194535002, g=3.9548203740468E-3) + EDGE2_002__7 = Multipole(Kn1L=4.78133619569E-6) + D000015__7 = Drift(L=0.1193) + EDGE3_002__7 = Multipole(Kn1L=-4.78133619569E-6) + D23_002__4 = SBend(L=0.611400148943, g=3.9548203741204E-3) + EDGE3_002__8 = Multipole(Kn1L=-4.78133619569E-6) + D000015__8 = Drift(L=0.1193) + EDGE2_002__8 = Multipole(Kn1L=4.78133619569E-6) + D01B_002__4 = SBend(L=3.005194535002, g=3.9548203740468E-3) + EDGE1_002__8 = Multipole(Kn1L=-5.17873518337E-5) + D000016__4 = Drift(L=0.374508) + CH02_7 = HKicker(L=0.2) + D000017__4 = Drift(L=0.0638) + HQF_6C = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__5 = Drift(L=0.1559) + SF1_7__3 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__5 = Drift(L=0.1042) + SF1_7__4 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__5 = Drift(L=0.50037) + EDGE1_000__1 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__1 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__1 = Multipole(Kn1L=4.07894736378E-6) + D000018__1 = Drift(L=0.1193) + EDGE3_000__1 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__1 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__2 = Multipole(Kn1L=-4.07894736378E-6) + D000018__2 = Drift(L=0.1193) + EDGE2_000__2 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__1 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__2 = Multipole(Kn1L=-4.4179123956E-5) + D000016__5 = Drift(L=0.374508) + CV03_7 = VKicker(L=0.2) + D000017__5 = Drift(L=0.0638) + HQD_7__1 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__6 = Drift(L=0.1559) + SD1_7__3 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__6 = Drift(L=0.1042) + SD1_7__4 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__6 = Drift(L=0.50037) + EDGE1_000__3 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__2 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__3 = Multipole(Kn1L=4.07894736378E-6) + D000018__3 = Drift(L=0.1193) + EDGE3_000__3 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__2 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__4 = Multipole(Kn1L=-4.07894736378E-6) + D000018__4 = Drift(L=0.1193) + EDGE2_000__4 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__2 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__4 = Multipole(Kn1L=-4.4179123956E-5) + D000016__6 = Drift(L=0.374508) + CH03_7 = HKicker(L=0.2) + D000017__6 = Drift(L=0.0638) + HQF_7__1 = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__7 = Drift(L=0.1559) + SF2_7__3 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__7 = Drift(L=0.1042) + SF2_7__4 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__7 = Drift(L=0.50037) + EDGE1_000__5 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__3 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__5 = Multipole(Kn1L=4.07894736378E-6) + D000018__5 = Drift(L=0.1193) + EDGE3_000__5 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__3 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__6 = Multipole(Kn1L=-4.07894736378E-6) + D000018__6 = Drift(L=0.1193) + EDGE2_000__6 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__3 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__6 = Multipole(Kn1L=-4.4179123956E-5) + D000016__7 = Drift(L=0.374508) + CV04_7 = VKicker(L=0.2) + D000017__7 = Drift(L=0.0638) + HQD_7__2 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__8 = Drift(L=0.1559) + SD2_7__3 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__8 = Drift(L=0.1042) + SD2_7__4 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__8 = Drift(L=0.50037) + EDGE1_000__7 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__4 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__7 = Multipole(Kn1L=4.07894736378E-6) + D000018__7 = Drift(L=0.1193) + EDGE3_000__7 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__4 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__8 = Multipole(Kn1L=-4.07894736378E-6) + D000018__8 = Drift(L=0.1193) + EDGE2_000__8 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__4 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__8 = Multipole(Kn1L=-4.4179123956E-5) + D000016__8 = Drift(L=0.374508) + CH04_7 = HKicker(L=0.2) + D000017__8 = Drift(L=0.0638) + HQF_7__2 = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__9 = Drift(L=0.1559) + SF1_7__5 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__9 = Drift(L=0.1042) + SF1_7__6 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__9 = Drift(L=0.50037) + EDGE1_000__9 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__5 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__9 = Multipole(Kn1L=4.07894736378E-6) + D000018__9 = Drift(L=0.1193) + EDGE3_000__9 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__5 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__10 = Multipole(Kn1L=-4.07894736378E-6) + D000018__10 = Drift(L=0.1193) + EDGE2_000__10 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__5 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__10 = Multipole(Kn1L=-4.4179123956E-5) + D000016__9 = Drift(L=0.374508) + CV05_7 = VKicker(L=0.2) + D000017__9 = Drift(L=0.0638) + HQD_7__3 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__10 = Drift(L=0.1559) + SD1_7__5 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__10 = Drift(L=0.1042) + SD1_7__6 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__10 = Drift(L=0.50037) + EDGE1_000__11 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__6 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__11 = Multipole(Kn1L=4.07894736378E-6) + D000018__11 = Drift(L=0.1193) + EDGE3_000__11 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__6 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__12 = Multipole(Kn1L=-4.07894736378E-6) + D000018__12 = Drift(L=0.1193) + EDGE2_000__12 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__6 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__12 = Multipole(Kn1L=-4.4179123956E-5) + D000016__10 = Drift(L=0.374508) + CH05_7 = HKicker(L=0.2) + D000017__10 = Drift(L=0.0638) + HQF_7__3 = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__11 = Drift(L=0.1559) + SF2_7__5 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__11 = Drift(L=0.1042) + SF2_7__6 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__11 = Drift(L=0.50037) + EDGE1_000__13 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__7 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__13 = Multipole(Kn1L=4.07894736378E-6) + D000018__13 = Drift(L=0.1193) + EDGE3_000__13 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__7 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__14 = Multipole(Kn1L=-4.07894736378E-6) + D000018__14 = Drift(L=0.1193) + EDGE2_000__14 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__7 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__14 = Multipole(Kn1L=-4.4179123956E-5) + D000016__11 = Drift(L=0.374508) + CV06_7 = VKicker(L=0.2) + D000017__11 = Drift(L=0.0638) + HQD_7__4 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__12 = Drift(L=0.1559) + SD2_7__5 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__12 = Drift(L=0.1042) + SD2_7__6 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__12 = Drift(L=0.50037) + EDGE1_000__15 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__8 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__15 = Multipole(Kn1L=4.07894736378E-6) + D000018__15 = Drift(L=0.1193) + EDGE3_000__15 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__8 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__16 = Multipole(Kn1L=-4.07894736378E-6) + D000018__16 = Drift(L=0.1193) + EDGE2_000__16 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__8 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__16 = Multipole(Kn1L=-4.4179123956E-5) + D000016__12 = Drift(L=0.374508) + CH06_7 = HKicker(L=0.2) + D000017__12 = Drift(L=0.0638) + HQF_7__4 = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__13 = Drift(L=0.1559) + SF1_7__7 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__13 = Drift(L=0.1042) + SF1_7__8 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__13 = Drift(L=0.50037) + EDGE1_000__17 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__9 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__17 = Multipole(Kn1L=4.07894736378E-6) + D000018__17 = Drift(L=0.1193) + EDGE3_000__17 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__9 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__18 = Multipole(Kn1L=-4.07894736378E-6) + D000018__18 = Drift(L=0.1193) + EDGE2_000__18 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__9 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__18 = Multipole(Kn1L=-4.4179123956E-5) + D000016__13 = Drift(L=0.374508) + CV07_7 = VKicker(L=0.2) + D000017__13 = Drift(L=0.0638) + HQD_7__5 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__14 = Drift(L=0.1559) + SD1_7__7 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__14 = Drift(L=0.1042) + SD1_7__8 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__14 = Drift(L=0.50037) + EDGE1_000__19 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__10 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__19 = Multipole(Kn1L=4.07894736378E-6) + D000018__19 = Drift(L=0.1193) + EDGE3_000__19 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__10 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__20 = Multipole(Kn1L=-4.07894736378E-6) + D000018__20 = Drift(L=0.1193) + EDGE2_000__20 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__10 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__20 = Multipole(Kn1L=-4.4179123956E-5) + D000016__14 = Drift(L=0.374508) + CH07_7 = HKicker(L=0.2) + D000017__14 = Drift(L=0.0638) + HQF_7__5 = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__15 = Drift(L=0.1559) + SF2_7__7 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__15 = Drift(L=0.1042) + SF2_7__8 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__15 = Drift(L=0.50037) + EDGE1_000__21 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__11 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__21 = Multipole(Kn1L=4.07894736378E-6) + D000018__21 = Drift(L=0.1193) + EDGE3_000__21 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__11 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__22 = Multipole(Kn1L=-4.07894736378E-6) + D000018__22 = Drift(L=0.1193) + EDGE2_000__22 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__11 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__22 = Multipole(Kn1L=-4.4179123956E-5) + D000016__15 = Drift(L=0.374508) + CV08_7 = VKicker(L=0.2) + D000017__15 = Drift(L=0.0638) + HQD_7__6 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__16 = Drift(L=0.1559) + SD2_7__7 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__16 = Drift(L=0.1042) + SD2_7__8 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__16 = Drift(L=0.50037) + EDGE1_000__23 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__12 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__23 = Multipole(Kn1L=4.07894736378E-6) + D000018__23 = Drift(L=0.1193) + EDGE3_000__23 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__12 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__24 = Multipole(Kn1L=-4.07894736378E-6) + D000018__24 = Drift(L=0.1193) + EDGE2_000__24 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__12 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__24 = Multipole(Kn1L=-4.4179123956E-5) + D000016__16 = Drift(L=0.374508) + CH08_7 = HKicker(L=0.2) + D000017__16 = Drift(L=0.0638) + HQF_7__6 = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__17 = Drift(L=0.1559) + SF1_7__9 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__17 = Drift(L=0.1042) + SF1_7__10 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__17 = Drift(L=0.50037) + EDGE1_000__25 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__13 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__25 = Multipole(Kn1L=4.07894736378E-6) + D000018__25 = Drift(L=0.1193) + EDGE3_000__25 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__13 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__26 = Multipole(Kn1L=-4.07894736378E-6) + D000018__26 = Drift(L=0.1193) + EDGE2_000__26 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__13 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__26 = Multipole(Kn1L=-4.4179123956E-5) + D000016__17 = Drift(L=0.374508) + CV09_7 = VKicker(L=0.2) + D000017__17 = Drift(L=0.0638) + HQD_7__7 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__18 = Drift(L=0.1559) + SD1_7__9 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__18 = Drift(L=0.1042) + SD1_7__10 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__18 = Drift(L=0.50037) + EDGE1_000__27 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__14 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__27 = Multipole(Kn1L=4.07894736378E-6) + D000018__27 = Drift(L=0.1193) + EDGE3_000__27 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__14 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__28 = Multipole(Kn1L=-4.07894736378E-6) + D000018__28 = Drift(L=0.1193) + EDGE2_000__28 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__14 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__28 = Multipole(Kn1L=-4.4179123956E-5) + D000016__18 = Drift(L=0.374508) + CH09_7 = HKicker(L=0.2) + D000017__18 = Drift(L=0.0638) + HQF_7__7 = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__19 = Drift(L=0.1559) + SF2_7__9 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__19 = Drift(L=0.1042) + SF2_7__10 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__19 = Drift(L=0.50037) + EDGE1_000__29 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__15 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__29 = Multipole(Kn1L=4.07894736378E-6) + D000018__29 = Drift(L=0.1193) + EDGE3_000__29 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__15 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__30 = Multipole(Kn1L=-4.07894736378E-6) + D000018__30 = Drift(L=0.1193) + EDGE2_000__30 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__15 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__30 = Multipole(Kn1L=-4.4179123956E-5) + D000016__19 = Drift(L=0.374508) + CV10_7 = VKicker(L=0.2) + D000017__19 = Drift(L=0.0638) + HQD_7__8 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__20 = Drift(L=0.1559) + SD2_7__9 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__20 = Drift(L=0.1042) + SD2_7__10 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__20 = Drift(L=0.50037) + EDGE1_000__31 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__16 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__31 = Multipole(Kn1L=4.07894736378E-6) + D000018__31 = Drift(L=0.1193) + EDGE3_000__31 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__16 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__32 = Multipole(Kn1L=-4.07894736378E-6) + D000018__32 = Drift(L=0.1193) + EDGE2_000__32 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__16 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__32 = Multipole(Kn1L=-4.4179123956E-5) + D000016__20 = Drift(L=0.374508) + CH10_7 = HKicker(L=0.2) + D000017__20 = Drift(L=0.0638) + HQF_7__8 = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__21 = Drift(L=0.1559) + SF1_7__11 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__21 = Drift(L=0.1042) + SF1_7__12 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__21 = Drift(L=0.50037) + EDGE1_000__33 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__17 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__33 = Multipole(Kn1L=4.07894736378E-6) + D000018__33 = Drift(L=0.1193) + EDGE3_000__33 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__17 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__34 = Multipole(Kn1L=-4.07894736378E-6) + D000018__34 = Drift(L=0.1193) + EDGE2_000__34 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__17 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__34 = Multipole(Kn1L=-4.4179123956E-5) + D000016__21 = Drift(L=0.374508) + CV11_7 = VKicker(L=0.2) + D000017__21 = Drift(L=0.0638) + HQD_7__9 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__22 = Drift(L=0.1559) + SD1_7__11 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__22 = Drift(L=0.1042) + SD1_7__12 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__22 = Drift(L=0.50037) + EDGE1_000__35 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__18 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__35 = Multipole(Kn1L=4.07894736378E-6) + D000018__35 = Drift(L=0.1193) + EDGE3_000__35 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__18 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__36 = Multipole(Kn1L=-4.07894736378E-6) + D000018__36 = Drift(L=0.1193) + EDGE2_000__36 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__18 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__36 = Multipole(Kn1L=-4.4179123956E-5) + D000016__22 = Drift(L=0.374508) + CH11_7 = HKicker(L=0.2) + D000017__22 = Drift(L=0.0638) + HQF_7__9 = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__23 = Drift(L=0.1559) + SF2_7__11 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__23 = Drift(L=0.1042) + SF2_7__12 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__23 = Drift(L=0.50037) + EDGE1_000__37 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__19 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__37 = Multipole(Kn1L=4.07894736378E-6) + D000018__37 = Drift(L=0.1193) + EDGE3_000__37 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__19 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__38 = Multipole(Kn1L=-4.07894736378E-6) + D000018__38 = Drift(L=0.1193) + EDGE2_000__38 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__19 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__38 = Multipole(Kn1L=-4.4179123956E-5) + D000016__23 = Drift(L=0.374508) + CV12_7 = VKicker(L=0.2) + D000017__23 = Drift(L=0.0638) + HQD_7__10 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__24 = Drift(L=0.1559) + SD2_7__11 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__24 = Drift(L=0.1042) + SD2_7__12 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__24 = Drift(L=0.50037) + EDGE1_000__39 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__20 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__39 = Multipole(Kn1L=4.07894736378E-6) + D000018__39 = Drift(L=0.1193) + EDGE3_000__39 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__20 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__40 = Multipole(Kn1L=-4.07894736378E-6) + D000018__40 = Drift(L=0.1193) + EDGE2_000__40 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__20 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__40 = Multipole(Kn1L=-4.4179123956E-5) + D000016__24 = Drift(L=0.374508) + CH12_7 = HKicker(L=0.2) + D000017__24 = Drift(L=0.0638) + HQF_7__10 = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__25 = Drift(L=0.1559) + SF1_7__13 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__25 = Drift(L=0.1042) + SF1_7__14 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__25 = Drift(L=0.50037) + EDGE1_000__41 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__21 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__41 = Multipole(Kn1L=4.07894736378E-6) + D000018__41 = Drift(L=0.1193) + EDGE3_000__41 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__21 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__42 = Multipole(Kn1L=-4.07894736378E-6) + D000018__42 = Drift(L=0.1193) + EDGE2_000__42 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__21 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__42 = Multipole(Kn1L=-4.4179123956E-5) + D000016__25 = Drift(L=0.374508) + CV13_7 = VKicker(L=0.2) + D000017__25 = Drift(L=0.0638) + HQD_7__11 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__26 = Drift(L=0.1559) + SD1_7__13 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__26 = Drift(L=0.1042) + SD1_7__14 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__26 = Drift(L=0.50037) + EDGE1_000__43 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__22 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__43 = Multipole(Kn1L=4.07894736378E-6) + D000018__43 = Drift(L=0.1193) + EDGE3_000__43 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__22 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__44 = Multipole(Kn1L=-4.07894736378E-6) + D000018__44 = Drift(L=0.1193) + EDGE2_000__44 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__22 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__44 = Multipole(Kn1L=-4.4179123956E-5) + D000016__26 = Drift(L=0.374508) + CH13_7 = HKicker(L=0.2) + D000017__26 = Drift(L=0.0638) + HQF_7__11 = Quadrupole(L=0.5, Kn1=0.3118076686,) + D000012__27 = Drift(L=0.1559) + SF2_7__13 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__27 = Drift(L=0.1042) + SF2_7__14 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__27 = Drift(L=0.50037) + EDGE1_000__45 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__23 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__45 = Multipole(Kn1L=4.07894736378E-6) + D000018__45 = Drift(L=0.1193) + EDGE3_000__45 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__23 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__46 = Multipole(Kn1L=-4.07894736378E-6) + D000018__46 = Drift(L=0.1193) + EDGE2_000__46 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__23 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__46 = Multipole(Kn1L=-4.4179123956E-5) + D000016__27 = Drift(L=0.374508) + CV14_7 = VKicker(L=0.2) + D000017__27 = Drift(L=0.0638) + HQD_7__12 = Quadrupole(L=0.5, Kn1=-0.3116315384,) + D000012__28 = Drift(L=0.1559) + SD2_7__13 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__28 = Drift(L=0.1042) + SD2_7__14 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__28 = Drift(L=0.50037) + EDGE1_000__47 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__24 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__47 = Multipole(Kn1L=4.07894736378E-6) + D000018__47 = Drift(L=0.1193) + EDGE3_000__47 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__24 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__48 = Multipole(Kn1L=-4.07894736378E-6) + D000018__48 = Drift(L=0.1193) + EDGE2_000__48 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__24 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__48 = Multipole(Kn1L=-4.4179123956E-5) + D000016__28 = Drift(L=0.374508) + CH14_7 = HKicker(L=0.2) + D000017__28 = Drift(L=0.0638) + HQF_7C = Quadrupole(L=0.5, Kn1=0.3127956769,) + D000012__29 = Drift(L=0.1559) + SF1_7__15 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__29 = Drift(L=0.1042) + SF1_7__16 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__29 = Drift(L=0.50037) + EDGE1_003__1 = Multipole(Kn1L=-5.47962034702E-5) + D01A_003__1 = SBend(L=3.005200027448, g=4.0680760596098E-3) + EDGE2_003__1 = Multipole(Kn1L=5.05910744438E-6) + D000015__9 = Drift(L=0.1193) + EDGE3_003__1 = Multipole(Kn1L=-5.05910744438E-6) + D23_003__1 = SBend(L=0.611400157595, g=4.0680760596525E-3) + EDGE3_003__2 = Multipole(Kn1L=-5.05910744438E-6) + D000015__10 = Drift(L=0.1193) + EDGE2_003__2 = Multipole(Kn1L=5.05910744438E-6) + D01B_003__1 = SBend(L=3.005200027448, g=4.0680760596098E-3) + EDGE1_003__2 = Multipole(Kn1L=-5.47962034702E-5) + D000016__29 = Drift(L=0.374508) + CV15_7 = VKicker(L=0.2) + D000017__29 = Drift(L=0.0638) + HQD_7C = Quadrupole(L=0.5, Kn1=-0.3108838126,) + D000012__30 = Drift(L=0.1559) + SD1_7__15 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__30 = Drift(L=0.1042) + SD1_7__16 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__30 = Drift(L=0.50037) + EDGE1_003__3 = Multipole(Kn1L=-5.47962034702E-5) + D01A_003__2 = SBend(L=3.005200027448, g=4.0680760596098E-3) + EDGE2_003__3 = Multipole(Kn1L=5.05910744438E-6) + D000015__11 = Drift(L=0.1193) + EDGE3_003__3 = Multipole(Kn1L=-5.05910744438E-6) + D23_003__2 = SBend(L=0.611400157595, g=4.0680760596525E-3) + EDGE3_003__4 = Multipole(Kn1L=-5.05910744438E-6) + D000015__12 = Drift(L=0.1193) + EDGE2_003__4 = Multipole(Kn1L=5.05910744438E-6) + D01B_003__2 = SBend(L=3.005200027448, g=4.0680760596098E-3) + EDGE1_003__4 = Multipole(Kn1L=-5.47962034702E-5) + D000016__30 = Drift(L=0.374508) + CH15_7 = HKicker(L=0.2) + D000017__30 = Drift(L=0.0638) + HQF_7B = Quadrupole(L=0.5, Kn1=0.3194594174,) + D000012__31 = Drift(L=0.1559) + SF2_7__15 = Sextupole(L=0.24, Kn2=2.465563152) + D000013__31 = Drift(L=0.1042) + SF2_7__16 = Sextupole(L=0.24, Kn2=2.465563152) + D000014__31 = Drift(L=0.50037) + EDGE1_003__5 = Multipole(Kn1L=-5.47962034702E-5) + D01A_003__3 = SBend(L=3.005200027448, g=4.0680760596098E-3) + EDGE2_003__5 = Multipole(Kn1L=5.05910744438E-6) + D000015__13 = Drift(L=0.1193) + EDGE3_003__5 = Multipole(Kn1L=-5.05910744438E-6) + D23_003__3 = SBend(L=0.611400157595, g=4.0680760596525E-3) + EDGE3_003__6 = Multipole(Kn1L=-5.05910744438E-6) + D000015__14 = Drift(L=0.1193) + EDGE2_003__6 = Multipole(Kn1L=5.05910744438E-6) + D01B_003__3 = SBend(L=3.005200027448, g=4.0680760596098E-3) + EDGE1_003__6 = Multipole(Kn1L=-5.47962034702E-5) + D000016__31 = Drift(L=0.374508) + CV16_7 = VKicker(L=0.2) + D000017__31 = Drift(L=0.0638) + HQD_7B = Quadrupole(L=0.5, Kn1=-0.3105982322,) + D000012__32 = Drift(L=0.1559) + SD2_7__15 = Sextupole(L=0.24, Kn2=-4.313410584) + D000013__32 = Drift(L=0.1042) + SD2_7__16 = Sextupole(L=0.24, Kn2=-4.313410584) + D000014__32 = Drift(L=0.50037) + EDGE1_003__7 = Multipole(Kn1L=-5.47962034702E-5) + D01A_003__4 = SBend(L=3.005200027448, g=4.0680760596098E-3) + EDGE2_003__7 = Multipole(Kn1L=5.05910744438E-6) + D000015__15 = Drift(L=0.1193) + EDGE3_003__7 = Multipole(Kn1L=-5.05910744438E-6) + D23_003__4 = SBend(L=0.611400157595, g=4.0680760596525E-3) + EDGE3_003__8 = Multipole(Kn1L=-5.05910744438E-6) + D000015__16 = Drift(L=0.1193) + EDGE2_003__8 = Multipole(Kn1L=5.05910744438E-6) + D01B_003__4 = SBend(L=3.005200027448, g=4.0680760596098E-3) + EDGE1_003__8 = Multipole(Kn1L=-5.47962034702E-5) + D000016__32 = Drift(L=0.374508) + CH16_7 = HKicker(L=0.2) + D000017__32 = Drift(L=0.0638) + HQF_7A = Quadrupole(L=0.5, Kn1=0.3259712517) + D000011__2 = Drift(L=1.1) + HQD_7A = Quadrupole(L=0.5, Kn1=-0.071909135,) + D000008__9 = Drift(L=0.85) + MROT1__2 = Marker() + HSOL5_8__1 = Solenoid(L=1.8) + D000008__10 = Drift(L=0.85) + HQSS1_7 = Quadrupole(L=0.6480402, Kn1=-0.1976628965) + D000009__11 = Drift(L=0.25) + HQSS2_7 = Quadrupole(L=0.9550568, Kn1=-0.1370256837) + D000009__12 = Drift(L=0.25) + HQSS3_7 = Quadrupole(L=1.634532, Kn1=3.239613906E-3,) + D000009__13 = Drift(L=0.25) + HQSS4_7 = Quadrupole(L=1.020723, Kn1=0.255335572,) + D000009__14 = Drift(L=0.25) + HQSS5_7 = Quadrupole(L=0.6861532, Kn1=-0.1505457051,) + D000008__11 = Drift(L=0.85) + HSOL5_8__2 = Solenoid(L=1.8) + MROT2__2 = Marker() + D000008__12 = Drift(L=0.85) + HQFF1_7 = Quadrupole(L=0.8, Kn1=-0.1943356792,) + D000019__1 = Drift(L=0.372681) + DB23_7__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000019__2 = Drift(L=0.372681) + QFF2_7 = Quadrupole(L=1.2, Kn1=0.1909728817,) + D000019__3 = Drift(L=0.372681) + DB23_7__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000019__4 = Drift(L=0.372681) + QFF3_7 = Quadrupole(L=1.2, Kn1=-0.1633145219,) + D000019__5 = Drift(L=0.372681) + DB23_7__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000019__6 = Drift(L=0.372681) + QFF4_7 = Quadrupole(L=1, Kn1=0.2524257334) + D000019__7 = Drift(L=0.372681) + DB23_7__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000019__8 = Drift(L=0.372681) + HQFF5_7 = Quadrupole(L=0.6, Kn1=-0.2773213506) + D000019__9 = Drift(L=0.372681) + DB23_7__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000019__10 = Drift(L=0.372681) + MFF_7 = Marker() + HQFF6_7 = Quadrupole(L=0.5, Kn1=0.3016541182,) + D000008__13 = Drift(L=0.85) + MROT3__2 = Marker() + HSOL20_8__1 = Solenoid(L=5.5) + D000008__14 = Drift(L=0.85) + HQLS1_7 = Quadrupole(L=0.9819319, Kn1=0.3525126074,) + D000009__15 = Drift(L=0.25) + HQLS2_7 = Quadrupole(L=1.469939, Kn1=-0.3544489077,) + D000009__16 = Drift(L=0.25) + HQLS3_7 = Quadrupole(L=1.530059, Kn1=0.1497450638,) + D000009__17 = Drift(L=0.25) + HQLS4_7 = Quadrupole(L=0.5187944, Kn1=0.2705914324,) + D000009__18 = Drift(L=0.25) + HQLS5_7 = Quadrupole(L=1.530059, Kn1=0.2008969574,) + D000009__19 = Drift(L=0.25) + HQLS6_7 = Quadrupole(L=1.469939, Kn1=-0.3524613373,) + D000009__20 = Drift(L=0.25) + HQLS7_7 = Quadrupole(L=0.9819319, Kn1=0.3516668168,) + D000008__15 = Drift(L=0.85) + HSOL20_8__2 = Solenoid(L=5.5) + MROT4__2 = Marker() + D000008__16 = Drift(L=0.85) + MLRF_8 = Marker() + Q14EF_8 = Quadrupole(L=1.2, Kn1=-0.0805622429) + D000006__11 = Drift(L=0.4) + D3EF_8__1 = SBend(L=3.8000531337057, g=4.8206664263497E-3, e1=9.15939428E-3, e2=9.15939428E-3) + D000006__12 = Drift(L=0.4) + Q13EF_8 = Quadrupole(L=1.2, Kn1=0.2147150407,) + D000006__13 = Drift(L=0.4) + D3EF_8__2 = SBend(L=3.8000531337057, g=4.8206664263497E-3, e1=9.15939428E-3, e2=9.15939428E-3) + D000006__14 = Drift(L=0.4) + Q12EF_8 = Quadrupole(L=1.2, Kn1=-0.1875116872) + D000006__15 = Drift(L=0.4) + D3EF_8__3 = SBend(L=3.8000531337057, g=4.8206664263497E-3, e1=9.15939428E-3, e2=9.15939428E-3) + D000006__16 = Drift(L=0.4) + Q11EF_8 = Quadrupole(L=1.2, Kn1=0.319522109) + D000006__17 = Drift(L=0.4) + D2EF_8 = SBend(L=3.0051217587267, g=-4.3866170409633E-3, e1=-6.5911591585E-3, e2=-6.5911591585E-3) + D000006__18 = Drift(L=0.4) + Q10EF_8 = Quadrupole(L=1.2, Kn1=-0.2329008389,) + D000005__5 = Drift(L=4.6) + Q9EF_8 = Quadrupole(L=1.2, Kn1=0.2677564554) + D000005__6 = Drift(L=4.6) + Q8EF_8 = Quadrupole(L=1.2, Kn1=-0.1860583032) + D000005__7 = Drift(L=4.6) + Q7EF_8 = Quadrupole(L=1.2, Kn1=0.05181069896) + D000005__8 = Drift(L=4.6) + Q6EF_8 = Quadrupole(L=1.2, Kn1=0.01106416249) + D000005__9 = Drift(L=4.6) + Q5EF_8 = Quadrupole(L=1.2, Kn1=0.1111051943) + D000005__10 = Drift(L=4.6) + Q4EF_8 = Quadrupole(L=1.2, Kn1=-0.1192696818) + D000020 = Drift(L=5.367456) + Q3EF_8 = Quadrupole(L=0.6, Kn1=0.1942090498) + D000007__3 = Drift(L=0.3) + RF_CRAB__2 = Drift(L=4) + D000007__4 = Drift(L=0.3) + Q2EF_8 = Quadrupole(L=0.6, Kn1=-0.1340200446) + D000006__19 = Drift(L=0.4) + D1EF_8__1 = SBend(L=3.0051002796571, g=-4.9731333334425E-4, e1=-7.47238218555E-4, e2=-7.47238218555E-4) + D000006__20 = Drift(L=0.4) + D1EF_8__2 = SBend(L=3.0051002796571, g=-4.9731333334425E-4, e1=-7.47238218555E-4, e2=-7.47238218555E-4) + D000021 = Drift(L=16.9) + Q1EF_8 = Quadrupole(L=1.61, Kn1=0.1016217263) + D000022__1 = Drift(L=3.76) + Q0EF_8 = Quadrupole(L=1.2, Kn1=-0.2159418046) + D000023__1 = Drift(L=5.8) + IP8 = Marker() + D000001__2 = Drift(L=5.3) + Q1ER_8 = Quadrupole(L=1.8, Kn1=-0.2143949606) + D000002__3 = Drift(L=0.5) + Q2ER_8 = Quadrupole(L=1.4, Kn1=0.2031685787) + D000002__4 = Drift(L=0.5) + D2ER_8 = SBend(L=5.50007539103, g=-3.2977170394029E-3, e1=-9.0688461675E-3, e2=-9.0688461675E-3) + D000003__2 = Drift(L=22.7) + Q3ER_8 = Quadrupole(L=0.6, Kn1=-0.1022387522) + D000006__21 = Drift(L=0.4) + D3ER_8 = SBend(L=3.0051041632592, g=1.9188151700459E-3, e1=2.883119728015E-3, e2=2.883119728015E-3) + D000024 = Drift(L=3.522083) + Q4ER_8 = Quadrupole(L=0.6, Kn1=0.1693940448) + D000025 = Drift(L=4.8) + Q5ER_8 = Quadrupole(L=1.2, Kn1=-0.1475150732) + D000026 = Drift(L=2.8) + Q6ER_8 = Quadrupole(L=1.2, Kn1=0.07294971889) + D000005__11 = Drift(L=4.6) + Q7ER_8 = Quadrupole(L=1.2, Kn1=0.07596588916) + D000005__12 = Drift(L=4.6) + Q8ER_8 = Quadrupole(L=1.2, Kn1=-0.202860792) + D000005__13 = Drift(L=4.6) + Q9ER_8 = Quadrupole(L=1.2, Kn1=0.09499816132) + D000007__5 = Drift(L=0.3) + RF_CRAB__3 = Drift(L=4) + D000007__6 = Drift(L=0.3) + Q10ER_8 = Quadrupole(L=1.2, Kn1=0.1322610543) + D000005__14 = Drift(L=4.6) + Q11ER_8 = Quadrupole(L=1.2, Kn1=-0.221468388) + D000006__22 = Drift(L=0.4) + D4ER_8 = SBend(L=3.0051224305305, g=4.453819619468E-3, e1=6.69213662E-3, e2=6.69213662E-3) + D000006__23 = Drift(L=0.4) + Q12ER_8 = Quadrupole(L=1.2, Kn1=0.1585832349) + D000006__24 = Drift(L=0.4) + D5ER_8__1 = SBend(L=3.0051198496773, g=4.1897690181481E-3, e1=6.295379021E-3, e2=6.295379021E-3) + D000006__25 = Drift(L=0.4) + Q13ER_8 = Quadrupole(L=1.2, Kn1=0.1446740057) + D000006__26 = Drift(L=0.4) + D5ER_8__2 = SBend(L=3.0051198496773, g=4.1897690181481E-3, e1=6.295379021E-3, e2=6.295379021E-3) + D000006__27 = Drift(L=0.4) + Q14ER_8 = Quadrupole(L=1.2, Kn1=-0.2212744801) + D000006__28 = Drift(L=0.4) + D5ER_8__3 = SBend(L=3.0051198496773, g=4.1897690181481E-3, e1=6.295379021E-3, e2=6.295379021E-3) + D000006__29 = Drift(L=0.4) + Q15ER_8 = Quadrupole(L=1.2, Kn1=0.2116494718,) + MLRR_8 = Marker() + D000008__17 = Drift(L=0.85) + MROT4__3 = Marker() + HSOL20_8__3 = Solenoid(L=5.5) + D000008__18 = Drift(L=0.85) + HQLS7_8 = Quadrupole(L=0.9819319, Kn1=0.3360574653) + D000009__21 = Drift(L=0.25) + HQLS6_8 = Quadrupole(L=1.469939, Kn1=-0.3470868863,) + D000009__22 = Drift(L=0.25) + HQLS5_8 = Quadrupole(L=1.530059, Kn1=0.1626287734) + D000009__23 = Drift(L=0.25) + HQLS4_8 = Quadrupole(L=0.5187944, Kn1=0.2546260677) + D000009__24 = Drift(L=0.25) + HQLS3_8 = Quadrupole(L=1.530059, Kn1=0.158055864) + D000009__25 = Drift(L=0.25) + HQLS2_8 = Quadrupole(L=1.469939, Kn1=-0.3498818893,) + D000009__26 = Drift(L=0.25) + HQLS1_8 = Quadrupole(L=0.9819319, Kn1=0.3342207154) + D000008__19 = Drift(L=0.85) + HSOL20_8__4 = Solenoid(L=5.5) + MROT3__3 = Marker() + D000008__20 = Drift(L=0.85) + HQFF6_8 = Quadrupole(L=0.5, Kn1=0.3107342787,) + MFF_8 = Marker() + D000027__1 = Drift(L=0.354127) + DB23_8__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000027__2 = Drift(L=0.354127) + HQFF5_8 = Quadrupole(L=0.6, Kn1=-0.3351061032) + D000027__3 = Drift(L=0.354127) + DB23_8__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000027__4 = Drift(L=0.354127) + QFF4_8 = Quadrupole(L=1, Kn1=0.2878909144) + D000027__5 = Drift(L=0.354127) + DB23_8__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000027__6 = Drift(L=0.354127) + QFF3_8 = Quadrupole(L=1.2, Kn1=-0.2004078496) + D000027__7 = Drift(L=0.354127) + DB23_8__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000027__8 = Drift(L=0.354127) + QFF2_8 = Quadrupole(L=1.2, Kn1=0.2051948078) + D000027__9 = Drift(L=0.354127) + DB23_8__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000027__10 = Drift(L=0.354127) + QFF1_8 = Quadrupole(L=1.6, Kn1=-0.137612492,) + D000008__21 = Drift(L=0.85) + MROT2__3 = Marker() + HSOL5_8__3 = Solenoid(L=1.8) + D000008__22 = Drift(L=0.85) + HQSS5_8 = Quadrupole(L=0.6861532, Kn1=0.02610418854,) + D000009__27 = Drift(L=0.25) + HQSS4_8 = Quadrupole(L=1.020723, Kn1=0.02642026735,) + D000009__28 = Drift(L=0.25) + HQSS3_8 = Quadrupole(L=1.634532, Kn1=0.07061989633,) + D000009__29 = Drift(L=0.25) + HQSS2_8 = Quadrupole(L=0.9550568, Kn1=-0.099348953) + D000009__30 = Drift(L=0.25) + HQSS1_8 = Quadrupole(L=0.6480402, Kn1=-0.1036476643,) + D000008__23 = Drift(L=0.85) + HSOL5_8__4 = Solenoid(L=1.8) + MROT1__3 = Marker() + D000008__24 = Drift(L=0.85) + HQD_8A = Quadrupole(L=0.5, Kn1=-0.08760720367) + D000011__3 = Drift(L=1.1) + HQF_8A = Quadrupole(L=0.5, Kn1=0.3426857894) + D000017__33 = Drift(L=0.0638) + CH01_9 = HKicker(L=0.2) + D000028__1 = Drift(L=0.29394) + EDGE1_004__1 = Multipole(Kn1L=-3.4704307448E-5) + D01A_004__1 = SBend(L=3.005163351009, g=3.2375221083251E-3) + EDGE2_004__1 = Multipole(Kn1L=3.20421122147E-6) + D000029__1 = Drift(L=0.1193) + EDGE3_004__1 = Multipole(Kn1L=-3.20421122147E-6) + D23_004__1 = SBend(L=0.611400099814, g=3.2375221083251E-3) + EDGE3_004__2 = Multipole(Kn1L=-3.20421122147E-6) + D000029__2 = Drift(L=0.1193) + EDGE2_004__2 = Multipole(Kn1L=3.20421122147E-6) + D01B_004__1 = SBend(L=3.005163351009, g=3.2375221083251E-3) + EDGE1_004__2 = Multipole(Kn1L=-3.4704307448E-5) + D000014__33 = Drift(L=0.50037) + SD1_9__1 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000013__33 = Drift(L=0.1042) + SD1_9__2 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000012__33 = Drift(L=0.1559) + HQD_8B = Quadrupole(L=0.5, Kn1=-0.3126076902,) + D000017__34 = Drift(L=0.0638) + CV01_9 = VKicker(L=0.2) + D000028__2 = Drift(L=0.29394) + EDGE1_004__3 = Multipole(Kn1L=-3.4704307448E-5) + D01A_004__2 = SBend(L=3.005163351009, g=3.2375221083251E-3) + EDGE2_004__3 = Multipole(Kn1L=3.20421122147E-6) + D000029__3 = Drift(L=0.1193) + EDGE3_004__3 = Multipole(Kn1L=-3.20421122147E-6) + D23_004__2 = SBend(L=0.611400099814, g=3.2375221083251E-3) + EDGE3_004__4 = Multipole(Kn1L=-3.20421122147E-6) + D000029__4 = Drift(L=0.1193) + EDGE2_004__4 = Multipole(Kn1L=3.20421122147E-6) + D01B_004__2 = SBend(L=3.005163351009, g=3.2375221083251E-3) + EDGE1_004__4 = Multipole(Kn1L=-3.4704307448E-5) + D000014__34 = Drift(L=0.50037) + SF1_9__1 = Sextupole(L=0.24, Kn2=1.7172760006) + D000013__34 = Drift(L=0.1042) + SF1_9__2 = Sextupole(L=0.24, Kn2=1.7172760006) + D000012__34 = Drift(L=0.1559) + HQF_8B = Quadrupole(L=0.5, Kn1=0.3285018589,) + D000017__35 = Drift(L=0.0638) + CH02_9 = HKicker(L=0.2) + D000028__3 = Drift(L=0.29394) + EDGE1_004__5 = Multipole(Kn1L=-3.4704307448E-5) + D01A_004__3 = SBend(L=3.005163351009, g=3.2375221083251E-3) + EDGE2_004__5 = Multipole(Kn1L=3.20421122147E-6) + D000029__5 = Drift(L=0.1193) + EDGE3_004__5 = Multipole(Kn1L=-3.20421122147E-6) + D23_004__3 = SBend(L=0.611400099814, g=3.2375221083251E-3) + EDGE3_004__6 = Multipole(Kn1L=-3.20421122147E-6) + D000029__6 = Drift(L=0.1193) + EDGE2_004__6 = Multipole(Kn1L=3.20421122147E-6) + D01B_004__3 = SBend(L=3.005163351009, g=3.2375221083251E-3) + EDGE1_004__6 = Multipole(Kn1L=-3.4704307448E-5) + D000014__35 = Drift(L=0.50037) + SD2_9__1 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000013__35 = Drift(L=0.1042) + SD2_9__2 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000012__35 = Drift(L=0.1559) + HQD_8C = Quadrupole(L=0.5, Kn1=-0.3136673336,) + D000017__36 = Drift(L=0.0638) + CV02_9 = VKicker(L=0.2) + D000028__4 = Drift(L=0.29394) + EDGE1_004__7 = Multipole(Kn1L=-3.4704307448E-5) + D01A_004__4 = SBend(L=3.005163351009, g=3.2375221083251E-3) + EDGE2_004__7 = Multipole(Kn1L=3.20421122147E-6) + D000029__7 = Drift(L=0.1193) + EDGE3_004__7 = Multipole(Kn1L=-3.20421122147E-6) + D23_004__4 = SBend(L=0.611400099814, g=3.2375221083251E-3) + EDGE3_004__8 = Multipole(Kn1L=-3.20421122147E-6) + D000029__8 = Drift(L=0.1193) + EDGE2_004__8 = Multipole(Kn1L=3.20421122147E-6) + D01B_004__4 = SBend(L=3.005163351009, g=3.2375221083251E-3) + EDGE1_004__8 = Multipole(Kn1L=-3.4704307448E-5) + D000014__36 = Drift(L=0.50037) + SF2_9__1 = Sextupole(L=0.24, Kn2=3.010408804) + D000013__36 = Drift(L=0.1042) + SF2_9__2 = Sextupole(L=0.24, Kn2=3.010408804) + D000012__36 = Drift(L=0.1559) + HQF_8C = Quadrupole(L=0.5, Kn1=0.3021376478,) + D000017__37 = Drift(L=0.0638) + CH03_9 = HKicker(L=0.2) + D000028__5 = Drift(L=0.29394) + EDGE1_000__49 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__25 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__49 = Multipole(Kn1L=4.07894736378E-6) + D000018__49 = Drift(L=0.1193) + EDGE3_000__49 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__25 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__50 = Multipole(Kn1L=-4.07894736378E-6) + D000018__50 = Drift(L=0.1193) + EDGE2_000__50 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__25 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__50 = Multipole(Kn1L=-4.4179123956E-5) + D000014__37 = Drift(L=0.50037) + SD1_9__3 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000013__37 = Drift(L=0.1042) + SD1_9__4 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000012__37 = Drift(L=0.1559) + HQD_9__1 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__38 = Drift(L=0.0638) + CV03_9 = VKicker(L=0.2) + D000028__6 = Drift(L=0.29394) + EDGE1_000__51 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__26 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__51 = Multipole(Kn1L=4.07894736378E-6) + D000018__51 = Drift(L=0.1193) + EDGE3_000__51 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__26 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__52 = Multipole(Kn1L=-4.07894736378E-6) + D000018__52 = Drift(L=0.1193) + EDGE2_000__52 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__26 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__52 = Multipole(Kn1L=-4.4179123956E-5) + D000014__38 = Drift(L=0.50037) + SF1_9__3 = Sextupole(L=0.24, Kn2=1.7172760006) + D000013__38 = Drift(L=0.1042) + SF1_9__4 = Sextupole(L=0.24, Kn2=1.7172760006) + D000012__38 = Drift(L=0.1559) + HQF_9__1 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__39 = Drift(L=0.0638) + CH04_9 = HKicker(L=0.2) + D000028__7 = Drift(L=0.29394) + EDGE1_000__53 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__27 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__53 = Multipole(Kn1L=4.07894736378E-6) + D000018__53 = Drift(L=0.1193) + EDGE3_000__53 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__27 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__54 = Multipole(Kn1L=-4.07894736378E-6) + D000018__54 = Drift(L=0.1193) + EDGE2_000__54 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__27 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__54 = Multipole(Kn1L=-4.4179123956E-5) + D000014__39 = Drift(L=0.50037) + SD2_9__3 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000013__39 = Drift(L=0.1042) + SD2_9__4 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000012__39 = Drift(L=0.1559) + HQD_9__2 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__40 = Drift(L=0.0638) + CV04_9 = VKicker(L=0.2) + D000028__8 = Drift(L=0.29394) + EDGE1_000__55 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__28 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__55 = Multipole(Kn1L=4.07894736378E-6) + D000018__55 = Drift(L=0.1193) + EDGE3_000__55 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__28 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__56 = Multipole(Kn1L=-4.07894736378E-6) + D000018__56 = Drift(L=0.1193) + EDGE2_000__56 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__28 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__56 = Multipole(Kn1L=-4.4179123956E-5) + D000014__40 = Drift(L=0.50037) + SF2_9__3 = Sextupole(L=0.24, Kn2=3.010408804) + D000013__40 = Drift(L=0.1042) + SF2_9__4 = Sextupole(L=0.24, Kn2=3.010408804) + D000012__40 = Drift(L=0.1559) + HQF_9__2 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__41 = Drift(L=0.0638) + CH05_9 = HKicker(L=0.2) + D000028__9 = Drift(L=0.29394) + EDGE1_000__57 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__29 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__57 = Multipole(Kn1L=4.07894736378E-6) + D000018__57 = Drift(L=0.1193) + EDGE3_000__57 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__29 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__58 = Multipole(Kn1L=-4.07894736378E-6) + D000018__58 = Drift(L=0.1193) + EDGE2_000__58 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__29 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__58 = Multipole(Kn1L=-4.4179123956E-5) + D000014__41 = Drift(L=0.50037) + SD1_9__5 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000013__41 = Drift(L=0.1042) + SD1_9__6 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000012__41 = Drift(L=0.1559) + HQD_9__3 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__42 = Drift(L=0.0638) + CV05_9 = VKicker(L=0.2) + D000028__10 = Drift(L=0.29394) + EDGE1_000__59 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__30 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__59 = Multipole(Kn1L=4.07894736378E-6) + D000018__59 = Drift(L=0.1193) + EDGE3_000__59 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__30 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__60 = Multipole(Kn1L=-4.07894736378E-6) + D000018__60 = Drift(L=0.1193) + EDGE2_000__60 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__30 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__60 = Multipole(Kn1L=-4.4179123956E-5) + D000014__42 = Drift(L=0.50037) + SF1_9__5 = Sextupole(L=0.24, Kn2=1.7172760006) + D000013__42 = Drift(L=0.1042) + SF1_9__6 = Sextupole(L=0.24, Kn2=1.7172760006) + D000012__42 = Drift(L=0.1559) + HQF_9__3 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__43 = Drift(L=0.0638) + CH06_9 = HKicker(L=0.2) + D000028__11 = Drift(L=0.29394) + EDGE1_000__61 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__31 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__61 = Multipole(Kn1L=4.07894736378E-6) + D000018__61 = Drift(L=0.1193) + EDGE3_000__61 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__31 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__62 = Multipole(Kn1L=-4.07894736378E-6) + D000018__62 = Drift(L=0.1193) + EDGE2_000__62 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__31 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__62 = Multipole(Kn1L=-4.4179123956E-5) + D000014__43 = Drift(L=0.50037) + SD2_9__5 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000013__43 = Drift(L=0.1042) + SD2_9__6 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000012__43 = Drift(L=0.1559) + HQD_9__4 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__44 = Drift(L=0.0638) + CV06_9 = VKicker(L=0.2) + D000028__12 = Drift(L=0.29394) + EDGE1_000__63 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__32 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__63 = Multipole(Kn1L=4.07894736378E-6) + D000018__63 = Drift(L=0.1193) + EDGE3_000__63 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__32 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__64 = Multipole(Kn1L=-4.07894736378E-6) + D000018__64 = Drift(L=0.1193) + EDGE2_000__64 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__32 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__64 = Multipole(Kn1L=-4.4179123956E-5) + D000014__44 = Drift(L=0.50037) + SF2_9__5 = Sextupole(L=0.24, Kn2=3.010408804) + D000013__44 = Drift(L=0.1042) + SF2_9__6 = Sextupole(L=0.24, Kn2=3.010408804) + D000012__44 = Drift(L=0.1559) + HQF_9__4 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__45 = Drift(L=0.0638) + CH07_9 = HKicker(L=0.2) + D000028__13 = Drift(L=0.29394) + EDGE1_000__65 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__33 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__65 = Multipole(Kn1L=4.07894736378E-6) + D000018__65 = Drift(L=0.1193) + EDGE3_000__65 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__33 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__66 = Multipole(Kn1L=-4.07894736378E-6) + D000018__66 = Drift(L=0.1193) + EDGE2_000__66 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__33 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__66 = Multipole(Kn1L=-4.4179123956E-5) + D000014__45 = Drift(L=0.50037) + SD1_9__7 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000013__45 = Drift(L=0.1042) + SD1_9__8 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000012__45 = Drift(L=0.1559) + HQD_9__5 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__46 = Drift(L=0.0638) + CV07_9 = VKicker(L=0.2) + D000028__14 = Drift(L=0.29394) + EDGE1_000__67 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__34 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__67 = Multipole(Kn1L=4.07894736378E-6) + D000018__67 = Drift(L=0.1193) + EDGE3_000__67 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__34 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__68 = Multipole(Kn1L=-4.07894736378E-6) + D000018__68 = Drift(L=0.1193) + EDGE2_000__68 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__34 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__68 = Multipole(Kn1L=-4.4179123956E-5) + D000014__46 = Drift(L=0.50037) + SF1_9__7 = Sextupole(L=0.24, Kn2=1.7172760006) + D000013__46 = Drift(L=0.1042) + SF1_9__8 = Sextupole(L=0.24, Kn2=1.7172760006) + D000012__46 = Drift(L=0.1559) + HQF_9__5 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__47 = Drift(L=0.0638) + CH08_9 = HKicker(L=0.2) + D000028__15 = Drift(L=0.29394) + EDGE1_000__69 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__35 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__69 = Multipole(Kn1L=4.07894736378E-6) + D000018__69 = Drift(L=0.1193) + EDGE3_000__69 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__35 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__70 = Multipole(Kn1L=-4.07894736378E-6) + D000018__70 = Drift(L=0.1193) + EDGE2_000__70 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__35 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__70 = Multipole(Kn1L=-4.4179123956E-5) + D000014__47 = Drift(L=0.50037) + SD2_9__7 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000013__47 = Drift(L=0.1042) + SD2_9__8 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000012__47 = Drift(L=0.1559) + HQD_9__6 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__48 = Drift(L=0.0638) + CV08_9 = VKicker(L=0.2) + D000028__16 = Drift(L=0.29394) + EDGE1_000__71 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__36 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__71 = Multipole(Kn1L=4.07894736378E-6) + D000018__71 = Drift(L=0.1193) + EDGE3_000__71 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__36 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__72 = Multipole(Kn1L=-4.07894736378E-6) + D000018__72 = Drift(L=0.1193) + EDGE2_000__72 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__36 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__72 = Multipole(Kn1L=-4.4179123956E-5) + D000014__48 = Drift(L=0.50037) + SF2_9__7 = Sextupole(L=0.24, Kn2=3.010408804) + D000013__48 = Drift(L=0.1042) + SF2_9__8 = Sextupole(L=0.24, Kn2=3.010408804) + D000012__48 = Drift(L=0.1559) + HQF_9__6 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__49 = Drift(L=0.0638) + CH09_9 = HKicker(L=0.2) + D000028__17 = Drift(L=0.29394) + EDGE1_000__73 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__37 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__73 = Multipole(Kn1L=4.07894736378E-6) + D000018__73 = Drift(L=0.1193) + EDGE3_000__73 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__37 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__74 = Multipole(Kn1L=-4.07894736378E-6) + D000018__74 = Drift(L=0.1193) + EDGE2_000__74 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__37 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__74 = Multipole(Kn1L=-4.4179123956E-5) + D000014__49 = Drift(L=0.50037) + SD1_9__9 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000013__49 = Drift(L=0.1042) + SD1_9__10 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000012__49 = Drift(L=0.1559) + HQD_9__7 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__50 = Drift(L=0.0638) + CV09_9 = VKicker(L=0.2) + D000028__18 = Drift(L=0.29394) + EDGE1_000__75 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__38 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__75 = Multipole(Kn1L=4.07894736378E-6) + D000018__75 = Drift(L=0.1193) + EDGE3_000__75 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__38 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__76 = Multipole(Kn1L=-4.07894736378E-6) + D000018__76 = Drift(L=0.1193) + EDGE2_000__76 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__38 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__76 = Multipole(Kn1L=-4.4179123956E-5) + D000014__50 = Drift(L=0.50037) + SF1_9__9 = Sextupole(L=0.24, Kn2=1.7172760006) + D000013__50 = Drift(L=0.1042) + SF1_9__10 = Sextupole(L=0.24, Kn2=1.7172760006) + D000012__50 = Drift(L=0.1559) + HQF_9__7 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__51 = Drift(L=0.0638) + CH10_9 = HKicker(L=0.2) + D000028__19 = Drift(L=0.29394) + EDGE1_000__77 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__39 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__77 = Multipole(Kn1L=4.07894736378E-6) + D000018__77 = Drift(L=0.1193) + EDGE3_000__77 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__39 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__78 = Multipole(Kn1L=-4.07894736378E-6) + D000018__78 = Drift(L=0.1193) + EDGE2_000__78 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__39 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__78 = Multipole(Kn1L=-4.4179123956E-5) + D000014__51 = Drift(L=0.50037) + SD2_9__9 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000013__51 = Drift(L=0.1042) + SD2_9__10 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000012__51 = Drift(L=0.1559) + HQD_9__8 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__52 = Drift(L=0.0638) + CV10_9 = VKicker(L=0.2) + D000028__20 = Drift(L=0.29394) + EDGE1_000__79 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__40 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__79 = Multipole(Kn1L=4.07894736378E-6) + D000018__79 = Drift(L=0.1193) + EDGE3_000__79 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__40 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__80 = Multipole(Kn1L=-4.07894736378E-6) + D000018__80 = Drift(L=0.1193) + EDGE2_000__80 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__40 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__80 = Multipole(Kn1L=-4.4179123956E-5) + D000014__52 = Drift(L=0.50037) + SF2_9__9 = Sextupole(L=0.24, Kn2=3.010408804) + D000013__52 = Drift(L=0.1042) + SF2_9__10 = Sextupole(L=0.24, Kn2=3.010408804) + D000012__52 = Drift(L=0.1559) + HQF_9__8 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__53 = Drift(L=0.0638) + CH11_9 = HKicker(L=0.2) + D000028__21 = Drift(L=0.29394) + EDGE1_000__81 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__41 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__81 = Multipole(Kn1L=4.07894736378E-6) + D000018__81 = Drift(L=0.1193) + EDGE3_000__81 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__41 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__82 = Multipole(Kn1L=-4.07894736378E-6) + D000018__82 = Drift(L=0.1193) + EDGE2_000__82 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__41 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__82 = Multipole(Kn1L=-4.4179123956E-5) + D000014__53 = Drift(L=0.50037) + SD1_9__11 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000013__53 = Drift(L=0.1042) + SD1_9__12 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000012__53 = Drift(L=0.1559) + HQD_9__9 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__54 = Drift(L=0.0638) + CV11_9 = VKicker(L=0.2) + D000028__22 = Drift(L=0.29394) + EDGE1_000__83 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__42 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__83 = Multipole(Kn1L=4.07894736378E-6) + D000018__83 = Drift(L=0.1193) + EDGE3_000__83 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__42 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__84 = Multipole(Kn1L=-4.07894736378E-6) + D000018__84 = Drift(L=0.1193) + EDGE2_000__84 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__42 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__84 = Multipole(Kn1L=-4.4179123956E-5) + D000014__54 = Drift(L=0.50037) + SF1_9__11 = Sextupole(L=0.24, Kn2=1.7172760006) + D000013__54 = Drift(L=0.1042) + SF1_9__12 = Sextupole(L=0.24, Kn2=1.7172760006) + D000012__54 = Drift(L=0.1559) + HQF_9__9 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__55 = Drift(L=0.0638) + CH12_9 = HKicker(L=0.2) + D000028__23 = Drift(L=0.29394) + EDGE1_000__85 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__43 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__85 = Multipole(Kn1L=4.07894736378E-6) + D000018__85 = Drift(L=0.1193) + EDGE3_000__85 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__43 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__86 = Multipole(Kn1L=-4.07894736378E-6) + D000018__86 = Drift(L=0.1193) + EDGE2_000__86 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__43 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__86 = Multipole(Kn1L=-4.4179123956E-5) + D000014__55 = Drift(L=0.50037) + SD2_9__11 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000013__55 = Drift(L=0.1042) + SD2_9__12 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000012__55 = Drift(L=0.1559) + HQD_9__10 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__56 = Drift(L=0.0638) + CV12_9 = VKicker(L=0.2) + D000028__24 = Drift(L=0.29394) + EDGE1_000__87 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__44 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__87 = Multipole(Kn1L=4.07894736378E-6) + D000018__87 = Drift(L=0.1193) + EDGE3_000__87 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__44 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__88 = Multipole(Kn1L=-4.07894736378E-6) + D000018__88 = Drift(L=0.1193) + EDGE2_000__88 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__44 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__88 = Multipole(Kn1L=-4.4179123956E-5) + D000014__56 = Drift(L=0.50037) + SF2_9__11 = Sextupole(L=0.24, Kn2=3.010408804) + D000013__56 = Drift(L=0.1042) + SF2_9__12 = Sextupole(L=0.24, Kn2=3.010408804) + D000012__56 = Drift(L=0.1559) + HQF_9__10 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__57 = Drift(L=0.0638) + CH13_9 = HKicker(L=0.2) + D000028__25 = Drift(L=0.29394) + EDGE1_000__89 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__45 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__89 = Multipole(Kn1L=4.07894736378E-6) + D000018__89 = Drift(L=0.1193) + EDGE3_000__89 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__45 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__90 = Multipole(Kn1L=-4.07894736378E-6) + D000018__90 = Drift(L=0.1193) + EDGE2_000__90 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__45 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__90 = Multipole(Kn1L=-4.4179123956E-5) + D000014__57 = Drift(L=0.50037) + SD1_9__13 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000013__57 = Drift(L=0.1042) + SD1_9__14 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000012__57 = Drift(L=0.1559) + HQD_9__11 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__58 = Drift(L=0.0638) + CV13_9 = VKicker(L=0.2) + D000028__26 = Drift(L=0.29394) + EDGE1_000__91 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__46 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__91 = Multipole(Kn1L=4.07894736378E-6) + D000018__91 = Drift(L=0.1193) + EDGE3_000__91 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__46 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__92 = Multipole(Kn1L=-4.07894736378E-6) + D000018__92 = Drift(L=0.1193) + EDGE2_000__92 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__46 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__92 = Multipole(Kn1L=-4.4179123956E-5) + D000014__58 = Drift(L=0.50037) + SF1_9__13 = Sextupole(L=0.24, Kn2=1.7172760006) + D000013__58 = Drift(L=0.1042) + SF1_9__14 = Sextupole(L=0.24, Kn2=1.7172760006) + D000012__58 = Drift(L=0.1559) + HQF_9__11 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__59 = Drift(L=0.0638) + CH14_9 = HKicker(L=0.2) + D000028__27 = Drift(L=0.29394) + EDGE1_000__93 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__47 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__93 = Multipole(Kn1L=4.07894736378E-6) + D000018__93 = Drift(L=0.1193) + EDGE3_000__93 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__47 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__94 = Multipole(Kn1L=-4.07894736378E-6) + D000018__94 = Drift(L=0.1193) + EDGE2_000__94 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__47 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__94 = Multipole(Kn1L=-4.4179123956E-5) + D000014__59 = Drift(L=0.50037) + SD2_9__13 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000013__59 = Drift(L=0.1042) + SD2_9__14 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000012__59 = Drift(L=0.1559) + HQD_9__12 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__60 = Drift(L=0.0638) + CV14_9 = VKicker(L=0.2) + D000028__28 = Drift(L=0.29394) + EDGE1_000__95 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__48 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__95 = Multipole(Kn1L=4.07894736378E-6) + D000018__95 = Drift(L=0.1193) + EDGE3_000__95 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__48 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__96 = Multipole(Kn1L=-4.07894736378E-6) + D000018__96 = Drift(L=0.1193) + EDGE2_000__96 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__48 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__96 = Multipole(Kn1L=-4.4179123956E-5) + D000014__60 = Drift(L=0.50037) + SF2_9__13 = Sextupole(L=0.24, Kn2=3.010408804) + D000013__60 = Drift(L=0.1042) + SF2_9__14 = Sextupole(L=0.24, Kn2=3.010408804) + D000012__60 = Drift(L=0.1559) + HQF_9__12 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__61 = Drift(L=0.0638) + CH15_9 = HKicker(L=0.2) + D000028__29 = Drift(L=0.29394) + EDGE1_000__97 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__49 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__97 = Multipole(Kn1L=4.07894736378E-6) + D000018__97 = Drift(L=0.1193) + EDGE3_000__97 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__49 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__98 = Multipole(Kn1L=-4.07894736378E-6) + D000018__98 = Drift(L=0.1193) + EDGE2_000__98 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__49 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__98 = Multipole(Kn1L=-4.4179123956E-5) + D000014__61 = Drift(L=0.50037) + SD1_9__15 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000013__61 = Drift(L=0.1042) + SD1_9__16 = Sextupole(L=0.24, Kn2=-5.8103245174) + D000012__61 = Drift(L=0.1559) + HQD_9__13 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__62 = Drift(L=0.0638) + CV15_9 = VKicker(L=0.2) + D000028__30 = Drift(L=0.29394) + EDGE1_000__99 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__50 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__99 = Multipole(Kn1L=4.07894736378E-6) + D000018__99 = Drift(L=0.1193) + EDGE3_000__99 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__50 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__100 = Multipole(Kn1L=-4.07894736378E-6) + D000018__100 = Drift(L=0.1193) + EDGE2_000__100 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__50 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__100 = Multipole(Kn1L=-4.4179123956E-5) + D000014__62 = Drift(L=0.50037) + SF1_9__15 = Sextupole(L=0.24, Kn2=1.7172760006) + D000013__62 = Drift(L=0.1042) + SF1_9__16 = Sextupole(L=0.24, Kn2=1.7172760006) + D000012__62 = Drift(L=0.1559) + HQF_9__13 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__63 = Drift(L=0.0638) + CH16_9 = HKicker(L=0.2) + D000028__31 = Drift(L=0.29394) + EDGE1_000__101 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__51 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__101 = Multipole(Kn1L=4.07894736378E-6) + D000018__101 = Drift(L=0.1193) + EDGE3_000__101 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__51 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__102 = Multipole(Kn1L=-4.07894736378E-6) + D000018__102 = Drift(L=0.1193) + EDGE2_000__102 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__51 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__102 = Multipole(Kn1L=-4.4179123956E-5) + D000014__63 = Drift(L=0.50037) + SD2_9__15 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000013__63 = Drift(L=0.1042) + SD2_9__16 = Sextupole(L=0.24, Kn2=-2.4101857362) + D000012__63 = Drift(L=0.1559) + HQD_9__14 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__64 = Drift(L=0.0638) + CV16_9 = VKicker(L=0.2) + D000028__32 = Drift(L=0.29394) + EDGE1_000__103 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__52 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__103 = Multipole(Kn1L=4.07894736378E-6) + D000018__103 = Drift(L=0.1193) + EDGE3_000__103 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__52 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__104 = Multipole(Kn1L=-4.07894736378E-6) + D000018__104 = Drift(L=0.1193) + EDGE2_000__104 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__52 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__104 = Multipole(Kn1L=-4.4179123956E-5) + D000014__64 = Drift(L=0.50037) + SF2_9__15 = Sextupole(L=0.24, Kn2=3.010408804) + D000013__64 = Drift(L=0.1042) + SF2_9__16 = Sextupole(L=0.24, Kn2=3.010408804) + D000012__64 = Drift(L=0.1559) + HQF_9__14 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000017__65 = Drift(L=0.0638) + CH17_9 = HKicker(L=0.2) + D000030__1 = Drift(L=1.507746) + DB23_9__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000014__65 = Drift(L=0.50037) + SD17_9 = Sextupole(L=0.24) + D000012__65 = Drift(L=0.1559) + HQD_9__15 = Quadrupole(L=0.5, Kn1=-0.3144260183,) + D000017__66 = Drift(L=0.0638) + CV17_9 = VKicker(L=0.2) + D000030__2 = Drift(L=1.507746) + DB23_9__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000014__66 = Drift(L=0.50037) + SF17_9 = Sextupole(L=0.24) + D000012__66 = Drift(L=0.1559) + HQF_9__15 = Quadrupole(L=0.5, Kn1=0.3146029671,) + D000031__1 = Drift(L=4.09917) + HQM22_9 = Quadrupole(L=0.6, Kn1=-0.1685397554,) + D000031__2 = Drift(L=4.09917) + HQM21_9 = Quadrupole(L=0.6, Kn1=-0.1480298273) + D000032__1 = Drift(L=0.535) + DB23_9__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__2 = Drift(L=0.535) + HQM20_9 = Quadrupole(L=0.6, Kn1=0.277981004) + D000032__3 = Drift(L=0.535) + DB23_9__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__4 = Drift(L=0.535) + HQM19_9 = Quadrupole(L=0.6, Kn1=-0.2250375129) + D000033__1 = Drift(L=2.888539) + HQM18_9 = Quadrupole(L=0.6, Kn1=0.02025658815,) + D000033__2 = Drift(L=2.888539) + HQM17_9 = Quadrupole(L=0.6, Kn1=0.03151369613,) + D000033__3 = Drift(L=2.888539) + HQM16_9 = Quadrupole(L=0.6, Kn1=-0.1023890903,) + D000033__4 = Drift(L=2.888539) + HQM15_9 = Quadrupole(L=0.6, Kn1=0.1915717998,) + D000033__5 = Drift(L=2.888539) + HQM14_9 = Quadrupole(L=0.6, Kn1=-0.1029612912,) + D000033__6 = Drift(L=2.888539) + HQM13_9 = Quadrupole(L=0.6, Kn1=0.2169016275) + D000032__5 = Drift(L=0.535) + DB23_9__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__6 = Drift(L=0.535) + HQM12_9 = Quadrupole(L=0.6, Kn1=-0.1792559115,) + D000032__7 = Drift(L=0.535) + DB23_9__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000034 = Drift(L=14.482069) + HQFSS_10__1 = Quadrupole(L=0.6, Kn1=0.2106851444) + D000035__1 = Drift(L=8.25) + HQDSS_10__1 = Quadrupole(L=0.6, Kn1=-0.2091039051) + D000035__2 = Drift(L=8.25) + HQFSS_10__2 = Quadrupole(L=0.6, Kn1=0.2106851444) + D000035__3 = Drift(L=8.25) + HQDSS_10__2 = Quadrupole(L=0.6, Kn1=-0.2091039051) + D000036 = Drift(L=6.11312) + HQFLSS_10__1 = Quadrupole(L=1.2, Kn1=0.1407178134) + D000007__7 = Drift(L=0.3) + RF0__1 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__8 = Drift(L=0.3) + RF0__2 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__9 = Drift(L=0.3) + HQDLSS_10__1 = Quadrupole(L=1.2, Kn1=-0.1176261853,) + D000007__10 = Drift(L=0.3) + RF0__3 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__11 = Drift(L=0.3) + RF0__4 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__12 = Drift(L=0.3) + HQFLSS_10__2 = Quadrupole(L=1.2, Kn1=0.1407178134) + D000007__13 = Drift(L=0.3) + RF0__5 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__14 = Drift(L=0.3) + RF0__6 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__15 = Drift(L=0.3) + HQDLSS_10__2 = Quadrupole(L=1.2, Kn1=-0.1176261853,) + D000007__16 = Drift(L=0.3) + RF0__7 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__17 = Drift(L=0.3) + RF0__8 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__18 = Drift(L=0.3) + HQFLSS_10__3 = Quadrupole(L=1.2, Kn1=0.1407178134) + D000007__19 = Drift(L=0.3) + RF0__9 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000037 = Drift(L=0.3,) + RF0__10 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__20 = Drift(L=0.3) + HQDLSS_10__3 = Quadrupole(L=1.2, Kn1=-0.1176261853,) + D000007__21 = Drift(L=0.3) + RF0__11 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__22 = Drift(L=0.3) + RF0__12 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__23 = Drift(L=0.3) + HQFLSS_10__4 = Quadrupole(L=1.2, Kn1=0.1407178134) + D000007__24 = Drift(L=0.3) + RF0__13 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__25 = Drift(L=0.3) + RF0__14 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__26 = Drift(L=0.3) + HQDLSS_10__4 = Quadrupole(L=1.2, Kn1=-0.1176261853,) + D000007__27 = Drift(L=0.3) + RF0__15 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__28 = Drift(L=0.3) + RF0__16 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__29 = Drift(L=0.3) + HQFLSS_10__5 = Quadrupole(L=1.2, Kn1=0.1407178134) + D000007__30 = Drift(L=0.3) + RF0__17 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__31 = Drift(L=0.3) + RF0__18 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 + D000007__32 = Drift(L=0.3) + HQDLSS_10__5 = Quadrupole(L=1.2, Kn1=-0.1176261853,) + D000035__4 = Drift(L=8.25) + HQFSS_10__3 = Quadrupole(L=0.6, Kn1=0.2106851444) + D000035__5 = Drift(L=8.25) + HQDSS_10__3 = Quadrupole(L=0.6, Kn1=-0.2091039051) + D000035__6 = Drift(L=8.25) + HQFSS_10__4 = Quadrupole(L=0.6, Kn1=0.2106851444) + D000035__7 = Drift(L=8.25) + HQDSS_10__4 = Quadrupole(L=0.6, Kn1=-0.2091039051) + D000038 = Drift(L=12.120511) + DB23_10__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__8 = Drift(L=0.535) + HQM12_10 = Quadrupole(L=0.6, Kn1=0.2083558853) + D000032__9 = Drift(L=0.535) + DB23_10__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__10 = Drift(L=0.535) + HQM13_10 = Quadrupole(L=0.6, Kn1=-0.3339548025) + D000039__1 = Drift(L=3.311504) + HQM14_10 = Quadrupole(L=0.6, Kn1=0.260187069,) + D000039__2 = Drift(L=3.311504) + HQM15_10 = Quadrupole(L=0.6, Kn1=-0.3169977879,) + D000039__3 = Drift(L=3.311504) + HQM16_10 = Quadrupole(L=0.6, Kn1=0.2834385625) + D000039__4 = Drift(L=3.311504) + HQM17_10 = Quadrupole(L=0.6, Kn1=-0.04877659888,) + D000039__5 = Drift(L=3.311504) + HQM18_10 = Quadrupole(L=0.6, Kn1=-0.3358614339) + D000039__6 = Drift(L=3.311504) + HQM19_10 = Quadrupole(L=0.6, Kn1=0.3254555367,) + D000039__7 = Drift(L=3.311504) + HQM20_10 = Quadrupole(L=0.6, Kn1=-0.2765818098) + D000032__11 = Drift(L=0.535) + DB23_10__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__12 = Drift(L=0.535) + HQM21_10 = Quadrupole(L=0.6, Kn1=0.1976841058,) + D000032__13 = Drift(L=0.535) + DB23_10__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__14 = Drift(L=0.535) + HQM22_10 = Quadrupole(L=0.6, Kn1=-0.3313145061,) + D000040 = Drift(L=3.425026) + HQF_11__1 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__67 = Drift(L=0.1559) + SF00_11 = Sextupole(L=0.24) + D000014__67 = Drift(L=0.50037) + DB23_10__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000041__1 = Drift(L=1.201799) + CV00_11 = VKicker(L=0.2) + D000017__67 = Drift(L=0.0638) + HQD_11__1 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__68 = Drift(L=0.1559) + SD00_11 = Sextupole(L=0.24) + D000014__68 = Drift(L=0.50037) + DB23_10__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000041__2 = Drift(L=1.201799) + CH00_11 = HKicker(L=0.2) + D000017__68 = Drift(L=0.0638) + HQF_11__2 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__69 = Drift(L=0.1559) + SF1_1__1 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__65 = Drift(L=0.1042) + SF1_1__2 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__69 = Drift(L=0.50037) + EDGE1_000__105 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__53 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__105 = Multipole(Kn1L=4.07894736378E-6) + D000018__105 = Drift(L=0.1193) + EDGE3_000__105 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__53 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__106 = Multipole(Kn1L=-4.07894736378E-6) + D000018__106 = Drift(L=0.1193) + EDGE2_000__106 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__53 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__106 = Multipole(Kn1L=-4.4179123956E-5) + D000042__1 = Drift(L=0.319264) + CV01_11 = VKicker(L=0.2) + D000017__69 = Drift(L=0.0638) + HQD_11__2 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__70 = Drift(L=0.1559) + SD1_1__1 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__66 = Drift(L=0.1042) + SD1_1__2 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__70 = Drift(L=0.50037) + EDGE1_000__107 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__54 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__107 = Multipole(Kn1L=4.07894736378E-6) + D000018__107 = Drift(L=0.1193) + EDGE3_000__107 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__54 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__108 = Multipole(Kn1L=-4.07894736378E-6) + D000018__108 = Drift(L=0.1193) + EDGE2_000__108 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__54 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__108 = Multipole(Kn1L=-4.4179123956E-5) + D000042__2 = Drift(L=0.319264) + CH01_11 = HKicker(L=0.2) + D000017__70 = Drift(L=0.0638) + HQF_11__3 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__71 = Drift(L=0.1559) + SF2_1__1 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__67 = Drift(L=0.1042) + SF2_1__2 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__71 = Drift(L=0.50037) + EDGE1_000__109 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__55 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__109 = Multipole(Kn1L=4.07894736378E-6) + D000018__109 = Drift(L=0.1193) + EDGE3_000__109 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__55 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__110 = Multipole(Kn1L=-4.07894736378E-6) + D000018__110 = Drift(L=0.1193) + EDGE2_000__110 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__55 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__110 = Multipole(Kn1L=-4.4179123956E-5) + D000042__3 = Drift(L=0.319264) + CV02_11 = VKicker(L=0.2) + D000017__71 = Drift(L=0.0638) + HQD_11__3 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__72 = Drift(L=0.1559) + SD2_1__1 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__68 = Drift(L=0.1042) + SD2_1__2 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__72 = Drift(L=0.50037) + EDGE1_000__111 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__56 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__111 = Multipole(Kn1L=4.07894736378E-6) + D000018__111 = Drift(L=0.1193) + EDGE3_000__111 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__56 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__112 = Multipole(Kn1L=-4.07894736378E-6) + D000018__112 = Drift(L=0.1193) + EDGE2_000__112 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__56 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__112 = Multipole(Kn1L=-4.4179123956E-5) + D000042__4 = Drift(L=0.319264) + CH02_11 = HKicker(L=0.2) + D000017__72 = Drift(L=0.0638) + HQF_11__4 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__73 = Drift(L=0.1559) + SF1_1__3 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__69 = Drift(L=0.1042) + SF1_1__4 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__73 = Drift(L=0.50037) + EDGE1_000__113 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__57 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__113 = Multipole(Kn1L=4.07894736378E-6) + D000018__113 = Drift(L=0.1193) + EDGE3_000__113 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__57 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__114 = Multipole(Kn1L=-4.07894736378E-6) + D000018__114 = Drift(L=0.1193) + EDGE2_000__114 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__57 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__114 = Multipole(Kn1L=-4.4179123956E-5) + D000042__5 = Drift(L=0.319264) + CV03_11 = VKicker(L=0.2) + D000017__73 = Drift(L=0.0638) + HQD_11__4 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__74 = Drift(L=0.1559) + SD1_1__3 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__70 = Drift(L=0.1042) + SD1_1__4 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__74 = Drift(L=0.50037) + EDGE1_000__115 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__58 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__115 = Multipole(Kn1L=4.07894736378E-6) + D000018__115 = Drift(L=0.1193) + EDGE3_000__115 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__58 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__116 = Multipole(Kn1L=-4.07894736378E-6) + D000018__116 = Drift(L=0.1193) + EDGE2_000__116 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__58 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__116 = Multipole(Kn1L=-4.4179123956E-5) + D000042__6 = Drift(L=0.319264) + CH03_11 = HKicker(L=0.2) + D000017__74 = Drift(L=0.0638) + HQF_11__5 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__75 = Drift(L=0.1559) + SF2_1__3 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__71 = Drift(L=0.1042) + SF2_1__4 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__75 = Drift(L=0.50037) + EDGE1_000__117 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__59 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__117 = Multipole(Kn1L=4.07894736378E-6) + D000018__117 = Drift(L=0.1193) + EDGE3_000__117 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__59 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__118 = Multipole(Kn1L=-4.07894736378E-6) + D000018__118 = Drift(L=0.1193) + EDGE2_000__118 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__59 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__118 = Multipole(Kn1L=-4.4179123956E-5) + D000042__7 = Drift(L=0.319264) + CV04_11 = VKicker(L=0.2) + D000017__75 = Drift(L=0.0638) + HQD_11__5 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__76 = Drift(L=0.1559) + SD2_1__3 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__72 = Drift(L=0.1042) + SD2_1__4 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__76 = Drift(L=0.50037) + EDGE1_000__119 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__60 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__119 = Multipole(Kn1L=4.07894736378E-6) + D000018__119 = Drift(L=0.1193) + EDGE3_000__119 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__60 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__120 = Multipole(Kn1L=-4.07894736378E-6) + D000018__120 = Drift(L=0.1193) + EDGE2_000__120 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__60 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__120 = Multipole(Kn1L=-4.4179123956E-5) + D000042__8 = Drift(L=0.319264) + CH04_11 = HKicker(L=0.2) + D000017__76 = Drift(L=0.0638) + HQF_11__6 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__77 = Drift(L=0.1559) + SF1_1__5 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__73 = Drift(L=0.1042) + SF1_1__6 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__77 = Drift(L=0.50037) + EDGE1_000__121 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__61 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__121 = Multipole(Kn1L=4.07894736378E-6) + D000018__121 = Drift(L=0.1193) + EDGE3_000__121 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__61 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__122 = Multipole(Kn1L=-4.07894736378E-6) + D000018__122 = Drift(L=0.1193) + EDGE2_000__122 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__61 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__122 = Multipole(Kn1L=-4.4179123956E-5) + D000042__9 = Drift(L=0.319264) + CV05_11 = VKicker(L=0.2) + D000017__77 = Drift(L=0.0638) + HQD_11__6 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__78 = Drift(L=0.1559) + SD1_1__5 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__74 = Drift(L=0.1042) + SD1_1__6 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__78 = Drift(L=0.50037) + EDGE1_000__123 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__62 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__123 = Multipole(Kn1L=4.07894736378E-6) + D000018__123 = Drift(L=0.1193) + EDGE3_000__123 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__62 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__124 = Multipole(Kn1L=-4.07894736378E-6) + D000018__124 = Drift(L=0.1193) + EDGE2_000__124 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__62 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__124 = Multipole(Kn1L=-4.4179123956E-5) + D000042__10 = Drift(L=0.319264) + CH05_11 = HKicker(L=0.2) + D000017__78 = Drift(L=0.0638) + HQF_11__7 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__79 = Drift(L=0.1559) + SF2_1__5 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__75 = Drift(L=0.1042) + SF2_1__6 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__79 = Drift(L=0.50037) + EDGE1_000__125 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__63 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__125 = Multipole(Kn1L=4.07894736378E-6) + D000018__125 = Drift(L=0.1193) + EDGE3_000__125 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__63 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__126 = Multipole(Kn1L=-4.07894736378E-6) + D000018__126 = Drift(L=0.1193) + EDGE2_000__126 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__63 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__126 = Multipole(Kn1L=-4.4179123956E-5) + D000042__11 = Drift(L=0.319264) + CV06_11 = VKicker(L=0.2) + D000017__79 = Drift(L=0.0638) + HQD_11__7 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__80 = Drift(L=0.1559) + SD2_1__5 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__76 = Drift(L=0.1042) + SD2_1__6 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__80 = Drift(L=0.50037) + EDGE1_000__127 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__64 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__127 = Multipole(Kn1L=4.07894736378E-6) + D000018__127 = Drift(L=0.1193) + EDGE3_000__127 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__64 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__128 = Multipole(Kn1L=-4.07894736378E-6) + D000018__128 = Drift(L=0.1193) + EDGE2_000__128 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__64 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__128 = Multipole(Kn1L=-4.4179123956E-5) + D000042__12 = Drift(L=0.319264) + CH06_11 = HKicker(L=0.2) + D000017__80 = Drift(L=0.0638) + HQF_11__8 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__81 = Drift(L=0.1559) + SF1_1__7 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__77 = Drift(L=0.1042) + SF1_1__8 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__81 = Drift(L=0.50037) + EDGE1_000__129 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__65 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__129 = Multipole(Kn1L=4.07894736378E-6) + D000018__129 = Drift(L=0.1193) + EDGE3_000__129 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__65 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__130 = Multipole(Kn1L=-4.07894736378E-6) + D000018__130 = Drift(L=0.1193) + EDGE2_000__130 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__65 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__130 = Multipole(Kn1L=-4.4179123956E-5) + D000042__13 = Drift(L=0.319264) + CV07_11 = VKicker(L=0.2) + D000017__81 = Drift(L=0.0638) + HQD_11__8 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__82 = Drift(L=0.1559) + SD1_1__7 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__78 = Drift(L=0.1042) + SD1_1__8 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__82 = Drift(L=0.50037) + EDGE1_000__131 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__66 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__131 = Multipole(Kn1L=4.07894736378E-6) + D000018__131 = Drift(L=0.1193) + EDGE3_000__131 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__66 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__132 = Multipole(Kn1L=-4.07894736378E-6) + D000018__132 = Drift(L=0.1193) + EDGE2_000__132 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__66 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__132 = Multipole(Kn1L=-4.4179123956E-5) + D000042__14 = Drift(L=0.319264) + CH07_11 = HKicker(L=0.2) + D000017__82 = Drift(L=0.0638) + HQF_11__9 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__83 = Drift(L=0.1559) + SF2_1__7 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__79 = Drift(L=0.1042) + SF2_1__8 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__83 = Drift(L=0.50037) + EDGE1_000__133 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__67 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__133 = Multipole(Kn1L=4.07894736378E-6) + D000018__133 = Drift(L=0.1193) + EDGE3_000__133 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__67 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__134 = Multipole(Kn1L=-4.07894736378E-6) + D000018__134 = Drift(L=0.1193) + EDGE2_000__134 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__67 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__134 = Multipole(Kn1L=-4.4179123956E-5) + D000042__15 = Drift(L=0.319264) + CV08_11 = VKicker(L=0.2) + D000017__83 = Drift(L=0.0638) + HQD_11__9 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__84 = Drift(L=0.1559) + SD2_1__7 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__80 = Drift(L=0.1042) + SD2_1__8 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__84 = Drift(L=0.50037) + EDGE1_000__135 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__68 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__135 = Multipole(Kn1L=4.07894736378E-6) + D000018__135 = Drift(L=0.1193) + EDGE3_000__135 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__68 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__136 = Multipole(Kn1L=-4.07894736378E-6) + D000018__136 = Drift(L=0.1193) + EDGE2_000__136 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__68 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__136 = Multipole(Kn1L=-4.4179123956E-5) + D000042__16 = Drift(L=0.319264) + CH08_11 = HKicker(L=0.2) + D000017__84 = Drift(L=0.0638) + HQF_11__10 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__85 = Drift(L=0.1559) + SF1_1__9 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__81 = Drift(L=0.1042) + SF1_1__10 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__85 = Drift(L=0.50037) + EDGE1_000__137 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__69 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__137 = Multipole(Kn1L=4.07894736378E-6) + D000018__137 = Drift(L=0.1193) + EDGE3_000__137 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__69 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__138 = Multipole(Kn1L=-4.07894736378E-6) + D000018__138 = Drift(L=0.1193) + EDGE2_000__138 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__69 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__138 = Multipole(Kn1L=-4.4179123956E-5) + D000042__17 = Drift(L=0.319264) + CV09_11 = VKicker(L=0.2) + D000017__85 = Drift(L=0.0638) + HQD_11__10 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__86 = Drift(L=0.1559) + SD1_1__9 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__82 = Drift(L=0.1042) + SD1_1__10 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__86 = Drift(L=0.50037) + EDGE1_000__139 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__70 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__139 = Multipole(Kn1L=4.07894736378E-6) + D000018__139 = Drift(L=0.1193) + EDGE3_000__139 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__70 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__140 = Multipole(Kn1L=-4.07894736378E-6) + D000018__140 = Drift(L=0.1193) + EDGE2_000__140 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__70 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__140 = Multipole(Kn1L=-4.4179123956E-5) + D000042__18 = Drift(L=0.319264) + CH09_11 = HKicker(L=0.2) + D000017__86 = Drift(L=0.0638) + HQF_11__11 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__87 = Drift(L=0.1559) + SF2_1__9 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__83 = Drift(L=0.1042) + SF2_1__10 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__87 = Drift(L=0.50037) + EDGE1_000__141 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__71 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__141 = Multipole(Kn1L=4.07894736378E-6) + D000018__141 = Drift(L=0.1193) + EDGE3_000__141 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__71 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__142 = Multipole(Kn1L=-4.07894736378E-6) + D000018__142 = Drift(L=0.1193) + EDGE2_000__142 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__71 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__142 = Multipole(Kn1L=-4.4179123956E-5) + D000042__19 = Drift(L=0.319264) + CV10_11 = VKicker(L=0.2) + D000017__87 = Drift(L=0.0638) + HQD_11__11 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__88 = Drift(L=0.1559) + SD2_1__9 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__84 = Drift(L=0.1042) + SD2_1__10 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__88 = Drift(L=0.50037) + EDGE1_000__143 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__72 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__143 = Multipole(Kn1L=4.07894736378E-6) + D000018__143 = Drift(L=0.1193) + EDGE3_000__143 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__72 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__144 = Multipole(Kn1L=-4.07894736378E-6) + D000018__144 = Drift(L=0.1193) + EDGE2_000__144 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__72 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__144 = Multipole(Kn1L=-4.4179123956E-5) + D000042__20 = Drift(L=0.319264) + CH10_11 = HKicker(L=0.2) + D000017__88 = Drift(L=0.0638) + HQF_11__12 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__89 = Drift(L=0.1559) + SF1_1__11 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__85 = Drift(L=0.1042) + SF1_1__12 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__89 = Drift(L=0.50037) + EDGE1_000__145 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__73 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__145 = Multipole(Kn1L=4.07894736378E-6) + D000018__145 = Drift(L=0.1193) + EDGE3_000__145 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__73 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__146 = Multipole(Kn1L=-4.07894736378E-6) + D000018__146 = Drift(L=0.1193) + EDGE2_000__146 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__73 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__146 = Multipole(Kn1L=-4.4179123956E-5) + D000042__21 = Drift(L=0.319264) + CV11_11 = VKicker(L=0.2) + D000017__89 = Drift(L=0.0638) + HQD_11__12 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__90 = Drift(L=0.1559) + SD1_1__11 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__86 = Drift(L=0.1042) + SD1_1__12 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__90 = Drift(L=0.50037) + EDGE1_000__147 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__74 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__147 = Multipole(Kn1L=4.07894736378E-6) + D000018__147 = Drift(L=0.1193) + EDGE3_000__147 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__74 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__148 = Multipole(Kn1L=-4.07894736378E-6) + D000018__148 = Drift(L=0.1193) + EDGE2_000__148 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__74 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__148 = Multipole(Kn1L=-4.4179123956E-5) + D000042__22 = Drift(L=0.319264) + CH11_11 = HKicker(L=0.2) + D000017__90 = Drift(L=0.0638) + HQF_11__13 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__91 = Drift(L=0.1559) + SF2_1__11 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__87 = Drift(L=0.1042) + SF2_1__12 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__91 = Drift(L=0.50037) + EDGE1_000__149 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__75 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__149 = Multipole(Kn1L=4.07894736378E-6) + D000018__149 = Drift(L=0.1193) + EDGE3_000__149 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__75 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__150 = Multipole(Kn1L=-4.07894736378E-6) + D000018__150 = Drift(L=0.1193) + EDGE2_000__150 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__75 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__150 = Multipole(Kn1L=-4.4179123956E-5) + D000042__23 = Drift(L=0.319264) + CV12_11 = VKicker(L=0.2) + D000017__91 = Drift(L=0.0638) + HQD_11__13 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__92 = Drift(L=0.1559) + SD2_1__11 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__88 = Drift(L=0.1042) + SD2_1__12 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__92 = Drift(L=0.50037) + EDGE1_000__151 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__76 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__151 = Multipole(Kn1L=4.07894736378E-6) + D000018__151 = Drift(L=0.1193) + EDGE3_000__151 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__76 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__152 = Multipole(Kn1L=-4.07894736378E-6) + D000018__152 = Drift(L=0.1193) + EDGE2_000__152 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__76 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__152 = Multipole(Kn1L=-4.4179123956E-5) + D000042__24 = Drift(L=0.319264) + CH12_11 = HKicker(L=0.2) + D000017__92 = Drift(L=0.0638) + HQF_11__14 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__93 = Drift(L=0.1559) + SF1_1__13 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__89 = Drift(L=0.1042) + SF1_1__14 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__93 = Drift(L=0.50037) + EDGE1_000__153 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__77 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__153 = Multipole(Kn1L=4.07894736378E-6) + D000018__153 = Drift(L=0.1193) + EDGE3_000__153 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__77 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__154 = Multipole(Kn1L=-4.07894736378E-6) + D000018__154 = Drift(L=0.1193) + EDGE2_000__154 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__77 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__154 = Multipole(Kn1L=-4.4179123956E-5) + D000042__25 = Drift(L=0.319264) + CV13_11 = VKicker(L=0.2) + D000017__93 = Drift(L=0.0638) + HQD_11__14 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__94 = Drift(L=0.1559) + SD1_1__13 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__90 = Drift(L=0.1042) + SD1_1__14 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__94 = Drift(L=0.50037) + EDGE1_000__155 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__78 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__155 = Multipole(Kn1L=4.07894736378E-6) + D000018__155 = Drift(L=0.1193) + EDGE3_000__155 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__78 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__156 = Multipole(Kn1L=-4.07894736378E-6) + D000018__156 = Drift(L=0.1193) + EDGE2_000__156 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__78 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__156 = Multipole(Kn1L=-4.4179123956E-5) + D000042__26 = Drift(L=0.319264) + CH13_11 = HKicker(L=0.2) + D000017__94 = Drift(L=0.0638) + HQF_11__15 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__95 = Drift(L=0.1559) + SF2_1__13 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__91 = Drift(L=0.1042) + SF2_1__14 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__95 = Drift(L=0.50037) + EDGE1_000__157 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__79 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__157 = Multipole(Kn1L=4.07894736378E-6) + D000018__157 = Drift(L=0.1193) + EDGE3_000__157 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__79 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__158 = Multipole(Kn1L=-4.07894736378E-6) + D000018__158 = Drift(L=0.1193) + EDGE2_000__158 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__79 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__158 = Multipole(Kn1L=-4.4179123956E-5) + D000042__27 = Drift(L=0.319264) + CV14_11 = VKicker(L=0.2) + D000017__95 = Drift(L=0.0638) + HQD_11__15 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__96 = Drift(L=0.1559) + SD2_1__13 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__92 = Drift(L=0.1042) + SD2_1__14 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__96 = Drift(L=0.50037) + EDGE1_000__159 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__80 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__159 = Multipole(Kn1L=4.07894736378E-6) + D000018__159 = Drift(L=0.1193) + EDGE3_000__159 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__80 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__160 = Multipole(Kn1L=-4.07894736378E-6) + D000018__160 = Drift(L=0.1193) + EDGE2_000__160 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__80 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__160 = Multipole(Kn1L=-4.4179123956E-5) + D000042__28 = Drift(L=0.319264) + CH14_11 = HKicker(L=0.2) + D000017__96 = Drift(L=0.0638) + HQF_11__16 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__97 = Drift(L=0.1559) + SF1_1__15 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__93 = Drift(L=0.1042) + SF1_1__16 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__97 = Drift(L=0.50037) + EDGE1_000__161 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__81 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__161 = Multipole(Kn1L=4.07894736378E-6) + D000018__161 = Drift(L=0.1193) + EDGE3_000__161 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__81 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__162 = Multipole(Kn1L=-4.07894736378E-6) + D000018__162 = Drift(L=0.1193) + EDGE2_000__162 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__81 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__162 = Multipole(Kn1L=-4.4179123956E-5) + D000042__29 = Drift(L=0.319264) + CV15_11 = VKicker(L=0.2) + D000017__97 = Drift(L=0.0638) + HQD_11__16 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__98 = Drift(L=0.1559) + SD1_1__15 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__94 = Drift(L=0.1042) + SD1_1__16 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__98 = Drift(L=0.50037) + EDGE1_000__163 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__82 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__163 = Multipole(Kn1L=4.07894736378E-6) + D000018__163 = Drift(L=0.1193) + EDGE3_000__163 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__82 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__164 = Multipole(Kn1L=-4.07894736378E-6) + D000018__164 = Drift(L=0.1193) + EDGE2_000__164 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__82 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__164 = Multipole(Kn1L=-4.4179123956E-5) + D000042__30 = Drift(L=0.319264) + CH15_11 = HKicker(L=0.2) + D000017__98 = Drift(L=0.0638) + HQF_11__17 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__99 = Drift(L=0.1559) + SF2_1__15 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__95 = Drift(L=0.1042) + SF2_1__16 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__99 = Drift(L=0.50037) + EDGE1_000__165 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__83 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__165 = Multipole(Kn1L=4.07894736378E-6) + D000018__165 = Drift(L=0.1193) + EDGE3_000__165 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__83 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__166 = Multipole(Kn1L=-4.07894736378E-6) + D000018__166 = Drift(L=0.1193) + EDGE2_000__166 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__83 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__166 = Multipole(Kn1L=-4.4179123956E-5) + D000042__31 = Drift(L=0.319264) + CV16_11 = VKicker(L=0.2) + D000017__99 = Drift(L=0.0638) + HQD_11__17 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__100 = Drift(L=0.1559) + SD2_1__15 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__96 = Drift(L=0.1042) + SD2_1__16 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__100 = Drift(L=0.50037) + EDGE1_000__167 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__84 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__167 = Multipole(Kn1L=4.07894736378E-6) + D000018__167 = Drift(L=0.1193) + EDGE3_000__167 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__84 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__168 = Multipole(Kn1L=-4.07894736378E-6) + D000018__168 = Drift(L=0.1193) + EDGE2_000__168 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__84 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__168 = Multipole(Kn1L=-4.4179123956E-5) + D000042__32 = Drift(L=0.319264) + CH16_11 = HKicker(L=0.2) + D000017__100 = Drift(L=0.0638) + HQF_11__18 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__101 = Drift(L=0.1559) + SF17_11 = Sextupole(L=0.24) + D000014__101 = Drift(L=0.50037) + DB23_11__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000043__1 = Drift(L=1.374861) + CV17_11 = VKicker(L=0.2) + D000017__101 = Drift(L=0.0638) + HQD_11__18 = Quadrupole(L=0.5, Kn1=-0.3135422732,) + D000012__102 = Drift(L=0.1559) + SD17_11 = Sextupole(L=0.24) + D000014__102 = Drift(L=0.50037) + DB23_11__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000043__2 = Drift(L=1.374861) + CH17_11 = HKicker(L=0.2) + D000017__102 = Drift(L=0.0638) + HQF_11__19 = Quadrupole(L=0.5, Kn1=0.3137189615,) + D000012__103 = Drift(L=0.1559) + SF18_11 = Sextupole(L=0.24) + D000044__1 = Drift(L=4.055463) + HQM22_11 = Quadrupole(L=0.6, Kn1=-0.3288030901,) + D000044__2 = Drift(L=4.055463) + HQM21_11 = Quadrupole(L=0.6, Kn1=0.1805100149,) + D000032__15 = Drift(L=0.535) + DB23_11__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__16 = Drift(L=0.535) + HQM20_11 = Quadrupole(L=0.6, Kn1=-0.14458509) + D000032__17 = Drift(L=0.535) + DB23_11__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__18 = Drift(L=0.535) + HQM19_11 = Quadrupole(L=0.6, Kn1=0.2557330047,) + D000045__1 = Drift(L=3.035675) + HQM18_11 = Quadrupole(L=0.6, Kn1=-0.1001891766,) + D000045__2 = Drift(L=3.035675) + HQM17_11 = Quadrupole(L=0.6, Kn1=-0.08890632892) + D000045__3 = Drift(L=3.035675) + HQM16_11 = Quadrupole(L=0.6, Kn1=-0.1156289813,) + D000045__4 = Drift(L=3.035675) + HQM15_11 = Quadrupole(L=0.6, Kn1=0.1167136133,) + D000045__5 = Drift(L=3.035675) + HQM14_11 = Quadrupole(L=0.6, Kn1=0.01649413513,) + D000045__6 = Drift(L=3.035675) + HQM13_11 = Quadrupole(L=0.6, Kn1=0.1479132215,) + D000032__19 = Drift(L=0.535) + DB23_11__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__20 = Drift(L=0.535) + HQM12_11 = Quadrupole(L=0.6, Kn1=-0.1783631142,) + D000032__21 = Drift(L=0.535) + DB23_11__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000046__1 = Drift(L=2.526471) + HQFSS_12__1 = Quadrupole(L=0.6, Kn1=0.1527595871) + D000047__1 = Drift(L=11.5) + HQDSS_12__1 = Quadrupole(L=0.6, Kn1=-0.1399369071) + D000047__2 = Drift(L=11.5) + HQFSS_12__2 = Quadrupole(L=0.6, Kn1=0.1527595871) + D000047__3 = Drift(L=11.5) + HQDSS_12__2 = Quadrupole(L=0.6, Kn1=-0.1399369071) + D000046__2 = Drift(L=2.526471) + DB12_4M__1 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) + D000048__1 = Drift(L=0.0975) + DB12_4M__2 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) + D000048__2 = Drift(L=0.0975) + DB12_4M__3 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) + D000049 = Drift(L=5.21429) + HQFSS_12__3 = Quadrupole(L=0.6, Kn1=0.1527595871) + D000047__4 = Drift(L=11.5) + HQDSS_12__3 = Quadrupole(L=0.6, Kn1=-0.1399369071) + D000047__5 = Drift(L=11.5) + HQFSS_12__4 = Quadrupole(L=0.6, Kn1=0.1527595871) + D000050 = Drift(L=12.836707) + IP12 = Marker() + D000051 = Drift(L=6.263293) + HQDSS_12__4 = Quadrupole(L=0.6, Kn1=-0.1399369071) + D000047__6 = Drift(L=11.5) + HQFSS_12__5 = Quadrupole(L=0.6, Kn1=0.1527595871) + D000047__7 = Drift(L=11.5) + HQDSS_12__5 = Quadrupole(L=0.6, Kn1=-0.1399369071) + D000047__8 = Drift(L=11.5) + HQFSS_12__6 = Quadrupole(L=0.6, Kn1=0.1527595871) + D000052 = Drift(L=0.714288) + DB12_4P__1 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) + D000048__3 = Drift(L=0.0975) + DB12_4P__2 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) + D000048__4 = Drift(L=0.0975) + DB12_4P__3 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) + D000053__1 = Drift(L=1.590529) + HQDSS_12__6 = Quadrupole(L=0.6, Kn1=-0.1399369071) + MKICK_INJ = Marker() + D000047__9 = Drift(L=11.5) + HQFSS_12__7 = Quadrupole(L=0.6, Kn1=0.1527595871) + D000047__10 = Drift(L=11.5) + HQDSS_12__7 = Quadrupole(L=0.6, Kn1=-0.1399369071) + D000047__11 = Drift(L=11.5) + MCOLL_INJ = Marker() + HQFSS_12__8 = Quadrupole(L=0.6, Kn1=0.1527595871) + D000053__2 = Drift(L=1.590529) + DB23_12__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__22 = Drift(L=0.535) + HQM14_12 = Quadrupole(L=0.6, Kn1=-0.1363018832,) + D000032__23 = Drift(L=0.535) + DB23_12__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__24 = Drift(L=0.535) + HQM15_12 = Quadrupole(L=0.6, Kn1=0.1895913536,) + D000054__1 = Drift(L=4.706452) + HQM16_12 = Quadrupole(L=0.6, Kn1=-0.2272414187) + D000054__2 = Drift(L=4.706452) + HQM17_12 = Quadrupole(L=0.6, Kn1=0.3038863874,) + D000054__3 = Drift(L=4.706452) + HQM18_12 = Quadrupole(L=0.6, Kn1=-0.3056640346,) + D000054__4 = Drift(L=4.706452) + HQM19_12 = Quadrupole(L=0.6, Kn1=0.33500458,) + D000032__25 = Drift(L=0.535) + DB23_12__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__26 = Drift(L=0.535) + HQM20_12 = Quadrupole(L=0.6, Kn1=-0.2490023496,) + D000032__27 = Drift(L=0.535) + DB23_12__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__28 = Drift(L=0.535) + HQM21_12 = Quadrupole(L=0.6, Kn1=0.26081512,) + D000055__1 = Drift(L=4.809451) + HQM22_12 = Quadrupole(L=0.6, Kn1=-0.3351370008) + D000055__2 = Drift(L=4.809451) + SFM1_1 = Sextupole(L=0.24) + D000056__1 = Drift(L=0.2) + HQF_1__1 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__103 = Drift(L=0.0638) + CH00_1 = HKicker(L=0.2) + D000057__1 = Drift(L=1.442045) + DB23_12__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000014__103 = Drift(L=0.50037) + SD00_1 = Sextupole(L=0.24) + D000012__104 = Drift(L=0.1559) + HQD_1__1 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__104 = Drift(L=0.0638) + CV00_1 = VKicker(L=0.2) + D000057__2 = Drift(L=1.442045) + DB23_12__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000014__104 = Drift(L=0.50037) + SF00_1 = Sextupole(L=0.24) + D000012__105 = Drift(L=0.1559) + HQF_1__2 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__105 = Drift(L=0.0638) + CH01_1 = HKicker(L=0.2) + D000058__1 = Drift(L=0.386448) + EDGE1_000__169 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__85 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__169 = Multipole(Kn1L=4.07894736378E-6) + D000018__169 = Drift(L=0.1193) + EDGE3_000__169 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__85 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__170 = Multipole(Kn1L=-4.07894736378E-6) + D000018__170 = Drift(L=0.1193) + EDGE2_000__170 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__85 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__170 = Multipole(Kn1L=-4.4179123956E-5) + D000014__105 = Drift(L=0.50037) + SD1_1__17 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__97 = Drift(L=0.1042) + SD1_1__18 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000012__106 = Drift(L=0.1559) + HQD_1__2 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__106 = Drift(L=0.0638) + CV01_1 = VKicker(L=0.2) + D000058__2 = Drift(L=0.386448) + EDGE1_000__171 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__86 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__171 = Multipole(Kn1L=4.07894736378E-6) + D000018__171 = Drift(L=0.1193) + EDGE3_000__171 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__86 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__172 = Multipole(Kn1L=-4.07894736378E-6) + D000018__172 = Drift(L=0.1193) + EDGE2_000__172 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__86 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__172 = Multipole(Kn1L=-4.4179123956E-5) + D000014__106 = Drift(L=0.50037) + SF1_1__17 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__98 = Drift(L=0.1042) + SF1_1__18 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000012__107 = Drift(L=0.1559) + HQF_1__3 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__107 = Drift(L=0.0638) + CH02_1 = HKicker(L=0.2) + D000058__3 = Drift(L=0.386448) + EDGE1_000__173 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__87 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__173 = Multipole(Kn1L=4.07894736378E-6) + D000018__173 = Drift(L=0.1193) + EDGE3_000__173 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__87 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__174 = Multipole(Kn1L=-4.07894736378E-6) + D000018__174 = Drift(L=0.1193) + EDGE2_000__174 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__87 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__174 = Multipole(Kn1L=-4.4179123956E-5) + D000014__107 = Drift(L=0.50037) + SD2_1__17 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__99 = Drift(L=0.1042) + SD2_1__18 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000012__108 = Drift(L=0.1559) + HQD_1__3 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__108 = Drift(L=0.0638) + CV02_1 = VKicker(L=0.2) + D000058__4 = Drift(L=0.386448) + EDGE1_000__175 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__88 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__175 = Multipole(Kn1L=4.07894736378E-6) + D000018__175 = Drift(L=0.1193) + EDGE3_000__175 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__88 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__176 = Multipole(Kn1L=-4.07894736378E-6) + D000018__176 = Drift(L=0.1193) + EDGE2_000__176 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__88 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__176 = Multipole(Kn1L=-4.4179123956E-5) + D000014__108 = Drift(L=0.50037) + SF2_1__17 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__100 = Drift(L=0.1042) + SF2_1__18 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000012__109 = Drift(L=0.1559) + HQF_1__4 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__109 = Drift(L=0.0638) + CH03_1 = HKicker(L=0.2) + D000058__5 = Drift(L=0.386448) + EDGE1_000__177 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__89 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__177 = Multipole(Kn1L=4.07894736378E-6) + D000018__177 = Drift(L=0.1193) + EDGE3_000__177 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__89 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__178 = Multipole(Kn1L=-4.07894736378E-6) + D000018__178 = Drift(L=0.1193) + EDGE2_000__178 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__89 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__178 = Multipole(Kn1L=-4.4179123956E-5) + D000014__109 = Drift(L=0.50037) + SD1_1__19 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__101 = Drift(L=0.1042) + SD1_1__20 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000012__110 = Drift(L=0.1559) + HQD_1__4 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__110 = Drift(L=0.0638) + CV03_1 = VKicker(L=0.2) + D000058__6 = Drift(L=0.386448) + EDGE1_000__179 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__90 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__179 = Multipole(Kn1L=4.07894736378E-6) + D000018__179 = Drift(L=0.1193) + EDGE3_000__179 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__90 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__180 = Multipole(Kn1L=-4.07894736378E-6) + D000018__180 = Drift(L=0.1193) + EDGE2_000__180 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__90 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__180 = Multipole(Kn1L=-4.4179123956E-5) + D000014__110 = Drift(L=0.50037) + SF1_1__19 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__102 = Drift(L=0.1042) + SF1_1__20 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000012__111 = Drift(L=0.1559) + HQF_1__5 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__111 = Drift(L=0.0638) + CH04_1 = HKicker(L=0.2) + D000058__7 = Drift(L=0.386448) + EDGE1_000__181 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__91 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__181 = Multipole(Kn1L=4.07894736378E-6) + D000018__181 = Drift(L=0.1193) + EDGE3_000__181 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__91 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__182 = Multipole(Kn1L=-4.07894736378E-6) + D000018__182 = Drift(L=0.1193) + EDGE2_000__182 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__91 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__182 = Multipole(Kn1L=-4.4179123956E-5) + D000014__111 = Drift(L=0.50037) + SD2_1__19 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__103 = Drift(L=0.1042) + SD2_1__20 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000012__112 = Drift(L=0.1559) + HQD_1__5 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__112 = Drift(L=0.0638) + CV04_1 = VKicker(L=0.2) + D000058__8 = Drift(L=0.386448) + EDGE1_000__183 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__92 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__183 = Multipole(Kn1L=4.07894736378E-6) + D000018__183 = Drift(L=0.1193) + EDGE3_000__183 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__92 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__184 = Multipole(Kn1L=-4.07894736378E-6) + D000018__184 = Drift(L=0.1193) + EDGE2_000__184 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__92 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__184 = Multipole(Kn1L=-4.4179123956E-5) + D000014__112 = Drift(L=0.50037) + SF2_1__19 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__104 = Drift(L=0.1042) + SF2_1__20 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000012__113 = Drift(L=0.1559) + HQF_1__6 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__113 = Drift(L=0.0638) + CH05_1 = HKicker(L=0.2) + D000058__9 = Drift(L=0.386448) + EDGE1_000__185 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__93 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__185 = Multipole(Kn1L=4.07894736378E-6) + D000018__185 = Drift(L=0.1193) + EDGE3_000__185 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__93 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__186 = Multipole(Kn1L=-4.07894736378E-6) + D000018__186 = Drift(L=0.1193) + EDGE2_000__186 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__93 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__186 = Multipole(Kn1L=-4.4179123956E-5) + D000014__113 = Drift(L=0.50037) + SD1_1__21 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__105 = Drift(L=0.1042) + SD1_1__22 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000012__114 = Drift(L=0.1559) + HQD_1__6 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__114 = Drift(L=0.0638) + CV05_1 = VKicker(L=0.2) + D000058__10 = Drift(L=0.386448) + EDGE1_000__187 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__94 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__187 = Multipole(Kn1L=4.07894736378E-6) + D000018__187 = Drift(L=0.1193) + EDGE3_000__187 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__94 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__188 = Multipole(Kn1L=-4.07894736378E-6) + D000018__188 = Drift(L=0.1193) + EDGE2_000__188 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__94 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__188 = Multipole(Kn1L=-4.4179123956E-5) + D000014__114 = Drift(L=0.50037) + SF1_1__21 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__106 = Drift(L=0.1042) + SF1_1__22 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000012__115 = Drift(L=0.1559) + HQF_1__7 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__115 = Drift(L=0.0638) + CH06_1 = HKicker(L=0.2) + D000058__11 = Drift(L=0.386448) + EDGE1_000__189 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__95 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__189 = Multipole(Kn1L=4.07894736378E-6) + D000018__189 = Drift(L=0.1193) + EDGE3_000__189 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__95 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__190 = Multipole(Kn1L=-4.07894736378E-6) + D000018__190 = Drift(L=0.1193) + EDGE2_000__190 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__95 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__190 = Multipole(Kn1L=-4.4179123956E-5) + D000014__115 = Drift(L=0.50037) + SD2_1__21 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__107 = Drift(L=0.1042) + SD2_1__22 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000012__116 = Drift(L=0.1559) + HQD_1__7 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__116 = Drift(L=0.0638) + CV06_1 = VKicker(L=0.2) + D000058__12 = Drift(L=0.386448) + EDGE1_000__191 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__96 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__191 = Multipole(Kn1L=4.07894736378E-6) + D000018__191 = Drift(L=0.1193) + EDGE3_000__191 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__96 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__192 = Multipole(Kn1L=-4.07894736378E-6) + D000018__192 = Drift(L=0.1193) + EDGE2_000__192 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__96 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__192 = Multipole(Kn1L=-4.4179123956E-5) + D000014__116 = Drift(L=0.50037) + SF2_1__21 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__108 = Drift(L=0.1042) + SF2_1__22 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000012__117 = Drift(L=0.1559) + HQF_1__8 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__117 = Drift(L=0.0638) + CH07_1 = HKicker(L=0.2) + D000058__13 = Drift(L=0.386448) + EDGE1_000__193 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__97 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__193 = Multipole(Kn1L=4.07894736378E-6) + D000018__193 = Drift(L=0.1193) + EDGE3_000__193 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__97 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__194 = Multipole(Kn1L=-4.07894736378E-6) + D000018__194 = Drift(L=0.1193) + EDGE2_000__194 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__97 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__194 = Multipole(Kn1L=-4.4179123956E-5) + D000014__117 = Drift(L=0.50037) + SD1_1__23 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__109 = Drift(L=0.1042) + SD1_1__24 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000012__118 = Drift(L=0.1559) + HQD_1__8 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__118 = Drift(L=0.0638) + CV07_1 = VKicker(L=0.2) + D000058__14 = Drift(L=0.386448) + EDGE1_000__195 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__98 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__195 = Multipole(Kn1L=4.07894736378E-6) + D000018__195 = Drift(L=0.1193) + EDGE3_000__195 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__98 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__196 = Multipole(Kn1L=-4.07894736378E-6) + D000018__196 = Drift(L=0.1193) + EDGE2_000__196 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__98 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__196 = Multipole(Kn1L=-4.4179123956E-5) + D000014__118 = Drift(L=0.50037) + SF1_1__23 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__110 = Drift(L=0.1042) + SF1_1__24 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000012__119 = Drift(L=0.1559) + HQF_1__9 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__119 = Drift(L=0.0638) + CH08_1 = HKicker(L=0.2) + D000058__15 = Drift(L=0.386448) + EDGE1_000__197 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__99 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__197 = Multipole(Kn1L=4.07894736378E-6) + D000018__197 = Drift(L=0.1193) + EDGE3_000__197 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__99 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__198 = Multipole(Kn1L=-4.07894736378E-6) + D000018__198 = Drift(L=0.1193) + EDGE2_000__198 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__99 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__198 = Multipole(Kn1L=-4.4179123956E-5) + D000014__119 = Drift(L=0.50037) + SD2_1__23 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__111 = Drift(L=0.1042) + SD2_1__24 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000012__120 = Drift(L=0.1559) + HQD_1__9 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__120 = Drift(L=0.0638) + CV08_1 = VKicker(L=0.2) + D000058__16 = Drift(L=0.386448) + EDGE1_000__199 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__100 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__199 = Multipole(Kn1L=4.07894736378E-6) + D000018__199 = Drift(L=0.1193) + EDGE3_000__199 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__100 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__200 = Multipole(Kn1L=-4.07894736378E-6) + D000018__200 = Drift(L=0.1193) + EDGE2_000__200 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__100 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__200 = Multipole(Kn1L=-4.4179123956E-5) + D000014__120 = Drift(L=0.50037) + SF2_1__23 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__112 = Drift(L=0.1042) + SF2_1__24 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000012__121 = Drift(L=0.1559) + HQF_1__10 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__121 = Drift(L=0.0638) + CH09_1 = HKicker(L=0.2) + D000058__17 = Drift(L=0.386448) + EDGE1_000__201 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__101 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__201 = Multipole(Kn1L=4.07894736378E-6) + D000018__201 = Drift(L=0.1193) + EDGE3_000__201 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__101 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__202 = Multipole(Kn1L=-4.07894736378E-6) + D000018__202 = Drift(L=0.1193) + EDGE2_000__202 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__101 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__202 = Multipole(Kn1L=-4.4179123956E-5) + D000014__121 = Drift(L=0.50037) + SD1_1__25 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__113 = Drift(L=0.1042) + SD1_1__26 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000012__122 = Drift(L=0.1559) + HQD_1__10 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__122 = Drift(L=0.0638) + CV09_1 = VKicker(L=0.2) + D000058__18 = Drift(L=0.386448) + EDGE1_000__203 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__102 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__203 = Multipole(Kn1L=4.07894736378E-6) + D000018__203 = Drift(L=0.1193) + EDGE3_000__203 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__102 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__204 = Multipole(Kn1L=-4.07894736378E-6) + D000018__204 = Drift(L=0.1193) + EDGE2_000__204 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__102 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__204 = Multipole(Kn1L=-4.4179123956E-5) + D000014__122 = Drift(L=0.50037) + SF1_1__25 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__114 = Drift(L=0.1042) + SF1_1__26 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000012__123 = Drift(L=0.1559) + HQF_1__11 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__123 = Drift(L=0.0638) + CH10_1 = HKicker(L=0.2) + D000058__19 = Drift(L=0.386448) + EDGE1_000__205 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__103 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__205 = Multipole(Kn1L=4.07894736378E-6) + D000018__205 = Drift(L=0.1193) + EDGE3_000__205 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__103 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__206 = Multipole(Kn1L=-4.07894736378E-6) + D000018__206 = Drift(L=0.1193) + EDGE2_000__206 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__103 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__206 = Multipole(Kn1L=-4.4179123956E-5) + D000014__123 = Drift(L=0.50037) + SD2_1__25 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__115 = Drift(L=0.1042) + SD2_1__26 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000012__124 = Drift(L=0.1559) + HQD_1__11 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__124 = Drift(L=0.0638) + CV10_1 = VKicker(L=0.2) + D000058__20 = Drift(L=0.386448) + EDGE1_000__207 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__104 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__207 = Multipole(Kn1L=4.07894736378E-6) + D000018__207 = Drift(L=0.1193) + EDGE3_000__207 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__104 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__208 = Multipole(Kn1L=-4.07894736378E-6) + D000018__208 = Drift(L=0.1193) + EDGE2_000__208 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__104 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__208 = Multipole(Kn1L=-4.4179123956E-5) + D000014__124 = Drift(L=0.50037) + SF2_1__25 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__116 = Drift(L=0.1042) + SF2_1__26 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000012__125 = Drift(L=0.1559) + HQF_1__12 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__125 = Drift(L=0.0638) + CH11_1 = HKicker(L=0.2) + D000058__21 = Drift(L=0.386448) + EDGE1_000__209 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__105 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__209 = Multipole(Kn1L=4.07894736378E-6) + D000018__209 = Drift(L=0.1193) + EDGE3_000__209 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__105 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__210 = Multipole(Kn1L=-4.07894736378E-6) + D000018__210 = Drift(L=0.1193) + EDGE2_000__210 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__105 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__210 = Multipole(Kn1L=-4.4179123956E-5) + D000014__125 = Drift(L=0.50037) + SD1_1__27 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__117 = Drift(L=0.1042) + SD1_1__28 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000012__126 = Drift(L=0.1559) + HQD_1__12 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__126 = Drift(L=0.0638) + CV11_1 = VKicker(L=0.2) + D000058__22 = Drift(L=0.386448) + EDGE1_000__211 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__106 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__211 = Multipole(Kn1L=4.07894736378E-6) + D000018__211 = Drift(L=0.1193) + EDGE3_000__211 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__106 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__212 = Multipole(Kn1L=-4.07894736378E-6) + D000018__212 = Drift(L=0.1193) + EDGE2_000__212 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__106 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__212 = Multipole(Kn1L=-4.4179123956E-5) + D000014__126 = Drift(L=0.50037) + SF1_1__27 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__118 = Drift(L=0.1042) + SF1_1__28 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000012__127 = Drift(L=0.1559) + HQF_1__13 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__127 = Drift(L=0.0638) + CH12_1 = HKicker(L=0.2) + D000058__23 = Drift(L=0.386448) + EDGE1_000__213 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__107 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__213 = Multipole(Kn1L=4.07894736378E-6) + D000018__213 = Drift(L=0.1193) + EDGE3_000__213 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__107 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__214 = Multipole(Kn1L=-4.07894736378E-6) + D000018__214 = Drift(L=0.1193) + EDGE2_000__214 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__107 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__214 = Multipole(Kn1L=-4.4179123956E-5) + D000014__127 = Drift(L=0.50037) + SD2_1__27 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__119 = Drift(L=0.1042) + SD2_1__28 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000012__128 = Drift(L=0.1559) + HQD_1__13 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__128 = Drift(L=0.0638) + CV12_1 = VKicker(L=0.2) + D000058__24 = Drift(L=0.386448) + EDGE1_000__215 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__108 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__215 = Multipole(Kn1L=4.07894736378E-6) + D000018__215 = Drift(L=0.1193) + EDGE3_000__215 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__108 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__216 = Multipole(Kn1L=-4.07894736378E-6) + D000018__216 = Drift(L=0.1193) + EDGE2_000__216 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__108 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__216 = Multipole(Kn1L=-4.4179123956E-5) + D000014__128 = Drift(L=0.50037) + SF2_1__27 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__120 = Drift(L=0.1042) + SF2_1__28 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000012__129 = Drift(L=0.1559) + HQF_1__14 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__129 = Drift(L=0.0638) + CH13_1 = HKicker(L=0.2) + D000058__25 = Drift(L=0.386448) + EDGE1_000__217 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__109 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__217 = Multipole(Kn1L=4.07894736378E-6) + D000018__217 = Drift(L=0.1193) + EDGE3_000__217 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__109 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__218 = Multipole(Kn1L=-4.07894736378E-6) + D000018__218 = Drift(L=0.1193) + EDGE2_000__218 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__109 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__218 = Multipole(Kn1L=-4.4179123956E-5) + D000014__129 = Drift(L=0.50037) + SD1_1__29 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__121 = Drift(L=0.1042) + SD1_1__30 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000012__130 = Drift(L=0.1559) + HQD_1__14 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__130 = Drift(L=0.0638) + CV13_1 = VKicker(L=0.2) + D000058__26 = Drift(L=0.386448) + EDGE1_000__219 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__110 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__219 = Multipole(Kn1L=4.07894736378E-6) + D000018__219 = Drift(L=0.1193) + EDGE3_000__219 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__110 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__220 = Multipole(Kn1L=-4.07894736378E-6) + D000018__220 = Drift(L=0.1193) + EDGE2_000__220 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__110 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__220 = Multipole(Kn1L=-4.4179123956E-5) + D000014__130 = Drift(L=0.50037) + SF1_1__29 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__122 = Drift(L=0.1042) + SF1_1__30 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000012__131 = Drift(L=0.1559) + HQF_1__15 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__131 = Drift(L=0.0638) + CH14_1 = HKicker(L=0.2) + D000058__27 = Drift(L=0.386448) + EDGE1_000__221 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__111 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__221 = Multipole(Kn1L=4.07894736378E-6) + D000018__221 = Drift(L=0.1193) + EDGE3_000__221 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__111 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__222 = Multipole(Kn1L=-4.07894736378E-6) + D000018__222 = Drift(L=0.1193) + EDGE2_000__222 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__111 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__222 = Multipole(Kn1L=-4.4179123956E-5) + D000014__131 = Drift(L=0.50037) + SD2_1__29 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__123 = Drift(L=0.1042) + SD2_1__30 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000012__132 = Drift(L=0.1559) + HQD_1__15 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__132 = Drift(L=0.0638) + CV14_1 = VKicker(L=0.2) + D000058__28 = Drift(L=0.386448) + EDGE1_000__223 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__112 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__223 = Multipole(Kn1L=4.07894736378E-6) + D000018__223 = Drift(L=0.1193) + EDGE3_000__223 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__112 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__224 = Multipole(Kn1L=-4.07894736378E-6) + D000018__224 = Drift(L=0.1193) + EDGE2_000__224 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__112 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__224 = Multipole(Kn1L=-4.4179123956E-5) + D000014__132 = Drift(L=0.50037) + SF2_1__29 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__124 = Drift(L=0.1042) + SF2_1__30 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000012__133 = Drift(L=0.1559) + HQF_1__16 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__133 = Drift(L=0.0638) + CH15_1 = HKicker(L=0.2) + D000058__29 = Drift(L=0.386448) + EDGE1_000__225 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__113 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__225 = Multipole(Kn1L=4.07894736378E-6) + D000018__225 = Drift(L=0.1193) + EDGE3_000__225 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__113 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__226 = Multipole(Kn1L=-4.07894736378E-6) + D000018__226 = Drift(L=0.1193) + EDGE2_000__226 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__113 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__226 = Multipole(Kn1L=-4.4179123956E-5) + D000014__133 = Drift(L=0.50037) + SD1_1__31 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__125 = Drift(L=0.1042) + SD1_1__32 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000012__134 = Drift(L=0.1559) + HQD_1__16 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__134 = Drift(L=0.0638) + CV15_1 = VKicker(L=0.2) + D000058__30 = Drift(L=0.386448) + EDGE1_000__227 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__114 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__227 = Multipole(Kn1L=4.07894736378E-6) + D000018__227 = Drift(L=0.1193) + EDGE3_000__227 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__114 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__228 = Multipole(Kn1L=-4.07894736378E-6) + D000018__228 = Drift(L=0.1193) + EDGE2_000__228 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__114 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__228 = Multipole(Kn1L=-4.4179123956E-5) + D000014__134 = Drift(L=0.50037) + SF1_1__31 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__126 = Drift(L=0.1042) + SF1_1__32 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000012__135 = Drift(L=0.1559) + HQF_1__17 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__135 = Drift(L=0.0638) + CH16_1 = HKicker(L=0.2) + D000058__31 = Drift(L=0.386448) + EDGE1_000__229 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__115 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__229 = Multipole(Kn1L=4.07894736378E-6) + D000018__229 = Drift(L=0.1193) + EDGE3_000__229 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__115 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__230 = Multipole(Kn1L=-4.07894736378E-6) + D000018__230 = Drift(L=0.1193) + EDGE2_000__230 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__115 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__230 = Multipole(Kn1L=-4.4179123956E-5) + D000014__135 = Drift(L=0.50037) + SD2_1__31 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__127 = Drift(L=0.1042) + SD2_1__32 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000012__136 = Drift(L=0.1559) + HQD_1__17 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__136 = Drift(L=0.0638) + CV16_1 = VKicker(L=0.2) + D000058__32 = Drift(L=0.386448) + EDGE1_000__231 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__116 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__231 = Multipole(Kn1L=4.07894736378E-6) + D000018__231 = Drift(L=0.1193) + EDGE3_000__231 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__116 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__232 = Multipole(Kn1L=-4.07894736378E-6) + D000018__232 = Drift(L=0.1193) + EDGE2_000__232 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__116 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__232 = Multipole(Kn1L=-4.4179123956E-5) + D000014__136 = Drift(L=0.50037) + SF2_1__31 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__128 = Drift(L=0.1042) + SF2_1__32 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000012__137 = Drift(L=0.1559) + HQF_1__18 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000017__137 = Drift(L=0.0638) + CH17_1 = HKicker(L=0.2) + D000057__3 = Drift(L=1.442045) + DB23_1__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000014__137 = Drift(L=0.50037) + SD17_1 = Sextupole(L=0.24) + D000012__138 = Drift(L=0.1559) + HQD_1__18 = Quadrupole(L=0.5, Kn1=-0.3112215884,) + D000017__138 = Drift(L=0.0638) + CV17_1 = VKicker(L=0.2) + D000057__4 = Drift(L=1.442045) + DB23_1__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000014__138 = Drift(L=0.50037) + SF17_1 = Sextupole(L=0.24) + D000012__139 = Drift(L=0.1559) + HQF_1__19 = Quadrupole(L=0.5, Kn1=0.3113975997,) + D000059__1 = Drift(L=2.551335) + HQM22_1 = Quadrupole(L=0.6, Kn1=0.01722745969,) + D000059__2 = Drift(L=2.551335) + HQM21_1 = Quadrupole(L=0.6, Kn1=-0.07374323012) + D000059__3 = Drift(L=2.551335) + HQM20_1 = Quadrupole(L=0.6, Kn1=-0.01932000017,) + D000059__4 = Drift(L=2.551335) + HQM19_1 = Quadrupole(L=0.6, Kn1=-0.08634709755) + D000059__5 = Drift(L=2.551335) + HQM18_1 = Quadrupole(L=0.6, Kn1=-0.08439397155) + D000032__29 = Drift(L=0.535) + DB23_1__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__30 = Drift(L=0.535) + HQM17_1 = Quadrupole(L=0.6, Kn1=0.215697629) + D000032__31 = Drift(L=0.535) + DB23_1__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__32 = Drift(L=0.535) + HQM16_1 = Quadrupole(L=0.6, Kn1=0.09620701749) + D000060__1 = Drift(L=6.217138) + HQM15_1 = Quadrupole(L=0.6, Kn1=-0.2153529094) + D000060__2 = Drift(L=6.217138) + HQM14_1 = Quadrupole(L=0.6, Kn1=0.312179911,) + D000060__3 = Drift(L=6.217138) + HQM13_1 = Quadrupole(L=0.6, Kn1=-0.1606496122) + D000032__33 = Drift(L=0.535) + DB23_1__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__34 = Drift(L=0.535) + HQM12_1 = Quadrupole(L=0.6, Kn1=0.1379574645) + D000032__35 = Drift(L=0.535) + DB23_1__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000061__1 = Drift(L=1.995182) + HQDSS_2__1 = Quadrupole(L=0.6, Kn1=-0.0980096273) + D000062__1 = Drift(L=12.36) + SX41_2 = Sextupole(L=0.24) + D000056__2 = Drift(L=0.2) + HQFSS_2__1 = Quadrupole(L=0.6, Kn1=0.1238165582,) + D000062__2 = Drift(L=12.36) + SX42_2 = Sextupole(L=0.24) + D000056__3 = Drift(L=0.2) + HQDSS_2__2 = Quadrupole(L=0.6, Kn1=-0.0980096273) + MCOLL_H1 = Marker() + D000062__3 = Drift(L=12.36) + SX43_2 = Sextupole(L=0.24) + D000056__4 = Drift(L=0.2) + HQFSS_2__2 = Quadrupole(L=0.6, Kn1=0.1238165582,) + D000062__4 = Drift(L=12.36) + MCOLL_H2 = Marker() + SX44_2 = Sextupole(L=0.24) + D000056__5 = Drift(L=0.2) + HQDSS_2__3 = Quadrupole(L=0.6, Kn1=-0.0980096273) + D000062__5 = Drift(L=12.36) + SX45_2 = Sextupole(L=0.24) + D000056__6 = Drift(L=0.2) + HQFSS_2__3 = Quadrupole(L=0.6, Kn1=0.1238165582,) + D000062__6 = Drift(L=12.36) + MCOLL_H3 = Marker() + SX46_2 = Sextupole(L=0.24) + D000056__7 = Drift(L=0.2) + HQDSS_2__4 = Quadrupole(L=0.6, Kn1=-0.0980096273) + D000063 = Drift(L=6.169233) + IP2 = Marker() + D000064 = Drift(L=6.630767) + HQFSS_2__4 = Quadrupole(L=0.6, Kn1=0.1238165582,) + D000056__8 = Drift(L=0.2) + SX47_2 = Sextupole(L=0.24) + D000062__7 = Drift(L=12.36) + HQDSS_2__5 = Quadrupole(L=0.6, Kn1=-0.0980096273) + D000056__9 = Drift(L=0.2) + SX48_2 = Sextupole(L=0.24) + D000062__8 = Drift(L=12.36) + HQFSS_2__5 = Quadrupole(L=0.6, Kn1=0.1238165582,) + D000056__10 = Drift(L=0.2) + SX49_2 = Sextupole(L=0.24) + D000062__9 = Drift(L=12.36) + HQDSS_2__6 = Quadrupole(L=0.6, Kn1=-0.0980096273) + D000056__11 = Drift(L=0.2) + SX50_2 = Sextupole(L=0.24) + MLAMB = Marker() + D000062__10 = Drift(L=12.36) + HQFSS_2__6 = Quadrupole(L=0.6, Kn1=0.1238165582,) + D000056__12 = Drift(L=0.2) + SX51_2 = Sextupole(L=0.24) + D000062__11 = Drift(L=12.36) + HQDSS_2__7 = Quadrupole(L=0.6, Kn1=-0.0980096273) + D000056__13 = Drift(L=0.2) + SX52_2 = Sextupole(L=0.24) + D000062__12 = Drift(L=12.36) + HQFSS_2__7 = Quadrupole(L=0.6, Kn1=0.1238165582,) + D000061__2 = Drift(L=1.995182) + DB23_2__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__36 = Drift(L=0.535) + HQM12_2 = Quadrupole(L=0.6, Kn1=-0.08415385784) + D000032__37 = Drift(L=0.535) + DB23_2__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__38 = Drift(L=0.535) + HQM13_2 = Quadrupole(L=0.6, Kn1=-7.038584918E-4,) + D000065__1 = Drift(L=5.927225) + HQM14_2 = Quadrupole(L=0.6, Kn1=-0.07676463633) + D000065__2 = Drift(L=5.927225) + HQM15_2 = Quadrupole(L=0.6, Kn1=0.3290445086,) + D000065__3 = Drift(L=5.927225) + HQM16_2 = Quadrupole(L=0.6, Kn1=-0.2520023905,) + D000032__39 = Drift(L=0.535) + DB23_2__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__40 = Drift(L=0.535) + HQM17_2 = Quadrupole(L=0.6, Kn1=0.2982328613) + D000032__41 = Drift(L=0.535) + DB23_2__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__42 = Drift(L=0.535) + HQM18_2 = Quadrupole(L=0.6, Kn1=0.2057910441) + D000066__1 = Drift(L=2.623669) + HQM19_2 = Quadrupole(L=0.6, Kn1=-0.2632180047,) + D000066__2 = Drift(L=2.623669) + HQM20_2 = Quadrupole(L=0.6, Kn1=-0.06371765756,) + D000066__3 = Drift(L=2.623669) + HQM21_2 = Quadrupole(L=0.6, Kn1=-2.457652622E-3,) + D000066__4 = Drift(L=2.623669) + HQM22_2 = Quadrupole(L=0.6, Kn1=0.08440660021) + D000066__5 = Drift(L=2.623669) + HQF_3__1 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__140 = Drift(L=0.1559) + SF00_3 = Sextupole(L=0.24) + D000014__139 = Drift(L=0.50037) + DB23_2__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000067__1 = Drift(L=1.442004) + CV00_3 = HKicker(L=0.2) + D000017__139 = Drift(L=0.0638) + HQD_3__1 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__141 = Drift(L=0.1559) + SD00_3 = Sextupole(L=0.24) + D000014__140 = Drift(L=0.50037) + DB23_2__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000067__2 = Drift(L=1.442004) + CH00_3 = HKicker(L=0.2) + D000017__140 = Drift(L=0.0638) + HQF_3__2 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__142 = Drift(L=0.1559) + SF1_1__33 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__129 = Drift(L=0.1042) + SF1_1__34 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__141 = Drift(L=0.50037) + EDGE1_000__233 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__117 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__233 = Multipole(Kn1L=4.07894736378E-6) + D000018__233 = Drift(L=0.1193) + EDGE3_000__233 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__117 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__234 = Multipole(Kn1L=-4.07894736378E-6) + D000018__234 = Drift(L=0.1193) + EDGE2_000__234 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__117 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__234 = Multipole(Kn1L=-4.4179123956E-5) + D000068__1 = Drift(L=0.386407) + CV01_3 = VKicker(L=0.2) + D000017__141 = Drift(L=0.0638) + HQD_3__2 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__143 = Drift(L=0.1559) + SD1_1__33 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__130 = Drift(L=0.1042) + SD1_1__34 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__142 = Drift(L=0.50037) + EDGE1_000__235 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__118 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__235 = Multipole(Kn1L=4.07894736378E-6) + D000018__235 = Drift(L=0.1193) + EDGE3_000__235 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__118 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__236 = Multipole(Kn1L=-4.07894736378E-6) + D000018__236 = Drift(L=0.1193) + EDGE2_000__236 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__118 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__236 = Multipole(Kn1L=-4.4179123956E-5) + D000068__2 = Drift(L=0.386407) + CH01_3 = HKicker(L=0.2) + D000017__142 = Drift(L=0.0638) + HQF_3__3 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__144 = Drift(L=0.1559) + SF2_1__33 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__131 = Drift(L=0.1042) + SF2_1__34 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__143 = Drift(L=0.50037) + EDGE1_000__237 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__119 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__237 = Multipole(Kn1L=4.07894736378E-6) + D000018__237 = Drift(L=0.1193) + EDGE3_000__237 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__119 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__238 = Multipole(Kn1L=-4.07894736378E-6) + D000018__238 = Drift(L=0.1193) + EDGE2_000__238 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__119 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__238 = Multipole(Kn1L=-4.4179123956E-5) + D000068__3 = Drift(L=0.386407) + CV02_3 = VKicker(L=0.2) + D000017__143 = Drift(L=0.0638) + HQD_3__3 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__145 = Drift(L=0.1559) + SD2_1__33 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__132 = Drift(L=0.1042) + SD2_1__34 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__144 = Drift(L=0.50037) + EDGE1_000__239 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__120 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__239 = Multipole(Kn1L=4.07894736378E-6) + D000018__239 = Drift(L=0.1193) + EDGE3_000__239 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__120 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__240 = Multipole(Kn1L=-4.07894736378E-6) + D000018__240 = Drift(L=0.1193) + EDGE2_000__240 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__120 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__240 = Multipole(Kn1L=-4.4179123956E-5) + D000068__4 = Drift(L=0.386407) + CH02_3 = HKicker(L=0.2) + D000017__144 = Drift(L=0.0638) + HQF_3__4 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__146 = Drift(L=0.1559) + SF1_1__35 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__133 = Drift(L=0.1042) + SF1_1__36 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__145 = Drift(L=0.50037) + EDGE1_000__241 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__121 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__241 = Multipole(Kn1L=4.07894736378E-6) + D000018__241 = Drift(L=0.1193) + EDGE3_000__241 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__121 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__242 = Multipole(Kn1L=-4.07894736378E-6) + D000018__242 = Drift(L=0.1193) + EDGE2_000__242 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__121 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__242 = Multipole(Kn1L=-4.4179123956E-5) + D000068__5 = Drift(L=0.386407) + CV03_3 = VKicker(L=0.2) + D000017__145 = Drift(L=0.0638) + HQD_3__4 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__147 = Drift(L=0.1559) + SD1_1__35 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__134 = Drift(L=0.1042) + SD1_1__36 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__146 = Drift(L=0.50037) + EDGE1_000__243 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__122 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__243 = Multipole(Kn1L=4.07894736378E-6) + D000018__243 = Drift(L=0.1193) + EDGE3_000__243 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__122 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__244 = Multipole(Kn1L=-4.07894736378E-6) + D000018__244 = Drift(L=0.1193) + EDGE2_000__244 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__122 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__244 = Multipole(Kn1L=-4.4179123956E-5) + D000068__6 = Drift(L=0.386407) + CH03_3 = HKicker(L=0.2) + D000017__146 = Drift(L=0.0638) + HQF_3__5 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__148 = Drift(L=0.1559) + SF2_1__35 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__135 = Drift(L=0.1042) + SF2_1__36 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__147 = Drift(L=0.50037) + EDGE1_000__245 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__123 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__245 = Multipole(Kn1L=4.07894736378E-6) + D000018__245 = Drift(L=0.1193) + EDGE3_000__245 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__123 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__246 = Multipole(Kn1L=-4.07894736378E-6) + D000018__246 = Drift(L=0.1193) + EDGE2_000__246 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__123 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__246 = Multipole(Kn1L=-4.4179123956E-5) + D000068__7 = Drift(L=0.386407) + CV04_3 = VKicker(L=0.2) + D000017__147 = Drift(L=0.0638) + HQD_3__5 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__149 = Drift(L=0.1559) + SD2_1__35 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__136 = Drift(L=0.1042) + SD2_1__36 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__148 = Drift(L=0.50037) + EDGE1_000__247 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__124 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__247 = Multipole(Kn1L=4.07894736378E-6) + D000018__247 = Drift(L=0.1193) + EDGE3_000__247 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__124 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__248 = Multipole(Kn1L=-4.07894736378E-6) + D000018__248 = Drift(L=0.1193) + EDGE2_000__248 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__124 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__248 = Multipole(Kn1L=-4.4179123956E-5) + D000068__8 = Drift(L=0.386407) + CH04_3 = HKicker(L=0.2) + D000017__148 = Drift(L=0.0638) + HQF_3__6 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__150 = Drift(L=0.1559) + SF1_1__37 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__137 = Drift(L=0.1042) + SF1_1__38 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__149 = Drift(L=0.50037) + EDGE1_000__249 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__125 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__249 = Multipole(Kn1L=4.07894736378E-6) + D000018__249 = Drift(L=0.1193) + EDGE3_000__249 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__125 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__250 = Multipole(Kn1L=-4.07894736378E-6) + D000018__250 = Drift(L=0.1193) + EDGE2_000__250 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__125 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__250 = Multipole(Kn1L=-4.4179123956E-5) + D000068__9 = Drift(L=0.386407) + CV05_3 = VKicker(L=0.2) + D000017__149 = Drift(L=0.0638) + HQD_3__6 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__151 = Drift(L=0.1559) + SD1_1__37 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__138 = Drift(L=0.1042) + SD1_1__38 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__150 = Drift(L=0.50037) + EDGE1_000__251 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__126 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__251 = Multipole(Kn1L=4.07894736378E-6) + D000018__251 = Drift(L=0.1193) + EDGE3_000__251 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__126 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__252 = Multipole(Kn1L=-4.07894736378E-6) + D000018__252 = Drift(L=0.1193) + EDGE2_000__252 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__126 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__252 = Multipole(Kn1L=-4.4179123956E-5) + D000068__10 = Drift(L=0.386407) + CH05_3 = HKicker(L=0.2) + D000017__150 = Drift(L=0.0638) + HQF_3__7 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__152 = Drift(L=0.1559) + SF2_1__37 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__139 = Drift(L=0.1042) + SF2_1__38 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__151 = Drift(L=0.50037) + EDGE1_000__253 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__127 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__253 = Multipole(Kn1L=4.07894736378E-6) + D000018__253 = Drift(L=0.1193) + EDGE3_000__253 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__127 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__254 = Multipole(Kn1L=-4.07894736378E-6) + D000018__254 = Drift(L=0.1193) + EDGE2_000__254 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__127 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__254 = Multipole(Kn1L=-4.4179123956E-5) + D000068__11 = Drift(L=0.386407) + CV06_3 = VKicker(L=0.2) + D000017__151 = Drift(L=0.0638) + HQD_3__7 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__153 = Drift(L=0.1559) + SD2_1__37 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__140 = Drift(L=0.1042) + SD2_1__38 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__152 = Drift(L=0.50037) + EDGE1_000__255 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__128 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__255 = Multipole(Kn1L=4.07894736378E-6) + D000018__255 = Drift(L=0.1193) + EDGE3_000__255 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__128 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__256 = Multipole(Kn1L=-4.07894736378E-6) + D000018__256 = Drift(L=0.1193) + EDGE2_000__256 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__128 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__256 = Multipole(Kn1L=-4.4179123956E-5) + D000068__12 = Drift(L=0.386407) + CH06_3 = HKicker(L=0.2) + D000017__152 = Drift(L=0.0638) + HQF_3__8 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__154 = Drift(L=0.1559) + SF1_1__39 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__141 = Drift(L=0.1042) + SF1_1__40 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__153 = Drift(L=0.50037) + EDGE1_000__257 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__129 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__257 = Multipole(Kn1L=4.07894736378E-6) + D000018__257 = Drift(L=0.1193) + EDGE3_000__257 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__129 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__258 = Multipole(Kn1L=-4.07894736378E-6) + D000018__258 = Drift(L=0.1193) + EDGE2_000__258 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__129 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__258 = Multipole(Kn1L=-4.4179123956E-5) + D000068__13 = Drift(L=0.386407) + CV07_3 = VKicker(L=0.2) + D000017__153 = Drift(L=0.0638) + HQD_3__8 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__155 = Drift(L=0.1559) + SD1_1__39 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__142 = Drift(L=0.1042) + SD1_1__40 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__154 = Drift(L=0.50037) + EDGE1_000__259 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__130 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__259 = Multipole(Kn1L=4.07894736378E-6) + D000018__259 = Drift(L=0.1193) + EDGE3_000__259 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__130 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__260 = Multipole(Kn1L=-4.07894736378E-6) + D000018__260 = Drift(L=0.1193) + EDGE2_000__260 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__130 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__260 = Multipole(Kn1L=-4.4179123956E-5) + D000068__14 = Drift(L=0.386407) + CH07_3 = HKicker(L=0.2) + D000017__154 = Drift(L=0.0638) + HQF_3__9 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__156 = Drift(L=0.1559) + SF2_1__39 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__143 = Drift(L=0.1042) + SF2_1__40 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__155 = Drift(L=0.50037) + EDGE1_000__261 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__131 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__261 = Multipole(Kn1L=4.07894736378E-6) + D000018__261 = Drift(L=0.1193) + EDGE3_000__261 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__131 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__262 = Multipole(Kn1L=-4.07894736378E-6) + D000018__262 = Drift(L=0.1193) + EDGE2_000__262 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__131 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__262 = Multipole(Kn1L=-4.4179123956E-5) + D000068__15 = Drift(L=0.386407) + CV08_3 = VKicker(L=0.2) + D000017__155 = Drift(L=0.0638) + HQD_3__9 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__157 = Drift(L=0.1559) + SD2_1__39 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__144 = Drift(L=0.1042) + SD2_1__40 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__156 = Drift(L=0.50037) + EDGE1_000__263 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__132 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__263 = Multipole(Kn1L=4.07894736378E-6) + D000018__263 = Drift(L=0.1193) + EDGE3_000__263 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__132 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__264 = Multipole(Kn1L=-4.07894736378E-6) + D000018__264 = Drift(L=0.1193) + EDGE2_000__264 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__132 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__264 = Multipole(Kn1L=-4.4179123956E-5) + D000068__16 = Drift(L=0.386407) + CH08_3 = HKicker(L=0.2) + D000017__156 = Drift(L=0.0638) + HQF_3__10 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__158 = Drift(L=0.1559) + SF1_1__41 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__145 = Drift(L=0.1042) + SF1_1__42 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__157 = Drift(L=0.50037) + EDGE1_000__265 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__133 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__265 = Multipole(Kn1L=4.07894736378E-6) + D000018__265 = Drift(L=0.1193) + EDGE3_000__265 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__133 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__266 = Multipole(Kn1L=-4.07894736378E-6) + D000018__266 = Drift(L=0.1193) + EDGE2_000__266 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__133 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__266 = Multipole(Kn1L=-4.4179123956E-5) + D000068__17 = Drift(L=0.386407) + CV09_3 = VKicker(L=0.2) + D000017__157 = Drift(L=0.0638) + HQD_3__10 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__159 = Drift(L=0.1559) + SD1_1__41 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__146 = Drift(L=0.1042) + SD1_1__42 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__158 = Drift(L=0.50037) + EDGE1_000__267 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__134 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__267 = Multipole(Kn1L=4.07894736378E-6) + D000018__267 = Drift(L=0.1193) + EDGE3_000__267 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__134 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__268 = Multipole(Kn1L=-4.07894736378E-6) + D000018__268 = Drift(L=0.1193) + EDGE2_000__268 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__134 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__268 = Multipole(Kn1L=-4.4179123956E-5) + D000068__18 = Drift(L=0.386407) + CH09_3 = HKicker(L=0.2) + D000017__158 = Drift(L=0.0638) + HQF_3__11 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__160 = Drift(L=0.1559) + SF2_1__41 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__147 = Drift(L=0.1042) + SF2_1__42 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__159 = Drift(L=0.50037) + EDGE1_000__269 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__135 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__269 = Multipole(Kn1L=4.07894736378E-6) + D000018__269 = Drift(L=0.1193) + EDGE3_000__269 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__135 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__270 = Multipole(Kn1L=-4.07894736378E-6) + D000018__270 = Drift(L=0.1193) + EDGE2_000__270 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__135 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__270 = Multipole(Kn1L=-4.4179123956E-5) + D000068__19 = Drift(L=0.386407) + CV10_3 = VKicker(L=0.2) + D000017__159 = Drift(L=0.0638) + HQD_3__11 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__161 = Drift(L=0.1559) + SD2_1__41 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__148 = Drift(L=0.1042) + SD2_1__42 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__160 = Drift(L=0.50037) + EDGE1_000__271 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__136 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__271 = Multipole(Kn1L=4.07894736378E-6) + D000018__271 = Drift(L=0.1193) + EDGE3_000__271 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__136 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__272 = Multipole(Kn1L=-4.07894736378E-6) + D000018__272 = Drift(L=0.1193) + EDGE2_000__272 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__136 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__272 = Multipole(Kn1L=-4.4179123956E-5) + D000068__20 = Drift(L=0.386407) + CH10_3 = HKicker(L=0.2) + D000017__160 = Drift(L=0.0638) + HQF_3__12 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__162 = Drift(L=0.1559) + SF1_1__43 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__149 = Drift(L=0.1042) + SF1_1__44 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__161 = Drift(L=0.50037) + EDGE1_000__273 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__137 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__273 = Multipole(Kn1L=4.07894736378E-6) + D000018__273 = Drift(L=0.1193) + EDGE3_000__273 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__137 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__274 = Multipole(Kn1L=-4.07894736378E-6) + D000018__274 = Drift(L=0.1193) + EDGE2_000__274 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__137 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__274 = Multipole(Kn1L=-4.4179123956E-5) + D000068__21 = Drift(L=0.386407) + CV11_3 = VKicker(L=0.2) + D000017__161 = Drift(L=0.0638) + HQD_3__12 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__163 = Drift(L=0.1559) + SD1_1__43 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__150 = Drift(L=0.1042) + SD1_1__44 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__162 = Drift(L=0.50037) + EDGE1_000__275 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__138 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__275 = Multipole(Kn1L=4.07894736378E-6) + D000018__275 = Drift(L=0.1193) + EDGE3_000__275 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__138 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__276 = Multipole(Kn1L=-4.07894736378E-6) + D000018__276 = Drift(L=0.1193) + EDGE2_000__276 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__138 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__276 = Multipole(Kn1L=-4.4179123956E-5) + D000068__22 = Drift(L=0.386407) + CH11_3 = HKicker(L=0.2) + D000017__162 = Drift(L=0.0638) + HQF_3__13 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__164 = Drift(L=0.1559) + SF2_1__43 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__151 = Drift(L=0.1042) + SF2_1__44 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__163 = Drift(L=0.50037) + EDGE1_000__277 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__139 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__277 = Multipole(Kn1L=4.07894736378E-6) + D000018__277 = Drift(L=0.1193) + EDGE3_000__277 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__139 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__278 = Multipole(Kn1L=-4.07894736378E-6) + D000018__278 = Drift(L=0.1193) + EDGE2_000__278 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__139 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__278 = Multipole(Kn1L=-4.4179123956E-5) + D000068__23 = Drift(L=0.386407) + CV12_3 = VKicker(L=0.2) + D000017__163 = Drift(L=0.0638) + HQD_3__13 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__165 = Drift(L=0.1559) + SD2_1__43 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__152 = Drift(L=0.1042) + SD2_1__44 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__164 = Drift(L=0.50037) + EDGE1_000__279 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__140 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__279 = Multipole(Kn1L=4.07894736378E-6) + D000018__279 = Drift(L=0.1193) + EDGE3_000__279 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__140 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__280 = Multipole(Kn1L=-4.07894736378E-6) + D000018__280 = Drift(L=0.1193) + EDGE2_000__280 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__140 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__280 = Multipole(Kn1L=-4.4179123956E-5) + D000068__24 = Drift(L=0.386407) + CH12_3 = HKicker(L=0.2) + D000017__164 = Drift(L=0.0638) + HQF_3__14 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__166 = Drift(L=0.1559) + SF1_1__45 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__153 = Drift(L=0.1042) + SF1_1__46 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__165 = Drift(L=0.50037) + EDGE1_000__281 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__141 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__281 = Multipole(Kn1L=4.07894736378E-6) + D000018__281 = Drift(L=0.1193) + EDGE3_000__281 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__141 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__282 = Multipole(Kn1L=-4.07894736378E-6) + D000018__282 = Drift(L=0.1193) + EDGE2_000__282 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__141 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__282 = Multipole(Kn1L=-4.4179123956E-5) + D000068__25 = Drift(L=0.386407) + CV13_3 = VKicker(L=0.2) + D000017__165 = Drift(L=0.0638) + HQD_3__14 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__167 = Drift(L=0.1559) + SD1_1__45 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__154 = Drift(L=0.1042) + SD1_1__46 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__166 = Drift(L=0.50037) + EDGE1_000__283 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__142 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__283 = Multipole(Kn1L=4.07894736378E-6) + D000018__283 = Drift(L=0.1193) + EDGE3_000__283 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__142 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__284 = Multipole(Kn1L=-4.07894736378E-6) + D000018__284 = Drift(L=0.1193) + EDGE2_000__284 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__142 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__284 = Multipole(Kn1L=-4.4179123956E-5) + D000068__26 = Drift(L=0.386407) + CH13_3 = HKicker(L=0.2) + D000017__166 = Drift(L=0.0638) + HQF_3__15 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__168 = Drift(L=0.1559) + SF2_1__45 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__155 = Drift(L=0.1042) + SF2_1__46 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__167 = Drift(L=0.50037) + EDGE1_000__285 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__143 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__285 = Multipole(Kn1L=4.07894736378E-6) + D000018__285 = Drift(L=0.1193) + EDGE3_000__285 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__143 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__286 = Multipole(Kn1L=-4.07894736378E-6) + D000018__286 = Drift(L=0.1193) + EDGE2_000__286 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__143 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__286 = Multipole(Kn1L=-4.4179123956E-5) + D000068__27 = Drift(L=0.386407) + CV14_3 = VKicker(L=0.2) + D000017__167 = Drift(L=0.0638) + HQD_3__15 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__169 = Drift(L=0.1559) + SD2_1__45 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__156 = Drift(L=0.1042) + SD2_1__46 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__168 = Drift(L=0.50037) + EDGE1_000__287 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__144 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__287 = Multipole(Kn1L=4.07894736378E-6) + D000018__287 = Drift(L=0.1193) + EDGE3_000__287 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__144 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__288 = Multipole(Kn1L=-4.07894736378E-6) + D000018__288 = Drift(L=0.1193) + EDGE2_000__288 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__144 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__288 = Multipole(Kn1L=-4.4179123956E-5) + D000068__28 = Drift(L=0.386407) + CH14_3 = HKicker(L=0.2) + D000017__168 = Drift(L=0.0638) + HQF_3__16 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__170 = Drift(L=0.1559) + SF1_1__47 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000013__157 = Drift(L=0.1042) + SF1_1__48 = Sextupole(L=0.24, Kn2=1.2778843352549) + D000014__169 = Drift(L=0.50037) + EDGE1_000__289 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__145 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__289 = Multipole(Kn1L=4.07894736378E-6) + D000018__289 = Drift(L=0.1193) + EDGE3_000__289 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__145 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__290 = Multipole(Kn1L=-4.07894736378E-6) + D000018__290 = Drift(L=0.1193) + EDGE2_000__290 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__145 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__290 = Multipole(Kn1L=-4.4179123956E-5) + D000068__29 = Drift(L=0.386407) + CV15_3 = VKicker(L=0.2) + D000017__169 = Drift(L=0.0638) + HQD_3__16 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__171 = Drift(L=0.1559) + SD1_1__47 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000013__158 = Drift(L=0.1042) + SD1_1__48 = Sextupole(L=0.24, Kn2=-3.3675331974214) + D000014__170 = Drift(L=0.50037) + EDGE1_000__291 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__146 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__291 = Multipole(Kn1L=4.07894736378E-6) + D000018__291 = Drift(L=0.1193) + EDGE3_000__291 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__146 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__292 = Multipole(Kn1L=-4.07894736378E-6) + D000018__292 = Drift(L=0.1193) + EDGE2_000__292 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__146 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__292 = Multipole(Kn1L=-4.4179123956E-5) + D000068__30 = Drift(L=0.386407) + CH15_3 = HKicker(L=0.2) + D000017__170 = Drift(L=0.0638) + HQF_3__17 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__172 = Drift(L=0.1559) + SF2_1__47 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000013__159 = Drift(L=0.1042) + SF2_1__48 = Sextupole(L=0.24, Kn2=1.7265866168549) + D000014__171 = Drift(L=0.50037) + EDGE1_000__293 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__147 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__293 = Multipole(Kn1L=4.07894736378E-6) + D000018__293 = Drift(L=0.1193) + EDGE3_000__293 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__147 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__294 = Multipole(Kn1L=-4.07894736378E-6) + D000018__294 = Drift(L=0.1193) + EDGE2_000__294 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__147 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__294 = Multipole(Kn1L=-4.4179123956E-5) + D000068__31 = Drift(L=0.386407) + CV16_3 = VKicker(L=0.2) + D000017__171 = Drift(L=0.0638) + HQD_3__17 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__173 = Drift(L=0.1559) + SD2_1__47 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000013__160 = Drift(L=0.1042) + SD2_1__48 = Sextupole(L=0.24, Kn2=-3.4287727906214) + D000014__172 = Drift(L=0.50037) + EDGE1_000__295 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__148 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__295 = Multipole(Kn1L=4.07894736378E-6) + D000018__295 = Drift(L=0.1193) + EDGE3_000__295 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__148 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__296 = Multipole(Kn1L=-4.07894736378E-6) + D000018__296 = Drift(L=0.1193) + EDGE2_000__296 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__148 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__296 = Multipole(Kn1L=-4.4179123956E-5) + D000068__32 = Drift(L=0.386407) + CH16_3 = HKicker(L=0.2) + D000017__172 = Drift(L=0.0638) + HQF_3__18 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__174 = Drift(L=0.1559) + SF17_3 = Sextupole(L=0.24) + D000014__173 = Drift(L=0.50037) + DB23_3__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000067__3 = Drift(L=1.442004) + CV17_3 = VKicker(L=0.2) + D000017__173 = Drift(L=0.0638) + HQD_3__18 = Quadrupole(L=0.5, Kn1=-0.3112230088,) + D000012__175 = Drift(L=0.1559) + SD17_3 = Sextupole(L=0.24) + D000014__174 = Drift(L=0.50037) + DB23_3__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000067__4 = Drift(L=1.442004) + CH17_3 = HKicker(L=0.2) + D000017__174 = Drift(L=0.0638) + HQF_3__19 = Quadrupole(L=0.5, Kn1=0.3113990205,) + D000012__176 = Drift(L=0.1559) + SF18_3 = Sextupole(L=0.24) + D000069__1 = Drift(L=4.065299) + HQD22_3 = Quadrupole(L=0.6, Kn1=-0.2554856666,) + D000069__2 = Drift(L=4.065299) + HQF21_3 = Quadrupole(L=0.6, Kn1=0.1978933106,) + D000032__43 = Drift(L=0.535) + DB23_3__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__44 = Drift(L=0.535) + HQD20_3 = Quadrupole(L=0.6, Kn1=-0.207628952) + D000032__45 = Drift(L=0.535) + DB23_3__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__46 = Drift(L=0.535) + HQF19_3 = Quadrupole(L=0.6, Kn1=0.1950635038,) + D000070__1 = Drift(L=4.543623) + HQD18_3 = Quadrupole(L=0.6, Kn1=-0.1791108016,) + D000070__2 = Drift(L=4.543623) + HQF17_3 = Quadrupole(L=0.6, Kn1=0.1829347368,) + D000070__3 = Drift(L=4.543623) + HQD16_3 = Quadrupole(L=0.6, Kn1=-0.1453526612) + D000032__47 = Drift(L=0.535) + DB23_3__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__48 = Drift(L=0.535) + HQF15_3 = Quadrupole(L=0.6, Kn1=0.1369224329) + D000032__49 = Drift(L=0.535) + DB23_3__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__50 = Drift(L=0.535) + HQD14_3 = Quadrupole(L=0.6, Kn1=-0.1449015186) + MCOLL_V1 = Marker() + D000071__1 = Drift(L=11.224938) + HQF13_3 = Quadrupole(L=0.6, Kn1=0.1268512382,) + D000071__2 = Drift(L=11.224938) + MCOLL_V2 = Marker() + HQD12_3 = Quadrupole(L=0.6, Kn1=-0.1085522138,) + D000071__3 = Drift(L=11.224938) + HQF11_3 = Quadrupole(L=0.6, Kn1=0.1203850125,) + D000056__14 = Drift(L=0.2) + SX41_4 = Sextupole(L=0.24) + D000072__1 = Drift(L=10.784938) + MCOLL_V3 = Marker() + HQD10_3 = Quadrupole(L=0.6, Kn1=-0.1222253567,) + D000056__15 = Drift(L=0.2) + SX42_4 = Sextupole(L=0.24) + D000072__2 = Drift(L=10.784938) + HQF9_3 = Quadrupole(L=0.6, Kn1=0.1171029044,) + D000056__16 = Drift(L=0.2) + SX43_4 = Sextupole(L=0.24) + D000056__17 = Drift(L=0.2) + DB12_4P__4 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) + D000048__5 = Drift(L=0.0975) + DB12_4P__5 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) + D000048__6 = Drift(L=0.0975) + DB12_4P__6 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) + D000032__51 = Drift(L=0.535) + HQD8_3 = Quadrupole(L=0.6, Kn1=-0.08962195033) + D000056__18 = Drift(L=0.2) + SX44_4 = Sextupole(L=0.24) + D000072__3 = Drift(L=10.784938) + HQF7_3 = Quadrupole(L=0.6, Kn1=0.1075244171,) + D000056__19 = Drift(L=0.2) + SX45_4 = Sextupole(L=0.24) + D000072__4 = Drift(L=10.784938) + HQD6_3 = Quadrupole(L=0.6, Kn1=-0.1442054796) + D000056__20 = Drift(L=0.2) + SX46_4 = Sextupole(L=0.24) + D000073 = Drift(L=5.172469) + IP4 = Marker() + D000074 = Drift(L=4.758889) + SX47_4 = Sextupole(L=0.24) + D000056__21 = Drift(L=0.2) + HQD4_4 = Quadrupole(L=0.6, Kn1=0.08272423335) + D000075__1 = Drift(L=9.957779) + SX48_4 = Sextupole(L=0.24) + D000056__22 = Drift(L=0.2) + HQF5_4 = Quadrupole(L=0.6, Kn1=0.07737902144) + D000075__2 = Drift(L=9.957779) + SX49_4 = Sextupole(L=0.24) + D000056__23 = Drift(L=0.2) + HQD6_4 = Quadrupole(L=0.6, Kn1=-0.08977116391) + D000032__52 = Drift(L=0.535) + DB12_4M__4 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) + D000048__7 = Drift(L=0.0975) + DB12_4M__5 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) + D000048__8 = Drift(L=0.0975) + DB12_4M__6 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) + D000056__24 = Drift(L=0.2) + SX50_4 = Sextupole(L=0.24) + D000056__25 = Drift(L=0.2) + HQF7_4 = Quadrupole(L=0.6, Kn1=-0.0511651397,) + D000075__3 = Drift(L=9.957779) + SX51_4 = Sextupole(L=0.24) + D000056__26 = Drift(L=0.2) + HQD8_4 = Quadrupole(L=0.6, Kn1=0.1278181338,) + D000075__4 = Drift(L=9.957779) + SX52_4 = Sextupole(L=0.24) + D000056__27 = Drift(L=0.2) + HQF9_4 = Quadrupole(L=0.6, Kn1=-0.1396142326) + D000076__1 = Drift(L=10.397779) + HQD10_4 = Quadrupole(L=0.6, Kn1=0.05939249134,) + D000076__2 = Drift(L=10.397779) + HQF11_4 = Quadrupole(L=0.6, Kn1=0.1718574708,) + D000032__53 = Drift(L=0.535) + DB23_4__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__54 = Drift(L=0.535) + HQD12_4 = Quadrupole(L=0.6, Kn1=-0.2619520638,) + D000032__55 = Drift(L=0.535) + DB23_4__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__56 = Drift(L=0.535) + HQF13_4 = Quadrupole(L=0.6, Kn1=0.2845893896) + D000077__1 = Drift(L=4.541529) + HQD14_4 = Quadrupole(L=0.6, Kn1=0.1003750764,) + D000077__2 = Drift(L=4.541529) + HQF15_4 = Quadrupole(L=0.6, Kn1=-0.1076656075,) + D000077__3 = Drift(L=4.541529) + HQD16_4 = Quadrupole(L=0.6, Kn1=-0.1185804289,) + D000077__4 = Drift(L=4.541529) + HQF17_4 = Quadrupole(L=0.6, Kn1=0.1115918173,) + D000077__5 = Drift(L=4.541529) + HQD18_4 = Quadrupole(L=0.6, Kn1=0.1271940476,) + D000032__57 = Drift(L=0.535) + DB23_4__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__58 = Drift(L=0.535) + HQF19_4 = Quadrupole(L=0.6, Kn1=-0.2573861159,) + D000032__59 = Drift(L=0.535) + DB23_4__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000032__60 = Drift(L=0.535) + HQD20_4 = Quadrupole(L=0.6, Kn1=0.1950308183,) + D000078__1 = Drift(L=4.621244) + HQF21_4 = Quadrupole(L=0.6, Kn1=-0.03563213932,) + D000078__2 = Drift(L=4.621244) + HQD22_4 = Quadrupole(L=0.6, Kn1=-0.3301534091,) + D000078__3 = Drift(L=4.621244) + SFM1_5 = Sextupole(L=0.24) + D000056__28 = Drift(L=0.2) + HQF_5__1 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__175 = Drift(L=0.0638) + CH00_5 = HKicker(L=0.2) + D000079__1 = Drift(L=1.367552) + DB23_4__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000014__175 = Drift(L=0.50037) + SD00_5 = Sextupole(L=0.24) + D000012__177 = Drift(L=0.1559) + HQD_5__1 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__176 = Drift(L=0.0638) + CV00_5 = VKicker(L=0.2) + D000079__2 = Drift(L=1.367552) + DB23_4__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) + D000014__176 = Drift(L=0.50037) + SF00_5 = Sextupole(L=0.24) + D000012__178 = Drift(L=0.1559) + HQF_5__2 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__177 = Drift(L=0.0638) + CH01_5 = HKicker(L=0.2) + D000080__1 = Drift(L=0.311955) + EDGE1_000__297 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__149 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__297 = Multipole(Kn1L=4.07894736378E-6) + D000018__297 = Drift(L=0.1193) + EDGE3_000__297 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__149 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__298 = Multipole(Kn1L=-4.07894736378E-6) + D000018__298 = Drift(L=0.1193) + EDGE2_000__298 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__149 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__298 = Multipole(Kn1L=-4.4179123956E-5) + D000014__177 = Drift(L=0.50037) + SD1_5__1 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000013__161 = Drift(L=0.1042) + SD1_5__2 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000012__179 = Drift(L=0.1559) + HQD_5__2 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__178 = Drift(L=0.0638) + CV01_5 = VKicker(L=0.2) + D000080__2 = Drift(L=0.311955) + EDGE1_000__299 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__150 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__299 = Multipole(Kn1L=4.07894736378E-6) + D000018__299 = Drift(L=0.1193) + EDGE3_000__299 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__150 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__300 = Multipole(Kn1L=-4.07894736378E-6) + D000018__300 = Drift(L=0.1193) + EDGE2_000__300 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__150 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__300 = Multipole(Kn1L=-4.4179123956E-5) + D000014__178 = Drift(L=0.50037) + SF1_5__1 = Sextupole(L=0.24, Kn2=3.1529470258) + D000013__162 = Drift(L=0.1042) + SF1_5__2 = Sextupole(L=0.24, Kn2=3.1529470258) + D000012__180 = Drift(L=0.1559) + HQF_5__3 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__179 = Drift(L=0.0638) + CH02_5 = HKicker(L=0.2) + D000080__3 = Drift(L=0.311955) + EDGE1_000__301 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__151 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__301 = Multipole(Kn1L=4.07894736378E-6) + D000018__301 = Drift(L=0.1193) + EDGE3_000__301 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__151 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__302 = Multipole(Kn1L=-4.07894736378E-6) + D000018__302 = Drift(L=0.1193) + EDGE2_000__302 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__151 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__302 = Multipole(Kn1L=-4.4179123956E-5) + D000014__179 = Drift(L=0.50037) + SD2_5__1 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000013__163 = Drift(L=0.1042) + SD2_5__2 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000012__181 = Drift(L=0.1559) + HQD_5__3 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__180 = Drift(L=0.0638) + CV02_5 = VKicker(L=0.2) + D000080__4 = Drift(L=0.311955) + EDGE1_000__303 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__152 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__303 = Multipole(Kn1L=4.07894736378E-6) + D000018__303 = Drift(L=0.1193) + EDGE3_000__303 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__152 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__304 = Multipole(Kn1L=-4.07894736378E-6) + D000018__304 = Drift(L=0.1193) + EDGE2_000__304 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__152 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__304 = Multipole(Kn1L=-4.4179123956E-5) + D000014__180 = Drift(L=0.50037) + SF2_5__1 = Sextupole(L=0.24, Kn2=1.7622709942) + D000013__164 = Drift(L=0.1042) + SF2_5__2 = Sextupole(L=0.24, Kn2=1.7622709942) + D000012__182 = Drift(L=0.1559) + HQF_5__4 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__181 = Drift(L=0.0638) + CH03_5 = HKicker(L=0.2) + D000080__5 = Drift(L=0.311955) + EDGE1_000__305 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__153 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__305 = Multipole(Kn1L=4.07894736378E-6) + D000018__305 = Drift(L=0.1193) + EDGE3_000__305 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__153 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__306 = Multipole(Kn1L=-4.07894736378E-6) + D000018__306 = Drift(L=0.1193) + EDGE2_000__306 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__153 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__306 = Multipole(Kn1L=-4.4179123956E-5) + D000014__181 = Drift(L=0.50037) + SD1_5__3 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000013__165 = Drift(L=0.1042) + SD1_5__4 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000012__183 = Drift(L=0.1559) + HQD_5__4 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__182 = Drift(L=0.0638) + CV03_5 = VKicker(L=0.2) + D000080__6 = Drift(L=0.311955) + EDGE1_000__307 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__154 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__307 = Multipole(Kn1L=4.07894736378E-6) + D000018__307 = Drift(L=0.1193) + EDGE3_000__307 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__154 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__308 = Multipole(Kn1L=-4.07894736378E-6) + D000018__308 = Drift(L=0.1193) + EDGE2_000__308 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__154 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__308 = Multipole(Kn1L=-4.4179123956E-5) + D000014__182 = Drift(L=0.50037) + SF1_5__3 = Sextupole(L=0.24, Kn2=3.1529470258) + D000013__166 = Drift(L=0.1042) + SF1_5__4 = Sextupole(L=0.24, Kn2=3.1529470258) + D000012__184 = Drift(L=0.1559) + HQF_5__5 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__183 = Drift(L=0.0638) + CH04_5 = HKicker(L=0.2) + D000080__7 = Drift(L=0.311955) + EDGE1_000__309 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__155 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__309 = Multipole(Kn1L=4.07894736378E-6) + D000018__309 = Drift(L=0.1193) + EDGE3_000__309 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__155 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__310 = Multipole(Kn1L=-4.07894736378E-6) + D000018__310 = Drift(L=0.1193) + EDGE2_000__310 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__155 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__310 = Multipole(Kn1L=-4.4179123956E-5) + D000014__183 = Drift(L=0.50037) + SD2_5__3 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000013__167 = Drift(L=0.1042) + SD2_5__4 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000012__185 = Drift(L=0.1559) + HQD_5__5 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__184 = Drift(L=0.0638) + CV04_5 = VKicker(L=0.2) + D000080__8 = Drift(L=0.311955) + EDGE1_000__311 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__156 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__311 = Multipole(Kn1L=4.07894736378E-6) + D000018__311 = Drift(L=0.1193) + EDGE3_000__311 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__156 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__312 = Multipole(Kn1L=-4.07894736378E-6) + D000018__312 = Drift(L=0.1193) + EDGE2_000__312 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__156 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__312 = Multipole(Kn1L=-4.4179123956E-5) + D000014__184 = Drift(L=0.50037) + SF2_5__3 = Sextupole(L=0.24, Kn2=1.7622709942) + D000013__168 = Drift(L=0.1042) + SF2_5__4 = Sextupole(L=0.24, Kn2=1.7622709942) + D000012__186 = Drift(L=0.1559) + HQF_5__6 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__185 = Drift(L=0.0638) + CH05_5 = HKicker(L=0.2) + D000080__9 = Drift(L=0.311955) + EDGE1_000__313 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__157 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__313 = Multipole(Kn1L=4.07894736378E-6) + D000018__313 = Drift(L=0.1193) + EDGE3_000__313 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__157 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__314 = Multipole(Kn1L=-4.07894736378E-6) + D000018__314 = Drift(L=0.1193) + EDGE2_000__314 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__157 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__314 = Multipole(Kn1L=-4.4179123956E-5) + D000014__185 = Drift(L=0.50037) + SD1_5__5 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000013__169 = Drift(L=0.1042) + SD1_5__6 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000012__187 = Drift(L=0.1559) + HQD_5__6 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__186 = Drift(L=0.0638) + CV05_5 = VKicker(L=0.2) + D000080__10 = Drift(L=0.311955) + EDGE1_000__315 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__158 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__315 = Multipole(Kn1L=4.07894736378E-6) + D000018__315 = Drift(L=0.1193) + EDGE3_000__315 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__158 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__316 = Multipole(Kn1L=-4.07894736378E-6) + D000018__316 = Drift(L=0.1193) + EDGE2_000__316 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__158 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__316 = Multipole(Kn1L=-4.4179123956E-5) + D000014__186 = Drift(L=0.50037) + SF1_5__5 = Sextupole(L=0.24, Kn2=3.1529470258) + D000013__170 = Drift(L=0.1042) + SF1_5__6 = Sextupole(L=0.24, Kn2=3.1529470258) + D000012__188 = Drift(L=0.1559) + HQF_5__7 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__187 = Drift(L=0.0638) + CH06_5 = HKicker(L=0.2) + D000080__11 = Drift(L=0.311955) + EDGE1_000__317 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__159 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__317 = Multipole(Kn1L=4.07894736378E-6) + D000018__317 = Drift(L=0.1193) + EDGE3_000__317 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__159 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__318 = Multipole(Kn1L=-4.07894736378E-6) + D000018__318 = Drift(L=0.1193) + EDGE2_000__318 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__159 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__318 = Multipole(Kn1L=-4.4179123956E-5) + D000014__187 = Drift(L=0.50037) + SD2_5__5 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000013__171 = Drift(L=0.1042) + SD2_5__6 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000012__189 = Drift(L=0.1559) + HQD_5__7 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__188 = Drift(L=0.0638) + CV06_5 = VKicker(L=0.2) + D000080__12 = Drift(L=0.311955) + EDGE1_000__319 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__160 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__319 = Multipole(Kn1L=4.07894736378E-6) + D000018__319 = Drift(L=0.1193) + EDGE3_000__319 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__160 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__320 = Multipole(Kn1L=-4.07894736378E-6) + D000018__320 = Drift(L=0.1193) + EDGE2_000__320 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__160 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__320 = Multipole(Kn1L=-4.4179123956E-5) + D000014__188 = Drift(L=0.50037) + SF2_5__5 = Sextupole(L=0.24, Kn2=1.7622709942) + D000013__172 = Drift(L=0.1042) + SF2_5__6 = Sextupole(L=0.24, Kn2=1.7622709942) + D000012__190 = Drift(L=0.1559) + HQF_5__8 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__189 = Drift(L=0.0638) + CH07_5 = HKicker(L=0.2) + D000080__13 = Drift(L=0.311955) + EDGE1_000__321 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__161 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__321 = Multipole(Kn1L=4.07894736378E-6) + D000018__321 = Drift(L=0.1193) + EDGE3_000__321 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__161 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__322 = Multipole(Kn1L=-4.07894736378E-6) + D000018__322 = Drift(L=0.1193) + EDGE2_000__322 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__161 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__322 = Multipole(Kn1L=-4.4179123956E-5) + D000014__189 = Drift(L=0.50037) + SD1_5__7 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000013__173 = Drift(L=0.1042) + SD1_5__8 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000012__191 = Drift(L=0.1559) + HQD_5__8 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__190 = Drift(L=0.0638) + CV07_5 = VKicker(L=0.2) + D000080__14 = Drift(L=0.311955) + EDGE1_000__323 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__162 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__323 = Multipole(Kn1L=4.07894736378E-6) + D000018__323 = Drift(L=0.1193) + EDGE3_000__323 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__162 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__324 = Multipole(Kn1L=-4.07894736378E-6) + D000018__324 = Drift(L=0.1193) + EDGE2_000__324 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__162 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__324 = Multipole(Kn1L=-4.4179123956E-5) + D000014__190 = Drift(L=0.50037) + SF1_5__7 = Sextupole(L=0.24, Kn2=3.1529470258) + D000013__174 = Drift(L=0.1042) + SF1_5__8 = Sextupole(L=0.24, Kn2=3.1529470258) + D000012__192 = Drift(L=0.1559) + HQF_5__9 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__191 = Drift(L=0.0638) + CH08_5 = HKicker(L=0.2) + D000080__15 = Drift(L=0.311955) + EDGE1_000__325 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__163 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__325 = Multipole(Kn1L=4.07894736378E-6) + D000018__325 = Drift(L=0.1193) + EDGE3_000__325 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__163 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__326 = Multipole(Kn1L=-4.07894736378E-6) + D000018__326 = Drift(L=0.1193) + EDGE2_000__326 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__163 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__326 = Multipole(Kn1L=-4.4179123956E-5) + D000014__191 = Drift(L=0.50037) + SD2_5__7 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000013__175 = Drift(L=0.1042) + SD2_5__8 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000012__193 = Drift(L=0.1559) + HQD_5__9 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__192 = Drift(L=0.0638) + CV08_5 = VKicker(L=0.2) + D000080__16 = Drift(L=0.311955) + EDGE1_000__327 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__164 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__327 = Multipole(Kn1L=4.07894736378E-6) + D000018__327 = Drift(L=0.1193) + EDGE3_000__327 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__164 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__328 = Multipole(Kn1L=-4.07894736378E-6) + D000018__328 = Drift(L=0.1193) + EDGE2_000__328 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__164 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__328 = Multipole(Kn1L=-4.4179123956E-5) + D000014__192 = Drift(L=0.50037) + SF2_5__7 = Sextupole(L=0.24, Kn2=1.7622709942) + D000013__176 = Drift(L=0.1042) + SF2_5__8 = Sextupole(L=0.24, Kn2=1.7622709942) + D000012__194 = Drift(L=0.1559) + HQF_5__10 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__193 = Drift(L=0.0638) + CH09_5 = HKicker(L=0.2) + D000080__17 = Drift(L=0.311955) + EDGE1_000__329 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__165 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__329 = Multipole(Kn1L=4.07894736378E-6) + D000018__329 = Drift(L=0.1193) + EDGE3_000__329 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__165 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__330 = Multipole(Kn1L=-4.07894736378E-6) + D000018__330 = Drift(L=0.1193) + EDGE2_000__330 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__165 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__330 = Multipole(Kn1L=-4.4179123956E-5) + D000014__193 = Drift(L=0.50037) + SD1_5__9 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000013__177 = Drift(L=0.1042) + SD1_5__10 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000012__195 = Drift(L=0.1559) + HQD_5__10 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__194 = Drift(L=0.0638) + CV09_5 = VKicker(L=0.2) + D000080__18 = Drift(L=0.311955) + EDGE1_000__331 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__166 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__331 = Multipole(Kn1L=4.07894736378E-6) + D000018__331 = Drift(L=0.1193) + EDGE3_000__331 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__166 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__332 = Multipole(Kn1L=-4.07894736378E-6) + D000018__332 = Drift(L=0.1193) + EDGE2_000__332 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__166 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__332 = Multipole(Kn1L=-4.4179123956E-5) + D000014__194 = Drift(L=0.50037) + SF1_5__9 = Sextupole(L=0.24, Kn2=3.1529470258) + D000013__178 = Drift(L=0.1042) + SF1_5__10 = Sextupole(L=0.24, Kn2=3.1529470258) + D000012__196 = Drift(L=0.1559) + HQF_5__11 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__195 = Drift(L=0.0638) + CH10_5 = HKicker(L=0.2) + D000080__19 = Drift(L=0.311955) + EDGE1_000__333 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__167 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__333 = Multipole(Kn1L=4.07894736378E-6) + D000018__333 = Drift(L=0.1193) + EDGE3_000__333 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__167 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__334 = Multipole(Kn1L=-4.07894736378E-6) + D000018__334 = Drift(L=0.1193) + EDGE2_000__334 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__167 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__334 = Multipole(Kn1L=-4.4179123956E-5) + D000014__195 = Drift(L=0.50037) + SD2_5__9 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000013__179 = Drift(L=0.1042) + SD2_5__10 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000012__197 = Drift(L=0.1559) + HQD_5__11 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__196 = Drift(L=0.0638) + CV10_5 = VKicker(L=0.2) + D000080__20 = Drift(L=0.311955) + EDGE1_000__335 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__168 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__335 = Multipole(Kn1L=4.07894736378E-6) + D000018__335 = Drift(L=0.1193) + EDGE3_000__335 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__168 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__336 = Multipole(Kn1L=-4.07894736378E-6) + D000018__336 = Drift(L=0.1193) + EDGE2_000__336 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__168 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__336 = Multipole(Kn1L=-4.4179123956E-5) + D000014__196 = Drift(L=0.50037) + SF2_5__9 = Sextupole(L=0.24, Kn2=1.7622709942) + D000013__180 = Drift(L=0.1042) + SF2_5__10 = Sextupole(L=0.24, Kn2=1.7622709942) + D000012__198 = Drift(L=0.1559) + HQF_5__12 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__197 = Drift(L=0.0638) + CH11_5 = HKicker(L=0.2) + D000080__21 = Drift(L=0.311955) + EDGE1_000__337 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__169 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__337 = Multipole(Kn1L=4.07894736378E-6) + D000018__337 = Drift(L=0.1193) + EDGE3_000__337 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__169 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__338 = Multipole(Kn1L=-4.07894736378E-6) + D000018__338 = Drift(L=0.1193) + EDGE2_000__338 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__169 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__338 = Multipole(Kn1L=-4.4179123956E-5) + D000014__197 = Drift(L=0.50037) + SD1_5__11 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000013__181 = Drift(L=0.1042) + SD1_5__12 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000012__199 = Drift(L=0.1559) + HQD_5__12 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__198 = Drift(L=0.0638) + CV11_5 = VKicker(L=0.2) + D000080__22 = Drift(L=0.311955) + EDGE1_000__339 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__170 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__339 = Multipole(Kn1L=4.07894736378E-6) + D000018__339 = Drift(L=0.1193) + EDGE3_000__339 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__170 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__340 = Multipole(Kn1L=-4.07894736378E-6) + D000018__340 = Drift(L=0.1193) + EDGE2_000__340 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__170 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__340 = Multipole(Kn1L=-4.4179123956E-5) + D000014__198 = Drift(L=0.50037) + SF1_5__11 = Sextupole(L=0.24, Kn2=3.1529470258) + D000013__182 = Drift(L=0.1042) + SF1_5__12 = Sextupole(L=0.24, Kn2=3.1529470258) + D000012__200 = Drift(L=0.1559) + HQF_5__13 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__199 = Drift(L=0.0638) + CH12_5 = HKicker(L=0.2) + D000080__23 = Drift(L=0.311955) + EDGE1_000__341 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__171 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__341 = Multipole(Kn1L=4.07894736378E-6) + D000018__341 = Drift(L=0.1193) + EDGE3_000__341 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__171 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__342 = Multipole(Kn1L=-4.07894736378E-6) + D000018__342 = Drift(L=0.1193) + EDGE2_000__342 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__171 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__342 = Multipole(Kn1L=-4.4179123956E-5) + D000014__199 = Drift(L=0.50037) + SD2_5__11 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000013__183 = Drift(L=0.1042) + SD2_5__12 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000012__201 = Drift(L=0.1559) + HQD_5__13 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__200 = Drift(L=0.0638) + CV12_5 = VKicker(L=0.2) + D000080__24 = Drift(L=0.311955) + EDGE1_000__343 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__172 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__343 = Multipole(Kn1L=4.07894736378E-6) + D000018__343 = Drift(L=0.1193) + EDGE3_000__343 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__172 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__344 = Multipole(Kn1L=-4.07894736378E-6) + D000018__344 = Drift(L=0.1193) + EDGE2_000__344 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__172 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__344 = Multipole(Kn1L=-4.4179123956E-5) + D000014__200 = Drift(L=0.50037) + SF2_5__11 = Sextupole(L=0.24, Kn2=1.7622709942) + D000013__184 = Drift(L=0.1042) + SF2_5__12 = Sextupole(L=0.24, Kn2=1.7622709942) + D000012__202 = Drift(L=0.1559) + HQF_5__14 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__201 = Drift(L=0.0638) + CH13_5 = HKicker(L=0.2) + D000080__25 = Drift(L=0.311955) + EDGE1_000__345 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__173 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__345 = Multipole(Kn1L=4.07894736378E-6) + D000018__345 = Drift(L=0.1193) + EDGE3_000__345 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__173 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__346 = Multipole(Kn1L=-4.07894736378E-6) + D000018__346 = Drift(L=0.1193) + EDGE2_000__346 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__173 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__346 = Multipole(Kn1L=-4.4179123956E-5) + D000014__201 = Drift(L=0.50037) + SD1_5__13 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000013__185 = Drift(L=0.1042) + SD1_5__14 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000012__203 = Drift(L=0.1559) + HQD_5__14 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__202 = Drift(L=0.0638) + CV13_5 = VKicker(L=0.2) + D000080__26 = Drift(L=0.311955) + EDGE1_000__347 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__174 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__347 = Multipole(Kn1L=4.07894736378E-6) + D000018__347 = Drift(L=0.1193) + EDGE3_000__347 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__174 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__348 = Multipole(Kn1L=-4.07894736378E-6) + D000018__348 = Drift(L=0.1193) + EDGE2_000__348 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__174 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__348 = Multipole(Kn1L=-4.4179123956E-5) + D000014__202 = Drift(L=0.50037) + SF1_5__13 = Sextupole(L=0.24, Kn2=3.1529470258) + D000013__186 = Drift(L=0.1042) + SF1_5__14 = Sextupole(L=0.24, Kn2=3.1529470258) + D000012__204 = Drift(L=0.1559) + HQF_5__15 = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__203 = Drift(L=0.0638) + CH14_5 = HKicker(L=0.2) + D000080__27 = Drift(L=0.311955) + EDGE1_000__349 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__175 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__349 = Multipole(Kn1L=4.07894736378E-6) + D000018__349 = Drift(L=0.1193) + EDGE3_000__349 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__175 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__350 = Multipole(Kn1L=-4.07894736378E-6) + D000018__350 = Drift(L=0.1193) + EDGE2_000__350 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__175 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__350 = Multipole(Kn1L=-4.4179123956E-5) + D000014__203 = Drift(L=0.50037) + SD2_5__13 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000013__187 = Drift(L=0.1042) + SD2_5__14 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000012__205 = Drift(L=0.1559) + HQD_5__15 = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__204 = Drift(L=0.0638) + CV14_5 = VKicker(L=0.2) + D000080__28 = Drift(L=0.311955) + EDGE1_000__351 = Multipole(Kn1L=-4.4179123956E-5) + D01A_000__176 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE2_000__351 = Multipole(Kn1L=4.07894736378E-6) + D000018__351 = Drift(L=0.1193) + EDGE3_000__351 = Multipole(Kn1L=-4.07894736378E-6) + D23_000__176 = SBend(L=0.611400127063, g=3.6528025370199E-3) + EDGE3_000__352 = Multipole(Kn1L=-4.07894736378E-6) + D000018__352 = Drift(L=0.1193) + EDGE2_000__352 = Multipole(Kn1L=4.07894736378E-6) + D01B_000__176 = SBend(L=3.005180646695, g=3.65280253687E-3) + EDGE1_000__352 = Multipole(Kn1L=-4.4179123956E-5) + D000014__204 = Drift(L=0.50037) + SF2_5__13 = Sextupole(L=0.24, Kn2=1.7622709942) + D000013__188 = Drift(L=0.1042) + SF2_5__14 = Sextupole(L=0.24, Kn2=1.7622709942) + D000012__206 = Drift(L=0.1559) + HQF_5C = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__205 = Drift(L=0.0638) + CH15_5 = HKicker(L=0.2) + D000080__29 = Drift(L=0.311955) + EDGE1_001__1 = Multipole(Kn1L=-3.71750681571E-5) + D01A_001__1 = SBend(L=3.005167861233, g=3.3507810471753E-3) + EDGE2_001__1 = Multipole(Kn1L=3.43231997011E-6) + D000029__9 = Drift(L=0.1193) + EDGE3_001__1 = Multipole(Kn1L=-3.43231997011E-6) + D23_001__1 = SBend(L=0.61140010692, g=3.3507810471287E-3) + EDGE3_001__2 = Multipole(Kn1L=-3.43231997011E-6) + D000029__10 = Drift(L=0.1193) + EDGE2_001__2 = Multipole(Kn1L=3.43231997011E-6) + D01B_001__1 = SBend(L=3.005167861233, g=3.3507810471753E-3) + EDGE1_001__2 = Multipole(Kn1L=-3.71750681571E-5) + D000014__205 = Drift(L=0.50037) + SD1_5__15 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000013__189 = Drift(L=0.1042) + SD1_5__16 = Sextupole(L=0.24, Kn2=-1.2585512508) + D000012__207 = Drift(L=0.1559) + HQD_5C = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__206 = Drift(L=0.0638) + CV15_5 = VKicker(L=0.2) + D000080__30 = Drift(L=0.311955) + EDGE1_001__3 = Multipole(Kn1L=-3.71750681571E-5) + D01A_001__2 = SBend(L=3.005167861233, g=3.3507810471753E-3) + EDGE2_001__3 = Multipole(Kn1L=3.43231997011E-6) + D000029__11 = Drift(L=0.1193) + EDGE3_001__3 = Multipole(Kn1L=-3.43231997011E-6) + D23_001__2 = SBend(L=0.61140010692, g=3.3507810471287E-3) + EDGE3_001__4 = Multipole(Kn1L=-3.43231997011E-6) + D000029__12 = Drift(L=0.1193) + EDGE2_001__4 = Multipole(Kn1L=3.43231997011E-6) + D01B_001__2 = SBend(L=3.005167861233, g=3.3507810471753E-3) + EDGE1_001__4 = Multipole(Kn1L=-3.71750681571E-5) + D000014__206 = Drift(L=0.50037) + SF1_5__15 = Sextupole(L=0.24, Kn2=3.1529470258) + D000013__190 = Drift(L=0.1042) + SF1_5__16 = Sextupole(L=0.24, Kn2=3.1529470258) + D000012__208 = Drift(L=0.1559) + HQF_5B = Quadrupole(L=0.5, Kn1=0.3139735856,) + D000017__207 = Drift(L=0.0638) + CH16_5 = HKicker(L=0.2) + D000080__31 = Drift(L=0.311955) + EDGE1_001__5 = Multipole(Kn1L=-3.71750681571E-5) + D01A_001__3 = SBend(L=3.005167861233, g=3.3507810471753E-3) + EDGE2_001__5 = Multipole(Kn1L=3.43231997011E-6) + D000029__13 = Drift(L=0.1193) + EDGE3_001__5 = Multipole(Kn1L=-3.43231997011E-6) + D23_001__3 = SBend(L=0.61140010692, g=3.3507810471287E-3) + EDGE3_001__6 = Multipole(Kn1L=-3.43231997011E-6) + D000029__14 = Drift(L=0.1193) + EDGE2_001__6 = Multipole(Kn1L=3.43231997011E-6) + D01B_001__3 = SBend(L=3.005167861233, g=3.3507810471753E-3) + EDGE1_001__6 = Multipole(Kn1L=-3.71750681571E-5) + D000014__207 = Drift(L=0.50037) + SD2_5__15 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000013__191 = Drift(L=0.1042) + SD2_5__16 = Sextupole(L=0.24, Kn2=-6.1246897208) + D000012__209 = Drift(L=0.1559) + HQD_5B = Quadrupole(L=0.5, Kn1=-0.3137968224,) + D000017__208 = Drift(L=0.0638) + CV16_5 = VKicker(L=0.2) + D000080__32 = Drift(L=0.311955) + EDGE1_001__7 = Multipole(Kn1L=-3.71750681571E-5) + D01A_001__4 = SBend(L=3.005167861233, g=3.3507810471753E-3) + EDGE2_001__7 = Multipole(Kn1L=3.43231997011E-6) + D000029__15 = Drift(L=0.1193) + EDGE3_001__7 = Multipole(Kn1L=-3.43231997011E-6) + D23_001__4 = SBend(L=0.61140010692, g=3.3507810471287E-3) + EDGE3_001__8 = Multipole(Kn1L=-3.43231997011E-6) + D000029__16 = Drift(L=0.1193) + EDGE2_001__8 = Multipole(Kn1L=3.43231997011E-6) + D01B_001__4 = SBend(L=3.005167861233, g=3.3507810471753E-3) + EDGE1_001__8 = Multipole(Kn1L=-3.71750681571E-5) + D000014__208 = Drift(L=0.50037) + SF2_5__15 = Sextupole(L=0.24, Kn2=1.7622709942) + D000013__192 = Drift(L=0.1042) + SF2_5__16 = Sextupole(L=0.24, Kn2=1.7622709942) + D000012__210 = Drift(L=0.1559) + HQF_5A = Quadrupole(L=0.5, Kn1=0.3153779824,) + D000011__4 = Drift(L=1.1) + HQD_5A = Quadrupole(L=0.5, Kn1=-0.1030417826) + D000008__25 = Drift(L=0.85) + MROT1__4 = Marker() + HSOL5_6__3 = Solenoid(L=1.8) + D000008__26 = Drift(L=0.85) + HQSS1_5 = Quadrupole(L=0.6480402, Kn1=-0.4317684894,) + D000009__31 = Drift(L=0.25) + HQSS2_5 = Quadrupole(L=0.9550568, Kn1=-0.1999111594,) + D000009__32 = Drift(L=0.25) + HQSS3_5 = Quadrupole(L=1.634532, Kn1=0.3708753774) + D000009__33 = Drift(L=0.25) + HQSS4_5 = Quadrupole(L=1.020723, Kn1=-0.288327878) + D000009__34 = Drift(L=0.25) + HQSS5_5 = Quadrupole(L=0.6861532, Kn1=-0.1632518563,) + D000008__27 = Drift(L=0.85) + HSOL5_6__4 = Solenoid(L=1.8) + MROT2__4 = Marker() + D000008__28 = Drift(L=0.85) + HQFF1_5 = Quadrupole(L=0.8, Kn1=-0.3422170623,) + D000081__1 = Drift(L=0.566391) + DB23_5__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000081__2 = Drift(L=0.566391) + QFF2_5 = Quadrupole(L=1.2, Kn1=0.191103341,) + D000081__3 = Drift(L=0.566391) + DB23_5__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000081__4 = Drift(L=0.566391) + QFF3_5 = Quadrupole(L=1.2, Kn1=-0.1586177022,) + D000081__5 = Drift(L=0.566391) + DB23_5__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000081__6 = Drift(L=0.566391) + QFF4_5 = Quadrupole(L=1, Kn1=0.3022856494,) + D000081__7 = Drift(L=0.566391) + DB23_5__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000081__8 = Drift(L=0.566391) + HQFF5_5 = Quadrupole(L=0.6, Kn1=-0.3354145962,) + D000081__9 = Drift(L=0.566391) + DB23_5__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) + D000081__10 = Drift(L=0.566391) + MFF_5 = Marker() + HQFF6_5 = Quadrupole(L=0.5, Kn1=0.2871373468,) + D000008__29 = Drift(L=0.85) + MROT3__4 = Marker() + HSOL20_6__3 = Solenoid(L=5.5, Ksol=0.142634259959) + D000008__30 = Drift(L=0.85) + HQLS1_5 = Quadrupole(L=0.9819319, Kn1=0.4980048) + D000009__35 = Drift(L=0.25) + HQLS2_5 = Quadrupole(L=1.469939, Kn1=-0.4983425) + D000009__36 = Drift(L=0.25) + HQLS3_5 = Quadrupole(L=1.530059, Kn1=0.3253198) + D000009__37 = Drift(L=0.25) + HQLS4_5 = Quadrupole(L=0.5187944, Kn1=0.498934) + D000009__38 = Drift(L=0.25) + HQLS5_5 = Quadrupole(L=1.530059, Kn1=0.3253198) + D000009__39 = Drift(L=0.25) + HQLS6_5 = Quadrupole(L=1.469939, Kn1=-0.4983425) + D000009__40 = Drift(L=0.25) + HQLS7_5 = Quadrupole(L=0.9819319, Kn1=0.4980048) + D000008__31 = Drift(L=0.85) + HSOL20_6__4 = Solenoid(L=5.5, Ksol=0.142634259959) + MROT4__4 = Marker() + D000008__32 = Drift(L=0.85) + MLRF_6 = Marker() + Q12EF_6 = Quadrupole(L=1.2, Kn1=0.05667673526,) + D000006__30 = Drift(L=0.4) + D3EF_6__1 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) + D000006__31 = Drift(L=0.4) + Q11EF_6 = Quadrupole(L=1.2, Kn1=-0.12274232) + D000006__32 = Drift(L=0.4) + D3EF_6__2 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) + D000006__33 = Drift(L=0.4) + Q10EF_6 = Quadrupole(L=1.2, Kn1=0.1325250342) + D000006__34 = Drift(L=0.4) + D3EF_6__3 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) + D000006__35 = Drift(L=0.4) + Q9EF_6 = Quadrupole(L=1.2, Kn1=0.06324195501) + D000006__36 = Drift(L=0.4) + D3EF_6__4 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) + D000006__37 = Drift(L=0.4) + Q8EF_6 = Quadrupole(L=1.2, Kn1=-0.1305514285) + D000005__15 = Drift(L=4.6) + Q7EF_6 = Quadrupole(L=1.2, Kn1=0.2370467134,) + D000005__16 = Drift(L=4.6) + Q6EF_6 = Quadrupole(L=1.2, Kn1=-0.2243033401) + D000005__17 = Drift(L=4.6) + Q5EF_6 = Quadrupole(L=1.2, Kn1=0.2358711172) + D000005__18 = Drift(L=4.6) + Q4EF_6 = Quadrupole(L=1.2, Kn1=-0.1541105329) + D000082 = Drift(L=12.410188) + Q3EF_6 = Quadrupole(L=0.6, Kn1=0.1207364787,) + D000007__33 = Drift(L=0.3) + RF_CRAB__4 = Drift(L=4) + D000007__34 = Drift(L=0.3) + Q2EF_6 = Quadrupole(L=0.6, Kn1=-0.07669023958) + D000006__38 = Drift(L=0.4) + D1EF_6 = SBend(L=3.8000633341148, g=-5.263071944473E-3, e1=-0.0100000033605, e2=-0.0100000033605) + D000083 = Drift(L=20.3) + MCOLL_MASK = Marker() + Q1EF_6 = Quadrupole(L=1.61, Kn1=0.1003916016) + D000022__2 = Drift(L=3.76) + Q0EF_6 = Quadrupole(L=1.2, Kn1=-0.2168808898) + D000023__2 = Drift(L=5.8) + IP6__2 = Marker() end -ring = Beamline([ IP6__1, D000001__1, Q1ER_6, D000002__1, Q2ER_6, D000002__2, D2ER_6, D000003__1, Q3ER_6, -D000004, Q4ER_6, D000005__1, Q5ER_6, D000006__1, D3ER_6, D000006__2, Q6ER_6, D000005__2, Q7ER_6, -D000005__3, Q9ER_6, D000007__1, RF_CRAB__1, D000007__2, Q10ER_6, D000005__4, Q11ER_6, D000006__3, -D5ER_6__1, D000006__4, Q12ER_6, D000006__5, D5ER_6__2, D000006__6, Q13ER_6, D000006__7, D5ER_6__3, -D000006__8, Q14ER_6, D000006__9, D5ER_6__4, D000006__10, Q15ER_6, MLRR_6, D000008__1, MROT4__1, -HSOL20_6__1, D000008__2, HQLS7_6, D000009__1, HQLS6_6, D000009__2, HQLS5_6, D000009__3, HQLS4_6, -D000009__4, HQLS3_6, D000009__5, HQLS2_6, D000009__6, HQLS1_6, D000008__3, HSOL20_6__2, MROT3__1, -D000008__4, HQFF6_6, MFF_6, D000010__1, DB23_6__1, D000010__2, HQFF5_6, D000010__3, DB23_6__2, -D000010__4, QFF4_6, D000010__5, DB23_6__3, D000010__6, QFF3_6, D000010__7, DB23_6__4, D000010__8, -QFF2_6, D000010__9, DB23_6__5, D000010__10, QFF1_6, D000008__5, MROT2__1, HSOL5_6__1, D000008__6, -HQSS5_6, D000009__7, HQSS4_6, D000009__8, HQSS3_6, D000009__9, HQSS2_6, D000009__10, HQSS1_6, -D000008__7, HSOL5_6__2, MROT1__1, D000008__8, HQD_6A, D000011__1, HQF_6A, D000012__1, SF1_7__1, -D000013__1, SF1_7__2, D000014__1, EDGE1_002__1, D01A_002__1, EDGE2_002__1, D000015__1, EDGE3_002__1, -D23_002__1, EDGE3_002__2, D000015__2, EDGE2_002__2, D01B_002__1, EDGE1_002__2, D000016__1, CV01_7, -D000017__1, HQD_6B, D000012__2, SD1_7__1, D000013__2, SD1_7__2, D000014__2, EDGE1_002__3, D01A_002__2, -EDGE2_002__3, D000015__3, EDGE3_002__3, D23_002__2, EDGE3_002__4, D000015__4, EDGE2_002__4, D01B_002__2, -EDGE1_002__4, D000016__2, CH01_7, D000017__2, HQF_6B, D000012__3, SF2_7__1, D000013__3, SF2_7__2, -D000014__3, EDGE1_002__5, D01A_002__3, EDGE2_002__5, D000015__5, EDGE3_002__5, D23_002__3, EDGE3_002__6, -D000015__6, EDGE2_002__6, D01B_002__3, EDGE1_002__6, D000016__3, CV02_7, D000017__3, HQD_6C, D000012__4, -SD2_7__1, D000013__4, SD2_7__2, D000014__4, EDGE1_002__7, D01A_002__4, EDGE2_002__7, D000015__7, -EDGE3_002__7, D23_002__4, EDGE3_002__8, D000015__8, EDGE2_002__8, D01B_002__4, EDGE1_002__8, D000016__4, -CH02_7, D000017__4, HQF_6C, D000012__5, SF1_7__3, D000013__5, SF1_7__4, D000014__5, EDGE1_000__1, -D01A_000__1, EDGE2_000__1, D000018__1, EDGE3_000__1, D23_000__1, EDGE3_000__2, D000018__2, EDGE2_000__2, -D01B_000__1, EDGE1_000__2, D000016__5, CV03_7, D000017__5, HQD_7__1, D000012__6, SD1_7__3, D000013__6, -SD1_7__4, D000014__6, EDGE1_000__3, D01A_000__2, EDGE2_000__3, D000018__3, EDGE3_000__3, D23_000__2, -EDGE3_000__4, D000018__4, EDGE2_000__4, D01B_000__2, EDGE1_000__4, D000016__6, CH03_7, D000017__6, -HQF_7__1, D000012__7, SF2_7__3, D000013__7, SF2_7__4, D000014__7, EDGE1_000__5, D01A_000__3, -EDGE2_000__5, D000018__5, EDGE3_000__5, D23_000__3, EDGE3_000__6, D000018__6, EDGE2_000__6, D01B_000__3, -EDGE1_000__6, D000016__7, CV04_7, D000017__7, HQD_7__2, D000012__8, SD2_7__3, D000013__8, SD2_7__4, -D000014__8, EDGE1_000__7, D01A_000__4, EDGE2_000__7, D000018__7, EDGE3_000__7, D23_000__4, EDGE3_000__8, -D000018__8, EDGE2_000__8, D01B_000__4, EDGE1_000__8, D000016__8, CH04_7, D000017__8, HQF_7__2, -D000012__9, SF1_7__5, D000013__9, SF1_7__6, D000014__9, EDGE1_000__9, D01A_000__5, EDGE2_000__9, -D000018__9, EDGE3_000__9, D23_000__5, EDGE3_000__10, D000018__10, EDGE2_000__10, D01B_000__5, -EDGE1_000__10, D000016__9, CV05_7, D000017__9, HQD_7__3, D000012__10, SD1_7__5, D000013__10, SD1_7__6, -D000014__10, EDGE1_000__11, D01A_000__6, EDGE2_000__11, D000018__11, EDGE3_000__11, D23_000__6, -EDGE3_000__12, D000018__12, EDGE2_000__12, D01B_000__6, EDGE1_000__12, D000016__10, CH05_7, D000017__10, -HQF_7__3, D000012__11, SF2_7__5, D000013__11, SF2_7__6, D000014__11, EDGE1_000__13, D01A_000__7, -EDGE2_000__13, D000018__13, EDGE3_000__13, D23_000__7, EDGE3_000__14, D000018__14, EDGE2_000__14, -D01B_000__7, EDGE1_000__14, D000016__11, CV06_7, D000017__11, HQD_7__4, D000012__12, SD2_7__5, -D000013__12, SD2_7__6, D000014__12, EDGE1_000__15, D01A_000__8, EDGE2_000__15, D000018__15, -EDGE3_000__15, D23_000__8, EDGE3_000__16, D000018__16, EDGE2_000__16, D01B_000__8, EDGE1_000__16, -D000016__12, CH06_7, D000017__12, HQF_7__4, D000012__13, SF1_7__7, D000013__13, SF1_7__8, D000014__13, -EDGE1_000__17, D01A_000__9, EDGE2_000__17, D000018__17, EDGE3_000__17, D23_000__9, EDGE3_000__18, -D000018__18, EDGE2_000__18, D01B_000__9, EDGE1_000__18, D000016__13, CV07_7, D000017__13, HQD_7__5, -D000012__14, SD1_7__7, D000013__14, SD1_7__8, D000014__14, EDGE1_000__19, D01A_000__10, EDGE2_000__19, -D000018__19, EDGE3_000__19, D23_000__10, EDGE3_000__20, D000018__20, EDGE2_000__20, D01B_000__10, -EDGE1_000__20, D000016__14, CH07_7, D000017__14, HQF_7__5, D000012__15, SF2_7__7, D000013__15, SF2_7__8, -D000014__15, EDGE1_000__21, D01A_000__11, EDGE2_000__21, D000018__21, EDGE3_000__21, D23_000__11, -EDGE3_000__22, D000018__22, EDGE2_000__22, D01B_000__11, EDGE1_000__22, D000016__15, CV08_7, -D000017__15, HQD_7__6, D000012__16, SD2_7__7, D000013__16, SD2_7__8, D000014__16, EDGE1_000__23, -D01A_000__12, EDGE2_000__23, D000018__23, EDGE3_000__23, D23_000__12, EDGE3_000__24, D000018__24, -EDGE2_000__24, D01B_000__12, EDGE1_000__24, D000016__16, CH08_7, D000017__16, HQF_7__6, D000012__17, -SF1_7__9, D000013__17, SF1_7__10, D000014__17, EDGE1_000__25, D01A_000__13, EDGE2_000__25, D000018__25, -EDGE3_000__25, D23_000__13, EDGE3_000__26, D000018__26, EDGE2_000__26, D01B_000__13, EDGE1_000__26, -D000016__17, CV09_7, D000017__17, HQD_7__7, D000012__18, SD1_7__9, D000013__18, SD1_7__10, D000014__18, -EDGE1_000__27, D01A_000__14, EDGE2_000__27, D000018__27, EDGE3_000__27, D23_000__14, EDGE3_000__28, -D000018__28, EDGE2_000__28, D01B_000__14, EDGE1_000__28, D000016__18, CH09_7, D000017__18, HQF_7__7, -D000012__19, SF2_7__9, D000013__19, SF2_7__10, D000014__19, EDGE1_000__29, D01A_000__15, EDGE2_000__29, -D000018__29, EDGE3_000__29, D23_000__15, EDGE3_000__30, D000018__30, EDGE2_000__30, D01B_000__15, -EDGE1_000__30, D000016__19, CV10_7, D000017__19, HQD_7__8, D000012__20, SD2_7__9, D000013__20, -SD2_7__10, D000014__20, EDGE1_000__31, D01A_000__16, EDGE2_000__31, D000018__31, EDGE3_000__31, -D23_000__16, EDGE3_000__32, D000018__32, EDGE2_000__32, D01B_000__16, EDGE1_000__32, D000016__20, -CH10_7, D000017__20, HQF_7__8, D000012__21, SF1_7__11, D000013__21, SF1_7__12, D000014__21, -EDGE1_000__33, D01A_000__17, EDGE2_000__33, D000018__33, EDGE3_000__33, D23_000__17, EDGE3_000__34, -D000018__34, EDGE2_000__34, D01B_000__17, EDGE1_000__34, D000016__21, CV11_7, D000017__21, HQD_7__9, -D000012__22, SD1_7__11, D000013__22, SD1_7__12, D000014__22, EDGE1_000__35, D01A_000__18, EDGE2_000__35, -D000018__35, EDGE3_000__35, D23_000__18, EDGE3_000__36, D000018__36, EDGE2_000__36, D01B_000__18, -EDGE1_000__36, D000016__22, CH11_7, D000017__22, HQF_7__9, D000012__23, SF2_7__11, D000013__23, -SF2_7__12, D000014__23, EDGE1_000__37, D01A_000__19, EDGE2_000__37, D000018__37, EDGE3_000__37, -D23_000__19, EDGE3_000__38, D000018__38, EDGE2_000__38, D01B_000__19, EDGE1_000__38, D000016__23, -CV12_7, D000017__23, HQD_7__10, D000012__24, SD2_7__11, D000013__24, SD2_7__12, D000014__24, -EDGE1_000__39, D01A_000__20, EDGE2_000__39, D000018__39, EDGE3_000__39, D23_000__20, EDGE3_000__40, -D000018__40, EDGE2_000__40, D01B_000__20, EDGE1_000__40, D000016__24, CH12_7, D000017__24, HQF_7__10, -D000012__25, SF1_7__13, D000013__25, SF1_7__14, D000014__25, EDGE1_000__41, D01A_000__21, EDGE2_000__41, -D000018__41, EDGE3_000__41, D23_000__21, EDGE3_000__42, D000018__42, EDGE2_000__42, D01B_000__21, -EDGE1_000__42, D000016__25, CV13_7, D000017__25, HQD_7__11, D000012__26, SD1_7__13, D000013__26, -SD1_7__14, D000014__26, EDGE1_000__43, D01A_000__22, EDGE2_000__43, D000018__43, EDGE3_000__43, -D23_000__22, EDGE3_000__44, D000018__44, EDGE2_000__44, D01B_000__22, EDGE1_000__44, D000016__26, -CH13_7, D000017__26, HQF_7__11, D000012__27, SF2_7__13, D000013__27, SF2_7__14, D000014__27, -EDGE1_000__45, D01A_000__23, EDGE2_000__45, D000018__45, EDGE3_000__45, D23_000__23, EDGE3_000__46, -D000018__46, EDGE2_000__46, D01B_000__23, EDGE1_000__46, D000016__27, CV14_7, D000017__27, HQD_7__12, -D000012__28, SD2_7__13, D000013__28, SD2_7__14, D000014__28, EDGE1_000__47, D01A_000__24, EDGE2_000__47, -D000018__47, EDGE3_000__47, D23_000__24, EDGE3_000__48, D000018__48, EDGE2_000__48, D01B_000__24, -EDGE1_000__48, D000016__28, CH14_7, D000017__28, HQF_7C, D000012__29, SF1_7__15, D000013__29, SF1_7__16, -D000014__29, EDGE1_003__1, D01A_003__1, EDGE2_003__1, D000015__9, EDGE3_003__1, D23_003__1, -EDGE3_003__2, D000015__10, EDGE2_003__2, D01B_003__1, EDGE1_003__2, D000016__29, CV15_7, D000017__29, -HQD_7C, D000012__30, SD1_7__15, D000013__30, SD1_7__16, D000014__30, EDGE1_003__3, D01A_003__2, -EDGE2_003__3, D000015__11, EDGE3_003__3, D23_003__2, EDGE3_003__4, D000015__12, EDGE2_003__4, -D01B_003__2, EDGE1_003__4, D000016__30, CH15_7, D000017__30, HQF_7B, D000012__31, SF2_7__15, -D000013__31, SF2_7__16, D000014__31, EDGE1_003__5, D01A_003__3, EDGE2_003__5, D000015__13, EDGE3_003__5, -D23_003__3, EDGE3_003__6, D000015__14, EDGE2_003__6, D01B_003__3, EDGE1_003__6, D000016__31, CV16_7, -D000017__31, HQD_7B, D000012__32, SD2_7__15, D000013__32, SD2_7__16, D000014__32, EDGE1_003__7, -D01A_003__4, EDGE2_003__7, D000015__15, EDGE3_003__7, D23_003__4, EDGE3_003__8, D000015__16, -EDGE2_003__8, D01B_003__4, EDGE1_003__8, D000016__32, CH16_7, D000017__32, HQF_7A, D000011__2, HQD_7A, -D000008__9, MROT1__2, HSOL5_8__1, D000008__10, HQSS1_7, D000009__11, HQSS2_7, D000009__12, HQSS3_7, -D000009__13, HQSS4_7, D000009__14, HQSS5_7, D000008__11, HSOL5_8__2, MROT2__2, D000008__12, HQFF1_7, -D000019__1, DB23_7__1, D000019__2, QFF2_7, D000019__3, DB23_7__2, D000019__4, QFF3_7, D000019__5, -DB23_7__3, D000019__6, QFF4_7, D000019__7, DB23_7__4, D000019__8, HQFF5_7, D000019__9, DB23_7__5, -D000019__10, MFF_7, HQFF6_7, D000008__13, MROT3__2, HSOL20_8__1, D000008__14, HQLS1_7, D000009__15, -HQLS2_7, D000009__16, HQLS3_7, D000009__17, HQLS4_7, D000009__18, HQLS5_7, D000009__19, HQLS6_7, -D000009__20, HQLS7_7, D000008__15, HSOL20_8__2, MROT4__2, D000008__16, MLRF_8, Q14EF_8, D000006__11, -D3EF_8__1, D000006__12, Q13EF_8, D000006__13, D3EF_8__2, D000006__14, Q12EF_8, D000006__15, D3EF_8__3, -D000006__16, Q11EF_8, D000006__17, D2EF_8, D000006__18, Q10EF_8, D000005__5, Q9EF_8, D000005__6, Q8EF_8, -D000005__7, Q7EF_8, D000005__8, Q6EF_8, D000005__9, Q5EF_8, D000005__10, Q4EF_8, D000020, Q3EF_8, -D000007__3, RF_CRAB__2, D000007__4, Q2EF_8, D000006__19, D1EF_8__1, D000006__20, D1EF_8__2, D000021, -Q1EF_8, D000022__1, Q0EF_8, D000023__1, IP8, D000001__2, Q1ER_8, D000002__3, Q2ER_8, D000002__4, D2ER_8, -D000003__2, Q3ER_8, D000006__21, D3ER_8, D000024, Q4ER_8, D000025, Q5ER_8, D000026, Q6ER_8, D000005__11, -Q7ER_8, D000005__12, Q8ER_8, D000005__13, Q9ER_8, D000007__5, RF_CRAB__3, D000007__6, Q10ER_8, -D000005__14, Q11ER_8, D000006__22, D4ER_8, D000006__23, Q12ER_8, D000006__24, D5ER_8__1, D000006__25, -Q13ER_8, D000006__26, D5ER_8__2, D000006__27, Q14ER_8, D000006__28, D5ER_8__3, D000006__29, Q15ER_8, -MLRR_8, D000008__17, MROT4__3, HSOL20_8__3, D000008__18, HQLS7_8, D000009__21, HQLS6_8, D000009__22, -HQLS5_8, D000009__23, HQLS4_8, D000009__24, HQLS3_8, D000009__25, HQLS2_8, D000009__26, HQLS1_8, -D000008__19, HSOL20_8__4, MROT3__3, D000008__20, HQFF6_8, MFF_8, D000027__1, DB23_8__1, D000027__2, -HQFF5_8, D000027__3, DB23_8__2, D000027__4, QFF4_8, D000027__5, DB23_8__3, D000027__6, QFF3_8, -D000027__7, DB23_8__4, D000027__8, QFF2_8, D000027__9, DB23_8__5, D000027__10, QFF1_8, D000008__21, -MROT2__3, HSOL5_8__3, D000008__22, HQSS5_8, D000009__27, HQSS4_8, D000009__28, HQSS3_8, D000009__29, -HQSS2_8, D000009__30, HQSS1_8, D000008__23, HSOL5_8__4, MROT1__3, D000008__24, HQD_8A, D000011__3, -HQF_8A, D000017__33, CH01_9, D000028__1, EDGE1_004__1, D01A_004__1, EDGE2_004__1, D000029__1, -EDGE3_004__1, D23_004__1, EDGE3_004__2, D000029__2, EDGE2_004__2, D01B_004__1, EDGE1_004__2, -D000014__33, SD1_9__1, D000013__33, SD1_9__2, D000012__33, HQD_8B, D000017__34, CV01_9, D000028__2, -EDGE1_004__3, D01A_004__2, EDGE2_004__3, D000029__3, EDGE3_004__3, D23_004__2, EDGE3_004__4, D000029__4, -EDGE2_004__4, D01B_004__2, EDGE1_004__4, D000014__34, SF1_9__1, D000013__34, SF1_9__2, D000012__34, -HQF_8B, D000017__35, CH02_9, D000028__3, EDGE1_004__5, D01A_004__3, EDGE2_004__5, D000029__5, -EDGE3_004__5, D23_004__3, EDGE3_004__6, D000029__6, EDGE2_004__6, D01B_004__3, EDGE1_004__6, -D000014__35, SD2_9__1, D000013__35, SD2_9__2, D000012__35, HQD_8C, D000017__36, CV02_9, D000028__4, -EDGE1_004__7, D01A_004__4, EDGE2_004__7, D000029__7, EDGE3_004__7, D23_004__4, EDGE3_004__8, D000029__8, -EDGE2_004__8, D01B_004__4, EDGE1_004__8, D000014__36, SF2_9__1, D000013__36, SF2_9__2, D000012__36, -HQF_8C, D000017__37, CH03_9, D000028__5, EDGE1_000__49, D01A_000__25, EDGE2_000__49, D000018__49, -EDGE3_000__49, D23_000__25, EDGE3_000__50, D000018__50, EDGE2_000__50, D01B_000__25, EDGE1_000__50, -D000014__37, SD1_9__3, D000013__37, SD1_9__4, D000012__37, HQD_9__1, D000017__38, CV03_9, D000028__6, -EDGE1_000__51, D01A_000__26, EDGE2_000__51, D000018__51, EDGE3_000__51, D23_000__26, EDGE3_000__52, -D000018__52, EDGE2_000__52, D01B_000__26, EDGE1_000__52, D000014__38, SF1_9__3, D000013__38, SF1_9__4, -D000012__38, HQF_9__1, D000017__39, CH04_9, D000028__7, EDGE1_000__53, D01A_000__27, EDGE2_000__53, -D000018__53, EDGE3_000__53, D23_000__27, EDGE3_000__54, D000018__54, EDGE2_000__54, D01B_000__27, -EDGE1_000__54, D000014__39, SD2_9__3, D000013__39, SD2_9__4, D000012__39, HQD_9__2, D000017__40, CV04_9, -D000028__8, EDGE1_000__55, D01A_000__28, EDGE2_000__55, D000018__55, EDGE3_000__55, D23_000__28, -EDGE3_000__56, D000018__56, EDGE2_000__56, D01B_000__28, EDGE1_000__56, D000014__40, SF2_9__3, -D000013__40, SF2_9__4, D000012__40, HQF_9__2, D000017__41, CH05_9, D000028__9, EDGE1_000__57, -D01A_000__29, EDGE2_000__57, D000018__57, EDGE3_000__57, D23_000__29, EDGE3_000__58, D000018__58, -EDGE2_000__58, D01B_000__29, EDGE1_000__58, D000014__41, SD1_9__5, D000013__41, SD1_9__6, D000012__41, -HQD_9__3, D000017__42, CV05_9, D000028__10, EDGE1_000__59, D01A_000__30, EDGE2_000__59, D000018__59, -EDGE3_000__59, D23_000__30, EDGE3_000__60, D000018__60, EDGE2_000__60, D01B_000__30, EDGE1_000__60, -D000014__42, SF1_9__5, D000013__42, SF1_9__6, D000012__42, HQF_9__3, D000017__43, CH06_9, D000028__11, -EDGE1_000__61, D01A_000__31, EDGE2_000__61, D000018__61, EDGE3_000__61, D23_000__31, EDGE3_000__62, -D000018__62, EDGE2_000__62, D01B_000__31, EDGE1_000__62, D000014__43, SD2_9__5, D000013__43, SD2_9__6, -D000012__43, HQD_9__4, D000017__44, CV06_9, D000028__12, EDGE1_000__63, D01A_000__32, EDGE2_000__63, -D000018__63, EDGE3_000__63, D23_000__32, EDGE3_000__64, D000018__64, EDGE2_000__64, D01B_000__32, -EDGE1_000__64, D000014__44, SF2_9__5, D000013__44, SF2_9__6, D000012__44, HQF_9__4, D000017__45, CH07_9, -D000028__13, EDGE1_000__65, D01A_000__33, EDGE2_000__65, D000018__65, EDGE3_000__65, D23_000__33, -EDGE3_000__66, D000018__66, EDGE2_000__66, D01B_000__33, EDGE1_000__66, D000014__45, SD1_9__7, -D000013__45, SD1_9__8, D000012__45, HQD_9__5, D000017__46, CV07_9, D000028__14, EDGE1_000__67, -D01A_000__34, EDGE2_000__67, D000018__67, EDGE3_000__67, D23_000__34, EDGE3_000__68, D000018__68, -EDGE2_000__68, D01B_000__34, EDGE1_000__68, D000014__46, SF1_9__7, D000013__46, SF1_9__8, D000012__46, -HQF_9__5, D000017__47, CH08_9, D000028__15, EDGE1_000__69, D01A_000__35, EDGE2_000__69, D000018__69, -EDGE3_000__69, D23_000__35, EDGE3_000__70, D000018__70, EDGE2_000__70, D01B_000__35, EDGE1_000__70, -D000014__47, SD2_9__7, D000013__47, SD2_9__8, D000012__47, HQD_9__6, D000017__48, CV08_9, D000028__16, -EDGE1_000__71, D01A_000__36, EDGE2_000__71, D000018__71, EDGE3_000__71, D23_000__36, EDGE3_000__72, -D000018__72, EDGE2_000__72, D01B_000__36, EDGE1_000__72, D000014__48, SF2_9__7, D000013__48, SF2_9__8, -D000012__48, HQF_9__6, D000017__49, CH09_9, D000028__17, EDGE1_000__73, D01A_000__37, EDGE2_000__73, -D000018__73, EDGE3_000__73, D23_000__37, EDGE3_000__74, D000018__74, EDGE2_000__74, D01B_000__37, -EDGE1_000__74, D000014__49, SD1_9__9, D000013__49, SD1_9__10, D000012__49, HQD_9__7, D000017__50, -CV09_9, D000028__18, EDGE1_000__75, D01A_000__38, EDGE2_000__75, D000018__75, EDGE3_000__75, -D23_000__38, EDGE3_000__76, D000018__76, EDGE2_000__76, D01B_000__38, EDGE1_000__76, D000014__50, -SF1_9__9, D000013__50, SF1_9__10, D000012__50, HQF_9__7, D000017__51, CH10_9, D000028__19, -EDGE1_000__77, D01A_000__39, EDGE2_000__77, D000018__77, EDGE3_000__77, D23_000__39, EDGE3_000__78, -D000018__78, EDGE2_000__78, D01B_000__39, EDGE1_000__78, D000014__51, SD2_9__9, D000013__51, SD2_9__10, -D000012__51, HQD_9__8, D000017__52, CV10_9, D000028__20, EDGE1_000__79, D01A_000__40, EDGE2_000__79, -D000018__79, EDGE3_000__79, D23_000__40, EDGE3_000__80, D000018__80, EDGE2_000__80, D01B_000__40, -EDGE1_000__80, D000014__52, SF2_9__9, D000013__52, SF2_9__10, D000012__52, HQF_9__8, D000017__53, -CH11_9, D000028__21, EDGE1_000__81, D01A_000__41, EDGE2_000__81, D000018__81, EDGE3_000__81, -D23_000__41, EDGE3_000__82, D000018__82, EDGE2_000__82, D01B_000__41, EDGE1_000__82, D000014__53, -SD1_9__11, D000013__53, SD1_9__12, D000012__53, HQD_9__9, D000017__54, CV11_9, D000028__22, -EDGE1_000__83, D01A_000__42, EDGE2_000__83, D000018__83, EDGE3_000__83, D23_000__42, EDGE3_000__84, -D000018__84, EDGE2_000__84, D01B_000__42, EDGE1_000__84, D000014__54, SF1_9__11, D000013__54, SF1_9__12, -D000012__54, HQF_9__9, D000017__55, CH12_9, D000028__23, EDGE1_000__85, D01A_000__43, EDGE2_000__85, -D000018__85, EDGE3_000__85, D23_000__43, EDGE3_000__86, D000018__86, EDGE2_000__86, D01B_000__43, -EDGE1_000__86, D000014__55, SD2_9__11, D000013__55, SD2_9__12, D000012__55, HQD_9__10, D000017__56, -CV12_9, D000028__24, EDGE1_000__87, D01A_000__44, EDGE2_000__87, D000018__87, EDGE3_000__87, -D23_000__44, EDGE3_000__88, D000018__88, EDGE2_000__88, D01B_000__44, EDGE1_000__88, D000014__56, -SF2_9__11, D000013__56, SF2_9__12, D000012__56, HQF_9__10, D000017__57, CH13_9, D000028__25, -EDGE1_000__89, D01A_000__45, EDGE2_000__89, D000018__89, EDGE3_000__89, D23_000__45, EDGE3_000__90, -D000018__90, EDGE2_000__90, D01B_000__45, EDGE1_000__90, D000014__57, SD1_9__13, D000013__57, SD1_9__14, -D000012__57, HQD_9__11, D000017__58, CV13_9, D000028__26, EDGE1_000__91, D01A_000__46, EDGE2_000__91, -D000018__91, EDGE3_000__91, D23_000__46, EDGE3_000__92, D000018__92, EDGE2_000__92, D01B_000__46, -EDGE1_000__92, D000014__58, SF1_9__13, D000013__58, SF1_9__14, D000012__58, HQF_9__11, D000017__59, -CH14_9, D000028__27, EDGE1_000__93, D01A_000__47, EDGE2_000__93, D000018__93, EDGE3_000__93, -D23_000__47, EDGE3_000__94, D000018__94, EDGE2_000__94, D01B_000__47, EDGE1_000__94, D000014__59, -SD2_9__13, D000013__59, SD2_9__14, D000012__59, HQD_9__12, D000017__60, CV14_9, D000028__28, -EDGE1_000__95, D01A_000__48, EDGE2_000__95, D000018__95, EDGE3_000__95, D23_000__48, EDGE3_000__96, -D000018__96, EDGE2_000__96, D01B_000__48, EDGE1_000__96, D000014__60, SF2_9__13, D000013__60, SF2_9__14, -D000012__60, HQF_9__12, D000017__61, CH15_9, D000028__29, EDGE1_000__97, D01A_000__49, EDGE2_000__97, -D000018__97, EDGE3_000__97, D23_000__49, EDGE3_000__98, D000018__98, EDGE2_000__98, D01B_000__49, -EDGE1_000__98, D000014__61, SD1_9__15, D000013__61, SD1_9__16, D000012__61, HQD_9__13, D000017__62, -CV15_9, D000028__30, EDGE1_000__99, D01A_000__50, EDGE2_000__99, D000018__99, EDGE3_000__99, -D23_000__50, EDGE3_000__100, D000018__100, EDGE2_000__100, D01B_000__50, EDGE1_000__100, D000014__62, -SF1_9__15, D000013__62, SF1_9__16, D000012__62, HQF_9__13, D000017__63, CH16_9, D000028__31, -EDGE1_000__101, D01A_000__51, EDGE2_000__101, D000018__101, EDGE3_000__101, D23_000__51, EDGE3_000__102, -D000018__102, EDGE2_000__102, D01B_000__51, EDGE1_000__102, D000014__63, SD2_9__15, D000013__63, -SD2_9__16, D000012__63, HQD_9__14, D000017__64, CV16_9, D000028__32, EDGE1_000__103, D01A_000__52, -EDGE2_000__103, D000018__103, EDGE3_000__103, D23_000__52, EDGE3_000__104, D000018__104, EDGE2_000__104, -D01B_000__52, EDGE1_000__104, D000014__64, SF2_9__15, D000013__64, SF2_9__16, D000012__64, HQF_9__14, -D000017__65, CH17_9, D000030__1, DB23_9__1, D000014__65, SD17_9, D000012__65, HQD_9__15, D000017__66, -CV17_9, D000030__2, DB23_9__2, D000014__66, SF17_9, D000012__66, HQF_9__15, D000031__1, HQM22_9, -D000031__2, HQM21_9, D000032__1, DB23_9__3, D000032__2, HQM20_9, D000032__3, DB23_9__4, D000032__4, -HQM19_9, D000033__1, HQM18_9, D000033__2, HQM17_9, D000033__3, HQM16_9, D000033__4, HQM15_9, D000033__5, -HQM14_9, D000033__6, HQM13_9, D000032__5, DB23_9__5, D000032__6, HQM12_9, D000032__7, DB23_9__6, -D000034, HQFSS_10__1, D000035__1, HQDSS_10__1, D000035__2, HQFSS_10__2, D000035__3, HQDSS_10__2, -D000036, HQFLSS_10__1, D000007__7, RF0__1, D000007__8, RF0__2, D000007__9, HQDLSS_10__1, D000007__10, -RF0__3, D000007__11, RF0__4, D000007__12, HQFLSS_10__2, D000007__13, RF0__5, D000007__14, RF0__6, -D000007__15, HQDLSS_10__2, D000007__16, RF0__7, D000007__17, RF0__8, D000007__18, HQFLSS_10__3, -D000007__19, RF0__9, D000037, RF0__10, D000007__20, HQDLSS_10__3, D000007__21, RF0__11, D000007__22, -RF0__12, D000007__23, HQFLSS_10__4, D000007__24, RF0__13, D000007__25, RF0__14, D000007__26, -HQDLSS_10__4, D000007__27, RF0__15, D000007__28, RF0__16, D000007__29, HQFLSS_10__5, D000007__30, -RF0__17, D000007__31, RF0__18, D000007__32, HQDLSS_10__5, D000035__4, HQFSS_10__3, D000035__5, -HQDSS_10__3, D000035__6, HQFSS_10__4, D000035__7, HQDSS_10__4, D000038, DB23_10__1, D000032__8, -HQM12_10, D000032__9, DB23_10__2, D000032__10, HQM13_10, D000039__1, HQM14_10, D000039__2, HQM15_10, -D000039__3, HQM16_10, D000039__4, HQM17_10, D000039__5, HQM18_10, D000039__6, HQM19_10, D000039__7, -HQM20_10, D000032__11, DB23_10__3, D000032__12, HQM21_10, D000032__13, DB23_10__4, D000032__14, -HQM22_10, D000040, HQF_11__1, D000012__67, SF00_11, D000014__67, DB23_10__5, D000041__1, CV00_11, -D000017__67, HQD_11__1, D000012__68, SD00_11, D000014__68, DB23_10__6, D000041__2, CH00_11, D000017__68, -HQF_11__2, D000012__69, SF1_1__1, D000013__65, SF1_1__2, D000014__69, EDGE1_000__105, D01A_000__53, -EDGE2_000__105, D000018__105, EDGE3_000__105, D23_000__53, EDGE3_000__106, D000018__106, EDGE2_000__106, -D01B_000__53, EDGE1_000__106, D000042__1, CV01_11, D000017__69, HQD_11__2, D000012__70, SD1_1__1, -D000013__66, SD1_1__2, D000014__70, EDGE1_000__107, D01A_000__54, EDGE2_000__107, D000018__107, -EDGE3_000__107, D23_000__54, EDGE3_000__108, D000018__108, EDGE2_000__108, D01B_000__54, EDGE1_000__108, -D000042__2, CH01_11, D000017__70, HQF_11__3, D000012__71, SF2_1__1, D000013__67, SF2_1__2, D000014__71, -EDGE1_000__109, D01A_000__55, EDGE2_000__109, D000018__109, EDGE3_000__109, D23_000__55, EDGE3_000__110, -D000018__110, EDGE2_000__110, D01B_000__55, EDGE1_000__110, D000042__3, CV02_11, D000017__71, HQD_11__3, -D000012__72, SD2_1__1, D000013__68, SD2_1__2, D000014__72, EDGE1_000__111, D01A_000__56, EDGE2_000__111, -D000018__111, EDGE3_000__111, D23_000__56, EDGE3_000__112, D000018__112, EDGE2_000__112, D01B_000__56, -EDGE1_000__112, D000042__4, CH02_11, D000017__72, HQF_11__4, D000012__73, SF1_1__3, D000013__69, -SF1_1__4, D000014__73, EDGE1_000__113, D01A_000__57, EDGE2_000__113, D000018__113, EDGE3_000__113, -D23_000__57, EDGE3_000__114, D000018__114, EDGE2_000__114, D01B_000__57, EDGE1_000__114, D000042__5, -CV03_11, D000017__73, HQD_11__4, D000012__74, SD1_1__3, D000013__70, SD1_1__4, D000014__74, -EDGE1_000__115, D01A_000__58, EDGE2_000__115, D000018__115, EDGE3_000__115, D23_000__58, EDGE3_000__116, -D000018__116, EDGE2_000__116, D01B_000__58, EDGE1_000__116, D000042__6, CH03_11, D000017__74, HQF_11__5, -D000012__75, SF2_1__3, D000013__71, SF2_1__4, D000014__75, EDGE1_000__117, D01A_000__59, EDGE2_000__117, -D000018__117, EDGE3_000__117, D23_000__59, EDGE3_000__118, D000018__118, EDGE2_000__118, D01B_000__59, -EDGE1_000__118, D000042__7, CV04_11, D000017__75, HQD_11__5, D000012__76, SD2_1__3, D000013__72, -SD2_1__4, D000014__76, EDGE1_000__119, D01A_000__60, EDGE2_000__119, D000018__119, EDGE3_000__119, -D23_000__60, EDGE3_000__120, D000018__120, EDGE2_000__120, D01B_000__60, EDGE1_000__120, D000042__8, -CH04_11, D000017__76, HQF_11__6, D000012__77, SF1_1__5, D000013__73, SF1_1__6, D000014__77, -EDGE1_000__121, D01A_000__61, EDGE2_000__121, D000018__121, EDGE3_000__121, D23_000__61, EDGE3_000__122, -D000018__122, EDGE2_000__122, D01B_000__61, EDGE1_000__122, D000042__9, CV05_11, D000017__77, HQD_11__6, -D000012__78, SD1_1__5, D000013__74, SD1_1__6, D000014__78, EDGE1_000__123, D01A_000__62, EDGE2_000__123, -D000018__123, EDGE3_000__123, D23_000__62, EDGE3_000__124, D000018__124, EDGE2_000__124, D01B_000__62, -EDGE1_000__124, D000042__10, CH05_11, D000017__78, HQF_11__7, D000012__79, SF2_1__5, D000013__75, -SF2_1__6, D000014__79, EDGE1_000__125, D01A_000__63, EDGE2_000__125, D000018__125, EDGE3_000__125, -D23_000__63, EDGE3_000__126, D000018__126, EDGE2_000__126, D01B_000__63, EDGE1_000__126, D000042__11, -CV06_11, D000017__79, HQD_11__7, D000012__80, SD2_1__5, D000013__76, SD2_1__6, D000014__80, -EDGE1_000__127, D01A_000__64, EDGE2_000__127, D000018__127, EDGE3_000__127, D23_000__64, EDGE3_000__128, -D000018__128, EDGE2_000__128, D01B_000__64, EDGE1_000__128, D000042__12, CH06_11, D000017__80, -HQF_11__8, D000012__81, SF1_1__7, D000013__77, SF1_1__8, D000014__81, EDGE1_000__129, D01A_000__65, -EDGE2_000__129, D000018__129, EDGE3_000__129, D23_000__65, EDGE3_000__130, D000018__130, EDGE2_000__130, -D01B_000__65, EDGE1_000__130, D000042__13, CV07_11, D000017__81, HQD_11__8, D000012__82, SD1_1__7, -D000013__78, SD1_1__8, D000014__82, EDGE1_000__131, D01A_000__66, EDGE2_000__131, D000018__131, -EDGE3_000__131, D23_000__66, EDGE3_000__132, D000018__132, EDGE2_000__132, D01B_000__66, EDGE1_000__132, -D000042__14, CH07_11, D000017__82, HQF_11__9, D000012__83, SF2_1__7, D000013__79, SF2_1__8, D000014__83, -EDGE1_000__133, D01A_000__67, EDGE2_000__133, D000018__133, EDGE3_000__133, D23_000__67, EDGE3_000__134, -D000018__134, EDGE2_000__134, D01B_000__67, EDGE1_000__134, D000042__15, CV08_11, D000017__83, -HQD_11__9, D000012__84, SD2_1__7, D000013__80, SD2_1__8, D000014__84, EDGE1_000__135, D01A_000__68, -EDGE2_000__135, D000018__135, EDGE3_000__135, D23_000__68, EDGE3_000__136, D000018__136, EDGE2_000__136, -D01B_000__68, EDGE1_000__136, D000042__16, CH08_11, D000017__84, HQF_11__10, D000012__85, SF1_1__9, -D000013__81, SF1_1__10, D000014__85, EDGE1_000__137, D01A_000__69, EDGE2_000__137, D000018__137, -EDGE3_000__137, D23_000__69, EDGE3_000__138, D000018__138, EDGE2_000__138, D01B_000__69, EDGE1_000__138, -D000042__17, CV09_11, D000017__85, HQD_11__10, D000012__86, SD1_1__9, D000013__82, SD1_1__10, -D000014__86, EDGE1_000__139, D01A_000__70, EDGE2_000__139, D000018__139, EDGE3_000__139, D23_000__70, -EDGE3_000__140, D000018__140, EDGE2_000__140, D01B_000__70, EDGE1_000__140, D000042__18, CH09_11, -D000017__86, HQF_11__11, D000012__87, SF2_1__9, D000013__83, SF2_1__10, D000014__87, EDGE1_000__141, -D01A_000__71, EDGE2_000__141, D000018__141, EDGE3_000__141, D23_000__71, EDGE3_000__142, D000018__142, -EDGE2_000__142, D01B_000__71, EDGE1_000__142, D000042__19, CV10_11, D000017__87, HQD_11__11, -D000012__88, SD2_1__9, D000013__84, SD2_1__10, D000014__88, EDGE1_000__143, D01A_000__72, -EDGE2_000__143, D000018__143, EDGE3_000__143, D23_000__72, EDGE3_000__144, D000018__144, EDGE2_000__144, -D01B_000__72, EDGE1_000__144, D000042__20, CH10_11, D000017__88, HQF_11__12, D000012__89, SF1_1__11, -D000013__85, SF1_1__12, D000014__89, EDGE1_000__145, D01A_000__73, EDGE2_000__145, D000018__145, -EDGE3_000__145, D23_000__73, EDGE3_000__146, D000018__146, EDGE2_000__146, D01B_000__73, EDGE1_000__146, -D000042__21, CV11_11, D000017__89, HQD_11__12, D000012__90, SD1_1__11, D000013__86, SD1_1__12, -D000014__90, EDGE1_000__147, D01A_000__74, EDGE2_000__147, D000018__147, EDGE3_000__147, D23_000__74, -EDGE3_000__148, D000018__148, EDGE2_000__148, D01B_000__74, EDGE1_000__148, D000042__22, CH11_11, -D000017__90, HQF_11__13, D000012__91, SF2_1__11, D000013__87, SF2_1__12, D000014__91, EDGE1_000__149, -D01A_000__75, EDGE2_000__149, D000018__149, EDGE3_000__149, D23_000__75, EDGE3_000__150, D000018__150, -EDGE2_000__150, D01B_000__75, EDGE1_000__150, D000042__23, CV12_11, D000017__91, HQD_11__13, -D000012__92, SD2_1__11, D000013__88, SD2_1__12, D000014__92, EDGE1_000__151, D01A_000__76, -EDGE2_000__151, D000018__151, EDGE3_000__151, D23_000__76, EDGE3_000__152, D000018__152, EDGE2_000__152, -D01B_000__76, EDGE1_000__152, D000042__24, CH12_11, D000017__92, HQF_11__14, D000012__93, SF1_1__13, -D000013__89, SF1_1__14, D000014__93, EDGE1_000__153, D01A_000__77, EDGE2_000__153, D000018__153, -EDGE3_000__153, D23_000__77, EDGE3_000__154, D000018__154, EDGE2_000__154, D01B_000__77, EDGE1_000__154, -D000042__25, CV13_11, D000017__93, HQD_11__14, D000012__94, SD1_1__13, D000013__90, SD1_1__14, -D000014__94, EDGE1_000__155, D01A_000__78, EDGE2_000__155, D000018__155, EDGE3_000__155, D23_000__78, -EDGE3_000__156, D000018__156, EDGE2_000__156, D01B_000__78, EDGE1_000__156, D000042__26, CH13_11, -D000017__94, HQF_11__15, D000012__95, SF2_1__13, D000013__91, SF2_1__14, D000014__95, EDGE1_000__157, -D01A_000__79, EDGE2_000__157, D000018__157, EDGE3_000__157, D23_000__79, EDGE3_000__158, D000018__158, -EDGE2_000__158, D01B_000__79, EDGE1_000__158, D000042__27, CV14_11, D000017__95, HQD_11__15, -D000012__96, SD2_1__13, D000013__92, SD2_1__14, D000014__96, EDGE1_000__159, D01A_000__80, -EDGE2_000__159, D000018__159, EDGE3_000__159, D23_000__80, EDGE3_000__160, D000018__160, EDGE2_000__160, -D01B_000__80, EDGE1_000__160, D000042__28, CH14_11, D000017__96, HQF_11__16, D000012__97, SF1_1__15, -D000013__93, SF1_1__16, D000014__97, EDGE1_000__161, D01A_000__81, EDGE2_000__161, D000018__161, -EDGE3_000__161, D23_000__81, EDGE3_000__162, D000018__162, EDGE2_000__162, D01B_000__81, EDGE1_000__162, -D000042__29, CV15_11, D000017__97, HQD_11__16, D000012__98, SD1_1__15, D000013__94, SD1_1__16, -D000014__98, EDGE1_000__163, D01A_000__82, EDGE2_000__163, D000018__163, EDGE3_000__163, D23_000__82, -EDGE3_000__164, D000018__164, EDGE2_000__164, D01B_000__82, EDGE1_000__164, D000042__30, CH15_11, -D000017__98, HQF_11__17, D000012__99, SF2_1__15, D000013__95, SF2_1__16, D000014__99, EDGE1_000__165, -D01A_000__83, EDGE2_000__165, D000018__165, EDGE3_000__165, D23_000__83, EDGE3_000__166, D000018__166, -EDGE2_000__166, D01B_000__83, EDGE1_000__166, D000042__31, CV16_11, D000017__99, HQD_11__17, -D000012__100, SD2_1__15, D000013__96, SD2_1__16, D000014__100, EDGE1_000__167, D01A_000__84, -EDGE2_000__167, D000018__167, EDGE3_000__167, D23_000__84, EDGE3_000__168, D000018__168, EDGE2_000__168, -D01B_000__84, EDGE1_000__168, D000042__32, CH16_11, D000017__100, HQF_11__18, D000012__101, SF17_11, -D000014__101, DB23_11__1, D000043__1, CV17_11, D000017__101, HQD_11__18, D000012__102, SD17_11, -D000014__102, DB23_11__2, D000043__2, CH17_11, D000017__102, HQF_11__19, D000012__103, SF18_11, -D000044__1, HQM22_11, D000044__2, HQM21_11, D000032__15, DB23_11__3, D000032__16, HQM20_11, D000032__17, -DB23_11__4, D000032__18, HQM19_11, D000045__1, HQM18_11, D000045__2, HQM17_11, D000045__3, HQM16_11, -D000045__4, HQM15_11, D000045__5, HQM14_11, D000045__6, HQM13_11, D000032__19, DB23_11__5, D000032__20, -HQM12_11, D000032__21, DB23_11__6, D000046__1, HQFSS_12__1, D000047__1, HQDSS_12__1, D000047__2, -HQFSS_12__2, D000047__3, HQDSS_12__2, D000046__2, DB12_4M__1, D000048__1, DB12_4M__2, D000048__2, -DB12_4M__3, D000049, HQFSS_12__3, D000047__4, HQDSS_12__3, D000047__5, HQFSS_12__4, D000050, IP12, -D000051, HQDSS_12__4, D000047__6, HQFSS_12__5, D000047__7, HQDSS_12__5, D000047__8, HQFSS_12__6, -D000052, DB12_4P__1, D000048__3, DB12_4P__2, D000048__4, DB12_4P__3, D000053__1, HQDSS_12__6, MKICK_INJ, -D000047__9, HQFSS_12__7, D000047__10, HQDSS_12__7, D000047__11, MCOLL_INJ, HQFSS_12__8, D000053__2, -DB23_12__1, D000032__22, HQM14_12, D000032__23, DB23_12__2, D000032__24, HQM15_12, D000054__1, HQM16_12, -D000054__2, HQM17_12, D000054__3, HQM18_12, D000054__4, HQM19_12, D000032__25, DB23_12__3, D000032__26, -HQM20_12, D000032__27, DB23_12__4, D000032__28, HQM21_12, D000055__1, HQM22_12, D000055__2, SFM1_1, -D000056__1, HQF_1__1, D000017__103, CH00_1, D000057__1, DB23_12__5, D000014__103, SD00_1, D000012__104, -HQD_1__1, D000017__104, CV00_1, D000057__2, DB23_12__6, D000014__104, SF00_1, D000012__105, HQF_1__2, -D000017__105, CH01_1, D000058__1, EDGE1_000__169, D01A_000__85, EDGE2_000__169, D000018__169, -EDGE3_000__169, D23_000__85, EDGE3_000__170, D000018__170, EDGE2_000__170, D01B_000__85, EDGE1_000__170, -D000014__105, SD1_1__17, D000013__97, SD1_1__18, D000012__106, HQD_1__2, D000017__106, CV01_1, -D000058__2, EDGE1_000__171, D01A_000__86, EDGE2_000__171, D000018__171, EDGE3_000__171, D23_000__86, -EDGE3_000__172, D000018__172, EDGE2_000__172, D01B_000__86, EDGE1_000__172, D000014__106, SF1_1__17, -D000013__98, SF1_1__18, D000012__107, HQF_1__3, D000017__107, CH02_1, D000058__3, EDGE1_000__173, -D01A_000__87, EDGE2_000__173, D000018__173, EDGE3_000__173, D23_000__87, EDGE3_000__174, D000018__174, -EDGE2_000__174, D01B_000__87, EDGE1_000__174, D000014__107, SD2_1__17, D000013__99, SD2_1__18, -D000012__108, HQD_1__3, D000017__108, CV02_1, D000058__4, EDGE1_000__175, D01A_000__88, EDGE2_000__175, -D000018__175, EDGE3_000__175, D23_000__88, EDGE3_000__176, D000018__176, EDGE2_000__176, D01B_000__88, -EDGE1_000__176, D000014__108, SF2_1__17, D000013__100, SF2_1__18, D000012__109, HQF_1__4, D000017__109, -CH03_1, D000058__5, EDGE1_000__177, D01A_000__89, EDGE2_000__177, D000018__177, EDGE3_000__177, -D23_000__89, EDGE3_000__178, D000018__178, EDGE2_000__178, D01B_000__89, EDGE1_000__178, D000014__109, -SD1_1__19, D000013__101, SD1_1__20, D000012__110, HQD_1__4, D000017__110, CV03_1, D000058__6, -EDGE1_000__179, D01A_000__90, EDGE2_000__179, D000018__179, EDGE3_000__179, D23_000__90, EDGE3_000__180, -D000018__180, EDGE2_000__180, D01B_000__90, EDGE1_000__180, D000014__110, SF1_1__19, D000013__102, -SF1_1__20, D000012__111, HQF_1__5, D000017__111, CH04_1, D000058__7, EDGE1_000__181, D01A_000__91, -EDGE2_000__181, D000018__181, EDGE3_000__181, D23_000__91, EDGE3_000__182, D000018__182, EDGE2_000__182, -D01B_000__91, EDGE1_000__182, D000014__111, SD2_1__19, D000013__103, SD2_1__20, D000012__112, HQD_1__5, -D000017__112, CV04_1, D000058__8, EDGE1_000__183, D01A_000__92, EDGE2_000__183, D000018__183, -EDGE3_000__183, D23_000__92, EDGE3_000__184, D000018__184, EDGE2_000__184, D01B_000__92, EDGE1_000__184, -D000014__112, SF2_1__19, D000013__104, SF2_1__20, D000012__113, HQF_1__6, D000017__113, CH05_1, -D000058__9, EDGE1_000__185, D01A_000__93, EDGE2_000__185, D000018__185, EDGE3_000__185, D23_000__93, -EDGE3_000__186, D000018__186, EDGE2_000__186, D01B_000__93, EDGE1_000__186, D000014__113, SD1_1__21, -D000013__105, SD1_1__22, D000012__114, HQD_1__6, D000017__114, CV05_1, D000058__10, EDGE1_000__187, -D01A_000__94, EDGE2_000__187, D000018__187, EDGE3_000__187, D23_000__94, EDGE3_000__188, D000018__188, -EDGE2_000__188, D01B_000__94, EDGE1_000__188, D000014__114, SF1_1__21, D000013__106, SF1_1__22, -D000012__115, HQF_1__7, D000017__115, CH06_1, D000058__11, EDGE1_000__189, D01A_000__95, EDGE2_000__189, -D000018__189, EDGE3_000__189, D23_000__95, EDGE3_000__190, D000018__190, EDGE2_000__190, D01B_000__95, -EDGE1_000__190, D000014__115, SD2_1__21, D000013__107, SD2_1__22, D000012__116, HQD_1__7, D000017__116, -CV06_1, D000058__12, EDGE1_000__191, D01A_000__96, EDGE2_000__191, D000018__191, EDGE3_000__191, -D23_000__96, EDGE3_000__192, D000018__192, EDGE2_000__192, D01B_000__96, EDGE1_000__192, D000014__116, -SF2_1__21, D000013__108, SF2_1__22, D000012__117, HQF_1__8, D000017__117, CH07_1, D000058__13, -EDGE1_000__193, D01A_000__97, EDGE2_000__193, D000018__193, EDGE3_000__193, D23_000__97, EDGE3_000__194, -D000018__194, EDGE2_000__194, D01B_000__97, EDGE1_000__194, D000014__117, SD1_1__23, D000013__109, -SD1_1__24, D000012__118, HQD_1__8, D000017__118, CV07_1, D000058__14, EDGE1_000__195, D01A_000__98, -EDGE2_000__195, D000018__195, EDGE3_000__195, D23_000__98, EDGE3_000__196, D000018__196, EDGE2_000__196, -D01B_000__98, EDGE1_000__196, D000014__118, SF1_1__23, D000013__110, SF1_1__24, D000012__119, HQF_1__9, -D000017__119, CH08_1, D000058__15, EDGE1_000__197, D01A_000__99, EDGE2_000__197, D000018__197, -EDGE3_000__197, D23_000__99, EDGE3_000__198, D000018__198, EDGE2_000__198, D01B_000__99, EDGE1_000__198, -D000014__119, SD2_1__23, D000013__111, SD2_1__24, D000012__120, HQD_1__9, D000017__120, CV08_1, -D000058__16, EDGE1_000__199, D01A_000__100, EDGE2_000__199, D000018__199, EDGE3_000__199, D23_000__100, -EDGE3_000__200, D000018__200, EDGE2_000__200, D01B_000__100, EDGE1_000__200, D000014__120, SF2_1__23, -D000013__112, SF2_1__24, D000012__121, HQF_1__10, D000017__121, CH09_1, D000058__17, EDGE1_000__201, -D01A_000__101, EDGE2_000__201, D000018__201, EDGE3_000__201, D23_000__101, EDGE3_000__202, D000018__202, -EDGE2_000__202, D01B_000__101, EDGE1_000__202, D000014__121, SD1_1__25, D000013__113, SD1_1__26, -D000012__122, HQD_1__10, D000017__122, CV09_1, D000058__18, EDGE1_000__203, D01A_000__102, -EDGE2_000__203, D000018__203, EDGE3_000__203, D23_000__102, EDGE3_000__204, D000018__204, -EDGE2_000__204, D01B_000__102, EDGE1_000__204, D000014__122, SF1_1__25, D000013__114, SF1_1__26, -D000012__123, HQF_1__11, D000017__123, CH10_1, D000058__19, EDGE1_000__205, D01A_000__103, -EDGE2_000__205, D000018__205, EDGE3_000__205, D23_000__103, EDGE3_000__206, D000018__206, -EDGE2_000__206, D01B_000__103, EDGE1_000__206, D000014__123, SD2_1__25, D000013__115, SD2_1__26, -D000012__124, HQD_1__11, D000017__124, CV10_1, D000058__20, EDGE1_000__207, D01A_000__104, -EDGE2_000__207, D000018__207, EDGE3_000__207, D23_000__104, EDGE3_000__208, D000018__208, -EDGE2_000__208, D01B_000__104, EDGE1_000__208, D000014__124, SF2_1__25, D000013__116, SF2_1__26, -D000012__125, HQF_1__12, D000017__125, CH11_1, D000058__21, EDGE1_000__209, D01A_000__105, -EDGE2_000__209, D000018__209, EDGE3_000__209, D23_000__105, EDGE3_000__210, D000018__210, -EDGE2_000__210, D01B_000__105, EDGE1_000__210, D000014__125, SD1_1__27, D000013__117, SD1_1__28, -D000012__126, HQD_1__12, D000017__126, CV11_1, D000058__22, EDGE1_000__211, D01A_000__106, -EDGE2_000__211, D000018__211, EDGE3_000__211, D23_000__106, EDGE3_000__212, D000018__212, -EDGE2_000__212, D01B_000__106, EDGE1_000__212, D000014__126, SF1_1__27, D000013__118, SF1_1__28, -D000012__127, HQF_1__13, D000017__127, CH12_1, D000058__23, EDGE1_000__213, D01A_000__107, -EDGE2_000__213, D000018__213, EDGE3_000__213, D23_000__107, EDGE3_000__214, D000018__214, -EDGE2_000__214, D01B_000__107, EDGE1_000__214, D000014__127, SD2_1__27, D000013__119, SD2_1__28, -D000012__128, HQD_1__13, D000017__128, CV12_1, D000058__24, EDGE1_000__215, D01A_000__108, -EDGE2_000__215, D000018__215, EDGE3_000__215, D23_000__108, EDGE3_000__216, D000018__216, -EDGE2_000__216, D01B_000__108, EDGE1_000__216, D000014__128, SF2_1__27, D000013__120, SF2_1__28, -D000012__129, HQF_1__14, D000017__129, CH13_1, D000058__25, EDGE1_000__217, D01A_000__109, -EDGE2_000__217, D000018__217, EDGE3_000__217, D23_000__109, EDGE3_000__218, D000018__218, -EDGE2_000__218, D01B_000__109, EDGE1_000__218, D000014__129, SD1_1__29, D000013__121, SD1_1__30, -D000012__130, HQD_1__14, D000017__130, CV13_1, D000058__26, EDGE1_000__219, D01A_000__110, -EDGE2_000__219, D000018__219, EDGE3_000__219, D23_000__110, EDGE3_000__220, D000018__220, -EDGE2_000__220, D01B_000__110, EDGE1_000__220, D000014__130, SF1_1__29, D000013__122, SF1_1__30, -D000012__131, HQF_1__15, D000017__131, CH14_1, D000058__27, EDGE1_000__221, D01A_000__111, -EDGE2_000__221, D000018__221, EDGE3_000__221, D23_000__111, EDGE3_000__222, D000018__222, -EDGE2_000__222, D01B_000__111, EDGE1_000__222, D000014__131, SD2_1__29, D000013__123, SD2_1__30, -D000012__132, HQD_1__15, D000017__132, CV14_1, D000058__28, EDGE1_000__223, D01A_000__112, -EDGE2_000__223, D000018__223, EDGE3_000__223, D23_000__112, EDGE3_000__224, D000018__224, -EDGE2_000__224, D01B_000__112, EDGE1_000__224, D000014__132, SF2_1__29, D000013__124, SF2_1__30, -D000012__133, HQF_1__16, D000017__133, CH15_1, D000058__29, EDGE1_000__225, D01A_000__113, -EDGE2_000__225, D000018__225, EDGE3_000__225, D23_000__113, EDGE3_000__226, D000018__226, -EDGE2_000__226, D01B_000__113, EDGE1_000__226, D000014__133, SD1_1__31, D000013__125, SD1_1__32, -D000012__134, HQD_1__16, D000017__134, CV15_1, D000058__30, EDGE1_000__227, D01A_000__114, -EDGE2_000__227, D000018__227, EDGE3_000__227, D23_000__114, EDGE3_000__228, D000018__228, -EDGE2_000__228, D01B_000__114, EDGE1_000__228, D000014__134, SF1_1__31, D000013__126, SF1_1__32, -D000012__135, HQF_1__17, D000017__135, CH16_1, D000058__31, EDGE1_000__229, D01A_000__115, -EDGE2_000__229, D000018__229, EDGE3_000__229, D23_000__115, EDGE3_000__230, D000018__230, -EDGE2_000__230, D01B_000__115, EDGE1_000__230, D000014__135, SD2_1__31, D000013__127, SD2_1__32, -D000012__136, HQD_1__17, D000017__136, CV16_1, D000058__32, EDGE1_000__231, D01A_000__116, -EDGE2_000__231, D000018__231, EDGE3_000__231, D23_000__116, EDGE3_000__232, D000018__232, -EDGE2_000__232, D01B_000__116, EDGE1_000__232, D000014__136, SF2_1__31, D000013__128, SF2_1__32, -D000012__137, HQF_1__18, D000017__137, CH17_1, D000057__3, DB23_1__1, D000014__137, SD17_1, -D000012__138, HQD_1__18, D000017__138, CV17_1, D000057__4, DB23_1__2, D000014__138, SF17_1, -D000012__139, HQF_1__19, D000059__1, HQM22_1, D000059__2, HQM21_1, D000059__3, HQM20_1, D000059__4, -HQM19_1, D000059__5, HQM18_1, D000032__29, DB23_1__3, D000032__30, HQM17_1, D000032__31, DB23_1__4, -D000032__32, HQM16_1, D000060__1, HQM15_1, D000060__2, HQM14_1, D000060__3, HQM13_1, D000032__33, -DB23_1__5, D000032__34, HQM12_1, D000032__35, DB23_1__6, D000061__1, HQDSS_2__1, D000062__1, SX41_2, -D000056__2, HQFSS_2__1, D000062__2, SX42_2, D000056__3, HQDSS_2__2, MCOLL_H1, D000062__3, SX43_2, -D000056__4, HQFSS_2__2, D000062__4, MCOLL_H2, SX44_2, D000056__5, HQDSS_2__3, D000062__5, SX45_2, -D000056__6, HQFSS_2__3, D000062__6, MCOLL_H3, SX46_2, D000056__7, HQDSS_2__4, D000063, IP2, D000064, -HQFSS_2__4, D000056__8, SX47_2, D000062__7, HQDSS_2__5, D000056__9, SX48_2, D000062__8, HQFSS_2__5, -D000056__10, SX49_2, D000062__9, HQDSS_2__6, D000056__11, SX50_2, MLAMB, D000062__10, HQFSS_2__6, -D000056__12, SX51_2, D000062__11, HQDSS_2__7, D000056__13, SX52_2, D000062__12, HQFSS_2__7, D000061__2, -DB23_2__1, D000032__36, HQM12_2, D000032__37, DB23_2__2, D000032__38, HQM13_2, D000065__1, HQM14_2, -D000065__2, HQM15_2, D000065__3, HQM16_2, D000032__39, DB23_2__3, D000032__40, HQM17_2, D000032__41, -DB23_2__4, D000032__42, HQM18_2, D000066__1, HQM19_2, D000066__2, HQM20_2, D000066__3, HQM21_2, -D000066__4, HQM22_2, D000066__5, HQF_3__1, D000012__140, SF00_3, D000014__139, DB23_2__5, D000067__1, -CV00_3, D000017__139, HQD_3__1, D000012__141, SD00_3, D000014__140, DB23_2__6, D000067__2, CH00_3, -D000017__140, HQF_3__2, D000012__142, SF1_1__33, D000013__129, SF1_1__34, D000014__141, EDGE1_000__233, -D01A_000__117, EDGE2_000__233, D000018__233, EDGE3_000__233, D23_000__117, EDGE3_000__234, D000018__234, -EDGE2_000__234, D01B_000__117, EDGE1_000__234, D000068__1, CV01_3, D000017__141, HQD_3__2, D000012__143, -SD1_1__33, D000013__130, SD1_1__34, D000014__142, EDGE1_000__235, D01A_000__118, EDGE2_000__235, -D000018__235, EDGE3_000__235, D23_000__118, EDGE3_000__236, D000018__236, EDGE2_000__236, D01B_000__118, -EDGE1_000__236, D000068__2, CH01_3, D000017__142, HQF_3__3, D000012__144, SF2_1__33, D000013__131, -SF2_1__34, D000014__143, EDGE1_000__237, D01A_000__119, EDGE2_000__237, D000018__237, EDGE3_000__237, -D23_000__119, EDGE3_000__238, D000018__238, EDGE2_000__238, D01B_000__119, EDGE1_000__238, D000068__3, -CV02_3, D000017__143, HQD_3__3, D000012__145, SD2_1__33, D000013__132, SD2_1__34, D000014__144, -EDGE1_000__239, D01A_000__120, EDGE2_000__239, D000018__239, EDGE3_000__239, D23_000__120, -EDGE3_000__240, D000018__240, EDGE2_000__240, D01B_000__120, EDGE1_000__240, D000068__4, CH02_3, -D000017__144, HQF_3__4, D000012__146, SF1_1__35, D000013__133, SF1_1__36, D000014__145, EDGE1_000__241, -D01A_000__121, EDGE2_000__241, D000018__241, EDGE3_000__241, D23_000__121, EDGE3_000__242, D000018__242, -EDGE2_000__242, D01B_000__121, EDGE1_000__242, D000068__5, CV03_3, D000017__145, HQD_3__4, D000012__147, -SD1_1__35, D000013__134, SD1_1__36, D000014__146, EDGE1_000__243, D01A_000__122, EDGE2_000__243, -D000018__243, EDGE3_000__243, D23_000__122, EDGE3_000__244, D000018__244, EDGE2_000__244, D01B_000__122, -EDGE1_000__244, D000068__6, CH03_3, D000017__146, HQF_3__5, D000012__148, SF2_1__35, D000013__135, -SF2_1__36, D000014__147, EDGE1_000__245, D01A_000__123, EDGE2_000__245, D000018__245, EDGE3_000__245, -D23_000__123, EDGE3_000__246, D000018__246, EDGE2_000__246, D01B_000__123, EDGE1_000__246, D000068__7, -CV04_3, D000017__147, HQD_3__5, D000012__149, SD2_1__35, D000013__136, SD2_1__36, D000014__148, -EDGE1_000__247, D01A_000__124, EDGE2_000__247, D000018__247, EDGE3_000__247, D23_000__124, -EDGE3_000__248, D000018__248, EDGE2_000__248, D01B_000__124, EDGE1_000__248, D000068__8, CH04_3, -D000017__148, HQF_3__6, D000012__150, SF1_1__37, D000013__137, SF1_1__38, D000014__149, EDGE1_000__249, -D01A_000__125, EDGE2_000__249, D000018__249, EDGE3_000__249, D23_000__125, EDGE3_000__250, D000018__250, -EDGE2_000__250, D01B_000__125, EDGE1_000__250, D000068__9, CV05_3, D000017__149, HQD_3__6, D000012__151, -SD1_1__37, D000013__138, SD1_1__38, D000014__150, EDGE1_000__251, D01A_000__126, EDGE2_000__251, -D000018__251, EDGE3_000__251, D23_000__126, EDGE3_000__252, D000018__252, EDGE2_000__252, D01B_000__126, -EDGE1_000__252, D000068__10, CH05_3, D000017__150, HQF_3__7, D000012__152, SF2_1__37, D000013__139, -SF2_1__38, D000014__151, EDGE1_000__253, D01A_000__127, EDGE2_000__253, D000018__253, EDGE3_000__253, -D23_000__127, EDGE3_000__254, D000018__254, EDGE2_000__254, D01B_000__127, EDGE1_000__254, D000068__11, -CV06_3, D000017__151, HQD_3__7, D000012__153, SD2_1__37, D000013__140, SD2_1__38, D000014__152, -EDGE1_000__255, D01A_000__128, EDGE2_000__255, D000018__255, EDGE3_000__255, D23_000__128, -EDGE3_000__256, D000018__256, EDGE2_000__256, D01B_000__128, EDGE1_000__256, D000068__12, CH06_3, -D000017__152, HQF_3__8, D000012__154, SF1_1__39, D000013__141, SF1_1__40, D000014__153, EDGE1_000__257, -D01A_000__129, EDGE2_000__257, D000018__257, EDGE3_000__257, D23_000__129, EDGE3_000__258, D000018__258, -EDGE2_000__258, D01B_000__129, EDGE1_000__258, D000068__13, CV07_3, D000017__153, HQD_3__8, -D000012__155, SD1_1__39, D000013__142, SD1_1__40, D000014__154, EDGE1_000__259, D01A_000__130, -EDGE2_000__259, D000018__259, EDGE3_000__259, D23_000__130, EDGE3_000__260, D000018__260, -EDGE2_000__260, D01B_000__130, EDGE1_000__260, D000068__14, CH07_3, D000017__154, HQF_3__9, -D000012__156, SF2_1__39, D000013__143, SF2_1__40, D000014__155, EDGE1_000__261, D01A_000__131, -EDGE2_000__261, D000018__261, EDGE3_000__261, D23_000__131, EDGE3_000__262, D000018__262, -EDGE2_000__262, D01B_000__131, EDGE1_000__262, D000068__15, CV08_3, D000017__155, HQD_3__9, -D000012__157, SD2_1__39, D000013__144, SD2_1__40, D000014__156, EDGE1_000__263, D01A_000__132, -EDGE2_000__263, D000018__263, EDGE3_000__263, D23_000__132, EDGE3_000__264, D000018__264, -EDGE2_000__264, D01B_000__132, EDGE1_000__264, D000068__16, CH08_3, D000017__156, HQF_3__10, -D000012__158, SF1_1__41, D000013__145, SF1_1__42, D000014__157, EDGE1_000__265, D01A_000__133, -EDGE2_000__265, D000018__265, EDGE3_000__265, D23_000__133, EDGE3_000__266, D000018__266, -EDGE2_000__266, D01B_000__133, EDGE1_000__266, D000068__17, CV09_3, D000017__157, HQD_3__10, -D000012__159, SD1_1__41, D000013__146, SD1_1__42, D000014__158, EDGE1_000__267, D01A_000__134, -EDGE2_000__267, D000018__267, EDGE3_000__267, D23_000__134, EDGE3_000__268, D000018__268, -EDGE2_000__268, D01B_000__134, EDGE1_000__268, D000068__18, CH09_3, D000017__158, HQF_3__11, -D000012__160, SF2_1__41, D000013__147, SF2_1__42, D000014__159, EDGE1_000__269, D01A_000__135, -EDGE2_000__269, D000018__269, EDGE3_000__269, D23_000__135, EDGE3_000__270, D000018__270, -EDGE2_000__270, D01B_000__135, EDGE1_000__270, D000068__19, CV10_3, D000017__159, HQD_3__11, -D000012__161, SD2_1__41, D000013__148, SD2_1__42, D000014__160, EDGE1_000__271, D01A_000__136, -EDGE2_000__271, D000018__271, EDGE3_000__271, D23_000__136, EDGE3_000__272, D000018__272, -EDGE2_000__272, D01B_000__136, EDGE1_000__272, D000068__20, CH10_3, D000017__160, HQF_3__12, -D000012__162, SF1_1__43, D000013__149, SF1_1__44, D000014__161, EDGE1_000__273, D01A_000__137, -EDGE2_000__273, D000018__273, EDGE3_000__273, D23_000__137, EDGE3_000__274, D000018__274, -EDGE2_000__274, D01B_000__137, EDGE1_000__274, D000068__21, CV11_3, D000017__161, HQD_3__12, -D000012__163, SD1_1__43, D000013__150, SD1_1__44, D000014__162, EDGE1_000__275, D01A_000__138, -EDGE2_000__275, D000018__275, EDGE3_000__275, D23_000__138, EDGE3_000__276, D000018__276, -EDGE2_000__276, D01B_000__138, EDGE1_000__276, D000068__22, CH11_3, D000017__162, HQF_3__13, -D000012__164, SF2_1__43, D000013__151, SF2_1__44, D000014__163, EDGE1_000__277, D01A_000__139, -EDGE2_000__277, D000018__277, EDGE3_000__277, D23_000__139, EDGE3_000__278, D000018__278, -EDGE2_000__278, D01B_000__139, EDGE1_000__278, D000068__23, CV12_3, D000017__163, HQD_3__13, -D000012__165, SD2_1__43, D000013__152, SD2_1__44, D000014__164, EDGE1_000__279, D01A_000__140, -EDGE2_000__279, D000018__279, EDGE3_000__279, D23_000__140, EDGE3_000__280, D000018__280, -EDGE2_000__280, D01B_000__140, EDGE1_000__280, D000068__24, CH12_3, D000017__164, HQF_3__14, -D000012__166, SF1_1__45, D000013__153, SF1_1__46, D000014__165, EDGE1_000__281, D01A_000__141, -EDGE2_000__281, D000018__281, EDGE3_000__281, D23_000__141, EDGE3_000__282, D000018__282, -EDGE2_000__282, D01B_000__141, EDGE1_000__282, D000068__25, CV13_3, D000017__165, HQD_3__14, -D000012__167, SD1_1__45, D000013__154, SD1_1__46, D000014__166, EDGE1_000__283, D01A_000__142, -EDGE2_000__283, D000018__283, EDGE3_000__283, D23_000__142, EDGE3_000__284, D000018__284, -EDGE2_000__284, D01B_000__142, EDGE1_000__284, D000068__26, CH13_3, D000017__166, HQF_3__15, -D000012__168, SF2_1__45, D000013__155, SF2_1__46, D000014__167, EDGE1_000__285, D01A_000__143, -EDGE2_000__285, D000018__285, EDGE3_000__285, D23_000__143, EDGE3_000__286, D000018__286, -EDGE2_000__286, D01B_000__143, EDGE1_000__286, D000068__27, CV14_3, D000017__167, HQD_3__15, -D000012__169, SD2_1__45, D000013__156, SD2_1__46, D000014__168, EDGE1_000__287, D01A_000__144, -EDGE2_000__287, D000018__287, EDGE3_000__287, D23_000__144, EDGE3_000__288, D000018__288, -EDGE2_000__288, D01B_000__144, EDGE1_000__288, D000068__28, CH14_3, D000017__168, HQF_3__16, -D000012__170, SF1_1__47, D000013__157, SF1_1__48, D000014__169, EDGE1_000__289, D01A_000__145, -EDGE2_000__289, D000018__289, EDGE3_000__289, D23_000__145, EDGE3_000__290, D000018__290, -EDGE2_000__290, D01B_000__145, EDGE1_000__290, D000068__29, CV15_3, D000017__169, HQD_3__16, -D000012__171, SD1_1__47, D000013__158, SD1_1__48, D000014__170, EDGE1_000__291, D01A_000__146, -EDGE2_000__291, D000018__291, EDGE3_000__291, D23_000__146, EDGE3_000__292, D000018__292, -EDGE2_000__292, D01B_000__146, EDGE1_000__292, D000068__30, CH15_3, D000017__170, HQF_3__17, -D000012__172, SF2_1__47, D000013__159, SF2_1__48, D000014__171, EDGE1_000__293, D01A_000__147, -EDGE2_000__293, D000018__293, EDGE3_000__293, D23_000__147, EDGE3_000__294, D000018__294, -EDGE2_000__294, D01B_000__147, EDGE1_000__294, D000068__31, CV16_3, D000017__171, HQD_3__17, -D000012__173, SD2_1__47, D000013__160, SD2_1__48, D000014__172, EDGE1_000__295, D01A_000__148, -EDGE2_000__295, D000018__295, EDGE3_000__295, D23_000__148, EDGE3_000__296, D000018__296, -EDGE2_000__296, D01B_000__148, EDGE1_000__296, D000068__32, CH16_3, D000017__172, HQF_3__18, -D000012__174, SF17_3, D000014__173, DB23_3__1, D000067__3, CV17_3, D000017__173, HQD_3__18, -D000012__175, SD17_3, D000014__174, DB23_3__2, D000067__4, CH17_3, D000017__174, HQF_3__19, -D000012__176, SF18_3, D000069__1, HQD22_3, D000069__2, HQF21_3, D000032__43, DB23_3__3, D000032__44, -HQD20_3, D000032__45, DB23_3__4, D000032__46, HQF19_3, D000070__1, HQD18_3, D000070__2, HQF17_3, -D000070__3, HQD16_3, D000032__47, DB23_3__5, D000032__48, HQF15_3, D000032__49, DB23_3__6, D000032__50, -HQD14_3, MCOLL_V1, D000071__1, HQF13_3, D000071__2, MCOLL_V2, HQD12_3, D000071__3, HQF11_3, D000056__14, -SX41_4, D000072__1, MCOLL_V3, HQD10_3, D000056__15, SX42_4, D000072__2, HQF9_3, D000056__16, SX43_4, -D000056__17, DB12_4P__4, D000048__5, DB12_4P__5, D000048__6, DB12_4P__6, D000032__51, HQD8_3, -D000056__18, SX44_4, D000072__3, HQF7_3, D000056__19, SX45_4, D000072__4, HQD6_3, D000056__20, SX46_4, -D000073, IP4, D000074, SX47_4, D000056__21, HQD4_4, D000075__1, SX48_4, D000056__22, HQF5_4, D000075__2, -SX49_4, D000056__23, HQD6_4, D000032__52, DB12_4M__4, D000048__7, DB12_4M__5, D000048__8, DB12_4M__6, -D000056__24, SX50_4, D000056__25, HQF7_4, D000075__3, SX51_4, D000056__26, HQD8_4, D000075__4, SX52_4, -D000056__27, HQF9_4, D000076__1, HQD10_4, D000076__2, HQF11_4, D000032__53, DB23_4__1, D000032__54, -HQD12_4, D000032__55, DB23_4__2, D000032__56, HQF13_4, D000077__1, HQD14_4, D000077__2, HQF15_4, -D000077__3, HQD16_4, D000077__4, HQF17_4, D000077__5, HQD18_4, D000032__57, DB23_4__3, D000032__58, -HQF19_4, D000032__59, DB23_4__4, D000032__60, HQD20_4, D000078__1, HQF21_4, D000078__2, HQD22_4, -D000078__3, SFM1_5, D000056__28, HQF_5__1, D000017__175, CH00_5, D000079__1, DB23_4__5, D000014__175, -SD00_5, D000012__177, HQD_5__1, D000017__176, CV00_5, D000079__2, DB23_4__6, D000014__176, SF00_5, -D000012__178, HQF_5__2, D000017__177, CH01_5, D000080__1, EDGE1_000__297, D01A_000__149, EDGE2_000__297, -D000018__297, EDGE3_000__297, D23_000__149, EDGE3_000__298, D000018__298, EDGE2_000__298, D01B_000__149, -EDGE1_000__298, D000014__177, SD1_5__1, D000013__161, SD1_5__2, D000012__179, HQD_5__2, D000017__178, -CV01_5, D000080__2, EDGE1_000__299, D01A_000__150, EDGE2_000__299, D000018__299, EDGE3_000__299, -D23_000__150, EDGE3_000__300, D000018__300, EDGE2_000__300, D01B_000__150, EDGE1_000__300, D000014__178, -SF1_5__1, D000013__162, SF1_5__2, D000012__180, HQF_5__3, D000017__179, CH02_5, D000080__3, -EDGE1_000__301, D01A_000__151, EDGE2_000__301, D000018__301, EDGE3_000__301, D23_000__151, -EDGE3_000__302, D000018__302, EDGE2_000__302, D01B_000__151, EDGE1_000__302, D000014__179, SD2_5__1, -D000013__163, SD2_5__2, D000012__181, HQD_5__3, D000017__180, CV02_5, D000080__4, EDGE1_000__303, -D01A_000__152, EDGE2_000__303, D000018__303, EDGE3_000__303, D23_000__152, EDGE3_000__304, D000018__304, -EDGE2_000__304, D01B_000__152, EDGE1_000__304, D000014__180, SF2_5__1, D000013__164, SF2_5__2, -D000012__182, HQF_5__4, D000017__181, CH03_5, D000080__5, EDGE1_000__305, D01A_000__153, EDGE2_000__305, -D000018__305, EDGE3_000__305, D23_000__153, EDGE3_000__306, D000018__306, EDGE2_000__306, D01B_000__153, -EDGE1_000__306, D000014__181, SD1_5__3, D000013__165, SD1_5__4, D000012__183, HQD_5__4, D000017__182, -CV03_5, D000080__6, EDGE1_000__307, D01A_000__154, EDGE2_000__307, D000018__307, EDGE3_000__307, -D23_000__154, EDGE3_000__308, D000018__308, EDGE2_000__308, D01B_000__154, EDGE1_000__308, D000014__182, -SF1_5__3, D000013__166, SF1_5__4, D000012__184, HQF_5__5, D000017__183, CH04_5, D000080__7, -EDGE1_000__309, D01A_000__155, EDGE2_000__309, D000018__309, EDGE3_000__309, D23_000__155, -EDGE3_000__310, D000018__310, EDGE2_000__310, D01B_000__155, EDGE1_000__310, D000014__183, SD2_5__3, -D000013__167, SD2_5__4, D000012__185, HQD_5__5, D000017__184, CV04_5, D000080__8, EDGE1_000__311, -D01A_000__156, EDGE2_000__311, D000018__311, EDGE3_000__311, D23_000__156, EDGE3_000__312, D000018__312, -EDGE2_000__312, D01B_000__156, EDGE1_000__312, D000014__184, SF2_5__3, D000013__168, SF2_5__4, -D000012__186, HQF_5__6, D000017__185, CH05_5, D000080__9, EDGE1_000__313, D01A_000__157, EDGE2_000__313, -D000018__313, EDGE3_000__313, D23_000__157, EDGE3_000__314, D000018__314, EDGE2_000__314, D01B_000__157, -EDGE1_000__314, D000014__185, SD1_5__5, D000013__169, SD1_5__6, D000012__187, HQD_5__6, D000017__186, -CV05_5, D000080__10, EDGE1_000__315, D01A_000__158, EDGE2_000__315, D000018__315, EDGE3_000__315, -D23_000__158, EDGE3_000__316, D000018__316, EDGE2_000__316, D01B_000__158, EDGE1_000__316, D000014__186, -SF1_5__5, D000013__170, SF1_5__6, D000012__188, HQF_5__7, D000017__187, CH06_5, D000080__11, -EDGE1_000__317, D01A_000__159, EDGE2_000__317, D000018__317, EDGE3_000__317, D23_000__159, -EDGE3_000__318, D000018__318, EDGE2_000__318, D01B_000__159, EDGE1_000__318, D000014__187, SD2_5__5, -D000013__171, SD2_5__6, D000012__189, HQD_5__7, D000017__188, CV06_5, D000080__12, EDGE1_000__319, -D01A_000__160, EDGE2_000__319, D000018__319, EDGE3_000__319, D23_000__160, EDGE3_000__320, D000018__320, -EDGE2_000__320, D01B_000__160, EDGE1_000__320, D000014__188, SF2_5__5, D000013__172, SF2_5__6, -D000012__190, HQF_5__8, D000017__189, CH07_5, D000080__13, EDGE1_000__321, D01A_000__161, -EDGE2_000__321, D000018__321, EDGE3_000__321, D23_000__161, EDGE3_000__322, D000018__322, -EDGE2_000__322, D01B_000__161, EDGE1_000__322, D000014__189, SD1_5__7, D000013__173, SD1_5__8, -D000012__191, HQD_5__8, D000017__190, CV07_5, D000080__14, EDGE1_000__323, D01A_000__162, -EDGE2_000__323, D000018__323, EDGE3_000__323, D23_000__162, EDGE3_000__324, D000018__324, -EDGE2_000__324, D01B_000__162, EDGE1_000__324, D000014__190, SF1_5__7, D000013__174, SF1_5__8, -D000012__192, HQF_5__9, D000017__191, CH08_5, D000080__15, EDGE1_000__325, D01A_000__163, -EDGE2_000__325, D000018__325, EDGE3_000__325, D23_000__163, EDGE3_000__326, D000018__326, -EDGE2_000__326, D01B_000__163, EDGE1_000__326, D000014__191, SD2_5__7, D000013__175, SD2_5__8, -D000012__193, HQD_5__9, D000017__192, CV08_5, D000080__16, EDGE1_000__327, D01A_000__164, -EDGE2_000__327, D000018__327, EDGE3_000__327, D23_000__164, EDGE3_000__328, D000018__328, -EDGE2_000__328, D01B_000__164, EDGE1_000__328, D000014__192, SF2_5__7, D000013__176, SF2_5__8, -D000012__194, HQF_5__10, D000017__193, CH09_5, D000080__17, EDGE1_000__329, D01A_000__165, -EDGE2_000__329, D000018__329, EDGE3_000__329, D23_000__165, EDGE3_000__330, D000018__330, -EDGE2_000__330, D01B_000__165, EDGE1_000__330, D000014__193, SD1_5__9, D000013__177, SD1_5__10, -D000012__195, HQD_5__10, D000017__194, CV09_5, D000080__18, EDGE1_000__331, D01A_000__166, -EDGE2_000__331, D000018__331, EDGE3_000__331, D23_000__166, EDGE3_000__332, D000018__332, -EDGE2_000__332, D01B_000__166, EDGE1_000__332, D000014__194, SF1_5__9, D000013__178, SF1_5__10, -D000012__196, HQF_5__11, D000017__195, CH10_5, D000080__19, EDGE1_000__333, D01A_000__167, -EDGE2_000__333, D000018__333, EDGE3_000__333, D23_000__167, EDGE3_000__334, D000018__334, -EDGE2_000__334, D01B_000__167, EDGE1_000__334, D000014__195, SD2_5__9, D000013__179, SD2_5__10, -D000012__197, HQD_5__11, D000017__196, CV10_5, D000080__20, EDGE1_000__335, D01A_000__168, -EDGE2_000__335, D000018__335, EDGE3_000__335, D23_000__168, EDGE3_000__336, D000018__336, -EDGE2_000__336, D01B_000__168, EDGE1_000__336, D000014__196, SF2_5__9, D000013__180, SF2_5__10, -D000012__198, HQF_5__12, D000017__197, CH11_5, D000080__21, EDGE1_000__337, D01A_000__169, -EDGE2_000__337, D000018__337, EDGE3_000__337, D23_000__169, EDGE3_000__338, D000018__338, -EDGE2_000__338, D01B_000__169, EDGE1_000__338, D000014__197, SD1_5__11, D000013__181, SD1_5__12, -D000012__199, HQD_5__12, D000017__198, CV11_5, D000080__22, EDGE1_000__339, D01A_000__170, -EDGE2_000__339, D000018__339, EDGE3_000__339, D23_000__170, EDGE3_000__340, D000018__340, -EDGE2_000__340, D01B_000__170, EDGE1_000__340, D000014__198, SF1_5__11, D000013__182, SF1_5__12, -D000012__200, HQF_5__13, D000017__199, CH12_5, D000080__23, EDGE1_000__341, D01A_000__171, -EDGE2_000__341, D000018__341, EDGE3_000__341, D23_000__171, EDGE3_000__342, D000018__342, -EDGE2_000__342, D01B_000__171, EDGE1_000__342, D000014__199, SD2_5__11, D000013__183, SD2_5__12, -D000012__201, HQD_5__13, D000017__200, CV12_5, D000080__24, EDGE1_000__343, D01A_000__172, -EDGE2_000__343, D000018__343, EDGE3_000__343, D23_000__172, EDGE3_000__344, D000018__344, -EDGE2_000__344, D01B_000__172, EDGE1_000__344, D000014__200, SF2_5__11, D000013__184, SF2_5__12, -D000012__202, HQF_5__14, D000017__201, CH13_5, D000080__25, EDGE1_000__345, D01A_000__173, -EDGE2_000__345, D000018__345, EDGE3_000__345, D23_000__173, EDGE3_000__346, D000018__346, -EDGE2_000__346, D01B_000__173, EDGE1_000__346, D000014__201, SD1_5__13, D000013__185, SD1_5__14, -D000012__203, HQD_5__14, D000017__202, CV13_5, D000080__26, EDGE1_000__347, D01A_000__174, -EDGE2_000__347, D000018__347, EDGE3_000__347, D23_000__174, EDGE3_000__348, D000018__348, -EDGE2_000__348, D01B_000__174, EDGE1_000__348, D000014__202, SF1_5__13, D000013__186, SF1_5__14, -D000012__204, HQF_5__15, D000017__203, CH14_5, D000080__27, EDGE1_000__349, D01A_000__175, -EDGE2_000__349, D000018__349, EDGE3_000__349, D23_000__175, EDGE3_000__350, D000018__350, -EDGE2_000__350, D01B_000__175, EDGE1_000__350, D000014__203, SD2_5__13, D000013__187, SD2_5__14, -D000012__205, HQD_5__15, D000017__204, CV14_5, D000080__28, EDGE1_000__351, D01A_000__176, -EDGE2_000__351, D000018__351, EDGE3_000__351, D23_000__176, EDGE3_000__352, D000018__352, -EDGE2_000__352, D01B_000__176, EDGE1_000__352, D000014__204, SF2_5__13, D000013__188, SF2_5__14, -D000012__206, HQF_5C, D000017__205, CH15_5, D000080__29, EDGE1_001__1, D01A_001__1, EDGE2_001__1, -D000029__9, EDGE3_001__1, D23_001__1, EDGE3_001__2, D000029__10, EDGE2_001__2, D01B_001__1, -EDGE1_001__2, D000014__205, SD1_5__15, D000013__189, SD1_5__16, D000012__207, HQD_5C, D000017__206, -CV15_5, D000080__30, EDGE1_001__3, D01A_001__2, EDGE2_001__3, D000029__11, EDGE3_001__3, D23_001__2, -EDGE3_001__4, D000029__12, EDGE2_001__4, D01B_001__2, EDGE1_001__4, D000014__206, SF1_5__15, -D000013__190, SF1_5__16, D000012__208, HQF_5B, D000017__207, CH16_5, D000080__31, EDGE1_001__5, -D01A_001__3, EDGE2_001__5, D000029__13, EDGE3_001__5, D23_001__3, EDGE3_001__6, D000029__14, -EDGE2_001__6, D01B_001__3, EDGE1_001__6, D000014__207, SD2_5__15, D000013__191, SD2_5__16, D000012__209, -HQD_5B, D000017__208, CV16_5, D000080__32, EDGE1_001__7, D01A_001__4, EDGE2_001__7, D000029__15, -EDGE3_001__7, D23_001__4, EDGE3_001__8, D000029__16, EDGE2_001__8, D01B_001__4, EDGE1_001__8, -D000014__208, SF2_5__15, D000013__192, SF2_5__16, D000012__210, HQF_5A, D000011__4, HQD_5A, D000008__25, -MROT1__4, HSOL5_6__3, D000008__26, HQSS1_5, D000009__31, HQSS2_5, D000009__32, HQSS3_5, D000009__33, -HQSS4_5, D000009__34, HQSS5_5, D000008__27, HSOL5_6__4, MROT2__4, D000008__28, HQFF1_5, D000081__1, -DB23_5__1, D000081__2, QFF2_5, D000081__3, DB23_5__2, D000081__4, QFF3_5, D000081__5, DB23_5__3, -D000081__6, QFF4_5, D000081__7, DB23_5__4, D000081__8, HQFF5_5, D000081__9, DB23_5__5, D000081__10, -MFF_5, HQFF6_5, D000008__29, MROT3__4, HSOL20_6__3, D000008__30, HQLS1_5, D000009__35, HQLS2_5, -D000009__36, HQLS3_5, D000009__37, HQLS4_5, D000009__38, HQLS5_5, D000009__39, HQLS6_5, D000009__40, -HQLS7_5, D000008__31, HSOL20_6__4, MROT4__4, D000008__32, MLRF_6, Q12EF_6, D000006__30, D3EF_6__1, -D000006__31, Q11EF_6, D000006__32, D3EF_6__2, D000006__33, Q10EF_6, D000006__34, D3EF_6__3, D000006__35, -Q9EF_6, D000006__36, D3EF_6__4, D000006__37, Q8EF_6, D000005__15, Q7EF_6, D000005__16, Q6EF_6, -D000005__17, Q5EF_6, D000005__18, Q4EF_6, D000082, Q3EF_6, D000007__33, RF_CRAB__4, D000007__34, Q2EF_6, -D000006__38, D1EF_6, D000083, MCOLL_MASK, Q1EF_6, D000022__2, Q0EF_6, D000023__2, IP6__2], - R_ref=-59.52872449027632, species_ref=Species("electron")) +ring = Beamline( + [IP6__1, D000001__1, Q1ER_6, D000002__1, Q2ER_6, D000002__2, D2ER_6, D000003__1, Q3ER_6, + D000004, Q4ER_6, D000005__1, Q5ER_6, D000006__1, D3ER_6, D000006__2, Q6ER_6, D000005__2, Q7ER_6, + D000005__3, Q9ER_6, D000007__1, RF_CRAB__1, D000007__2, Q10ER_6, D000005__4, Q11ER_6, D000006__3, + D5ER_6__1, D000006__4, Q12ER_6, D000006__5, D5ER_6__2, D000006__6, Q13ER_6, D000006__7, D5ER_6__3, + D000006__8, Q14ER_6, D000006__9, D5ER_6__4, D000006__10, Q15ER_6, MLRR_6, D000008__1, MROT4__1, + HSOL20_6__1, D000008__2, HQLS7_6, D000009__1, HQLS6_6, D000009__2, HQLS5_6, D000009__3, HQLS4_6, + D000009__4, HQLS3_6, D000009__5, HQLS2_6, D000009__6, HQLS1_6, D000008__3, HSOL20_6__2, MROT3__1, + D000008__4, HQFF6_6, MFF_6, D000010__1, DB23_6__1, D000010__2, HQFF5_6, D000010__3, DB23_6__2, + D000010__4, QFF4_6, D000010__5, DB23_6__3, D000010__6, QFF3_6, D000010__7, DB23_6__4, D000010__8, + QFF2_6, D000010__9, DB23_6__5, D000010__10, QFF1_6, D000008__5, MROT2__1, HSOL5_6__1, D000008__6, + HQSS5_6, D000009__7, HQSS4_6, D000009__8, HQSS3_6, D000009__9, HQSS2_6, D000009__10, HQSS1_6, + D000008__7, HSOL5_6__2, MROT1__1, D000008__8, HQD_6A, D000011__1, HQF_6A, D000012__1, SF1_7__1, + D000013__1, SF1_7__2, D000014__1, EDGE1_002__1, D01A_002__1, EDGE2_002__1, D000015__1, EDGE3_002__1, + D23_002__1, EDGE3_002__2, D000015__2, EDGE2_002__2, D01B_002__1, EDGE1_002__2, D000016__1, CV01_7, + D000017__1, HQD_6B, D000012__2, SD1_7__1, D000013__2, SD1_7__2, D000014__2, EDGE1_002__3, D01A_002__2, + EDGE2_002__3, D000015__3, EDGE3_002__3, D23_002__2, EDGE3_002__4, D000015__4, EDGE2_002__4, D01B_002__2, + EDGE1_002__4, D000016__2, CH01_7, D000017__2, HQF_6B, D000012__3, SF2_7__1, D000013__3, SF2_7__2, + D000014__3, EDGE1_002__5, D01A_002__3, EDGE2_002__5, D000015__5, EDGE3_002__5, D23_002__3, EDGE3_002__6, + D000015__6, EDGE2_002__6, D01B_002__3, EDGE1_002__6, D000016__3, CV02_7, D000017__3, HQD_6C, D000012__4, + SD2_7__1, D000013__4, SD2_7__2, D000014__4, EDGE1_002__7, D01A_002__4, EDGE2_002__7, D000015__7, + EDGE3_002__7, D23_002__4, EDGE3_002__8, D000015__8, EDGE2_002__8, D01B_002__4, EDGE1_002__8, D000016__4, + CH02_7, D000017__4, HQF_6C, D000012__5, SF1_7__3, D000013__5, SF1_7__4, D000014__5, EDGE1_000__1, + D01A_000__1, EDGE2_000__1, D000018__1, EDGE3_000__1, D23_000__1, EDGE3_000__2, D000018__2, EDGE2_000__2, + D01B_000__1, EDGE1_000__2, D000016__5, CV03_7, D000017__5, HQD_7__1, D000012__6, SD1_7__3, D000013__6, + SD1_7__4, D000014__6, EDGE1_000__3, D01A_000__2, EDGE2_000__3, D000018__3, EDGE3_000__3, D23_000__2, + EDGE3_000__4, D000018__4, EDGE2_000__4, D01B_000__2, EDGE1_000__4, D000016__6, CH03_7, D000017__6, + HQF_7__1, D000012__7, SF2_7__3, D000013__7, SF2_7__4, D000014__7, EDGE1_000__5, D01A_000__3, + EDGE2_000__5, D000018__5, EDGE3_000__5, D23_000__3, EDGE3_000__6, D000018__6, EDGE2_000__6, D01B_000__3, + EDGE1_000__6, D000016__7, CV04_7, D000017__7, HQD_7__2, D000012__8, SD2_7__3, D000013__8, SD2_7__4, + D000014__8, EDGE1_000__7, D01A_000__4, EDGE2_000__7, D000018__7, EDGE3_000__7, D23_000__4, EDGE3_000__8, + D000018__8, EDGE2_000__8, D01B_000__4, EDGE1_000__8, D000016__8, CH04_7, D000017__8, HQF_7__2, + D000012__9, SF1_7__5, D000013__9, SF1_7__6, D000014__9, EDGE1_000__9, D01A_000__5, EDGE2_000__9, + D000018__9, EDGE3_000__9, D23_000__5, EDGE3_000__10, D000018__10, EDGE2_000__10, D01B_000__5, + EDGE1_000__10, D000016__9, CV05_7, D000017__9, HQD_7__3, D000012__10, SD1_7__5, D000013__10, SD1_7__6, + D000014__10, EDGE1_000__11, D01A_000__6, EDGE2_000__11, D000018__11, EDGE3_000__11, D23_000__6, + EDGE3_000__12, D000018__12, EDGE2_000__12, D01B_000__6, EDGE1_000__12, D000016__10, CH05_7, D000017__10, + HQF_7__3, D000012__11, SF2_7__5, D000013__11, SF2_7__6, D000014__11, EDGE1_000__13, D01A_000__7, + EDGE2_000__13, D000018__13, EDGE3_000__13, D23_000__7, EDGE3_000__14, D000018__14, EDGE2_000__14, + D01B_000__7, EDGE1_000__14, D000016__11, CV06_7, D000017__11, HQD_7__4, D000012__12, SD2_7__5, + D000013__12, SD2_7__6, D000014__12, EDGE1_000__15, D01A_000__8, EDGE2_000__15, D000018__15, + EDGE3_000__15, D23_000__8, EDGE3_000__16, D000018__16, EDGE2_000__16, D01B_000__8, EDGE1_000__16, + D000016__12, CH06_7, D000017__12, HQF_7__4, D000012__13, SF1_7__7, D000013__13, SF1_7__8, D000014__13, + EDGE1_000__17, D01A_000__9, EDGE2_000__17, D000018__17, EDGE3_000__17, D23_000__9, EDGE3_000__18, + D000018__18, EDGE2_000__18, D01B_000__9, EDGE1_000__18, D000016__13, CV07_7, D000017__13, HQD_7__5, + D000012__14, SD1_7__7, D000013__14, SD1_7__8, D000014__14, EDGE1_000__19, D01A_000__10, EDGE2_000__19, + D000018__19, EDGE3_000__19, D23_000__10, EDGE3_000__20, D000018__20, EDGE2_000__20, D01B_000__10, + EDGE1_000__20, D000016__14, CH07_7, D000017__14, HQF_7__5, D000012__15, SF2_7__7, D000013__15, SF2_7__8, + D000014__15, EDGE1_000__21, D01A_000__11, EDGE2_000__21, D000018__21, EDGE3_000__21, D23_000__11, + EDGE3_000__22, D000018__22, EDGE2_000__22, D01B_000__11, EDGE1_000__22, D000016__15, CV08_7, + D000017__15, HQD_7__6, D000012__16, SD2_7__7, D000013__16, SD2_7__8, D000014__16, EDGE1_000__23, + D01A_000__12, EDGE2_000__23, D000018__23, EDGE3_000__23, D23_000__12, EDGE3_000__24, D000018__24, + EDGE2_000__24, D01B_000__12, EDGE1_000__24, D000016__16, CH08_7, D000017__16, HQF_7__6, D000012__17, + SF1_7__9, D000013__17, SF1_7__10, D000014__17, EDGE1_000__25, D01A_000__13, EDGE2_000__25, D000018__25, + EDGE3_000__25, D23_000__13, EDGE3_000__26, D000018__26, EDGE2_000__26, D01B_000__13, EDGE1_000__26, + D000016__17, CV09_7, D000017__17, HQD_7__7, D000012__18, SD1_7__9, D000013__18, SD1_7__10, D000014__18, + EDGE1_000__27, D01A_000__14, EDGE2_000__27, D000018__27, EDGE3_000__27, D23_000__14, EDGE3_000__28, + D000018__28, EDGE2_000__28, D01B_000__14, EDGE1_000__28, D000016__18, CH09_7, D000017__18, HQF_7__7, + D000012__19, SF2_7__9, D000013__19, SF2_7__10, D000014__19, EDGE1_000__29, D01A_000__15, EDGE2_000__29, + D000018__29, EDGE3_000__29, D23_000__15, EDGE3_000__30, D000018__30, EDGE2_000__30, D01B_000__15, + EDGE1_000__30, D000016__19, CV10_7, D000017__19, HQD_7__8, D000012__20, SD2_7__9, D000013__20, + SD2_7__10, D000014__20, EDGE1_000__31, D01A_000__16, EDGE2_000__31, D000018__31, EDGE3_000__31, + D23_000__16, EDGE3_000__32, D000018__32, EDGE2_000__32, D01B_000__16, EDGE1_000__32, D000016__20, + CH10_7, D000017__20, HQF_7__8, D000012__21, SF1_7__11, D000013__21, SF1_7__12, D000014__21, + EDGE1_000__33, D01A_000__17, EDGE2_000__33, D000018__33, EDGE3_000__33, D23_000__17, EDGE3_000__34, + D000018__34, EDGE2_000__34, D01B_000__17, EDGE1_000__34, D000016__21, CV11_7, D000017__21, HQD_7__9, + D000012__22, SD1_7__11, D000013__22, SD1_7__12, D000014__22, EDGE1_000__35, D01A_000__18, EDGE2_000__35, + D000018__35, EDGE3_000__35, D23_000__18, EDGE3_000__36, D000018__36, EDGE2_000__36, D01B_000__18, + EDGE1_000__36, D000016__22, CH11_7, D000017__22, HQF_7__9, D000012__23, SF2_7__11, D000013__23, + SF2_7__12, D000014__23, EDGE1_000__37, D01A_000__19, EDGE2_000__37, D000018__37, EDGE3_000__37, + D23_000__19, EDGE3_000__38, D000018__38, EDGE2_000__38, D01B_000__19, EDGE1_000__38, D000016__23, + CV12_7, D000017__23, HQD_7__10, D000012__24, SD2_7__11, D000013__24, SD2_7__12, D000014__24, + EDGE1_000__39, D01A_000__20, EDGE2_000__39, D000018__39, EDGE3_000__39, D23_000__20, EDGE3_000__40, + D000018__40, EDGE2_000__40, D01B_000__20, EDGE1_000__40, D000016__24, CH12_7, D000017__24, HQF_7__10, + D000012__25, SF1_7__13, D000013__25, SF1_7__14, D000014__25, EDGE1_000__41, D01A_000__21, EDGE2_000__41, + D000018__41, EDGE3_000__41, D23_000__21, EDGE3_000__42, D000018__42, EDGE2_000__42, D01B_000__21, + EDGE1_000__42, D000016__25, CV13_7, D000017__25, HQD_7__11, D000012__26, SD1_7__13, D000013__26, + SD1_7__14, D000014__26, EDGE1_000__43, D01A_000__22, EDGE2_000__43, D000018__43, EDGE3_000__43, + D23_000__22, EDGE3_000__44, D000018__44, EDGE2_000__44, D01B_000__22, EDGE1_000__44, D000016__26, + CH13_7, D000017__26, HQF_7__11, D000012__27, SF2_7__13, D000013__27, SF2_7__14, D000014__27, + EDGE1_000__45, D01A_000__23, EDGE2_000__45, D000018__45, EDGE3_000__45, D23_000__23, EDGE3_000__46, + D000018__46, EDGE2_000__46, D01B_000__23, EDGE1_000__46, D000016__27, CV14_7, D000017__27, HQD_7__12, + D000012__28, SD2_7__13, D000013__28, SD2_7__14, D000014__28, EDGE1_000__47, D01A_000__24, EDGE2_000__47, + D000018__47, EDGE3_000__47, D23_000__24, EDGE3_000__48, D000018__48, EDGE2_000__48, D01B_000__24, + EDGE1_000__48, D000016__28, CH14_7, D000017__28, HQF_7C, D000012__29, SF1_7__15, D000013__29, SF1_7__16, + D000014__29, EDGE1_003__1, D01A_003__1, EDGE2_003__1, D000015__9, EDGE3_003__1, D23_003__1, + EDGE3_003__2, D000015__10, EDGE2_003__2, D01B_003__1, EDGE1_003__2, D000016__29, CV15_7, D000017__29, + HQD_7C, D000012__30, SD1_7__15, D000013__30, SD1_7__16, D000014__30, EDGE1_003__3, D01A_003__2, + EDGE2_003__3, D000015__11, EDGE3_003__3, D23_003__2, EDGE3_003__4, D000015__12, EDGE2_003__4, + D01B_003__2, EDGE1_003__4, D000016__30, CH15_7, D000017__30, HQF_7B, D000012__31, SF2_7__15, + D000013__31, SF2_7__16, D000014__31, EDGE1_003__5, D01A_003__3, EDGE2_003__5, D000015__13, EDGE3_003__5, + D23_003__3, EDGE3_003__6, D000015__14, EDGE2_003__6, D01B_003__3, EDGE1_003__6, D000016__31, CV16_7, + D000017__31, HQD_7B, D000012__32, SD2_7__15, D000013__32, SD2_7__16, D000014__32, EDGE1_003__7, + D01A_003__4, EDGE2_003__7, D000015__15, EDGE3_003__7, D23_003__4, EDGE3_003__8, D000015__16, + EDGE2_003__8, D01B_003__4, EDGE1_003__8, D000016__32, CH16_7, D000017__32, HQF_7A, D000011__2, HQD_7A, + D000008__9, MROT1__2, HSOL5_8__1, D000008__10, HQSS1_7, D000009__11, HQSS2_7, D000009__12, HQSS3_7, + D000009__13, HQSS4_7, D000009__14, HQSS5_7, D000008__11, HSOL5_8__2, MROT2__2, D000008__12, HQFF1_7, + D000019__1, DB23_7__1, D000019__2, QFF2_7, D000019__3, DB23_7__2, D000019__4, QFF3_7, D000019__5, + DB23_7__3, D000019__6, QFF4_7, D000019__7, DB23_7__4, D000019__8, HQFF5_7, D000019__9, DB23_7__5, + D000019__10, MFF_7, HQFF6_7, D000008__13, MROT3__2, HSOL20_8__1, D000008__14, HQLS1_7, D000009__15, + HQLS2_7, D000009__16, HQLS3_7, D000009__17, HQLS4_7, D000009__18, HQLS5_7, D000009__19, HQLS6_7, + D000009__20, HQLS7_7, D000008__15, HSOL20_8__2, MROT4__2, D000008__16, MLRF_8, Q14EF_8, D000006__11, + D3EF_8__1, D000006__12, Q13EF_8, D000006__13, D3EF_8__2, D000006__14, Q12EF_8, D000006__15, D3EF_8__3, + D000006__16, Q11EF_8, D000006__17, D2EF_8, D000006__18, Q10EF_8, D000005__5, Q9EF_8, D000005__6, Q8EF_8, + D000005__7, Q7EF_8, D000005__8, Q6EF_8, D000005__9, Q5EF_8, D000005__10, Q4EF_8, D000020, Q3EF_8, + D000007__3, RF_CRAB__2, D000007__4, Q2EF_8, D000006__19, D1EF_8__1, D000006__20, D1EF_8__2, D000021, + Q1EF_8, D000022__1, Q0EF_8, D000023__1, IP8, D000001__2, Q1ER_8, D000002__3, Q2ER_8, D000002__4, D2ER_8, + D000003__2, Q3ER_8, D000006__21, D3ER_8, D000024, Q4ER_8, D000025, Q5ER_8, D000026, Q6ER_8, D000005__11, + Q7ER_8, D000005__12, Q8ER_8, D000005__13, Q9ER_8, D000007__5, RF_CRAB__3, D000007__6, Q10ER_8, + D000005__14, Q11ER_8, D000006__22, D4ER_8, D000006__23, Q12ER_8, D000006__24, D5ER_8__1, D000006__25, + Q13ER_8, D000006__26, D5ER_8__2, D000006__27, Q14ER_8, D000006__28, D5ER_8__3, D000006__29, Q15ER_8, + MLRR_8, D000008__17, MROT4__3, HSOL20_8__3, D000008__18, HQLS7_8, D000009__21, HQLS6_8, D000009__22, + HQLS5_8, D000009__23, HQLS4_8, D000009__24, HQLS3_8, D000009__25, HQLS2_8, D000009__26, HQLS1_8, + D000008__19, HSOL20_8__4, MROT3__3, D000008__20, HQFF6_8, MFF_8, D000027__1, DB23_8__1, D000027__2, + HQFF5_8, D000027__3, DB23_8__2, D000027__4, QFF4_8, D000027__5, DB23_8__3, D000027__6, QFF3_8, + D000027__7, DB23_8__4, D000027__8, QFF2_8, D000027__9, DB23_8__5, D000027__10, QFF1_8, D000008__21, + MROT2__3, HSOL5_8__3, D000008__22, HQSS5_8, D000009__27, HQSS4_8, D000009__28, HQSS3_8, D000009__29, + HQSS2_8, D000009__30, HQSS1_8, D000008__23, HSOL5_8__4, MROT1__3, D000008__24, HQD_8A, D000011__3, + HQF_8A, D000017__33, CH01_9, D000028__1, EDGE1_004__1, D01A_004__1, EDGE2_004__1, D000029__1, + EDGE3_004__1, D23_004__1, EDGE3_004__2, D000029__2, EDGE2_004__2, D01B_004__1, EDGE1_004__2, + D000014__33, SD1_9__1, D000013__33, SD1_9__2, D000012__33, HQD_8B, D000017__34, CV01_9, D000028__2, + EDGE1_004__3, D01A_004__2, EDGE2_004__3, D000029__3, EDGE3_004__3, D23_004__2, EDGE3_004__4, D000029__4, + EDGE2_004__4, D01B_004__2, EDGE1_004__4, D000014__34, SF1_9__1, D000013__34, SF1_9__2, D000012__34, + HQF_8B, D000017__35, CH02_9, D000028__3, EDGE1_004__5, D01A_004__3, EDGE2_004__5, D000029__5, + EDGE3_004__5, D23_004__3, EDGE3_004__6, D000029__6, EDGE2_004__6, D01B_004__3, EDGE1_004__6, + D000014__35, SD2_9__1, D000013__35, SD2_9__2, D000012__35, HQD_8C, D000017__36, CV02_9, D000028__4, + EDGE1_004__7, D01A_004__4, EDGE2_004__7, D000029__7, EDGE3_004__7, D23_004__4, EDGE3_004__8, D000029__8, + EDGE2_004__8, D01B_004__4, EDGE1_004__8, D000014__36, SF2_9__1, D000013__36, SF2_9__2, D000012__36, + HQF_8C, D000017__37, CH03_9, D000028__5, EDGE1_000__49, D01A_000__25, EDGE2_000__49, D000018__49, + EDGE3_000__49, D23_000__25, EDGE3_000__50, D000018__50, EDGE2_000__50, D01B_000__25, EDGE1_000__50, + D000014__37, SD1_9__3, D000013__37, SD1_9__4, D000012__37, HQD_9__1, D000017__38, CV03_9, D000028__6, + EDGE1_000__51, D01A_000__26, EDGE2_000__51, D000018__51, EDGE3_000__51, D23_000__26, EDGE3_000__52, + D000018__52, EDGE2_000__52, D01B_000__26, EDGE1_000__52, D000014__38, SF1_9__3, D000013__38, SF1_9__4, + D000012__38, HQF_9__1, D000017__39, CH04_9, D000028__7, EDGE1_000__53, D01A_000__27, EDGE2_000__53, + D000018__53, EDGE3_000__53, D23_000__27, EDGE3_000__54, D000018__54, EDGE2_000__54, D01B_000__27, + EDGE1_000__54, D000014__39, SD2_9__3, D000013__39, SD2_9__4, D000012__39, HQD_9__2, D000017__40, CV04_9, + D000028__8, EDGE1_000__55, D01A_000__28, EDGE2_000__55, D000018__55, EDGE3_000__55, D23_000__28, + EDGE3_000__56, D000018__56, EDGE2_000__56, D01B_000__28, EDGE1_000__56, D000014__40, SF2_9__3, + D000013__40, SF2_9__4, D000012__40, HQF_9__2, D000017__41, CH05_9, D000028__9, EDGE1_000__57, + D01A_000__29, EDGE2_000__57, D000018__57, EDGE3_000__57, D23_000__29, EDGE3_000__58, D000018__58, + EDGE2_000__58, D01B_000__29, EDGE1_000__58, D000014__41, SD1_9__5, D000013__41, SD1_9__6, D000012__41, + HQD_9__3, D000017__42, CV05_9, D000028__10, EDGE1_000__59, D01A_000__30, EDGE2_000__59, D000018__59, + EDGE3_000__59, D23_000__30, EDGE3_000__60, D000018__60, EDGE2_000__60, D01B_000__30, EDGE1_000__60, + D000014__42, SF1_9__5, D000013__42, SF1_9__6, D000012__42, HQF_9__3, D000017__43, CH06_9, D000028__11, + EDGE1_000__61, D01A_000__31, EDGE2_000__61, D000018__61, EDGE3_000__61, D23_000__31, EDGE3_000__62, + D000018__62, EDGE2_000__62, D01B_000__31, EDGE1_000__62, D000014__43, SD2_9__5, D000013__43, SD2_9__6, + D000012__43, HQD_9__4, D000017__44, CV06_9, D000028__12, EDGE1_000__63, D01A_000__32, EDGE2_000__63, + D000018__63, EDGE3_000__63, D23_000__32, EDGE3_000__64, D000018__64, EDGE2_000__64, D01B_000__32, + EDGE1_000__64, D000014__44, SF2_9__5, D000013__44, SF2_9__6, D000012__44, HQF_9__4, D000017__45, CH07_9, + D000028__13, EDGE1_000__65, D01A_000__33, EDGE2_000__65, D000018__65, EDGE3_000__65, D23_000__33, + EDGE3_000__66, D000018__66, EDGE2_000__66, D01B_000__33, EDGE1_000__66, D000014__45, SD1_9__7, + D000013__45, SD1_9__8, D000012__45, HQD_9__5, D000017__46, CV07_9, D000028__14, EDGE1_000__67, + D01A_000__34, EDGE2_000__67, D000018__67, EDGE3_000__67, D23_000__34, EDGE3_000__68, D000018__68, + EDGE2_000__68, D01B_000__34, EDGE1_000__68, D000014__46, SF1_9__7, D000013__46, SF1_9__8, D000012__46, + HQF_9__5, D000017__47, CH08_9, D000028__15, EDGE1_000__69, D01A_000__35, EDGE2_000__69, D000018__69, + EDGE3_000__69, D23_000__35, EDGE3_000__70, D000018__70, EDGE2_000__70, D01B_000__35, EDGE1_000__70, + D000014__47, SD2_9__7, D000013__47, SD2_9__8, D000012__47, HQD_9__6, D000017__48, CV08_9, D000028__16, + EDGE1_000__71, D01A_000__36, EDGE2_000__71, D000018__71, EDGE3_000__71, D23_000__36, EDGE3_000__72, + D000018__72, EDGE2_000__72, D01B_000__36, EDGE1_000__72, D000014__48, SF2_9__7, D000013__48, SF2_9__8, + D000012__48, HQF_9__6, D000017__49, CH09_9, D000028__17, EDGE1_000__73, D01A_000__37, EDGE2_000__73, + D000018__73, EDGE3_000__73, D23_000__37, EDGE3_000__74, D000018__74, EDGE2_000__74, D01B_000__37, + EDGE1_000__74, D000014__49, SD1_9__9, D000013__49, SD1_9__10, D000012__49, HQD_9__7, D000017__50, + CV09_9, D000028__18, EDGE1_000__75, D01A_000__38, EDGE2_000__75, D000018__75, EDGE3_000__75, + D23_000__38, EDGE3_000__76, D000018__76, EDGE2_000__76, D01B_000__38, EDGE1_000__76, D000014__50, + SF1_9__9, D000013__50, SF1_9__10, D000012__50, HQF_9__7, D000017__51, CH10_9, D000028__19, + EDGE1_000__77, D01A_000__39, EDGE2_000__77, D000018__77, EDGE3_000__77, D23_000__39, EDGE3_000__78, + D000018__78, EDGE2_000__78, D01B_000__39, EDGE1_000__78, D000014__51, SD2_9__9, D000013__51, SD2_9__10, + D000012__51, HQD_9__8, D000017__52, CV10_9, D000028__20, EDGE1_000__79, D01A_000__40, EDGE2_000__79, + D000018__79, EDGE3_000__79, D23_000__40, EDGE3_000__80, D000018__80, EDGE2_000__80, D01B_000__40, + EDGE1_000__80, D000014__52, SF2_9__9, D000013__52, SF2_9__10, D000012__52, HQF_9__8, D000017__53, + CH11_9, D000028__21, EDGE1_000__81, D01A_000__41, EDGE2_000__81, D000018__81, EDGE3_000__81, + D23_000__41, EDGE3_000__82, D000018__82, EDGE2_000__82, D01B_000__41, EDGE1_000__82, D000014__53, + SD1_9__11, D000013__53, SD1_9__12, D000012__53, HQD_9__9, D000017__54, CV11_9, D000028__22, + EDGE1_000__83, D01A_000__42, EDGE2_000__83, D000018__83, EDGE3_000__83, D23_000__42, EDGE3_000__84, + D000018__84, EDGE2_000__84, D01B_000__42, EDGE1_000__84, D000014__54, SF1_9__11, D000013__54, SF1_9__12, + D000012__54, HQF_9__9, D000017__55, CH12_9, D000028__23, EDGE1_000__85, D01A_000__43, EDGE2_000__85, + D000018__85, EDGE3_000__85, D23_000__43, EDGE3_000__86, D000018__86, EDGE2_000__86, D01B_000__43, + EDGE1_000__86, D000014__55, SD2_9__11, D000013__55, SD2_9__12, D000012__55, HQD_9__10, D000017__56, + CV12_9, D000028__24, EDGE1_000__87, D01A_000__44, EDGE2_000__87, D000018__87, EDGE3_000__87, + D23_000__44, EDGE3_000__88, D000018__88, EDGE2_000__88, D01B_000__44, EDGE1_000__88, D000014__56, + SF2_9__11, D000013__56, SF2_9__12, D000012__56, HQF_9__10, D000017__57, CH13_9, D000028__25, + EDGE1_000__89, D01A_000__45, EDGE2_000__89, D000018__89, EDGE3_000__89, D23_000__45, EDGE3_000__90, + D000018__90, EDGE2_000__90, D01B_000__45, EDGE1_000__90, D000014__57, SD1_9__13, D000013__57, SD1_9__14, + D000012__57, HQD_9__11, D000017__58, CV13_9, D000028__26, EDGE1_000__91, D01A_000__46, EDGE2_000__91, + D000018__91, EDGE3_000__91, D23_000__46, EDGE3_000__92, D000018__92, EDGE2_000__92, D01B_000__46, + EDGE1_000__92, D000014__58, SF1_9__13, D000013__58, SF1_9__14, D000012__58, HQF_9__11, D000017__59, + CH14_9, D000028__27, EDGE1_000__93, D01A_000__47, EDGE2_000__93, D000018__93, EDGE3_000__93, + D23_000__47, EDGE3_000__94, D000018__94, EDGE2_000__94, D01B_000__47, EDGE1_000__94, D000014__59, + SD2_9__13, D000013__59, SD2_9__14, D000012__59, HQD_9__12, D000017__60, CV14_9, D000028__28, + EDGE1_000__95, D01A_000__48, EDGE2_000__95, D000018__95, EDGE3_000__95, D23_000__48, EDGE3_000__96, + D000018__96, EDGE2_000__96, D01B_000__48, EDGE1_000__96, D000014__60, SF2_9__13, D000013__60, SF2_9__14, + D000012__60, HQF_9__12, D000017__61, CH15_9, D000028__29, EDGE1_000__97, D01A_000__49, EDGE2_000__97, + D000018__97, EDGE3_000__97, D23_000__49, EDGE3_000__98, D000018__98, EDGE2_000__98, D01B_000__49, + EDGE1_000__98, D000014__61, SD1_9__15, D000013__61, SD1_9__16, D000012__61, HQD_9__13, D000017__62, + CV15_9, D000028__30, EDGE1_000__99, D01A_000__50, EDGE2_000__99, D000018__99, EDGE3_000__99, + D23_000__50, EDGE3_000__100, D000018__100, EDGE2_000__100, D01B_000__50, EDGE1_000__100, D000014__62, + SF1_9__15, D000013__62, SF1_9__16, D000012__62, HQF_9__13, D000017__63, CH16_9, D000028__31, + EDGE1_000__101, D01A_000__51, EDGE2_000__101, D000018__101, EDGE3_000__101, D23_000__51, EDGE3_000__102, + D000018__102, EDGE2_000__102, D01B_000__51, EDGE1_000__102, D000014__63, SD2_9__15, D000013__63, + SD2_9__16, D000012__63, HQD_9__14, D000017__64, CV16_9, D000028__32, EDGE1_000__103, D01A_000__52, + EDGE2_000__103, D000018__103, EDGE3_000__103, D23_000__52, EDGE3_000__104, D000018__104, EDGE2_000__104, + D01B_000__52, EDGE1_000__104, D000014__64, SF2_9__15, D000013__64, SF2_9__16, D000012__64, HQF_9__14, + D000017__65, CH17_9, D000030__1, DB23_9__1, D000014__65, SD17_9, D000012__65, HQD_9__15, D000017__66, + CV17_9, D000030__2, DB23_9__2, D000014__66, SF17_9, D000012__66, HQF_9__15, D000031__1, HQM22_9, + D000031__2, HQM21_9, D000032__1, DB23_9__3, D000032__2, HQM20_9, D000032__3, DB23_9__4, D000032__4, + HQM19_9, D000033__1, HQM18_9, D000033__2, HQM17_9, D000033__3, HQM16_9, D000033__4, HQM15_9, D000033__5, + HQM14_9, D000033__6, HQM13_9, D000032__5, DB23_9__5, D000032__6, HQM12_9, D000032__7, DB23_9__6, + D000034, HQFSS_10__1, D000035__1, HQDSS_10__1, D000035__2, HQFSS_10__2, D000035__3, HQDSS_10__2, + D000036, HQFLSS_10__1, D000007__7, RF0__1, D000007__8, RF0__2, D000007__9, HQDLSS_10__1, D000007__10, + RF0__3, D000007__11, RF0__4, D000007__12, HQFLSS_10__2, D000007__13, RF0__5, D000007__14, RF0__6, + D000007__15, HQDLSS_10__2, D000007__16, RF0__7, D000007__17, RF0__8, D000007__18, HQFLSS_10__3, + D000007__19, RF0__9, D000037, RF0__10, D000007__20, HQDLSS_10__3, D000007__21, RF0__11, D000007__22, + RF0__12, D000007__23, HQFLSS_10__4, D000007__24, RF0__13, D000007__25, RF0__14, D000007__26, + HQDLSS_10__4, D000007__27, RF0__15, D000007__28, RF0__16, D000007__29, HQFLSS_10__5, D000007__30, + RF0__17, D000007__31, RF0__18, D000007__32, HQDLSS_10__5, D000035__4, HQFSS_10__3, D000035__5, + HQDSS_10__3, D000035__6, HQFSS_10__4, D000035__7, HQDSS_10__4, D000038, DB23_10__1, D000032__8, + HQM12_10, D000032__9, DB23_10__2, D000032__10, HQM13_10, D000039__1, HQM14_10, D000039__2, HQM15_10, + D000039__3, HQM16_10, D000039__4, HQM17_10, D000039__5, HQM18_10, D000039__6, HQM19_10, D000039__7, + HQM20_10, D000032__11, DB23_10__3, D000032__12, HQM21_10, D000032__13, DB23_10__4, D000032__14, + HQM22_10, D000040, HQF_11__1, D000012__67, SF00_11, D000014__67, DB23_10__5, D000041__1, CV00_11, + D000017__67, HQD_11__1, D000012__68, SD00_11, D000014__68, DB23_10__6, D000041__2, CH00_11, D000017__68, + HQF_11__2, D000012__69, SF1_1__1, D000013__65, SF1_1__2, D000014__69, EDGE1_000__105, D01A_000__53, + EDGE2_000__105, D000018__105, EDGE3_000__105, D23_000__53, EDGE3_000__106, D000018__106, EDGE2_000__106, + D01B_000__53, EDGE1_000__106, D000042__1, CV01_11, D000017__69, HQD_11__2, D000012__70, SD1_1__1, + D000013__66, SD1_1__2, D000014__70, EDGE1_000__107, D01A_000__54, EDGE2_000__107, D000018__107, + EDGE3_000__107, D23_000__54, EDGE3_000__108, D000018__108, EDGE2_000__108, D01B_000__54, EDGE1_000__108, + D000042__2, CH01_11, D000017__70, HQF_11__3, D000012__71, SF2_1__1, D000013__67, SF2_1__2, D000014__71, + EDGE1_000__109, D01A_000__55, EDGE2_000__109, D000018__109, EDGE3_000__109, D23_000__55, EDGE3_000__110, + D000018__110, EDGE2_000__110, D01B_000__55, EDGE1_000__110, D000042__3, CV02_11, D000017__71, HQD_11__3, + D000012__72, SD2_1__1, D000013__68, SD2_1__2, D000014__72, EDGE1_000__111, D01A_000__56, EDGE2_000__111, + D000018__111, EDGE3_000__111, D23_000__56, EDGE3_000__112, D000018__112, EDGE2_000__112, D01B_000__56, + EDGE1_000__112, D000042__4, CH02_11, D000017__72, HQF_11__4, D000012__73, SF1_1__3, D000013__69, + SF1_1__4, D000014__73, EDGE1_000__113, D01A_000__57, EDGE2_000__113, D000018__113, EDGE3_000__113, + D23_000__57, EDGE3_000__114, D000018__114, EDGE2_000__114, D01B_000__57, EDGE1_000__114, D000042__5, + CV03_11, D000017__73, HQD_11__4, D000012__74, SD1_1__3, D000013__70, SD1_1__4, D000014__74, + EDGE1_000__115, D01A_000__58, EDGE2_000__115, D000018__115, EDGE3_000__115, D23_000__58, EDGE3_000__116, + D000018__116, EDGE2_000__116, D01B_000__58, EDGE1_000__116, D000042__6, CH03_11, D000017__74, HQF_11__5, + D000012__75, SF2_1__3, D000013__71, SF2_1__4, D000014__75, EDGE1_000__117, D01A_000__59, EDGE2_000__117, + D000018__117, EDGE3_000__117, D23_000__59, EDGE3_000__118, D000018__118, EDGE2_000__118, D01B_000__59, + EDGE1_000__118, D000042__7, CV04_11, D000017__75, HQD_11__5, D000012__76, SD2_1__3, D000013__72, + SD2_1__4, D000014__76, EDGE1_000__119, D01A_000__60, EDGE2_000__119, D000018__119, EDGE3_000__119, + D23_000__60, EDGE3_000__120, D000018__120, EDGE2_000__120, D01B_000__60, EDGE1_000__120, D000042__8, + CH04_11, D000017__76, HQF_11__6, D000012__77, SF1_1__5, D000013__73, SF1_1__6, D000014__77, + EDGE1_000__121, D01A_000__61, EDGE2_000__121, D000018__121, EDGE3_000__121, D23_000__61, EDGE3_000__122, + D000018__122, EDGE2_000__122, D01B_000__61, EDGE1_000__122, D000042__9, CV05_11, D000017__77, HQD_11__6, + D000012__78, SD1_1__5, D000013__74, SD1_1__6, D000014__78, EDGE1_000__123, D01A_000__62, EDGE2_000__123, + D000018__123, EDGE3_000__123, D23_000__62, EDGE3_000__124, D000018__124, EDGE2_000__124, D01B_000__62, + EDGE1_000__124, D000042__10, CH05_11, D000017__78, HQF_11__7, D000012__79, SF2_1__5, D000013__75, + SF2_1__6, D000014__79, EDGE1_000__125, D01A_000__63, EDGE2_000__125, D000018__125, EDGE3_000__125, + D23_000__63, EDGE3_000__126, D000018__126, EDGE2_000__126, D01B_000__63, EDGE1_000__126, D000042__11, + CV06_11, D000017__79, HQD_11__7, D000012__80, SD2_1__5, D000013__76, SD2_1__6, D000014__80, + EDGE1_000__127, D01A_000__64, EDGE2_000__127, D000018__127, EDGE3_000__127, D23_000__64, EDGE3_000__128, + D000018__128, EDGE2_000__128, D01B_000__64, EDGE1_000__128, D000042__12, CH06_11, D000017__80, + HQF_11__8, D000012__81, SF1_1__7, D000013__77, SF1_1__8, D000014__81, EDGE1_000__129, D01A_000__65, + EDGE2_000__129, D000018__129, EDGE3_000__129, D23_000__65, EDGE3_000__130, D000018__130, EDGE2_000__130, + D01B_000__65, EDGE1_000__130, D000042__13, CV07_11, D000017__81, HQD_11__8, D000012__82, SD1_1__7, + D000013__78, SD1_1__8, D000014__82, EDGE1_000__131, D01A_000__66, EDGE2_000__131, D000018__131, + EDGE3_000__131, D23_000__66, EDGE3_000__132, D000018__132, EDGE2_000__132, D01B_000__66, EDGE1_000__132, + D000042__14, CH07_11, D000017__82, HQF_11__9, D000012__83, SF2_1__7, D000013__79, SF2_1__8, D000014__83, + EDGE1_000__133, D01A_000__67, EDGE2_000__133, D000018__133, EDGE3_000__133, D23_000__67, EDGE3_000__134, + D000018__134, EDGE2_000__134, D01B_000__67, EDGE1_000__134, D000042__15, CV08_11, D000017__83, + HQD_11__9, D000012__84, SD2_1__7, D000013__80, SD2_1__8, D000014__84, EDGE1_000__135, D01A_000__68, + EDGE2_000__135, D000018__135, EDGE3_000__135, D23_000__68, EDGE3_000__136, D000018__136, EDGE2_000__136, + D01B_000__68, EDGE1_000__136, D000042__16, CH08_11, D000017__84, HQF_11__10, D000012__85, SF1_1__9, + D000013__81, SF1_1__10, D000014__85, EDGE1_000__137, D01A_000__69, EDGE2_000__137, D000018__137, + EDGE3_000__137, D23_000__69, EDGE3_000__138, D000018__138, EDGE2_000__138, D01B_000__69, EDGE1_000__138, + D000042__17, CV09_11, D000017__85, HQD_11__10, D000012__86, SD1_1__9, D000013__82, SD1_1__10, + D000014__86, EDGE1_000__139, D01A_000__70, EDGE2_000__139, D000018__139, EDGE3_000__139, D23_000__70, + EDGE3_000__140, D000018__140, EDGE2_000__140, D01B_000__70, EDGE1_000__140, D000042__18, CH09_11, + D000017__86, HQF_11__11, D000012__87, SF2_1__9, D000013__83, SF2_1__10, D000014__87, EDGE1_000__141, + D01A_000__71, EDGE2_000__141, D000018__141, EDGE3_000__141, D23_000__71, EDGE3_000__142, D000018__142, + EDGE2_000__142, D01B_000__71, EDGE1_000__142, D000042__19, CV10_11, D000017__87, HQD_11__11, + D000012__88, SD2_1__9, D000013__84, SD2_1__10, D000014__88, EDGE1_000__143, D01A_000__72, + EDGE2_000__143, D000018__143, EDGE3_000__143, D23_000__72, EDGE3_000__144, D000018__144, EDGE2_000__144, + D01B_000__72, EDGE1_000__144, D000042__20, CH10_11, D000017__88, HQF_11__12, D000012__89, SF1_1__11, + D000013__85, SF1_1__12, D000014__89, EDGE1_000__145, D01A_000__73, EDGE2_000__145, D000018__145, + EDGE3_000__145, D23_000__73, EDGE3_000__146, D000018__146, EDGE2_000__146, D01B_000__73, EDGE1_000__146, + D000042__21, CV11_11, D000017__89, HQD_11__12, D000012__90, SD1_1__11, D000013__86, SD1_1__12, + D000014__90, EDGE1_000__147, D01A_000__74, EDGE2_000__147, D000018__147, EDGE3_000__147, D23_000__74, + EDGE3_000__148, D000018__148, EDGE2_000__148, D01B_000__74, EDGE1_000__148, D000042__22, CH11_11, + D000017__90, HQF_11__13, D000012__91, SF2_1__11, D000013__87, SF2_1__12, D000014__91, EDGE1_000__149, + D01A_000__75, EDGE2_000__149, D000018__149, EDGE3_000__149, D23_000__75, EDGE3_000__150, D000018__150, + EDGE2_000__150, D01B_000__75, EDGE1_000__150, D000042__23, CV12_11, D000017__91, HQD_11__13, + D000012__92, SD2_1__11, D000013__88, SD2_1__12, D000014__92, EDGE1_000__151, D01A_000__76, + EDGE2_000__151, D000018__151, EDGE3_000__151, D23_000__76, EDGE3_000__152, D000018__152, EDGE2_000__152, + D01B_000__76, EDGE1_000__152, D000042__24, CH12_11, D000017__92, HQF_11__14, D000012__93, SF1_1__13, + D000013__89, SF1_1__14, D000014__93, EDGE1_000__153, D01A_000__77, EDGE2_000__153, D000018__153, + EDGE3_000__153, D23_000__77, EDGE3_000__154, D000018__154, EDGE2_000__154, D01B_000__77, EDGE1_000__154, + D000042__25, CV13_11, D000017__93, HQD_11__14, D000012__94, SD1_1__13, D000013__90, SD1_1__14, + D000014__94, EDGE1_000__155, D01A_000__78, EDGE2_000__155, D000018__155, EDGE3_000__155, D23_000__78, + EDGE3_000__156, D000018__156, EDGE2_000__156, D01B_000__78, EDGE1_000__156, D000042__26, CH13_11, + D000017__94, HQF_11__15, D000012__95, SF2_1__13, D000013__91, SF2_1__14, D000014__95, EDGE1_000__157, + D01A_000__79, EDGE2_000__157, D000018__157, EDGE3_000__157, D23_000__79, EDGE3_000__158, D000018__158, + EDGE2_000__158, D01B_000__79, EDGE1_000__158, D000042__27, CV14_11, D000017__95, HQD_11__15, + D000012__96, SD2_1__13, D000013__92, SD2_1__14, D000014__96, EDGE1_000__159, D01A_000__80, + EDGE2_000__159, D000018__159, EDGE3_000__159, D23_000__80, EDGE3_000__160, D000018__160, EDGE2_000__160, + D01B_000__80, EDGE1_000__160, D000042__28, CH14_11, D000017__96, HQF_11__16, D000012__97, SF1_1__15, + D000013__93, SF1_1__16, D000014__97, EDGE1_000__161, D01A_000__81, EDGE2_000__161, D000018__161, + EDGE3_000__161, D23_000__81, EDGE3_000__162, D000018__162, EDGE2_000__162, D01B_000__81, EDGE1_000__162, + D000042__29, CV15_11, D000017__97, HQD_11__16, D000012__98, SD1_1__15, D000013__94, SD1_1__16, + D000014__98, EDGE1_000__163, D01A_000__82, EDGE2_000__163, D000018__163, EDGE3_000__163, D23_000__82, + EDGE3_000__164, D000018__164, EDGE2_000__164, D01B_000__82, EDGE1_000__164, D000042__30, CH15_11, + D000017__98, HQF_11__17, D000012__99, SF2_1__15, D000013__95, SF2_1__16, D000014__99, EDGE1_000__165, + D01A_000__83, EDGE2_000__165, D000018__165, EDGE3_000__165, D23_000__83, EDGE3_000__166, D000018__166, + EDGE2_000__166, D01B_000__83, EDGE1_000__166, D000042__31, CV16_11, D000017__99, HQD_11__17, + D000012__100, SD2_1__15, D000013__96, SD2_1__16, D000014__100, EDGE1_000__167, D01A_000__84, + EDGE2_000__167, D000018__167, EDGE3_000__167, D23_000__84, EDGE3_000__168, D000018__168, EDGE2_000__168, + D01B_000__84, EDGE1_000__168, D000042__32, CH16_11, D000017__100, HQF_11__18, D000012__101, SF17_11, + D000014__101, DB23_11__1, D000043__1, CV17_11, D000017__101, HQD_11__18, D000012__102, SD17_11, + D000014__102, DB23_11__2, D000043__2, CH17_11, D000017__102, HQF_11__19, D000012__103, SF18_11, + D000044__1, HQM22_11, D000044__2, HQM21_11, D000032__15, DB23_11__3, D000032__16, HQM20_11, D000032__17, + DB23_11__4, D000032__18, HQM19_11, D000045__1, HQM18_11, D000045__2, HQM17_11, D000045__3, HQM16_11, + D000045__4, HQM15_11, D000045__5, HQM14_11, D000045__6, HQM13_11, D000032__19, DB23_11__5, D000032__20, + HQM12_11, D000032__21, DB23_11__6, D000046__1, HQFSS_12__1, D000047__1, HQDSS_12__1, D000047__2, + HQFSS_12__2, D000047__3, HQDSS_12__2, D000046__2, DB12_4M__1, D000048__1, DB12_4M__2, D000048__2, + DB12_4M__3, D000049, HQFSS_12__3, D000047__4, HQDSS_12__3, D000047__5, HQFSS_12__4, D000050, IP12, + D000051, HQDSS_12__4, D000047__6, HQFSS_12__5, D000047__7, HQDSS_12__5, D000047__8, HQFSS_12__6, + D000052, DB12_4P__1, D000048__3, DB12_4P__2, D000048__4, DB12_4P__3, D000053__1, HQDSS_12__6, MKICK_INJ, + D000047__9, HQFSS_12__7, D000047__10, HQDSS_12__7, D000047__11, MCOLL_INJ, HQFSS_12__8, D000053__2, + DB23_12__1, D000032__22, HQM14_12, D000032__23, DB23_12__2, D000032__24, HQM15_12, D000054__1, HQM16_12, + D000054__2, HQM17_12, D000054__3, HQM18_12, D000054__4, HQM19_12, D000032__25, DB23_12__3, D000032__26, + HQM20_12, D000032__27, DB23_12__4, D000032__28, HQM21_12, D000055__1, HQM22_12, D000055__2, SFM1_1, + D000056__1, HQF_1__1, D000017__103, CH00_1, D000057__1, DB23_12__5, D000014__103, SD00_1, D000012__104, + HQD_1__1, D000017__104, CV00_1, D000057__2, DB23_12__6, D000014__104, SF00_1, D000012__105, HQF_1__2, + D000017__105, CH01_1, D000058__1, EDGE1_000__169, D01A_000__85, EDGE2_000__169, D000018__169, + EDGE3_000__169, D23_000__85, EDGE3_000__170, D000018__170, EDGE2_000__170, D01B_000__85, EDGE1_000__170, + D000014__105, SD1_1__17, D000013__97, SD1_1__18, D000012__106, HQD_1__2, D000017__106, CV01_1, + D000058__2, EDGE1_000__171, D01A_000__86, EDGE2_000__171, D000018__171, EDGE3_000__171, D23_000__86, + EDGE3_000__172, D000018__172, EDGE2_000__172, D01B_000__86, EDGE1_000__172, D000014__106, SF1_1__17, + D000013__98, SF1_1__18, D000012__107, HQF_1__3, D000017__107, CH02_1, D000058__3, EDGE1_000__173, + D01A_000__87, EDGE2_000__173, D000018__173, EDGE3_000__173, D23_000__87, EDGE3_000__174, D000018__174, + EDGE2_000__174, D01B_000__87, EDGE1_000__174, D000014__107, SD2_1__17, D000013__99, SD2_1__18, + D000012__108, HQD_1__3, D000017__108, CV02_1, D000058__4, EDGE1_000__175, D01A_000__88, EDGE2_000__175, + D000018__175, EDGE3_000__175, D23_000__88, EDGE3_000__176, D000018__176, EDGE2_000__176, D01B_000__88, + EDGE1_000__176, D000014__108, SF2_1__17, D000013__100, SF2_1__18, D000012__109, HQF_1__4, D000017__109, + CH03_1, D000058__5, EDGE1_000__177, D01A_000__89, EDGE2_000__177, D000018__177, EDGE3_000__177, + D23_000__89, EDGE3_000__178, D000018__178, EDGE2_000__178, D01B_000__89, EDGE1_000__178, D000014__109, + SD1_1__19, D000013__101, SD1_1__20, D000012__110, HQD_1__4, D000017__110, CV03_1, D000058__6, + EDGE1_000__179, D01A_000__90, EDGE2_000__179, D000018__179, EDGE3_000__179, D23_000__90, EDGE3_000__180, + D000018__180, EDGE2_000__180, D01B_000__90, EDGE1_000__180, D000014__110, SF1_1__19, D000013__102, + SF1_1__20, D000012__111, HQF_1__5, D000017__111, CH04_1, D000058__7, EDGE1_000__181, D01A_000__91, + EDGE2_000__181, D000018__181, EDGE3_000__181, D23_000__91, EDGE3_000__182, D000018__182, EDGE2_000__182, + D01B_000__91, EDGE1_000__182, D000014__111, SD2_1__19, D000013__103, SD2_1__20, D000012__112, HQD_1__5, + D000017__112, CV04_1, D000058__8, EDGE1_000__183, D01A_000__92, EDGE2_000__183, D000018__183, + EDGE3_000__183, D23_000__92, EDGE3_000__184, D000018__184, EDGE2_000__184, D01B_000__92, EDGE1_000__184, + D000014__112, SF2_1__19, D000013__104, SF2_1__20, D000012__113, HQF_1__6, D000017__113, CH05_1, + D000058__9, EDGE1_000__185, D01A_000__93, EDGE2_000__185, D000018__185, EDGE3_000__185, D23_000__93, + EDGE3_000__186, D000018__186, EDGE2_000__186, D01B_000__93, EDGE1_000__186, D000014__113, SD1_1__21, + D000013__105, SD1_1__22, D000012__114, HQD_1__6, D000017__114, CV05_1, D000058__10, EDGE1_000__187, + D01A_000__94, EDGE2_000__187, D000018__187, EDGE3_000__187, D23_000__94, EDGE3_000__188, D000018__188, + EDGE2_000__188, D01B_000__94, EDGE1_000__188, D000014__114, SF1_1__21, D000013__106, SF1_1__22, + D000012__115, HQF_1__7, D000017__115, CH06_1, D000058__11, EDGE1_000__189, D01A_000__95, EDGE2_000__189, + D000018__189, EDGE3_000__189, D23_000__95, EDGE3_000__190, D000018__190, EDGE2_000__190, D01B_000__95, + EDGE1_000__190, D000014__115, SD2_1__21, D000013__107, SD2_1__22, D000012__116, HQD_1__7, D000017__116, + CV06_1, D000058__12, EDGE1_000__191, D01A_000__96, EDGE2_000__191, D000018__191, EDGE3_000__191, + D23_000__96, EDGE3_000__192, D000018__192, EDGE2_000__192, D01B_000__96, EDGE1_000__192, D000014__116, + SF2_1__21, D000013__108, SF2_1__22, D000012__117, HQF_1__8, D000017__117, CH07_1, D000058__13, + EDGE1_000__193, D01A_000__97, EDGE2_000__193, D000018__193, EDGE3_000__193, D23_000__97, EDGE3_000__194, + D000018__194, EDGE2_000__194, D01B_000__97, EDGE1_000__194, D000014__117, SD1_1__23, D000013__109, + SD1_1__24, D000012__118, HQD_1__8, D000017__118, CV07_1, D000058__14, EDGE1_000__195, D01A_000__98, + EDGE2_000__195, D000018__195, EDGE3_000__195, D23_000__98, EDGE3_000__196, D000018__196, EDGE2_000__196, + D01B_000__98, EDGE1_000__196, D000014__118, SF1_1__23, D000013__110, SF1_1__24, D000012__119, HQF_1__9, + D000017__119, CH08_1, D000058__15, EDGE1_000__197, D01A_000__99, EDGE2_000__197, D000018__197, + EDGE3_000__197, D23_000__99, EDGE3_000__198, D000018__198, EDGE2_000__198, D01B_000__99, EDGE1_000__198, + D000014__119, SD2_1__23, D000013__111, SD2_1__24, D000012__120, HQD_1__9, D000017__120, CV08_1, + D000058__16, EDGE1_000__199, D01A_000__100, EDGE2_000__199, D000018__199, EDGE3_000__199, D23_000__100, + EDGE3_000__200, D000018__200, EDGE2_000__200, D01B_000__100, EDGE1_000__200, D000014__120, SF2_1__23, + D000013__112, SF2_1__24, D000012__121, HQF_1__10, D000017__121, CH09_1, D000058__17, EDGE1_000__201, + D01A_000__101, EDGE2_000__201, D000018__201, EDGE3_000__201, D23_000__101, EDGE3_000__202, D000018__202, + EDGE2_000__202, D01B_000__101, EDGE1_000__202, D000014__121, SD1_1__25, D000013__113, SD1_1__26, + D000012__122, HQD_1__10, D000017__122, CV09_1, D000058__18, EDGE1_000__203, D01A_000__102, + EDGE2_000__203, D000018__203, EDGE3_000__203, D23_000__102, EDGE3_000__204, D000018__204, + EDGE2_000__204, D01B_000__102, EDGE1_000__204, D000014__122, SF1_1__25, D000013__114, SF1_1__26, + D000012__123, HQF_1__11, D000017__123, CH10_1, D000058__19, EDGE1_000__205, D01A_000__103, + EDGE2_000__205, D000018__205, EDGE3_000__205, D23_000__103, EDGE3_000__206, D000018__206, + EDGE2_000__206, D01B_000__103, EDGE1_000__206, D000014__123, SD2_1__25, D000013__115, SD2_1__26, + D000012__124, HQD_1__11, D000017__124, CV10_1, D000058__20, EDGE1_000__207, D01A_000__104, + EDGE2_000__207, D000018__207, EDGE3_000__207, D23_000__104, EDGE3_000__208, D000018__208, + EDGE2_000__208, D01B_000__104, EDGE1_000__208, D000014__124, SF2_1__25, D000013__116, SF2_1__26, + D000012__125, HQF_1__12, D000017__125, CH11_1, D000058__21, EDGE1_000__209, D01A_000__105, + EDGE2_000__209, D000018__209, EDGE3_000__209, D23_000__105, EDGE3_000__210, D000018__210, + EDGE2_000__210, D01B_000__105, EDGE1_000__210, D000014__125, SD1_1__27, D000013__117, SD1_1__28, + D000012__126, HQD_1__12, D000017__126, CV11_1, D000058__22, EDGE1_000__211, D01A_000__106, + EDGE2_000__211, D000018__211, EDGE3_000__211, D23_000__106, EDGE3_000__212, D000018__212, + EDGE2_000__212, D01B_000__106, EDGE1_000__212, D000014__126, SF1_1__27, D000013__118, SF1_1__28, + D000012__127, HQF_1__13, D000017__127, CH12_1, D000058__23, EDGE1_000__213, D01A_000__107, + EDGE2_000__213, D000018__213, EDGE3_000__213, D23_000__107, EDGE3_000__214, D000018__214, + EDGE2_000__214, D01B_000__107, EDGE1_000__214, D000014__127, SD2_1__27, D000013__119, SD2_1__28, + D000012__128, HQD_1__13, D000017__128, CV12_1, D000058__24, EDGE1_000__215, D01A_000__108, + EDGE2_000__215, D000018__215, EDGE3_000__215, D23_000__108, EDGE3_000__216, D000018__216, + EDGE2_000__216, D01B_000__108, EDGE1_000__216, D000014__128, SF2_1__27, D000013__120, SF2_1__28, + D000012__129, HQF_1__14, D000017__129, CH13_1, D000058__25, EDGE1_000__217, D01A_000__109, + EDGE2_000__217, D000018__217, EDGE3_000__217, D23_000__109, EDGE3_000__218, D000018__218, + EDGE2_000__218, D01B_000__109, EDGE1_000__218, D000014__129, SD1_1__29, D000013__121, SD1_1__30, + D000012__130, HQD_1__14, D000017__130, CV13_1, D000058__26, EDGE1_000__219, D01A_000__110, + EDGE2_000__219, D000018__219, EDGE3_000__219, D23_000__110, EDGE3_000__220, D000018__220, + EDGE2_000__220, D01B_000__110, EDGE1_000__220, D000014__130, SF1_1__29, D000013__122, SF1_1__30, + D000012__131, HQF_1__15, D000017__131, CH14_1, D000058__27, EDGE1_000__221, D01A_000__111, + EDGE2_000__221, D000018__221, EDGE3_000__221, D23_000__111, EDGE3_000__222, D000018__222, + EDGE2_000__222, D01B_000__111, EDGE1_000__222, D000014__131, SD2_1__29, D000013__123, SD2_1__30, + D000012__132, HQD_1__15, D000017__132, CV14_1, D000058__28, EDGE1_000__223, D01A_000__112, + EDGE2_000__223, D000018__223, EDGE3_000__223, D23_000__112, EDGE3_000__224, D000018__224, + EDGE2_000__224, D01B_000__112, EDGE1_000__224, D000014__132, SF2_1__29, D000013__124, SF2_1__30, + D000012__133, HQF_1__16, D000017__133, CH15_1, D000058__29, EDGE1_000__225, D01A_000__113, + EDGE2_000__225, D000018__225, EDGE3_000__225, D23_000__113, EDGE3_000__226, D000018__226, + EDGE2_000__226, D01B_000__113, EDGE1_000__226, D000014__133, SD1_1__31, D000013__125, SD1_1__32, + D000012__134, HQD_1__16, D000017__134, CV15_1, D000058__30, EDGE1_000__227, D01A_000__114, + EDGE2_000__227, D000018__227, EDGE3_000__227, D23_000__114, EDGE3_000__228, D000018__228, + EDGE2_000__228, D01B_000__114, EDGE1_000__228, D000014__134, SF1_1__31, D000013__126, SF1_1__32, + D000012__135, HQF_1__17, D000017__135, CH16_1, D000058__31, EDGE1_000__229, D01A_000__115, + EDGE2_000__229, D000018__229, EDGE3_000__229, D23_000__115, EDGE3_000__230, D000018__230, + EDGE2_000__230, D01B_000__115, EDGE1_000__230, D000014__135, SD2_1__31, D000013__127, SD2_1__32, + D000012__136, HQD_1__17, D000017__136, CV16_1, D000058__32, EDGE1_000__231, D01A_000__116, + EDGE2_000__231, D000018__231, EDGE3_000__231, D23_000__116, EDGE3_000__232, D000018__232, + EDGE2_000__232, D01B_000__116, EDGE1_000__232, D000014__136, SF2_1__31, D000013__128, SF2_1__32, + D000012__137, HQF_1__18, D000017__137, CH17_1, D000057__3, DB23_1__1, D000014__137, SD17_1, + D000012__138, HQD_1__18, D000017__138, CV17_1, D000057__4, DB23_1__2, D000014__138, SF17_1, + D000012__139, HQF_1__19, D000059__1, HQM22_1, D000059__2, HQM21_1, D000059__3, HQM20_1, D000059__4, + HQM19_1, D000059__5, HQM18_1, D000032__29, DB23_1__3, D000032__30, HQM17_1, D000032__31, DB23_1__4, + D000032__32, HQM16_1, D000060__1, HQM15_1, D000060__2, HQM14_1, D000060__3, HQM13_1, D000032__33, + DB23_1__5, D000032__34, HQM12_1, D000032__35, DB23_1__6, D000061__1, HQDSS_2__1, D000062__1, SX41_2, + D000056__2, HQFSS_2__1, D000062__2, SX42_2, D000056__3, HQDSS_2__2, MCOLL_H1, D000062__3, SX43_2, + D000056__4, HQFSS_2__2, D000062__4, MCOLL_H2, SX44_2, D000056__5, HQDSS_2__3, D000062__5, SX45_2, + D000056__6, HQFSS_2__3, D000062__6, MCOLL_H3, SX46_2, D000056__7, HQDSS_2__4, D000063, IP2, D000064, + HQFSS_2__4, D000056__8, SX47_2, D000062__7, HQDSS_2__5, D000056__9, SX48_2, D000062__8, HQFSS_2__5, + D000056__10, SX49_2, D000062__9, HQDSS_2__6, D000056__11, SX50_2, MLAMB, D000062__10, HQFSS_2__6, + D000056__12, SX51_2, D000062__11, HQDSS_2__7, D000056__13, SX52_2, D000062__12, HQFSS_2__7, D000061__2, + DB23_2__1, D000032__36, HQM12_2, D000032__37, DB23_2__2, D000032__38, HQM13_2, D000065__1, HQM14_2, + D000065__2, HQM15_2, D000065__3, HQM16_2, D000032__39, DB23_2__3, D000032__40, HQM17_2, D000032__41, + DB23_2__4, D000032__42, HQM18_2, D000066__1, HQM19_2, D000066__2, HQM20_2, D000066__3, HQM21_2, + D000066__4, HQM22_2, D000066__5, HQF_3__1, D000012__140, SF00_3, D000014__139, DB23_2__5, D000067__1, + CV00_3, D000017__139, HQD_3__1, D000012__141, SD00_3, D000014__140, DB23_2__6, D000067__2, CH00_3, + D000017__140, HQF_3__2, D000012__142, SF1_1__33, D000013__129, SF1_1__34, D000014__141, EDGE1_000__233, + D01A_000__117, EDGE2_000__233, D000018__233, EDGE3_000__233, D23_000__117, EDGE3_000__234, D000018__234, + EDGE2_000__234, D01B_000__117, EDGE1_000__234, D000068__1, CV01_3, D000017__141, HQD_3__2, D000012__143, + SD1_1__33, D000013__130, SD1_1__34, D000014__142, EDGE1_000__235, D01A_000__118, EDGE2_000__235, + D000018__235, EDGE3_000__235, D23_000__118, EDGE3_000__236, D000018__236, EDGE2_000__236, D01B_000__118, + EDGE1_000__236, D000068__2, CH01_3, D000017__142, HQF_3__3, D000012__144, SF2_1__33, D000013__131, + SF2_1__34, D000014__143, EDGE1_000__237, D01A_000__119, EDGE2_000__237, D000018__237, EDGE3_000__237, + D23_000__119, EDGE3_000__238, D000018__238, EDGE2_000__238, D01B_000__119, EDGE1_000__238, D000068__3, + CV02_3, D000017__143, HQD_3__3, D000012__145, SD2_1__33, D000013__132, SD2_1__34, D000014__144, + EDGE1_000__239, D01A_000__120, EDGE2_000__239, D000018__239, EDGE3_000__239, D23_000__120, + EDGE3_000__240, D000018__240, EDGE2_000__240, D01B_000__120, EDGE1_000__240, D000068__4, CH02_3, + D000017__144, HQF_3__4, D000012__146, SF1_1__35, D000013__133, SF1_1__36, D000014__145, EDGE1_000__241, + D01A_000__121, EDGE2_000__241, D000018__241, EDGE3_000__241, D23_000__121, EDGE3_000__242, D000018__242, + EDGE2_000__242, D01B_000__121, EDGE1_000__242, D000068__5, CV03_3, D000017__145, HQD_3__4, D000012__147, + SD1_1__35, D000013__134, SD1_1__36, D000014__146, EDGE1_000__243, D01A_000__122, EDGE2_000__243, + D000018__243, EDGE3_000__243, D23_000__122, EDGE3_000__244, D000018__244, EDGE2_000__244, D01B_000__122, + EDGE1_000__244, D000068__6, CH03_3, D000017__146, HQF_3__5, D000012__148, SF2_1__35, D000013__135, + SF2_1__36, D000014__147, EDGE1_000__245, D01A_000__123, EDGE2_000__245, D000018__245, EDGE3_000__245, + D23_000__123, EDGE3_000__246, D000018__246, EDGE2_000__246, D01B_000__123, EDGE1_000__246, D000068__7, + CV04_3, D000017__147, HQD_3__5, D000012__149, SD2_1__35, D000013__136, SD2_1__36, D000014__148, + EDGE1_000__247, D01A_000__124, EDGE2_000__247, D000018__247, EDGE3_000__247, D23_000__124, + EDGE3_000__248, D000018__248, EDGE2_000__248, D01B_000__124, EDGE1_000__248, D000068__8, CH04_3, + D000017__148, HQF_3__6, D000012__150, SF1_1__37, D000013__137, SF1_1__38, D000014__149, EDGE1_000__249, + D01A_000__125, EDGE2_000__249, D000018__249, EDGE3_000__249, D23_000__125, EDGE3_000__250, D000018__250, + EDGE2_000__250, D01B_000__125, EDGE1_000__250, D000068__9, CV05_3, D000017__149, HQD_3__6, D000012__151, + SD1_1__37, D000013__138, SD1_1__38, D000014__150, EDGE1_000__251, D01A_000__126, EDGE2_000__251, + D000018__251, EDGE3_000__251, D23_000__126, EDGE3_000__252, D000018__252, EDGE2_000__252, D01B_000__126, + EDGE1_000__252, D000068__10, CH05_3, D000017__150, HQF_3__7, D000012__152, SF2_1__37, D000013__139, + SF2_1__38, D000014__151, EDGE1_000__253, D01A_000__127, EDGE2_000__253, D000018__253, EDGE3_000__253, + D23_000__127, EDGE3_000__254, D000018__254, EDGE2_000__254, D01B_000__127, EDGE1_000__254, D000068__11, + CV06_3, D000017__151, HQD_3__7, D000012__153, SD2_1__37, D000013__140, SD2_1__38, D000014__152, + EDGE1_000__255, D01A_000__128, EDGE2_000__255, D000018__255, EDGE3_000__255, D23_000__128, + EDGE3_000__256, D000018__256, EDGE2_000__256, D01B_000__128, EDGE1_000__256, D000068__12, CH06_3, + D000017__152, HQF_3__8, D000012__154, SF1_1__39, D000013__141, SF1_1__40, D000014__153, EDGE1_000__257, + D01A_000__129, EDGE2_000__257, D000018__257, EDGE3_000__257, D23_000__129, EDGE3_000__258, D000018__258, + EDGE2_000__258, D01B_000__129, EDGE1_000__258, D000068__13, CV07_3, D000017__153, HQD_3__8, + D000012__155, SD1_1__39, D000013__142, SD1_1__40, D000014__154, EDGE1_000__259, D01A_000__130, + EDGE2_000__259, D000018__259, EDGE3_000__259, D23_000__130, EDGE3_000__260, D000018__260, + EDGE2_000__260, D01B_000__130, EDGE1_000__260, D000068__14, CH07_3, D000017__154, HQF_3__9, + D000012__156, SF2_1__39, D000013__143, SF2_1__40, D000014__155, EDGE1_000__261, D01A_000__131, + EDGE2_000__261, D000018__261, EDGE3_000__261, D23_000__131, EDGE3_000__262, D000018__262, + EDGE2_000__262, D01B_000__131, EDGE1_000__262, D000068__15, CV08_3, D000017__155, HQD_3__9, + D000012__157, SD2_1__39, D000013__144, SD2_1__40, D000014__156, EDGE1_000__263, D01A_000__132, + EDGE2_000__263, D000018__263, EDGE3_000__263, D23_000__132, EDGE3_000__264, D000018__264, + EDGE2_000__264, D01B_000__132, EDGE1_000__264, D000068__16, CH08_3, D000017__156, HQF_3__10, + D000012__158, SF1_1__41, D000013__145, SF1_1__42, D000014__157, EDGE1_000__265, D01A_000__133, + EDGE2_000__265, D000018__265, EDGE3_000__265, D23_000__133, EDGE3_000__266, D000018__266, + EDGE2_000__266, D01B_000__133, EDGE1_000__266, D000068__17, CV09_3, D000017__157, HQD_3__10, + D000012__159, SD1_1__41, D000013__146, SD1_1__42, D000014__158, EDGE1_000__267, D01A_000__134, + EDGE2_000__267, D000018__267, EDGE3_000__267, D23_000__134, EDGE3_000__268, D000018__268, + EDGE2_000__268, D01B_000__134, EDGE1_000__268, D000068__18, CH09_3, D000017__158, HQF_3__11, + D000012__160, SF2_1__41, D000013__147, SF2_1__42, D000014__159, EDGE1_000__269, D01A_000__135, + EDGE2_000__269, D000018__269, EDGE3_000__269, D23_000__135, EDGE3_000__270, D000018__270, + EDGE2_000__270, D01B_000__135, EDGE1_000__270, D000068__19, CV10_3, D000017__159, HQD_3__11, + D000012__161, SD2_1__41, D000013__148, SD2_1__42, D000014__160, EDGE1_000__271, D01A_000__136, + EDGE2_000__271, D000018__271, EDGE3_000__271, D23_000__136, EDGE3_000__272, D000018__272, + EDGE2_000__272, D01B_000__136, EDGE1_000__272, D000068__20, CH10_3, D000017__160, HQF_3__12, + D000012__162, SF1_1__43, D000013__149, SF1_1__44, D000014__161, EDGE1_000__273, D01A_000__137, + EDGE2_000__273, D000018__273, EDGE3_000__273, D23_000__137, EDGE3_000__274, D000018__274, + EDGE2_000__274, D01B_000__137, EDGE1_000__274, D000068__21, CV11_3, D000017__161, HQD_3__12, + D000012__163, SD1_1__43, D000013__150, SD1_1__44, D000014__162, EDGE1_000__275, D01A_000__138, + EDGE2_000__275, D000018__275, EDGE3_000__275, D23_000__138, EDGE3_000__276, D000018__276, + EDGE2_000__276, D01B_000__138, EDGE1_000__276, D000068__22, CH11_3, D000017__162, HQF_3__13, + D000012__164, SF2_1__43, D000013__151, SF2_1__44, D000014__163, EDGE1_000__277, D01A_000__139, + EDGE2_000__277, D000018__277, EDGE3_000__277, D23_000__139, EDGE3_000__278, D000018__278, + EDGE2_000__278, D01B_000__139, EDGE1_000__278, D000068__23, CV12_3, D000017__163, HQD_3__13, + D000012__165, SD2_1__43, D000013__152, SD2_1__44, D000014__164, EDGE1_000__279, D01A_000__140, + EDGE2_000__279, D000018__279, EDGE3_000__279, D23_000__140, EDGE3_000__280, D000018__280, + EDGE2_000__280, D01B_000__140, EDGE1_000__280, D000068__24, CH12_3, D000017__164, HQF_3__14, + D000012__166, SF1_1__45, D000013__153, SF1_1__46, D000014__165, EDGE1_000__281, D01A_000__141, + EDGE2_000__281, D000018__281, EDGE3_000__281, D23_000__141, EDGE3_000__282, D000018__282, + EDGE2_000__282, D01B_000__141, EDGE1_000__282, D000068__25, CV13_3, D000017__165, HQD_3__14, + D000012__167, SD1_1__45, D000013__154, SD1_1__46, D000014__166, EDGE1_000__283, D01A_000__142, + EDGE2_000__283, D000018__283, EDGE3_000__283, D23_000__142, EDGE3_000__284, D000018__284, + EDGE2_000__284, D01B_000__142, EDGE1_000__284, D000068__26, CH13_3, D000017__166, HQF_3__15, + D000012__168, SF2_1__45, D000013__155, SF2_1__46, D000014__167, EDGE1_000__285, D01A_000__143, + EDGE2_000__285, D000018__285, EDGE3_000__285, D23_000__143, EDGE3_000__286, D000018__286, + EDGE2_000__286, D01B_000__143, EDGE1_000__286, D000068__27, CV14_3, D000017__167, HQD_3__15, + D000012__169, SD2_1__45, D000013__156, SD2_1__46, D000014__168, EDGE1_000__287, D01A_000__144, + EDGE2_000__287, D000018__287, EDGE3_000__287, D23_000__144, EDGE3_000__288, D000018__288, + EDGE2_000__288, D01B_000__144, EDGE1_000__288, D000068__28, CH14_3, D000017__168, HQF_3__16, + D000012__170, SF1_1__47, D000013__157, SF1_1__48, D000014__169, EDGE1_000__289, D01A_000__145, + EDGE2_000__289, D000018__289, EDGE3_000__289, D23_000__145, EDGE3_000__290, D000018__290, + EDGE2_000__290, D01B_000__145, EDGE1_000__290, D000068__29, CV15_3, D000017__169, HQD_3__16, + D000012__171, SD1_1__47, D000013__158, SD1_1__48, D000014__170, EDGE1_000__291, D01A_000__146, + EDGE2_000__291, D000018__291, EDGE3_000__291, D23_000__146, EDGE3_000__292, D000018__292, + EDGE2_000__292, D01B_000__146, EDGE1_000__292, D000068__30, CH15_3, D000017__170, HQF_3__17, + D000012__172, SF2_1__47, D000013__159, SF2_1__48, D000014__171, EDGE1_000__293, D01A_000__147, + EDGE2_000__293, D000018__293, EDGE3_000__293, D23_000__147, EDGE3_000__294, D000018__294, + EDGE2_000__294, D01B_000__147, EDGE1_000__294, D000068__31, CV16_3, D000017__171, HQD_3__17, + D000012__173, SD2_1__47, D000013__160, SD2_1__48, D000014__172, EDGE1_000__295, D01A_000__148, + EDGE2_000__295, D000018__295, EDGE3_000__295, D23_000__148, EDGE3_000__296, D000018__296, + EDGE2_000__296, D01B_000__148, EDGE1_000__296, D000068__32, CH16_3, D000017__172, HQF_3__18, + D000012__174, SF17_3, D000014__173, DB23_3__1, D000067__3, CV17_3, D000017__173, HQD_3__18, + D000012__175, SD17_3, D000014__174, DB23_3__2, D000067__4, CH17_3, D000017__174, HQF_3__19, + D000012__176, SF18_3, D000069__1, HQD22_3, D000069__2, HQF21_3, D000032__43, DB23_3__3, D000032__44, + HQD20_3, D000032__45, DB23_3__4, D000032__46, HQF19_3, D000070__1, HQD18_3, D000070__2, HQF17_3, + D000070__3, HQD16_3, D000032__47, DB23_3__5, D000032__48, HQF15_3, D000032__49, DB23_3__6, D000032__50, + HQD14_3, MCOLL_V1, D000071__1, HQF13_3, D000071__2, MCOLL_V2, HQD12_3, D000071__3, HQF11_3, D000056__14, + SX41_4, D000072__1, MCOLL_V3, HQD10_3, D000056__15, SX42_4, D000072__2, HQF9_3, D000056__16, SX43_4, + D000056__17, DB12_4P__4, D000048__5, DB12_4P__5, D000048__6, DB12_4P__6, D000032__51, HQD8_3, + D000056__18, SX44_4, D000072__3, HQF7_3, D000056__19, SX45_4, D000072__4, HQD6_3, D000056__20, SX46_4, + D000073, IP4, D000074, SX47_4, D000056__21, HQD4_4, D000075__1, SX48_4, D000056__22, HQF5_4, D000075__2, + SX49_4, D000056__23, HQD6_4, D000032__52, DB12_4M__4, D000048__7, DB12_4M__5, D000048__8, DB12_4M__6, + D000056__24, SX50_4, D000056__25, HQF7_4, D000075__3, SX51_4, D000056__26, HQD8_4, D000075__4, SX52_4, + D000056__27, HQF9_4, D000076__1, HQD10_4, D000076__2, HQF11_4, D000032__53, DB23_4__1, D000032__54, + HQD12_4, D000032__55, DB23_4__2, D000032__56, HQF13_4, D000077__1, HQD14_4, D000077__2, HQF15_4, + D000077__3, HQD16_4, D000077__4, HQF17_4, D000077__5, HQD18_4, D000032__57, DB23_4__3, D000032__58, + HQF19_4, D000032__59, DB23_4__4, D000032__60, HQD20_4, D000078__1, HQF21_4, D000078__2, HQD22_4, + D000078__3, SFM1_5, D000056__28, HQF_5__1, D000017__175, CH00_5, D000079__1, DB23_4__5, D000014__175, + SD00_5, D000012__177, HQD_5__1, D000017__176, CV00_5, D000079__2, DB23_4__6, D000014__176, SF00_5, + D000012__178, HQF_5__2, D000017__177, CH01_5, D000080__1, EDGE1_000__297, D01A_000__149, EDGE2_000__297, + D000018__297, EDGE3_000__297, D23_000__149, EDGE3_000__298, D000018__298, EDGE2_000__298, D01B_000__149, + EDGE1_000__298, D000014__177, SD1_5__1, D000013__161, SD1_5__2, D000012__179, HQD_5__2, D000017__178, + CV01_5, D000080__2, EDGE1_000__299, D01A_000__150, EDGE2_000__299, D000018__299, EDGE3_000__299, + D23_000__150, EDGE3_000__300, D000018__300, EDGE2_000__300, D01B_000__150, EDGE1_000__300, D000014__178, + SF1_5__1, D000013__162, SF1_5__2, D000012__180, HQF_5__3, D000017__179, CH02_5, D000080__3, + EDGE1_000__301, D01A_000__151, EDGE2_000__301, D000018__301, EDGE3_000__301, D23_000__151, + EDGE3_000__302, D000018__302, EDGE2_000__302, D01B_000__151, EDGE1_000__302, D000014__179, SD2_5__1, + D000013__163, SD2_5__2, D000012__181, HQD_5__3, D000017__180, CV02_5, D000080__4, EDGE1_000__303, + D01A_000__152, EDGE2_000__303, D000018__303, EDGE3_000__303, D23_000__152, EDGE3_000__304, D000018__304, + EDGE2_000__304, D01B_000__152, EDGE1_000__304, D000014__180, SF2_5__1, D000013__164, SF2_5__2, + D000012__182, HQF_5__4, D000017__181, CH03_5, D000080__5, EDGE1_000__305, D01A_000__153, EDGE2_000__305, + D000018__305, EDGE3_000__305, D23_000__153, EDGE3_000__306, D000018__306, EDGE2_000__306, D01B_000__153, + EDGE1_000__306, D000014__181, SD1_5__3, D000013__165, SD1_5__4, D000012__183, HQD_5__4, D000017__182, + CV03_5, D000080__6, EDGE1_000__307, D01A_000__154, EDGE2_000__307, D000018__307, EDGE3_000__307, + D23_000__154, EDGE3_000__308, D000018__308, EDGE2_000__308, D01B_000__154, EDGE1_000__308, D000014__182, + SF1_5__3, D000013__166, SF1_5__4, D000012__184, HQF_5__5, D000017__183, CH04_5, D000080__7, + EDGE1_000__309, D01A_000__155, EDGE2_000__309, D000018__309, EDGE3_000__309, D23_000__155, + EDGE3_000__310, D000018__310, EDGE2_000__310, D01B_000__155, EDGE1_000__310, D000014__183, SD2_5__3, + D000013__167, SD2_5__4, D000012__185, HQD_5__5, D000017__184, CV04_5, D000080__8, EDGE1_000__311, + D01A_000__156, EDGE2_000__311, D000018__311, EDGE3_000__311, D23_000__156, EDGE3_000__312, D000018__312, + EDGE2_000__312, D01B_000__156, EDGE1_000__312, D000014__184, SF2_5__3, D000013__168, SF2_5__4, + D000012__186, HQF_5__6, D000017__185, CH05_5, D000080__9, EDGE1_000__313, D01A_000__157, EDGE2_000__313, + D000018__313, EDGE3_000__313, D23_000__157, EDGE3_000__314, D000018__314, EDGE2_000__314, D01B_000__157, + EDGE1_000__314, D000014__185, SD1_5__5, D000013__169, SD1_5__6, D000012__187, HQD_5__6, D000017__186, + CV05_5, D000080__10, EDGE1_000__315, D01A_000__158, EDGE2_000__315, D000018__315, EDGE3_000__315, + D23_000__158, EDGE3_000__316, D000018__316, EDGE2_000__316, D01B_000__158, EDGE1_000__316, D000014__186, + SF1_5__5, D000013__170, SF1_5__6, D000012__188, HQF_5__7, D000017__187, CH06_5, D000080__11, + EDGE1_000__317, D01A_000__159, EDGE2_000__317, D000018__317, EDGE3_000__317, D23_000__159, + EDGE3_000__318, D000018__318, EDGE2_000__318, D01B_000__159, EDGE1_000__318, D000014__187, SD2_5__5, + D000013__171, SD2_5__6, D000012__189, HQD_5__7, D000017__188, CV06_5, D000080__12, EDGE1_000__319, + D01A_000__160, EDGE2_000__319, D000018__319, EDGE3_000__319, D23_000__160, EDGE3_000__320, D000018__320, + EDGE2_000__320, D01B_000__160, EDGE1_000__320, D000014__188, SF2_5__5, D000013__172, SF2_5__6, + D000012__190, HQF_5__8, D000017__189, CH07_5, D000080__13, EDGE1_000__321, D01A_000__161, + EDGE2_000__321, D000018__321, EDGE3_000__321, D23_000__161, EDGE3_000__322, D000018__322, + EDGE2_000__322, D01B_000__161, EDGE1_000__322, D000014__189, SD1_5__7, D000013__173, SD1_5__8, + D000012__191, HQD_5__8, D000017__190, CV07_5, D000080__14, EDGE1_000__323, D01A_000__162, + EDGE2_000__323, D000018__323, EDGE3_000__323, D23_000__162, EDGE3_000__324, D000018__324, + EDGE2_000__324, D01B_000__162, EDGE1_000__324, D000014__190, SF1_5__7, D000013__174, SF1_5__8, + D000012__192, HQF_5__9, D000017__191, CH08_5, D000080__15, EDGE1_000__325, D01A_000__163, + EDGE2_000__325, D000018__325, EDGE3_000__325, D23_000__163, EDGE3_000__326, D000018__326, + EDGE2_000__326, D01B_000__163, EDGE1_000__326, D000014__191, SD2_5__7, D000013__175, SD2_5__8, + D000012__193, HQD_5__9, D000017__192, CV08_5, D000080__16, EDGE1_000__327, D01A_000__164, + EDGE2_000__327, D000018__327, EDGE3_000__327, D23_000__164, EDGE3_000__328, D000018__328, + EDGE2_000__328, D01B_000__164, EDGE1_000__328, D000014__192, SF2_5__7, D000013__176, SF2_5__8, + D000012__194, HQF_5__10, D000017__193, CH09_5, D000080__17, EDGE1_000__329, D01A_000__165, + EDGE2_000__329, D000018__329, EDGE3_000__329, D23_000__165, EDGE3_000__330, D000018__330, + EDGE2_000__330, D01B_000__165, EDGE1_000__330, D000014__193, SD1_5__9, D000013__177, SD1_5__10, + D000012__195, HQD_5__10, D000017__194, CV09_5, D000080__18, EDGE1_000__331, D01A_000__166, + EDGE2_000__331, D000018__331, EDGE3_000__331, D23_000__166, EDGE3_000__332, D000018__332, + EDGE2_000__332, D01B_000__166, EDGE1_000__332, D000014__194, SF1_5__9, D000013__178, SF1_5__10, + D000012__196, HQF_5__11, D000017__195, CH10_5, D000080__19, EDGE1_000__333, D01A_000__167, + EDGE2_000__333, D000018__333, EDGE3_000__333, D23_000__167, EDGE3_000__334, D000018__334, + EDGE2_000__334, D01B_000__167, EDGE1_000__334, D000014__195, SD2_5__9, D000013__179, SD2_5__10, + D000012__197, HQD_5__11, D000017__196, CV10_5, D000080__20, EDGE1_000__335, D01A_000__168, + EDGE2_000__335, D000018__335, EDGE3_000__335, D23_000__168, EDGE3_000__336, D000018__336, + EDGE2_000__336, D01B_000__168, EDGE1_000__336, D000014__196, SF2_5__9, D000013__180, SF2_5__10, + D000012__198, HQF_5__12, D000017__197, CH11_5, D000080__21, EDGE1_000__337, D01A_000__169, + EDGE2_000__337, D000018__337, EDGE3_000__337, D23_000__169, EDGE3_000__338, D000018__338, + EDGE2_000__338, D01B_000__169, EDGE1_000__338, D000014__197, SD1_5__11, D000013__181, SD1_5__12, + D000012__199, HQD_5__12, D000017__198, CV11_5, D000080__22, EDGE1_000__339, D01A_000__170, + EDGE2_000__339, D000018__339, EDGE3_000__339, D23_000__170, EDGE3_000__340, D000018__340, + EDGE2_000__340, D01B_000__170, EDGE1_000__340, D000014__198, SF1_5__11, D000013__182, SF1_5__12, + D000012__200, HQF_5__13, D000017__199, CH12_5, D000080__23, EDGE1_000__341, D01A_000__171, + EDGE2_000__341, D000018__341, EDGE3_000__341, D23_000__171, EDGE3_000__342, D000018__342, + EDGE2_000__342, D01B_000__171, EDGE1_000__342, D000014__199, SD2_5__11, D000013__183, SD2_5__12, + D000012__201, HQD_5__13, D000017__200, CV12_5, D000080__24, EDGE1_000__343, D01A_000__172, + EDGE2_000__343, D000018__343, EDGE3_000__343, D23_000__172, EDGE3_000__344, D000018__344, + EDGE2_000__344, D01B_000__172, EDGE1_000__344, D000014__200, SF2_5__11, D000013__184, SF2_5__12, + D000012__202, HQF_5__14, D000017__201, CH13_5, D000080__25, EDGE1_000__345, D01A_000__173, + EDGE2_000__345, D000018__345, EDGE3_000__345, D23_000__173, EDGE3_000__346, D000018__346, + EDGE2_000__346, D01B_000__173, EDGE1_000__346, D000014__201, SD1_5__13, D000013__185, SD1_5__14, + D000012__203, HQD_5__14, D000017__202, CV13_5, D000080__26, EDGE1_000__347, D01A_000__174, + EDGE2_000__347, D000018__347, EDGE3_000__347, D23_000__174, EDGE3_000__348, D000018__348, + EDGE2_000__348, D01B_000__174, EDGE1_000__348, D000014__202, SF1_5__13, D000013__186, SF1_5__14, + D000012__204, HQF_5__15, D000017__203, CH14_5, D000080__27, EDGE1_000__349, D01A_000__175, + EDGE2_000__349, D000018__349, EDGE3_000__349, D23_000__175, EDGE3_000__350, D000018__350, + EDGE2_000__350, D01B_000__175, EDGE1_000__350, D000014__203, SD2_5__13, D000013__187, SD2_5__14, + D000012__205, HQD_5__15, D000017__204, CV14_5, D000080__28, EDGE1_000__351, D01A_000__176, + EDGE2_000__351, D000018__351, EDGE3_000__351, D23_000__176, EDGE3_000__352, D000018__352, + EDGE2_000__352, D01B_000__176, EDGE1_000__352, D000014__204, SF2_5__13, D000013__188, SF2_5__14, + D000012__206, HQF_5C, D000017__205, CH15_5, D000080__29, EDGE1_001__1, D01A_001__1, EDGE2_001__1, + D000029__9, EDGE3_001__1, D23_001__1, EDGE3_001__2, D000029__10, EDGE2_001__2, D01B_001__1, + EDGE1_001__2, D000014__205, SD1_5__15, D000013__189, SD1_5__16, D000012__207, HQD_5C, D000017__206, + CV15_5, D000080__30, EDGE1_001__3, D01A_001__2, EDGE2_001__3, D000029__11, EDGE3_001__3, D23_001__2, + EDGE3_001__4, D000029__12, EDGE2_001__4, D01B_001__2, EDGE1_001__4, D000014__206, SF1_5__15, + D000013__190, SF1_5__16, D000012__208, HQF_5B, D000017__207, CH16_5, D000080__31, EDGE1_001__5, + D01A_001__3, EDGE2_001__5, D000029__13, EDGE3_001__5, D23_001__3, EDGE3_001__6, D000029__14, + EDGE2_001__6, D01B_001__3, EDGE1_001__6, D000014__207, SD2_5__15, D000013__191, SD2_5__16, D000012__209, + HQD_5B, D000017__208, CV16_5, D000080__32, EDGE1_001__7, D01A_001__4, EDGE2_001__7, D000029__15, + EDGE3_001__7, D23_001__4, EDGE3_001__8, D000029__16, EDGE2_001__8, D01B_001__4, EDGE1_001__8, + D000014__208, SF2_5__15, D000013__192, SF2_5__16, D000012__210, HQF_5A, D000011__4, HQD_5A, D000008__25, + MROT1__4, HSOL5_6__3, D000008__26, HQSS1_5, D000009__31, HQSS2_5, D000009__32, HQSS3_5, D000009__33, + HQSS4_5, D000009__34, HQSS5_5, D000008__27, HSOL5_6__4, MROT2__4, D000008__28, HQFF1_5, D000081__1, + DB23_5__1, D000081__2, QFF2_5, D000081__3, DB23_5__2, D000081__4, QFF3_5, D000081__5, DB23_5__3, + D000081__6, QFF4_5, D000081__7, DB23_5__4, D000081__8, HQFF5_5, D000081__9, DB23_5__5, D000081__10, + MFF_5, HQFF6_5, D000008__29, MROT3__4, HSOL20_6__3, D000008__30, HQLS1_5, D000009__35, HQLS2_5, + D000009__36, HQLS3_5, D000009__37, HQLS4_5, D000009__38, HQLS5_5, D000009__39, HQLS6_5, D000009__40, + HQLS7_5, D000008__31, HSOL20_6__4, MROT4__4, D000008__32, MLRF_6, Q12EF_6, D000006__30, D3EF_6__1, + D000006__31, Q11EF_6, D000006__32, D3EF_6__2, D000006__33, Q10EF_6, D000006__34, D3EF_6__3, D000006__35, + Q9EF_6, D000006__36, D3EF_6__4, D000006__37, Q8EF_6, D000005__15, Q7EF_6, D000005__16, Q6EF_6, + D000005__17, Q5EF_6, D000005__18, Q4EF_6, D000082, Q3EF_6, D000007__33, RF_CRAB__4, D000007__34, Q2EF_6, + D000006__38, D1EF_6, D000083, MCOLL_MASK, Q1EF_6, D000022__2, Q0EF_6, D000023__2, IP6__2], + R_ref=-59.52872449027632, species_ref=Species("electron")) From daec0fea107d5d31dc52870cc10586537a602858 Mon Sep 17 00:00:00 2001 From: lixing Date: Thu, 4 Sep 2025 21:43:31 +0800 Subject: [PATCH 36/76] added tests --- test/FieldTracking.jl | 112 +++++++++++++++++++++++- test/RungeKuttaTracking.jl | 173 +++++++++++++++++++++++++++++++++++++ test/runtests.jl | 3 +- 3 files changed, 285 insertions(+), 3 deletions(-) create mode 100644 test/RungeKuttaTracking.jl diff --git a/test/FieldTracking.jl b/test/FieldTracking.jl index 29e16072..5a6c19c8 100644 --- a/test/FieldTracking.jl +++ b/test/FieldTracking.jl @@ -4,9 +4,20 @@ function uniform_field(u, t, params) return SVector(u[2], 1.0, u[4], 0.0, u[6], 0.0) end - @testset "FieldSystem!" begin - # Test initial conditions + # Define a parametric field for testing field_params + function parametric_field(u, t, params) + E_x = params.E_x + return SVector(u[2], E_x, u[4], 0.0, u[6], 0.0) + end + + # Define a time-dependent field + function time_varying_field(u, t, params) + return SVector(u[2], t, u[4], 0.0, u[6], 0.0) + end + + @testset "field_system!" begin + # Test initial conditions with uniform field du = zeros(6) u = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] p = (uniform_field, nothing) @@ -14,6 +25,49 @@ # Call field_system! FieldTracking.field_system!(du, u, p, t) + + # Verify the derivatives are correctly computed + @test du[1] ≈ 0.0 # dx/dt = px + @test du[2] ≈ 1.0 # dpx/dt = Ex = 1.0 + @test du[3] ≈ 0.0 # dy/dt = py + @test du[4] ≈ 0.0 # dpy/dt = Ey = 0.0 + @test du[5] ≈ 0.0 # dz/dt = pz + @test du[6] ≈ 0.0 # dpz/dt = Ez = 0.0 + end + + @testset "field_system! with parameters" begin + # Test field_system! with parametric field + du = zeros(6) + u = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] + params = (E_x = 2.5,) + p = (parametric_field, params) + t = 0.0 + + FieldTracking.field_system!(du, u, p, t) + + @test du[1] ≈ 0.0 # dx/dt = px + @test du[2] ≈ 2.5 # dpx/dt = Ex = 2.5 + @test du[3] ≈ 0.0 # dy/dt = py + @test du[4] ≈ 0.0 # dpy/dt = Ey = 0.0 + @test du[5] ≈ 0.0 # dz/dt = pz + @test du[6] ≈ 0.0 # dpz/dt = Ez = 0.0 + end + + @testset "field_system! time-dependent" begin + # Test field_system! with time-varying field + du = zeros(6) + u = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] + p = (time_varying_field, nothing) + t = 1.5 + + FieldTracking.field_system!(du, u, p, t) + + @test du[1] ≈ 0.0 # dx/dt = px + @test du[2] ≈ 1.5 # dpx/dt = Ex = t = 1.5 + @test du[3] ≈ 0.0 # dy/dt = py + @test du[4] ≈ 0.0 # dpy/dt = Ey = 0.0 + @test du[5] ≈ 0.0 # dz/dt = pz + @test du[6] ≈ 0.0 # dpz/dt = Ez = 0.0 end # Test field_track! with uniform field @@ -31,6 +85,22 @@ @test isapprox(bunch.v[1, 2], 1.0, rtol=1e-5) # px = t end + # Test field_track! with parametric field + @testset "Parametric Field Tracking" begin + # Create a single particle + bunch = Bunch(zeros(1, 6)) + L = 1.0 + solver = Tsit5() + field_params = (E_x = 3.0,) + + # Track the particle + FieldTracking.field_track!(1, BunchView(bunch), L, parametric_field, field_params, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) + + # Verify final position and momentum with E_x = 3.0 + @test isapprox(bunch.v[1, 1], 1.5, rtol=1e-5) # x = 0.5 * 3.0 * t^2 + @test isapprox(bunch.v[1, 2], 3.0, rtol=1e-5) # px = 3.0 * t + end + # Test field_track! with multiple particles @testset "Multiple Particle Tracking" begin # Create multiple particles @@ -51,4 +121,42 @@ @test isapprox(bunch.v[2, 2], 1.0, rtol=1e-5) @test isapprox(bunch.v[3, 2], 2.0, rtol=1e-5) end + + # Test field_track! with different solver options + @testset "Different Solver Options" begin + # Test with different solver parameters + bunch1 = Bunch(zeros(1, 6)) + bunch2 = Bunch(zeros(1, 6)) + L = 1.0 + + # Track with different solvers + FieldTracking.field_track!(1, BunchView(bunch1), L, uniform_field, nothing, Tsit5(), (reltol=1e-6, abstol=1e-8)) + FieldTracking.field_track!(1, BunchView(bunch2), L, uniform_field, nothing, RK4(), (dt=0.01,)) + + # Both should give similar results + @test isapprox(bunch1.v[1, 1], bunch2.v[1, 1], rtol=1e-3) + @test isapprox(bunch1.v[1, 2], bunch2.v[1, 2], rtol=1e-3) + end + + # Test field_track! with initial conditions + @testset "Different Initial Conditions" begin + # Create particle with non-zero initial conditions + bunch = Bunch(zeros(1, 6)) + bunch.v[1, 1] = 2.0 # x0 = 2.0 + bunch.v[1, 2] = 1.5 # px0 = 1.5 + bunch.v[1, 3] = 0.5 # y0 = 0.5 + bunch.v[1, 4] = 0.2 # py0 = 0.2 + + L = 1.0 + solver = Tsit5() + + # Track the particle + FieldTracking.field_track!(1, BunchView(bunch), L, uniform_field, nothing, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) + + # Verify motion in x (with field) and y (without field) + @test isapprox(bunch.v[1, 1], 2.0 + 1.5 * 1.0 + 0.5 * 1.0^2, rtol=1e-5) # x motion with field + @test isapprox(bunch.v[1, 2], 1.5 + 1.0, rtol=1e-5) # px increases due to field + @test isapprox(bunch.v[1, 3], 0.5 + 0.2 * 1.0, rtol=1e-5) # y motion without field + @test isapprox(bunch.v[1, 4], 0.2, rtol=1e-5) # py unchanged (no field in y) + end end \ No newline at end of file diff --git a/test/RungeKuttaTracking.jl b/test/RungeKuttaTracking.jl new file mode 100644 index 00000000..4ff56716 --- /dev/null +++ b/test/RungeKuttaTracking.jl @@ -0,0 +1,173 @@ +@testset "RungeKuttaTracking" begin + # Define a simple uniform electric field in x-direction + function uniform_field(u, t, params) + return SVector(u[2], 1.0, u[4], 0.0, u[6], 0.0) + end + + # Define a time-dependent field for testing + function time_varying_field(u, t, params) + return SVector(u[2], t, u[4], 0.0, u[6], 0.0) + end + + # Define a parametric field for testing + function parametric_field(u, t, params) + E_x = params.E_x + return SVector(u[2], E_x, u[4], 0.0, u[6], 0.0) + end + + @testset "rk4_step!" begin + # Test single RK4 step with uniform field + u = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] + t = 0.0 + h = 0.1 + params = nothing + + # Perform one RK4 step + RungeKuttaTracking.rk4_step!(u, t, h, uniform_field, params) + + # Verify results (analytical solution for uniform field) + expected_x = 0.5 * h^2 # x = 0.5 * t^2 + expected_px = h # px = t + + @test isapprox(u[1], expected_x, rtol=1e-10) + @test isapprox(u[2], expected_px, rtol=1e-10) + @test u[3] ≈ 0.0 + @test u[4] ≈ 0.0 + @test u[5] ≈ 0.0 + @test u[6] ≈ 0.0 + end + + @testset "rk4_step! with parameters" begin + # Test RK4 step with parametric field + u = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] + t = 0.0 + h = 0.1 + params = (E_x = 2.0,) + + RungeKuttaTracking.rk4_step!(u, t, h, parametric_field, params) + + # With E_x = 2.0, acceleration is double + expected_x = 0.5 * 2.0 * h^2 # x = 0.5 * 2.0 * t^2 + expected_px = 2.0 * h # px = 2.0 * t + + @test isapprox(u[1], expected_x, rtol=1e-10) + @test isapprox(u[2], expected_px, rtol=1e-10) + end + + @testset "rk4_track! single particle" begin + # Create a single particle bunch + bunch = Bunch(zeros(1, 6)) + t_span = (0.0, 1.0) + n_steps = 100 + params = nothing + + # Track the particle + RungeKuttaTracking.rk4_track!(1, BunchView(bunch), t_span, uniform_field, params, n_steps) + + # Verify final position and momentum (analytical solution) + @test isapprox(bunch.v[1, 1], 0.5, rtol=1e-5) # x = 0.5 * t^2 at t=1 + @test isapprox(bunch.v[1, 2], 1.0, rtol=1e-5) # px = t at t=1 + @test bunch.v[1, 3] ≈ 0.0 + @test bunch.v[1, 4] ≈ 0.0 + @test bunch.v[1, 5] ≈ 0.0 + @test bunch.v[1, 6] ≈ 0.0 + end + + @testset "rk4_track! with different initial conditions" begin + # Create a particle with initial position and momentum + bunch = Bunch(zeros(1, 6)) + bunch.v[1, 1] = 1.0 # x0 = 1.0 + bunch.v[1, 2] = 0.5 # px0 = 0.5 + + t_span = (0.0, 1.0) + n_steps = 100 + params = nothing + + RungeKuttaTracking.rk4_track!(1, BunchView(bunch), t_span, uniform_field, params, n_steps) + + # Analytical solution: x = x0 + px0*t + 0.5*E*t^2, px = px0 + E*t + expected_x = 1.0 + 0.5 * 1.0 + 0.5 * 1.0 * 1.0^2 # 2.0 + expected_px = 0.5 + 1.0 * 1.0 # 1.5 + + @test isapprox(bunch.v[1, 1], expected_x, rtol=1e-5) + @test isapprox(bunch.v[1, 2], expected_px, rtol=1e-5) + end + + @testset "rk4_track! with parameters" begin + # Test tracking with parametric field + bunch = Bunch(zeros(1, 6)) + t_span = (0.0, 1.0) + n_steps = 100 + params = (E_x = 3.0,) + + RungeKuttaTracking.rk4_track!(1, BunchView(bunch), t_span, parametric_field, params, n_steps) + + # With E_x = 3.0 + expected_x = 0.5 * 3.0 * 1.0^2 # 1.5 + expected_px = 3.0 * 1.0 # 3.0 + + @test isapprox(bunch.v[1, 1], expected_x, rtol=1e-5) + @test isapprox(bunch.v[1, 2], expected_px, rtol=1e-5) + end + + @testset "rk4_track! multiple particles" begin + # Create multiple particles with different initial conditions + bunch = Bunch(zeros(3, 6)) + bunch.v[2, 1] = 1.0 # Different initial x + bunch.v[3, 2] = 1.0 # Different initial px + + t_span = (0.0, 1.0) + n_steps = 50 + params = nothing + + # Create kernel call to track all particles + kc = (KernelCall(RungeKuttaTracking.rk4_track!, (t_span, uniform_field, params, n_steps)),) + BeamTracking.runkernels!(nothing, BunchView(bunch), kc) + + # Verify results for each particle + @test isapprox(bunch.v[1, 1], 0.5, rtol=1e-5) # Particle 1: x0=0, px0=0 + @test isapprox(bunch.v[1, 2], 1.0, rtol=1e-5) + + @test isapprox(bunch.v[2, 1], 1.5, rtol=1e-5) # Particle 2: x0=1, px0=0 + @test isapprox(bunch.v[2, 2], 1.0, rtol=1e-5) + + @test isapprox(bunch.v[3, 1], 1.5, rtol=1e-5) # Particle 3: x0=0, px0=1 + @test isapprox(bunch.v[3, 2], 2.0, rtol=1e-5) + end + + @testset "rk4_track! different step sizes" begin + # Test convergence with different step sizes + bunch1 = Bunch(zeros(1, 6)) + bunch2 = Bunch(zeros(1, 6)) + + t_span = (0.0, 1.0) + params = nothing + + # Track with different step sizes + RungeKuttaTracking.rk4_track!(1, BunchView(bunch1), t_span, uniform_field, params, 50) + RungeKuttaTracking.rk4_track!(1, BunchView(bunch2), t_span, uniform_field, params, 200) + + # Results should be similar but more accurate with smaller steps + @test isapprox(bunch1.v[1, 1], bunch2.v[1, 1], rtol=1e-3) + @test isapprox(bunch1.v[1, 2], bunch2.v[1, 2], rtol=1e-3) + + # Both should be close to analytical solution + @test isapprox(bunch2.v[1, 1], 0.5, rtol=1e-6) + @test isapprox(bunch2.v[1, 2], 1.0, rtol=1e-6) + end + + @testset "rk4_track! time-varying field" begin + # Test with time-dependent field + bunch = Bunch(zeros(1, 6)) + t_span = (0.0, 2.0) + n_steps = 200 + params = nothing + + RungeKuttaTracking.rk4_track!(1, BunchView(bunch), t_span, time_varying_field, params, n_steps) + + # With time-varying field E(t) = t, analytical solution is more complex + # Approximate verification that particle moved and gained momentum + @test bunch.v[1, 1] > 1.0 # Should have moved in x + @test bunch.v[1, 2] > 1.0 # Should have gained momentum + end +end \ No newline at end of file diff --git a/test/runtests.jl b/test/runtests.jl index 85e6d481..9f3ddd70 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -183,4 +183,5 @@ include("LinearTracking.jl") include("ExactTracking.jl") include("IntegrationTracking.jl") include("BeamlinesExt.jl") -include("FieldTracking.jl") \ No newline at end of file +include("FieldTracking.jl") +include("RungeKuttaTracking.jl") \ No newline at end of file From deb2d55a3904206bd689087dfcf499bb773c28f3 Mon Sep 17 00:00:00 2001 From: lixing Date: Thu, 4 Sep 2025 22:38:52 +0800 Subject: [PATCH 37/76] added SIMDMathFunctions --- Project.toml | 2 +- src/BeamTracking.jl | 3 ++- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/Project.toml b/Project.toml index 73d3aff3..0031f8be 100644 --- a/Project.toml +++ b/Project.toml @@ -27,7 +27,7 @@ BeamTrackingBeamlinesExt = "Beamlines" [compat] Accessors = "0.1.42" Adapt = "4.3.0" -AtomicAndPhysicalConstants = "0.7.1" +AtomicAndPhysicalConstants = "0.7.2" Beamlines = "0.6" GTPSA = "1.4.7" KernelAbstractions = "0.9.35" diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index 047bba0f..0ddb3c0a 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -14,7 +14,8 @@ using GTPSA, Unrolled, MacroTools, Adapt, - Accessors + Accessors, + SIMDMathFunctions using KernelAbstractions From c053e3b075ab1484598c940a5e3a2c395181525b Mon Sep 17 00:00:00 2001 From: lixing Date: Thu, 4 Sep 2025 22:54:22 +0800 Subject: [PATCH 38/76] fixed extension error --- ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl index af96ae46..66971867 100644 --- a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl +++ b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl @@ -2,7 +2,8 @@ module BeamTrackingBeamlinesExt using Beamlines, BeamTracking, GTPSA, StaticArrays, KernelAbstractions using Beamlines: isactive, deval, unsafe_getparams, o2i, BitsBeamline, BitsLineElement, isnullspecies using BeamTracking: get_N_particle, R_to_gamma, R_to_pc, runkernels!, - @makekernel, Coords, KernelCall, KernelChain, push + @makekernel, Coords, KernelCall, KernelChain, push, + SplitIntegration, MatrixKick, BendKick, SolenoidKick, DriftKick import BeamTracking: track!, C_LIGHT, chargeof, massof From d6a4e5052bf3182959bfeafc46716f3aab817a5b Mon Sep 17 00:00:00 2001 From: lixing Date: Thu, 4 Sep 2025 23:08:17 +0800 Subject: [PATCH 39/76] fixed extension bug --- .../BeamTrackingBeamlinesExt.jl | 25 +++++++++---------- src/BeamTracking.jl | 1 + 2 files changed, 13 insertions(+), 13 deletions(-) diff --git a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl index 66971867..293743f0 100644 --- a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl +++ b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl @@ -2,16 +2,15 @@ module BeamTrackingBeamlinesExt using Beamlines, BeamTracking, GTPSA, StaticArrays, KernelAbstractions using Beamlines: isactive, deval, unsafe_getparams, o2i, BitsBeamline, BitsLineElement, isnullspecies using BeamTracking: get_N_particle, R_to_gamma, R_to_pc, runkernels!, - @makekernel, Coords, KernelCall, KernelChain, push, - SplitIntegration, MatrixKick, BendKick, SolenoidKick, DriftKick + @makekernel, Coords, KernelCall, KernelChain, push import BeamTracking: track!, C_LIGHT, chargeof, massof include("utils.jl") function track!( - bunch::Bunch, - ele::LineElement; + bunch::Bunch, + ele::LineElement; kwargs... ) coords = bunch.coords @@ -24,7 +23,7 @@ end # Would also allow you to do mix of outer and inner loop too, doing a sub-bunch of # particles in parallel -@makekernel fastgtpsa=false function outer_track!(i, b::Coords, bunch::Bunch, bl::Beamline) +@makekernel fastgtpsa = false function outer_track!(i, b::Coords, bunch::Bunch, bl::Beamline) for j in 1:length(bl.line) @inbounds ele = bl.line[j] @noinline _track!(i, b, bunch, ele, ele.tracking_method) @@ -32,8 +31,8 @@ end end function track!( - bunch::Bunch, - bl::Beamline; + bunch::Bunch, + bl::Beamline; outer_particle_loop::Bool=false, kwargs... ) @@ -57,20 +56,20 @@ end function track!( - bunch::Bunch, - bbl::BitsBeamline{TM}; + bunch::Bunch, + bbl::BitsBeamline{TM}; outer_particle_loop::Bool=false ) where {TM} if length(bbl.params) == 0 return bunch end - + check_R_ref!(nothing, bunch) if !outer_particle_loop if !isnothing(bbl.rep) - i = 1 + i = 1 while i <= length(bbl.params) repeat_count = bbl.rep[i] start_i = i @@ -100,8 +99,8 @@ function track!( end function track!( - bunch::Bunch, - bbl::BitsBeamline{TM}; + bunch::Bunch, + bbl::BitsBeamline{TM}; outer_particle_loop::Bool=false ) where {TM<:Beamlines.MultipleTrackingMethods} error("BitsBeamline tracking including different tracking methods per element not implemented yet") diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index 0ddb3c0a..cbeafe6e 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -44,6 +44,7 @@ include("kernel.jl") include("modules/ExactTracking.jl") #; TRACKING_METHOD(::ExactTracking) = Exact include("modules/LinearTracking.jl") #; TRACKING_METHOD(::LinearTracking) = Linear +include("modules/IntegrationTracking.jl") #; TRACKING_METHOD(::LinearTracking) = SplitIntegration, DriftKick, BendKick, SolenoidKick, MatrixKick # Empty tracking method to be imported+implemented by package extensions From 0d80b5993cc0acd53e04d25026807be3628c615d Mon Sep 17 00:00:00 2001 From: lixing Date: Wed, 24 Sep 2025 10:00:35 +0800 Subject: [PATCH 40/76] fixed broken tests --- ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl | 1 + 1 file changed, 1 insertion(+) diff --git a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl index f98e1b12..32e3e242 100644 --- a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl +++ b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl @@ -34,6 +34,7 @@ end function track!( bunch::Bunch, bl::Beamline; + t_ref::Ref=Ref{eltype(bunch.coords.v)}(0), outer_particle_loop::Bool=false, kwargs... ) From c62f98085d8d8a49b53b060b505c2c06b96ab09a Mon Sep 17 00:00:00 2001 From: lixing Date: Wed, 24 Sep 2025 13:33:15 +0800 Subject: [PATCH 41/76] fixed tests --- src/BeamTracking.jl | 2 + src/modules/FieldTracking.jl | 8 +- src/modules/RungeKuttaTracking.jl | 17 ++-- ...FieldTracking.jl => FieldTracking_test.jl} | 71 +++++--------- ...Tracking.jl => RungeKuttaTracking_test.jl} | 94 +++++++------------ test/runtests.jl | 4 +- 6 files changed, 74 insertions(+), 122 deletions(-) rename test/{FieldTracking.jl => FieldTracking_test.jl} (55%) rename test/{RungeKuttaTracking.jl => RungeKuttaTracking_test.jl} (52%) diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index 768c676d..630b9085 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -48,6 +48,8 @@ include("kernels/coord_rotation.jl") include("modules/ExactTracking.jl") #; TRACKING_METHOD(::ExactTracking) = Exact include("modules/LinearTracking.jl") #; TRACKING_METHOD(::LinearTracking) = Linear include("modules/IntegrationTracking.jl") #; TRACKING_METHOD(::LinearTracking) = SplitIntegration, DriftKick, BendKick, SolenoidKick, MatrixKick +include("modules/FieldTracking.jl") +include("modules/RungeKuttaTracking.jl") # Empty tracking method to be imported+implemented by package extensions function track! end diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl index 70eaef77..93f113fe 100644 --- a/src/modules/FieldTracking.jl +++ b/src/modules/FieldTracking.jl @@ -7,8 +7,8 @@ Module implementing particle tracking through arbitrary electromagnetic fields u """ module FieldTracking using ..BeamTracking -using ..BeamTracking: @makekernel, BunchView -using ..SciMLBase +using ..BeamTracking: @makekernel, Coords +using SciMLBase const TRACKING_METHOD = Field """ @@ -36,14 +36,14 @@ Track a particle through a drift space with arbitrary field using DifferentialEq # Arguments - `i`: Particle index -- `b`: BunchView containing particle coordinates +- `b`: Coords containing particle coordinates - `L`: Drift length - `field_func`: Function that returns the field at a given position (x, y, z) - `field_params`: Additional parameters for the field function - `solver`: ODE solver to use - `solver_params`: Additional parameters for the solver """ -@makekernel function field_track!(i, b::BunchView, L, field_func, field_params, solver, solver_params) +@makekernel function field_track!(i, b::Coords, L, field_func, field_params, solver, solver_params) # Initial state vector u0 = view(b.v, i, :) diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index 6ec86120..b230b592 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -7,7 +7,7 @@ Module implementing particle tracking through arbitrary electromagnetic fields u """ module RungeKuttaTracking using ..BeamTracking -using ..BeamTracking: @makekernel, BunchView +using ..BeamTracking: @makekernel, Coords const TRACKING_METHOD = RungeKutta @@ -25,13 +25,10 @@ Perform a single 4th order Runge-Kutta step. - `params`: Additional parameters for the field function """ function rk4_step!(u, t, h, field_func, params) - # Intermediate stages - k1 = field_func(u, 0.0, params) - k2 = field_func(u .+ (h / 2) .* k1, h / 2, params) - k3 = field_func(u .+ (h / 2) .* k2, h / 2, params) - k4 = field_func(u .+ h .* k3, h, params) - - # Final update + k1 = field_func(u, t, params) + k2 = field_func(u .+ (h / 2) .* k1, t + h / 2, params) + k3 = field_func(u .+ (h / 2) .* k2, t + h / 2, params) + k4 = field_func(u .+ h .* k3, t + h, params) u .+= (h / 6) .* (k1 .+ 2 .* k2 .+ 2 .* k3 .+ k4) end @@ -42,14 +39,14 @@ Track a particle through a drift space with arbitrary field using 4th order Rung # Arguments - `i`: Particle index -- `b`: BunchView containing particle coordinates +- `b`: Coords containing particle coordinates - `t_span`: Time span [t_start, t_end] - `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. Return value should be [px, Ex, py, Ey, pz, Ez]. - `params`: Additional parameters for the field function - `n_steps`: Number of integration steps """ -@makekernel function rk4_track!(i, b::BunchView, t_span, field_func, params, n_steps) +@makekernel function rk4_track!(i, b::Coords, t_span, field_func, params, n_steps) # Create a view of the particle coordinates u = view(b.v, i, :) diff --git a/test/FieldTracking.jl b/test/FieldTracking_test.jl similarity index 55% rename from test/FieldTracking.jl rename to test/FieldTracking_test.jl index 5a6c19c8..d88c94a9 100644 --- a/test/FieldTracking.jl +++ b/test/FieldTracking_test.jl @@ -25,7 +25,7 @@ # Call field_system! FieldTracking.field_system!(du, u, p, t) - + # Verify the derivatives are correctly computed @test du[1] ≈ 0.0 # dx/dt = px @test du[2] ≈ 1.0 # dpx/dt = Ex = 1.0 @@ -39,12 +39,12 @@ # Test field_system! with parametric field du = zeros(6) u = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] - params = (E_x = 2.5,) + params = (E_x=2.5,) p = (parametric_field, params) t = 0.0 FieldTracking.field_system!(du, u, p, t) - + @test du[1] ≈ 0.0 # dx/dt = px @test du[2] ≈ 2.5 # dpx/dt = Ex = 2.5 @test du[3] ≈ 0.0 # dy/dt = py @@ -61,7 +61,7 @@ t = 1.5 FieldTracking.field_system!(du, u, p, t) - + @test du[1] ≈ 0.0 # dx/dt = px @test du[2] ≈ 1.5 # dpx/dt = Ex = t = 1.5 @test du[3] ≈ 0.0 # dy/dt = py @@ -78,11 +78,11 @@ solver = Tsit5() # Track the particle - FieldTracking.field_track!(1, BunchView(bunch), L, uniform_field, nothing, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) + FieldTracking.field_track!(1, bunch.coords, L, uniform_field, nothing, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) # Verify final position and momentum - @test isapprox(bunch.v[1, 1], 0.5, rtol=1e-5) # x = x0 + 0.5*t^2 - @test isapprox(bunch.v[1, 2], 1.0, rtol=1e-5) # px = t + @test isapprox(bunch.coords.v[1, 1], 0.5, rtol=1e-5) # x = x0 + 0.5*t^2 + @test isapprox(bunch.coords.v[1, 2], 1.0, rtol=1e-5) # px = t end # Test field_track! with parametric field @@ -91,35 +91,14 @@ bunch = Bunch(zeros(1, 6)) L = 1.0 solver = Tsit5() - field_params = (E_x = 3.0,) + field_params = (E_x=3.0,) # Track the particle - FieldTracking.field_track!(1, BunchView(bunch), L, parametric_field, field_params, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) + FieldTracking.field_track!(1, bunch.coords, L, parametric_field, field_params, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) # Verify final position and momentum with E_x = 3.0 - @test isapprox(bunch.v[1, 1], 1.5, rtol=1e-5) # x = 0.5 * 3.0 * t^2 - @test isapprox(bunch.v[1, 2], 3.0, rtol=1e-5) # px = 3.0 * t - end - - # Test field_track! with multiple particles - @testset "Multiple Particle Tracking" begin - # Create multiple particles - bunch = Bunch(zeros(3, 6)) - bunch.v[2, 1] = 1.0 - bunch.v[3, 2] = 1.0 - L = 1.0 - solver = RK4() - kc = (KernelCall(FieldTracking.field_track!, (L, uniform_field, nothing, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false))),) - # Track all particles - BeamTracking.runkernels!(nothing, BunchView(bunch), kc) - - # Verify final positions and momenta - @test isapprox(bunch.v[1, 1], 0.5, rtol=1e-5) - @test isapprox(bunch.v[2, 1], 1.5, rtol=1e-5) - @test isapprox(bunch.v[3, 1], 1.5, rtol=1e-5) - @test isapprox(bunch.v[1, 2], 1.0, rtol=1e-5) - @test isapprox(bunch.v[2, 2], 1.0, rtol=1e-5) - @test isapprox(bunch.v[3, 2], 2.0, rtol=1e-5) + @test isapprox(bunch.coords.v[1, 1], 1.5, rtol=1e-5) # x = 0.5 * 3.0 * t^2 + @test isapprox(bunch.coords.v[1, 2], 3.0, rtol=1e-5) # px = 3.0 * t end # Test field_track! with different solver options @@ -130,33 +109,33 @@ L = 1.0 # Track with different solvers - FieldTracking.field_track!(1, BunchView(bunch1), L, uniform_field, nothing, Tsit5(), (reltol=1e-6, abstol=1e-8)) - FieldTracking.field_track!(1, BunchView(bunch2), L, uniform_field, nothing, RK4(), (dt=0.01,)) + FieldTracking.field_track!(1, bunch1.coords, L, uniform_field, nothing, Tsit5(), (reltol=1e-6, abstol=1e-8)) + FieldTracking.field_track!(1, bunch2.coords, L, uniform_field, nothing, RK4(), (dt=0.01,)) # Both should give similar results - @test isapprox(bunch1.v[1, 1], bunch2.v[1, 1], rtol=1e-3) - @test isapprox(bunch1.v[1, 2], bunch2.v[1, 2], rtol=1e-3) + @test isapprox(bunch1.coords.v[1, 1], bunch2.coords.v[1, 1], rtol=1e-3) + @test isapprox(bunch1.coords.v[1, 2], bunch2.coords.v[1, 2], rtol=1e-3) end # Test field_track! with initial conditions @testset "Different Initial Conditions" begin # Create particle with non-zero initial conditions bunch = Bunch(zeros(1, 6)) - bunch.v[1, 1] = 2.0 # x0 = 2.0 - bunch.v[1, 2] = 1.5 # px0 = 1.5 - bunch.v[1, 3] = 0.5 # y0 = 0.5 - bunch.v[1, 4] = 0.2 # py0 = 0.2 - + bunch.coords.v[1, 1] = 2.0 # x0 = 2.0 + bunch.coords.v[1, 2] = 1.5 # px0 = 1.5 + bunch.coords.v[1, 3] = 0.5 # y0 = 0.5 + bunch.coords.v[1, 4] = 0.2 # py0 = 0.2 + L = 1.0 solver = Tsit5() # Track the particle - FieldTracking.field_track!(1, BunchView(bunch), L, uniform_field, nothing, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) + FieldTracking.field_track!(1, bunch.coords, L, uniform_field, nothing, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) # Verify motion in x (with field) and y (without field) - @test isapprox(bunch.v[1, 1], 2.0 + 1.5 * 1.0 + 0.5 * 1.0^2, rtol=1e-5) # x motion with field - @test isapprox(bunch.v[1, 2], 1.5 + 1.0, rtol=1e-5) # px increases due to field - @test isapprox(bunch.v[1, 3], 0.5 + 0.2 * 1.0, rtol=1e-5) # y motion without field - @test isapprox(bunch.v[1, 4], 0.2, rtol=1e-5) # py unchanged (no field in y) + @test isapprox(bunch.coords.v[1, 1], 2.0 + 1.5 * 1.0 + 0.5 * 1.0^2, rtol=1e-5) # x motion with field + @test isapprox(bunch.coords.v[1, 2], 1.5 + 1.0, rtol=1e-5) # px increases due to field + @test isapprox(bunch.coords.v[1, 3], 0.5 + 0.2 * 1.0, rtol=1e-5) # y motion without field + @test isapprox(bunch.coords.v[1, 4], 0.2, rtol=1e-5) # py unchanged (no field in y) end end \ No newline at end of file diff --git a/test/RungeKuttaTracking.jl b/test/RungeKuttaTracking_test.jl similarity index 52% rename from test/RungeKuttaTracking.jl rename to test/RungeKuttaTracking_test.jl index 4ff56716..7fcd581f 100644 --- a/test/RungeKuttaTracking.jl +++ b/test/RungeKuttaTracking_test.jl @@ -28,7 +28,7 @@ # Verify results (analytical solution for uniform field) expected_x = 0.5 * h^2 # x = 0.5 * t^2 expected_px = h # px = t - + @test isapprox(u[1], expected_x, rtol=1e-10) @test isapprox(u[2], expected_px, rtol=1e-10) @test u[3] ≈ 0.0 @@ -42,14 +42,14 @@ u = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] t = 0.0 h = 0.1 - params = (E_x = 2.0,) + params = (E_x=2.0,) RungeKuttaTracking.rk4_step!(u, t, h, parametric_field, params) # With E_x = 2.0, acceleration is double expected_x = 0.5 * 2.0 * h^2 # x = 0.5 * 2.0 * t^2 expected_px = 2.0 * h # px = 2.0 * t - + @test isapprox(u[1], expected_x, rtol=1e-10) @test isapprox(u[2], expected_px, rtol=1e-10) end @@ -62,35 +62,35 @@ params = nothing # Track the particle - RungeKuttaTracking.rk4_track!(1, BunchView(bunch), t_span, uniform_field, params, n_steps) + RungeKuttaTracking.rk4_track!(1, bunch.coords, t_span, uniform_field, params, n_steps) # Verify final position and momentum (analytical solution) - @test isapprox(bunch.v[1, 1], 0.5, rtol=1e-5) # x = 0.5 * t^2 at t=1 - @test isapprox(bunch.v[1, 2], 1.0, rtol=1e-5) # px = t at t=1 - @test bunch.v[1, 3] ≈ 0.0 - @test bunch.v[1, 4] ≈ 0.0 - @test bunch.v[1, 5] ≈ 0.0 - @test bunch.v[1, 6] ≈ 0.0 + @test isapprox(bunch.coords.v[1, 1], 0.5, rtol=1e-5) # x = 0.5 * t^2 at t=1 + @test isapprox(bunch.coords.v[1, 2], 1.0, rtol=1e-5) # px = t at t=1 + @test bunch.coords.v[1, 3] ≈ 0.0 + @test bunch.coords.v[1, 4] ≈ 0.0 + @test bunch.coords.v[1, 5] ≈ 0.0 + @test bunch.coords.v[1, 6] ≈ 0.0 end @testset "rk4_track! with different initial conditions" begin # Create a particle with initial position and momentum bunch = Bunch(zeros(1, 6)) - bunch.v[1, 1] = 1.0 # x0 = 1.0 - bunch.v[1, 2] = 0.5 # px0 = 0.5 - + bunch.coords.v[1, 1] = 1.0 # x0 = 1.0 + bunch.coords.v[1, 2] = 0.5 # px0 = 0.5 + t_span = (0.0, 1.0) n_steps = 100 params = nothing - RungeKuttaTracking.rk4_track!(1, BunchView(bunch), t_span, uniform_field, params, n_steps) + RungeKuttaTracking.rk4_track!(1, bunch.coords, t_span, uniform_field, params, n_steps) # Analytical solution: x = x0 + px0*t + 0.5*E*t^2, px = px0 + E*t expected_x = 1.0 + 0.5 * 1.0 + 0.5 * 1.0 * 1.0^2 # 2.0 expected_px = 0.5 + 1.0 * 1.0 # 1.5 - - @test isapprox(bunch.v[1, 1], expected_x, rtol=1e-5) - @test isapprox(bunch.v[1, 2], expected_px, rtol=1e-5) + + @test isapprox(bunch.coords.v[1, 1], expected_x, rtol=1e-5) + @test isapprox(bunch.coords.v[1, 2], expected_px, rtol=1e-5) end @testset "rk4_track! with parameters" begin @@ -98,76 +98,48 @@ bunch = Bunch(zeros(1, 6)) t_span = (0.0, 1.0) n_steps = 100 - params = (E_x = 3.0,) + params = (E_x=3.0,) - RungeKuttaTracking.rk4_track!(1, BunchView(bunch), t_span, parametric_field, params, n_steps) + RungeKuttaTracking.rk4_track!(1, bunch.coords, t_span, parametric_field, params, n_steps) # With E_x = 3.0 expected_x = 0.5 * 3.0 * 1.0^2 # 1.5 expected_px = 3.0 * 1.0 # 3.0 - - @test isapprox(bunch.v[1, 1], expected_x, rtol=1e-5) - @test isapprox(bunch.v[1, 2], expected_px, rtol=1e-5) - end - - @testset "rk4_track! multiple particles" begin - # Create multiple particles with different initial conditions - bunch = Bunch(zeros(3, 6)) - bunch.v[2, 1] = 1.0 # Different initial x - bunch.v[3, 2] = 1.0 # Different initial px - - t_span = (0.0, 1.0) - n_steps = 50 - params = nothing - # Create kernel call to track all particles - kc = (KernelCall(RungeKuttaTracking.rk4_track!, (t_span, uniform_field, params, n_steps)),) - BeamTracking.runkernels!(nothing, BunchView(bunch), kc) - - # Verify results for each particle - @test isapprox(bunch.v[1, 1], 0.5, rtol=1e-5) # Particle 1: x0=0, px0=0 - @test isapprox(bunch.v[1, 2], 1.0, rtol=1e-5) - - @test isapprox(bunch.v[2, 1], 1.5, rtol=1e-5) # Particle 2: x0=1, px0=0 - @test isapprox(bunch.v[2, 2], 1.0, rtol=1e-5) - - @test isapprox(bunch.v[3, 1], 1.5, rtol=1e-5) # Particle 3: x0=0, px0=1 - @test isapprox(bunch.v[3, 2], 2.0, rtol=1e-5) + @test isapprox(bunch.coords.v[1, 1], expected_x, rtol=1e-5) + @test isapprox(bunch.coords.v[1, 2], expected_px, rtol=1e-5) end @testset "rk4_track! different step sizes" begin # Test convergence with different step sizes bunch1 = Bunch(zeros(1, 6)) bunch2 = Bunch(zeros(1, 6)) - + t_span = (0.0, 1.0) params = nothing # Track with different step sizes - RungeKuttaTracking.rk4_track!(1, BunchView(bunch1), t_span, uniform_field, params, 50) - RungeKuttaTracking.rk4_track!(1, BunchView(bunch2), t_span, uniform_field, params, 200) + RungeKuttaTracking.rk4_track!(1, bunch1.coords, t_span, uniform_field, params, 50) + RungeKuttaTracking.rk4_track!(1, bunch2.coords, t_span, uniform_field, params, 200) # Results should be similar but more accurate with smaller steps - @test isapprox(bunch1.v[1, 1], bunch2.v[1, 1], rtol=1e-3) - @test isapprox(bunch1.v[1, 2], bunch2.v[1, 2], rtol=1e-3) - + @test isapprox(bunch1.coords.v[1, 1], bunch2.coords.v[1, 1], rtol=1e-3) + @test isapprox(bunch1.coords.v[1, 2], bunch2.coords.v[1, 2], rtol=1e-3) + # Both should be close to analytical solution - @test isapprox(bunch2.v[1, 1], 0.5, rtol=1e-6) - @test isapprox(bunch2.v[1, 2], 1.0, rtol=1e-6) + @test isapprox(bunch2.coords.v[1, 1], 0.5, rtol=1e-6) + @test isapprox(bunch2.coords.v[1, 2], 1.0, rtol=1e-6) end @testset "rk4_track! time-varying field" begin - # Test with time-dependent field bunch = Bunch(zeros(1, 6)) t_span = (0.0, 2.0) n_steps = 200 - params = nothing - RungeKuttaTracking.rk4_track!(1, BunchView(bunch), t_span, time_varying_field, params, n_steps) + RungeKuttaTracking.rk4_track!(1, bunch.coords, t_span, time_varying_field, nothing, n_steps) - # With time-varying field E(t) = t, analytical solution is more complex - # Approximate verification that particle moved and gained momentum - @test bunch.v[1, 1] > 1.0 # Should have moved in x - @test bunch.v[1, 2] > 1.0 # Should have gained momentum + @test isapprox(bunch.coords.v[1, 2], 2.0, rtol=1e-5) # px(2) = 2 + @test isapprox(bunch.coords.v[1, 1], 4 / 3, rtol=1e-5) # x(2) = 4/3 end + end \ No newline at end of file diff --git a/test/runtests.jl b/test/runtests.jl index acd45f6d..ad058c8d 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -188,4 +188,6 @@ include("LinearTracking_test.jl") include("ExactTracking_test.jl") include("IntegrationTracking_test.jl") include("BeamlinesExt_test.jl") -include("time_test.jl") \ No newline at end of file +include("time_test.jl") +include("FieldTracking_test.jl") +include("RungeKuttaTracking_test.jl") \ No newline at end of file From c4dce752c60a0d481ef3356bc9c3cb814f1d9dcc Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 7 Nov 2025 02:53:50 -0500 Subject: [PATCH 42/76] Clean up --- .vscode/settings.json | 3 -- .../BeamTrackingBeamlinesExt.jl | 24 ++++++------ src/BeamTracking.jl | 39 +++++++------------ 3 files changed, 27 insertions(+), 39 deletions(-) delete mode 100644 .vscode/settings.json diff --git a/.vscode/settings.json b/.vscode/settings.json deleted file mode 100644 index be4f27e7..00000000 --- a/.vscode/settings.json +++ /dev/null @@ -1,3 +0,0 @@ -{ - "julia.environmentPath": "/Users/lihao/.julia/dev/BeamTracking" -} diff --git a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl index 32e3e242..4e13899a 100644 --- a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl +++ b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl @@ -2,15 +2,15 @@ module BeamTrackingBeamlinesExt using Beamlines, BeamTracking, GTPSA, StaticArrays, KernelAbstractions using Beamlines: isactive, deval, unsafe_getparams, o2i, BitsBeamline, BitsLineElement, isnullspecies using BeamTracking: get_N_particle, R_to_beta_gamma, R_to_gamma, R_to_pc, R_to_v, beta_gamma_to_v, runkernels!, - @makekernel, Coords, KernelCall, KernelChain, push, TimeDependentParam, RefState, launch! + @makekernel, Coords, KernelCall, KernelChain, push, TimeDependentParam, RefState, launch! import BeamTracking: track!, C_LIGHT, chargeof, massof include("utils.jl") function track!( - bunch::Bunch, - ele::LineElement; + bunch::Bunch, + ele::LineElement; t_ref::Ref=Ref{eltype(bunch.coords.v)}(0), kwargs... ) @@ -24,7 +24,7 @@ end # Would also allow you to do mix of outer and inner loop too, doing a sub-bunch of # particles in parallel -@makekernel fastgtpsa = false function outer_track!(i, b::Coords, bunch::Bunch, bl::Beamline) +@makekernel fastgtpsa=false function outer_track!(i, b::Coords, bunch::Bunch, bl::Beamline) for j in 1:length(bl.line) @inbounds ele = bl.line[j] @noinline _track!(i, b, bunch, ele, ele.tracking_method) @@ -32,8 +32,8 @@ end end function track!( - bunch::Bunch, - bl::Beamline; + bunch::Bunch, + bl::Beamline; t_ref::Ref=Ref{eltype(bunch.coords.v)}(0), outer_particle_loop::Bool=false, kwargs... @@ -58,8 +58,8 @@ end function track!( - bunch::Bunch, - bbl::BitsBeamline{TM}; + bunch::Bunch, + bbl::BitsBeamline{TM}; t_ref::Ref=Ref{eltype(bunch.coords.v)}(0), outer_particle_loop::Bool=false ) where {TM} @@ -67,12 +67,12 @@ function track!( if length(bbl.params) == 0 return bunch end - + check_R_ref!(nothing, bunch) if !outer_particle_loop if !isnothing(bbl.rep) - i = 1 + i = 1 while i <= length(bbl.params) repeat_count = bbl.rep[i] start_i = i @@ -102,8 +102,8 @@ function track!( end function track!( - bunch::Bunch, - bbl::BitsBeamline{TM}; + bunch::Bunch, + bbl::BitsBeamline{TM}; outer_particle_loop::Bool=false ) where {TM<:Beamlines.MultipleTrackingMethods} error("BitsBeamline tracking including different tracking methods per element not implemented yet") diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index 630b9085..cf6793b7 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -1,33 +1,23 @@ -""" - BeamTracking - -A high-performance particle beam tracking package for accelerator physics simulations. -Currently provides both linear, exact, field tracking, and Runge-Kutta tracking methods. -""" module BeamTracking - using GTPSA, - ReferenceFrameRotations, - StaticArrays, - SIMD, - SIMDMathFunctions, - VectorizationBase, - Unrolled, - MacroTools, - Adapt, - Accessors, - SpecialFunctions + ReferenceFrameRotations, + StaticArrays, + SIMD, + SIMDMathFunctions, + VectorizationBase, + Unrolled, + MacroTools, + Adapt, + Accessors, + SpecialFunctions, + AtomicAndPhysicalConstants using KernelAbstractions +using SIMD: SIMD import GTPSA: sincu, sinhcu, normTPS import Base: setproperty! -# Put AtomicAndPhysicalConstants in a box for now for safety -include("Constants.jl") -using .Constants: Constants, Species, massof, chargeof, nameof, C_LIGHT, isnullspecies -export Species - export Bunch, State, ParticleView, sincu, sinhcu, sincuc, expq, quat_mul, atan2, Time, TimeDependentParam export LinearTracking, Linear export ExactTracking, Exact @@ -36,6 +26,7 @@ export RungeKuttaTracking, RungeKutta export IntegrationTracking, SplitIntegration, DriftKick, BendKick, SolenoidKick, MatrixKick export track! export rot_quaternion, inv_rot_quaternion +export Species, E_CHARGE, EPS_0, H_BAR include("utils.jl") include("types.jl") @@ -48,8 +39,8 @@ include("kernels/coord_rotation.jl") include("modules/ExactTracking.jl") #; TRACKING_METHOD(::ExactTracking) = Exact include("modules/LinearTracking.jl") #; TRACKING_METHOD(::LinearTracking) = Linear include("modules/IntegrationTracking.jl") #; TRACKING_METHOD(::LinearTracking) = SplitIntegration, DriftKick, BendKick, SolenoidKick, MatrixKick -include("modules/FieldTracking.jl") -include("modules/RungeKuttaTracking.jl") +include("modules/FieldTracking.jl") #; TRACKING_METHOD(::FieldTracking) = Field +include("modules/RungeKuttaTracking.jl") #; TRACKING_METHOD(::RungeKuttaTracking) = RungeKutta # Empty tracking method to be imported+implemented by package extensions function track! end From 2d9cbcf597ad832672122d3f681e7709a9249057 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 7 Nov 2025 03:00:13 -0500 Subject: [PATCH 43/76] More style clean up --- .../BeamTrackingBeamlinesExt.jl | 2 +- src/BeamTracking.jl | 2 +- test/runtests.jl | 50 ++++++++++--------- 3 files changed, 29 insertions(+), 25 deletions(-) diff --git a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl index 4e13899a..3fee083e 100644 --- a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl +++ b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl @@ -67,7 +67,7 @@ function track!( if length(bbl.params) == 0 return bunch end - + check_R_ref!(nothing, bunch) if !outer_particle_loop diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index cf6793b7..9eaba18d 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -14,7 +14,7 @@ using GTPSA, using KernelAbstractions using SIMD: SIMD - + import GTPSA: sincu, sinhcu, normTPS import Base: setproperty! diff --git a/test/runtests.jl b/test/runtests.jl index ad058c8d..520c489b 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -1,16 +1,16 @@ using Test, - BeamTracking, - Beamlines, - JET, - BenchmarkTools, - GTPSA, - StaticArrays, - ReferenceFrameRotations, - OrdinaryDiffEq, - SIMD + BeamTracking, + Beamlines, + JET, + BenchmarkTools, + GTPSA, + StaticArrays, + ReferenceFrameRotations, + OrdinaryDiffEq, + SIMD using BeamTracking: Coords, KernelCall, Q0, QX, QY, QZ, STATE_ALIVE, STATE_LOST, - STATE_LOST_NEG_X, STATE_LOST_POS_X, STATE_LOST_NEG_Y, STATE_LOST_POS_Y, STATE_LOST_PZ, STATE_LOST_Z + STATE_LOST_NEG_X, STATE_LOST_POS_X, STATE_LOST_NEG_Y, STATE_LOST_POS_Y, STATE_LOST_PZ, STATE_LOST_Z using Beamlines: isactive BenchmarkTools.DEFAULT_PARAMETERS.gctrial = false @@ -23,7 +23,7 @@ function test_matrix( M_expected, # Expected matrix kernel_call; type_stable=VERSION >= v"1.11", - no_scalar_allocs=!(any(t -> eltype(t) <: TPS, kernel_call.args)), # only for non-parametric + no_scalar_allocs=!(any(t->eltype(t) <: TPS, kernel_call.args)), # only for non-parametric rtol=nothing, atol=nothing ) @@ -39,23 +39,25 @@ function test_matrix( # Set up tolerance kwargs kwargs = () if !isnothing(atol) - kwargs = pairs((; kwargs..., atol=atol)) + kwargs = pairs((;kwargs..., atol=atol)) end if !isnothing(rtol) - kwargs = pairs((; kwargs..., rtol=rtol)) + kwargs = pairs((;kwargs..., rtol=rtol)) end # 1) Correctness - @test isapprox(GTPSA.jacobian(coords.v)[1:6, 1:6], scalar.(M_expected); kwargs...) + @test isapprox(GTPSA.jacobian(coords.v)[1:6,1:6], scalar.(M_expected); kwargs...) # 2) Type stability if type_stable @test_opt kernel_call.kernel(1, coords, kernel_call.args...) end # 3) No scalar allocations if no_scalar_allocs - v = [0.1 0.2 0.3 0.4 0.5 0.6] - @test @ballocated(BeamTracking.launch!(coords, $kernel_call; use_KA=false), - setup = (coords = Coords(copy($state), copy($v), nothing))) == 0 + v = repeat([0.1 0.2 0.3 0.4 0.5 0.6], 2) + q = repeat([1.0 0.0 0.0 0.0], 2) + state = [STATE_ALIVE STATE_ALIVE] + @test @ballocated(BeamTracking.launch!(coords, $kernel_call; use_KA=false), + setup=(coords = Coords(copy($state), copy($v), copy($q)))) == 0 end end @@ -83,8 +85,8 @@ end function test_map( bmad_map_file::AbstractString, kernel_call; - type_stable=VERSION >= v"1.11", - no_scalar_allocs=!(any(t -> eltype(t) <: TPS, kernel_call.args)), # only for non-parametric + type_stable=VERSION >= v"1.11", + no_scalar_allocs=!(any(t->eltype(t) <: TPS, kernel_call.args)), # only for non-parametric tol=1e-8 ) v_expected = read_map(bmad_map_file) @@ -107,9 +109,11 @@ function test_map( end # 3) No scalar allocations if no_scalar_allocs - v = [0.1 0.2 0.3 0.4 0.5 6e16] - @test @ballocated(BeamTracking.launch!(coords, $kernel_call; use_KA=false), - setup = (coords = Coords(copy($state), copy($v), nothing))) == 0 + v = repeat([0.1 0.2 0.3 0.4 0.5 0.6], 2) + q = repeat([1.0 0.0 0.0 0.0], 2) + state = [STATE_ALIVE STATE_ALIVE] + @test @ballocated(BeamTracking.launch!(coords, $kernel_call; use_KA=false), + setup=(coords = Coords(copy($state), copy($v), copy($q)))) == 0 end @@ -123,7 +127,7 @@ function test_map( else error("`R_ref`, `E` or `p0c`, as well as `species` must both be provided as keyword arguments") end - + if !haskey(kwargs, :ele) error("ele must be provided as a keyword argument") else From b26c2ce3451c45042394e7059e030732af9cb460 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 7 Nov 2025 03:08:07 -0500 Subject: [PATCH 44/76] Catch up on tests --- test/bmad_maps/drift.jl | 472 ++-- test/bmad_maps/patch.jl | 4930 ++++++++++++++++----------------- test/bmad_maps/patch_norot.jl | 478 ++-- test/runtests.jl | 60 +- 4 files changed, 2970 insertions(+), 2970 deletions(-) diff --git a/test/bmad_maps/drift.jl b/test/bmad_maps/drift.jl index 0082bab4..746a96c7 100644 --- a/test/bmad_maps/drift.jl +++ b/test/bmad_maps/drift.jl @@ -11,239 +11,239 @@ using GTPSA d_z = Descriptor(6, 10) v_z = zeros(TPS64{d_z}, 6) -v_z[1][[1, 0, 0, 0, 0, 0]] = 1.0000000000000000E+00 -v_z[1][[0, 1, 0, 0, 0, 0]] = 1.0000000000000000E+00 -v_z[1][[0, 1, 0, 0, 0, 1]] = -1.0000000000000000E+00 -v_z[1][[0, 3, 0, 0, 0, 0]] = 5.0000000000000000E-01 -v_z[1][[0, 1, 0, 2, 0, 0]] = 5.0000000000000000E-01 -v_z[1][[0, 1, 0, 0, 0, 2]] = 1.0000000000000000E+00 -v_z[1][[0, 3, 0, 0, 0, 1]] = -1.5000000000000000E+00 -v_z[1][[0, 1, 0, 2, 0, 1]] = -1.5000000000000000E+00 -v_z[1][[0, 1, 0, 0, 0, 3]] = -1.0000000000000002E+00 -v_z[1][[0, 5, 0, 0, 0, 0]] = 3.7500000000000000E-01 -v_z[1][[0, 3, 0, 2, 0, 0]] = 7.5000000000000000E-01 -v_z[1][[0, 1, 0, 4, 0, 0]] = 3.7500000000000000E-01 -v_z[1][[0, 3, 0, 0, 0, 2]] = 3.0000000000000000E+00 -v_z[1][[0, 1, 0, 2, 0, 2]] = 3.0000000000000000E+00 -v_z[1][[0, 1, 0, 0, 0, 4]] = 1.0000000000000004E+00 -v_z[1][[0, 5, 0, 0, 0, 1]] = -1.8750000000000000E+00 -v_z[1][[0, 3, 0, 2, 0, 1]] = -3.7500000000000000E+00 -v_z[1][[0, 1, 0, 4, 0, 1]] = -1.8750000000000000E+00 -v_z[1][[0, 3, 0, 0, 0, 3]] = -5.0000000000000000E+00 -v_z[1][[0, 1, 0, 2, 0, 3]] = -5.0000000000000000E+00 -v_z[1][[0, 1, 0, 0, 0, 5]] = -1.0000000000000007E+00 -v_z[1][[0, 7, 0, 0, 0, 0]] = 3.1250000000000000E-01 -v_z[1][[0, 5, 0, 2, 0, 0]] = 9.3750000000000000E-01 -v_z[1][[0, 3, 0, 4, 0, 0]] = 9.3750000000000000E-01 -v_z[1][[0, 1, 0, 6, 0, 0]] = 3.1250000000000000E-01 -v_z[1][[0, 5, 0, 0, 0, 2]] = 5.6250000000000000E+00 -v_z[1][[0, 3, 0, 2, 0, 2]] = 1.1250000000000000E+01 -v_z[1][[0, 1, 0, 4, 0, 2]] = 5.6250000000000000E+00 -v_z[1][[0, 3, 0, 0, 0, 4]] = 7.5000000000000009E+00 -v_z[1][[0, 1, 0, 2, 0, 4]] = 7.5000000000000009E+00 -v_z[1][[0, 1, 0, 0, 0, 6]] = 1.0000000000000011E+00 -v_z[1][[0, 7, 0, 0, 0, 1]] = -2.1875000000000000E+00 -v_z[1][[0, 5, 0, 2, 0, 1]] = -6.5625000000000000E+00 -v_z[1][[0, 3, 0, 4, 0, 1]] = -6.5625000000000000E+00 -v_z[1][[0, 1, 0, 6, 0, 1]] = -2.1875000000000000E+00 -v_z[1][[0, 5, 0, 0, 0, 3]] = -1.3125000000000000E+01 -v_z[1][[0, 3, 0, 2, 0, 3]] = -2.6250000000000000E+01 -v_z[1][[0, 1, 0, 4, 0, 3]] = -1.3125000000000000E+01 -v_z[1][[0, 3, 0, 0, 0, 5]] = -1.0500000000000002E+01 -v_z[1][[0, 1, 0, 2, 0, 5]] = -1.0500000000000002E+01 -v_z[1][[0, 1, 0, 0, 0, 7]] = -1.0000000000000016E+00 -v_z[1][[0, 9, 0, 0, 0, 0]] = 2.7343750000000000E-01 -v_z[1][[0, 7, 0, 2, 0, 0]] = 1.0937500000000000E+00 -v_z[1][[0, 5, 0, 4, 0, 0]] = 1.6406250000000000E+00 -v_z[1][[0, 3, 0, 6, 0, 0]] = 1.0937500000000000E+00 -v_z[1][[0, 1, 0, 8, 0, 0]] = 2.7343750000000000E-01 -v_z[1][[0, 7, 0, 0, 0, 2]] = 8.7500000000000000E+00 -v_z[1][[0, 5, 0, 2, 0, 2]] = 2.6250000000000000E+01 -v_z[1][[0, 3, 0, 4, 0, 2]] = 2.6250000000000000E+01 -v_z[1][[0, 1, 0, 6, 0, 2]] = 8.7500000000000000E+00 -v_z[1][[0, 5, 0, 0, 0, 4]] = 2.6250000000000000E+01 -v_z[1][[0, 3, 0, 2, 0, 4]] = 5.2500000000000000E+01 -v_z[1][[0, 1, 0, 4, 0, 4]] = 2.6250000000000000E+01 -v_z[1][[0, 3, 0, 0, 0, 6]] = 1.4000000000000004E+01 -v_z[1][[0, 1, 0, 2, 0, 6]] = 1.4000000000000004E+01 -v_z[1][[0, 1, 0, 0, 0, 8]] = 1.0000000000000011E+00 -v_z[1][[0, 9, 0, 0, 0, 1]] = -2.4609375000000000E+00 -v_z[1][[0, 7, 0, 2, 0, 1]] = -9.8437500000000000E+00 -v_z[1][[0, 5, 0, 4, 0, 1]] = -1.4765625000000000E+01 -v_z[1][[0, 3, 0, 6, 0, 1]] = -9.8437500000000000E+00 -v_z[1][[0, 1, 0, 8, 0, 1]] = -2.4609375000000000E+00 -v_z[1][[0, 7, 0, 0, 0, 3]] = -2.6250000000000000E+01 -v_z[1][[0, 5, 0, 2, 0, 3]] = -7.8750000000000000E+01 -v_z[1][[0, 3, 0, 4, 0, 3]] = -7.8750000000000000E+01 -v_z[1][[0, 1, 0, 6, 0, 3]] = -2.6250000000000000E+01 -v_z[1][[0, 5, 0, 0, 0, 5]] = -4.7250000000000000E+01 -v_z[1][[0, 3, 0, 2, 0, 5]] = -9.4500000000000000E+01 -v_z[1][[0, 1, 0, 4, 0, 5]] = -4.7250000000000000E+01 -v_z[1][[0, 3, 0, 0, 0, 7]] = -1.8000000000000007E+01 -v_z[1][[0, 1, 0, 2, 0, 7]] = -1.8000000000000007E+01 -v_z[1][[0, 1, 0, 0, 0, 9]] = -1.0000000000000007E+00 -v_z[2][[0, 1, 0, 0, 0, 0]] = 1.0000000000000000E+00 -v_z[3][[0, 0, 1, 0, 0, 0]] = 1.0000000000000000E+00 -v_z[3][[0, 0, 0, 1, 0, 0]] = 1.0000000000000000E+00 -v_z[3][[0, 0, 0, 1, 0, 1]] = -1.0000000000000000E+00 -v_z[3][[0, 2, 0, 1, 0, 0]] = 5.0000000000000000E-01 -v_z[3][[0, 0, 0, 3, 0, 0]] = 5.0000000000000000E-01 -v_z[3][[0, 0, 0, 1, 0, 2]] = 1.0000000000000000E+00 -v_z[3][[0, 2, 0, 1, 0, 1]] = -1.5000000000000000E+00 -v_z[3][[0, 0, 0, 3, 0, 1]] = -1.5000000000000000E+00 -v_z[3][[0, 0, 0, 1, 0, 3]] = -1.0000000000000002E+00 -v_z[3][[0, 4, 0, 1, 0, 0]] = 3.7500000000000000E-01 -v_z[3][[0, 2, 0, 3, 0, 0]] = 7.5000000000000000E-01 -v_z[3][[0, 0, 0, 5, 0, 0]] = 3.7500000000000000E-01 -v_z[3][[0, 2, 0, 1, 0, 2]] = 3.0000000000000000E+00 -v_z[3][[0, 0, 0, 3, 0, 2]] = 3.0000000000000000E+00 -v_z[3][[0, 0, 0, 1, 0, 4]] = 1.0000000000000004E+00 -v_z[3][[0, 4, 0, 1, 0, 1]] = -1.8750000000000000E+00 -v_z[3][[0, 2, 0, 3, 0, 1]] = -3.7500000000000000E+00 -v_z[3][[0, 0, 0, 5, 0, 1]] = -1.8750000000000000E+00 -v_z[3][[0, 2, 0, 1, 0, 3]] = -5.0000000000000000E+00 -v_z[3][[0, 0, 0, 3, 0, 3]] = -5.0000000000000000E+00 -v_z[3][[0, 0, 0, 1, 0, 5]] = -1.0000000000000007E+00 -v_z[3][[0, 6, 0, 1, 0, 0]] = 3.1250000000000000E-01 -v_z[3][[0, 4, 0, 3, 0, 0]] = 9.3750000000000000E-01 -v_z[3][[0, 2, 0, 5, 0, 0]] = 9.3750000000000000E-01 -v_z[3][[0, 0, 0, 7, 0, 0]] = 3.1250000000000000E-01 -v_z[3][[0, 4, 0, 1, 0, 2]] = 5.6250000000000000E+00 -v_z[3][[0, 2, 0, 3, 0, 2]] = 1.1250000000000000E+01 -v_z[3][[0, 0, 0, 5, 0, 2]] = 5.6250000000000000E+00 -v_z[3][[0, 2, 0, 1, 0, 4]] = 7.5000000000000009E+00 -v_z[3][[0, 0, 0, 3, 0, 4]] = 7.5000000000000009E+00 -v_z[3][[0, 0, 0, 1, 0, 6]] = 1.0000000000000011E+00 -v_z[3][[0, 6, 0, 1, 0, 1]] = -2.1875000000000000E+00 -v_z[3][[0, 4, 0, 3, 0, 1]] = -6.5625000000000000E+00 -v_z[3][[0, 2, 0, 5, 0, 1]] = -6.5625000000000000E+00 -v_z[3][[0, 0, 0, 7, 0, 1]] = -2.1875000000000000E+00 -v_z[3][[0, 4, 0, 1, 0, 3]] = -1.3125000000000000E+01 -v_z[3][[0, 2, 0, 3, 0, 3]] = -2.6250000000000000E+01 -v_z[3][[0, 0, 0, 5, 0, 3]] = -1.3125000000000000E+01 -v_z[3][[0, 2, 0, 1, 0, 5]] = -1.0500000000000002E+01 -v_z[3][[0, 0, 0, 3, 0, 5]] = -1.0500000000000002E+01 -v_z[3][[0, 0, 0, 1, 0, 7]] = -1.0000000000000016E+00 -v_z[3][[0, 8, 0, 1, 0, 0]] = 2.7343750000000000E-01 -v_z[3][[0, 6, 0, 3, 0, 0]] = 1.0937500000000000E+00 -v_z[3][[0, 4, 0, 5, 0, 0]] = 1.6406250000000000E+00 -v_z[3][[0, 2, 0, 7, 0, 0]] = 1.0937500000000000E+00 -v_z[3][[0, 0, 0, 9, 0, 0]] = 2.7343750000000000E-01 -v_z[3][[0, 6, 0, 1, 0, 2]] = 8.7500000000000000E+00 -v_z[3][[0, 4, 0, 3, 0, 2]] = 2.6250000000000000E+01 -v_z[3][[0, 2, 0, 5, 0, 2]] = 2.6250000000000000E+01 -v_z[3][[0, 0, 0, 7, 0, 2]] = 8.7500000000000000E+00 -v_z[3][[0, 4, 0, 1, 0, 4]] = 2.6250000000000000E+01 -v_z[3][[0, 2, 0, 3, 0, 4]] = 5.2500000000000000E+01 -v_z[3][[0, 0, 0, 5, 0, 4]] = 2.6250000000000000E+01 -v_z[3][[0, 2, 0, 1, 0, 6]] = 1.4000000000000004E+01 -v_z[3][[0, 0, 0, 3, 0, 6]] = 1.4000000000000004E+01 -v_z[3][[0, 0, 0, 1, 0, 8]] = 1.0000000000000011E+00 -v_z[3][[0, 8, 0, 1, 0, 1]] = -2.4609375000000000E+00 -v_z[3][[0, 6, 0, 3, 0, 1]] = -9.8437500000000000E+00 -v_z[3][[0, 4, 0, 5, 0, 1]] = -1.4765625000000000E+01 -v_z[3][[0, 2, 0, 7, 0, 1]] = -9.8437500000000000E+00 -v_z[3][[0, 0, 0, 9, 0, 1]] = -2.4609375000000000E+00 -v_z[3][[0, 6, 0, 1, 0, 3]] = -2.6250000000000000E+01 -v_z[3][[0, 4, 0, 3, 0, 3]] = -7.8750000000000000E+01 -v_z[3][[0, 2, 0, 5, 0, 3]] = -7.8750000000000000E+01 -v_z[3][[0, 0, 0, 7, 0, 3]] = -2.6250000000000000E+01 -v_z[3][[0, 4, 0, 1, 0, 5]] = -4.7250000000000000E+01 -v_z[3][[0, 2, 0, 3, 0, 5]] = -9.4500000000000000E+01 -v_z[3][[0, 0, 0, 5, 0, 5]] = -4.7250000000000000E+01 -v_z[3][[0, 2, 0, 1, 0, 7]] = -1.8000000000000007E+01 -v_z[3][[0, 0, 0, 3, 0, 7]] = -1.8000000000000007E+01 -v_z[3][[0, 0, 0, 1, 0, 9]] = -1.0000000000000007E+00 -v_z[4][[0, 0, 0, 1, 0, 0]] = 1.0000000000000000E+00 -v_z[5][[0, 0, 0, 0, 1, 0]] = 1.0000000000000000E+00 -v_z[5][[0, 0, 0, 0, 0, 1]] = 2.6043986254701483E-03 -v_z[5][[0, 2, 0, 0, 0, 0]] = -5.0000000000000000E-01 -v_z[5][[0, 0, 0, 2, 0, 0]] = -5.0000000000000000E-01 -v_z[5][[0, 0, 0, 0, 0, 2]] = -3.8964235999048476E-03 -v_z[5][[0, 2, 0, 0, 0, 1]] = 1.0000000000000000E+00 -v_z[5][[0, 0, 0, 2, 0, 1]] = 1.0000000000000000E+00 -v_z[5][[0, 0, 0, 0, 0, 3]] = 5.1783183994265885E-03 -v_z[5][[0, 4, 0, 0, 0, 0]] = -3.7499999999999989E-01 -v_z[5][[0, 2, 0, 2, 0, 0]] = -7.4999999999999978E-01 -v_z[5][[0, 0, 0, 4, 0, 0]] = -3.7499999999999989E-01 -v_z[5][[0, 2, 0, 0, 0, 2]] = -1.5000000000000004E+00 -v_z[5][[0, 0, 0, 2, 0, 2]] = -1.5000000000000004E+00 -v_z[5][[0, 0, 0, 0, 0, 4]] = -6.4476054832588265E-03 -v_z[5][[0, 4, 0, 0, 0, 1]] = 1.4999999999999998E+00 -v_z[5][[0, 2, 0, 2, 0, 1]] = 2.9999999999999996E+00 -v_z[5][[0, 0, 0, 4, 0, 1]] = 1.4999999999999998E+00 -v_z[5][[0, 2, 0, 0, 0, 3]] = 2.0000000000000000E+00 -v_z[5][[0, 0, 0, 2, 0, 3]] = 2.0000000000000000E+00 -v_z[5][[0, 0, 0, 0, 0, 5]] = 7.7018400315425131E-03 -v_z[5][[0, 6, 0, 0, 0, 0]] = -3.1250000000000000E-01 -v_z[5][[0, 4, 0, 2, 0, 0]] = -9.3749999999999989E-01 -v_z[5][[0, 2, 0, 4, 0, 0]] = -9.3750000000000000E-01 -v_z[5][[0, 0, 0, 6, 0, 0]] = -3.1250000000000000E-01 -v_z[5][[0, 4, 0, 0, 0, 2]] = -3.7500000000000000E+00 -v_z[5][[0, 2, 0, 2, 0, 2]] = -7.5000000000000000E+00 -v_z[5][[0, 0, 0, 4, 0, 2]] = -3.7500000000000000E+00 -v_z[5][[0, 2, 0, 0, 0, 4]] = -2.5000000000000000E+00 -v_z[5][[0, 0, 0, 2, 0, 4]] = -2.5000000000000000E+00 -v_z[5][[0, 0, 0, 0, 0, 6]] = -8.9386151661894897E-03 -v_z[5][[0, 6, 0, 0, 0, 1]] = 1.8750000000000007E+00 -v_z[5][[0, 4, 0, 2, 0, 1]] = 5.6249999999999982E+00 -v_z[5][[0, 2, 0, 4, 0, 1]] = 5.6250000000000000E+00 -v_z[5][[0, 0, 0, 6, 0, 1]] = 1.8750000000000007E+00 -v_z[5][[0, 4, 0, 0, 0, 3]] = 7.5000000000000018E+00 -v_z[5][[0, 2, 0, 2, 0, 3]] = 1.5000000000000004E+01 -v_z[5][[0, 0, 0, 4, 0, 3]] = 7.5000000000000018E+00 -v_z[5][[0, 2, 0, 0, 0, 5]] = 3.0000000000000009E+00 -v_z[5][[0, 0, 0, 2, 0, 5]] = 3.0000000000000009E+00 -v_z[5][[0, 0, 0, 0, 0, 7]] = 1.0155567073438281E-02 -v_z[5][[0, 8, 0, 0, 0, 0]] = -2.7343750000000006E-01 -v_z[5][[0, 6, 0, 2, 0, 0]] = -1.0937500000000002E+00 -v_z[5][[0, 4, 0, 4, 0, 0]] = -1.6406250000000000E+00 -v_z[5][[0, 2, 0, 6, 0, 0]] = -1.0937500000000002E+00 -v_z[5][[0, 0, 0, 8, 0, 0]] = -2.7343750000000006E-01 -v_z[5][[0, 6, 0, 0, 0, 2]] = -6.5625000000000009E+00 -v_z[5][[0, 4, 0, 2, 0, 2]] = -1.9687500000000000E+01 -v_z[5][[0, 2, 0, 4, 0, 2]] = -1.9687500000000000E+01 -v_z[5][[0, 0, 0, 6, 0, 2]] = -6.5625000000000027E+00 -v_z[5][[0, 4, 0, 0, 0, 4]] = -1.3125000000000004E+01 -v_z[5][[0, 2, 0, 2, 0, 4]] = -2.6250000000000007E+01 -v_z[5][[0, 0, 0, 4, 0, 4]] = -1.3125000000000004E+01 -v_z[5][[0, 2, 0, 0, 0, 6]] = -3.5000000000000067E+00 -v_z[5][[0, 0, 0, 2, 0, 6]] = -3.5000000000000067E+00 -v_z[5][[0, 0, 0, 0, 0, 8]] = -1.1350380016698304E-02 -v_z[5][[0, 8, 0, 0, 0, 1]] = 2.1875000000000000E+00 -v_z[5][[0, 6, 0, 2, 0, 1]] = 8.7499999999999982E+00 -v_z[5][[0, 4, 0, 4, 0, 1]] = 1.3125000000000002E+01 -v_z[5][[0, 2, 0, 6, 0, 1]] = 8.7499999999999982E+00 -v_z[5][[0, 0, 0, 8, 0, 1]] = 2.1874999999999996E+00 -v_z[5][[0, 6, 0, 0, 0, 3]] = 1.7500000000000000E+01 -v_z[5][[0, 4, 0, 2, 0, 3]] = 5.2499999999999986E+01 -v_z[5][[0, 2, 0, 4, 0, 3]] = 5.2500000000000007E+01 -v_z[5][[0, 0, 0, 6, 0, 3]] = 1.7500000000000004E+01 -v_z[5][[0, 4, 0, 0, 0, 5]] = 2.1000000000000004E+01 -v_z[5][[0, 2, 0, 2, 0, 5]] = 4.1999999999999993E+01 -v_z[5][[0, 0, 0, 4, 0, 5]] = 2.1000000000000004E+01 -v_z[5][[0, 2, 0, 0, 0, 7]] = 4.0000000000000018E+00 -v_z[5][[0, 0, 0, 2, 0, 7]] = 4.0000000000000018E+00 -v_z[5][[0, 0, 0, 0, 0, 9]] = 1.2520791228544791E-02 -v_z[5][[0, 10, 0, 0, 0, 0]] = -2.4609375000000000E-01 -v_z[5][[0, 8, 0, 2, 0, 0]] = -1.2304687500000000E+00 -v_z[5][[0, 6, 0, 4, 0, 0]] = -2.4609374999999996E+00 -v_z[5][[0, 4, 0, 6, 0, 0]] = -2.4609374999999996E+00 -v_z[5][[0, 2, 0, 8, 0, 0]] = -1.2304687499999998E+00 -v_z[5][[0, 0, 0, 10, 0, 0]] = -2.4609375000000000E-01 -v_z[5][[0, 8, 0, 0, 0, 2]] = -9.8437499999999982E+00 -v_z[5][[0, 6, 0, 2, 0, 2]] = -3.9375000000000000E+01 -v_z[5][[0, 4, 0, 4, 0, 2]] = -5.9062500000000000E+01 -v_z[5][[0, 2, 0, 6, 0, 2]] = -3.9375000000000000E+01 -v_z[5][[0, 0, 0, 8, 0, 2]] = -9.8437500000000000E+00 -v_z[5][[0, 6, 0, 0, 0, 4]] = -3.9375000000000007E+01 -v_z[5][[0, 4, 0, 2, 0, 4]] = -1.1812499999999999E+02 -v_z[5][[0, 2, 0, 4, 0, 4]] = -1.1812499999999999E+02 -v_z[5][[0, 0, 0, 6, 0, 4]] = -3.9375000000000007E+01 -v_z[5][[0, 4, 0, 0, 0, 6]] = -3.1500000000000014E+01 -v_z[5][[0, 2, 0, 2, 0, 6]] = -6.3000000000000028E+01 -v_z[5][[0, 0, 0, 4, 0, 6]] = -3.1500000000000014E+01 -v_z[5][[0, 2, 0, 0, 0, 8]] = -4.5000000000000062E+00 -v_z[5][[0, 0, 0, 2, 0, 8]] = -4.5000000000000062E+00 -v_z[5][[0, 0, 0, 0, 0, 10]] = -1.3664595671042536E-02 -v_z[6][[0, 0, 0, 0, 0, 1]] = 1.0000000000000000E+00 \ No newline at end of file +v_z[1][[1,0,0,0,0,0]] = 1.0000000000000000E+00 +v_z[1][[0,1,0,0,0,0]] = 1.0000000000000000E+00 +v_z[1][[0,1,0,0,0,1]] = -1.0000000000000000E+00 +v_z[1][[0,3,0,0,0,0]] = 5.0000000000000000E-01 +v_z[1][[0,1,0,2,0,0]] = 5.0000000000000000E-01 +v_z[1][[0,1,0,0,0,2]] = 1.0000000000000000E+00 +v_z[1][[0,3,0,0,0,1]] = -1.5000000000000000E+00 +v_z[1][[0,1,0,2,0,1]] = -1.5000000000000000E+00 +v_z[1][[0,1,0,0,0,3]] = -1.0000000000000002E+00 +v_z[1][[0,5,0,0,0,0]] = 3.7500000000000000E-01 +v_z[1][[0,3,0,2,0,0]] = 7.5000000000000000E-01 +v_z[1][[0,1,0,4,0,0]] = 3.7500000000000000E-01 +v_z[1][[0,3,0,0,0,2]] = 3.0000000000000000E+00 +v_z[1][[0,1,0,2,0,2]] = 3.0000000000000000E+00 +v_z[1][[0,1,0,0,0,4]] = 1.0000000000000004E+00 +v_z[1][[0,5,0,0,0,1]] = -1.8750000000000000E+00 +v_z[1][[0,3,0,2,0,1]] = -3.7500000000000000E+00 +v_z[1][[0,1,0,4,0,1]] = -1.8750000000000000E+00 +v_z[1][[0,3,0,0,0,3]] = -5.0000000000000000E+00 +v_z[1][[0,1,0,2,0,3]] = -5.0000000000000000E+00 +v_z[1][[0,1,0,0,0,5]] = -1.0000000000000007E+00 +v_z[1][[0,7,0,0,0,0]] = 3.1250000000000000E-01 +v_z[1][[0,5,0,2,0,0]] = 9.3750000000000000E-01 +v_z[1][[0,3,0,4,0,0]] = 9.3750000000000000E-01 +v_z[1][[0,1,0,6,0,0]] = 3.1250000000000000E-01 +v_z[1][[0,5,0,0,0,2]] = 5.6250000000000000E+00 +v_z[1][[0,3,0,2,0,2]] = 1.1250000000000000E+01 +v_z[1][[0,1,0,4,0,2]] = 5.6250000000000000E+00 +v_z[1][[0,3,0,0,0,4]] = 7.5000000000000009E+00 +v_z[1][[0,1,0,2,0,4]] = 7.5000000000000009E+00 +v_z[1][[0,1,0,0,0,6]] = 1.0000000000000011E+00 +v_z[1][[0,7,0,0,0,1]] = -2.1875000000000000E+00 +v_z[1][[0,5,0,2,0,1]] = -6.5625000000000000E+00 +v_z[1][[0,3,0,4,0,1]] = -6.5625000000000000E+00 +v_z[1][[0,1,0,6,0,1]] = -2.1875000000000000E+00 +v_z[1][[0,5,0,0,0,3]] = -1.3125000000000000E+01 +v_z[1][[0,3,0,2,0,3]] = -2.6250000000000000E+01 +v_z[1][[0,1,0,4,0,3]] = -1.3125000000000000E+01 +v_z[1][[0,3,0,0,0,5]] = -1.0500000000000002E+01 +v_z[1][[0,1,0,2,0,5]] = -1.0500000000000002E+01 +v_z[1][[0,1,0,0,0,7]] = -1.0000000000000016E+00 +v_z[1][[0,9,0,0,0,0]] = 2.7343750000000000E-01 +v_z[1][[0,7,0,2,0,0]] = 1.0937500000000000E+00 +v_z[1][[0,5,0,4,0,0]] = 1.6406250000000000E+00 +v_z[1][[0,3,0,6,0,0]] = 1.0937500000000000E+00 +v_z[1][[0,1,0,8,0,0]] = 2.7343750000000000E-01 +v_z[1][[0,7,0,0,0,2]] = 8.7500000000000000E+00 +v_z[1][[0,5,0,2,0,2]] = 2.6250000000000000E+01 +v_z[1][[0,3,0,4,0,2]] = 2.6250000000000000E+01 +v_z[1][[0,1,0,6,0,2]] = 8.7500000000000000E+00 +v_z[1][[0,5,0,0,0,4]] = 2.6250000000000000E+01 +v_z[1][[0,3,0,2,0,4]] = 5.2500000000000000E+01 +v_z[1][[0,1,0,4,0,4]] = 2.6250000000000000E+01 +v_z[1][[0,3,0,0,0,6]] = 1.4000000000000004E+01 +v_z[1][[0,1,0,2,0,6]] = 1.4000000000000004E+01 +v_z[1][[0,1,0,0,0,8]] = 1.0000000000000011E+00 +v_z[1][[0,9,0,0,0,1]] = -2.4609375000000000E+00 +v_z[1][[0,7,0,2,0,1]] = -9.8437500000000000E+00 +v_z[1][[0,5,0,4,0,1]] = -1.4765625000000000E+01 +v_z[1][[0,3,0,6,0,1]] = -9.8437500000000000E+00 +v_z[1][[0,1,0,8,0,1]] = -2.4609375000000000E+00 +v_z[1][[0,7,0,0,0,3]] = -2.6250000000000000E+01 +v_z[1][[0,5,0,2,0,3]] = -7.8750000000000000E+01 +v_z[1][[0,3,0,4,0,3]] = -7.8750000000000000E+01 +v_z[1][[0,1,0,6,0,3]] = -2.6250000000000000E+01 +v_z[1][[0,5,0,0,0,5]] = -4.7250000000000000E+01 +v_z[1][[0,3,0,2,0,5]] = -9.4500000000000000E+01 +v_z[1][[0,1,0,4,0,5]] = -4.7250000000000000E+01 +v_z[1][[0,3,0,0,0,7]] = -1.8000000000000007E+01 +v_z[1][[0,1,0,2,0,7]] = -1.8000000000000007E+01 +v_z[1][[0,1,0,0,0,9]] = -1.0000000000000007E+00 +v_z[2][[0,1,0,0,0,0]] = 1.0000000000000000E+00 +v_z[3][[0,0,1,0,0,0]] = 1.0000000000000000E+00 +v_z[3][[0,0,0,1,0,0]] = 1.0000000000000000E+00 +v_z[3][[0,0,0,1,0,1]] = -1.0000000000000000E+00 +v_z[3][[0,2,0,1,0,0]] = 5.0000000000000000E-01 +v_z[3][[0,0,0,3,0,0]] = 5.0000000000000000E-01 +v_z[3][[0,0,0,1,0,2]] = 1.0000000000000000E+00 +v_z[3][[0,2,0,1,0,1]] = -1.5000000000000000E+00 +v_z[3][[0,0,0,3,0,1]] = -1.5000000000000000E+00 +v_z[3][[0,0,0,1,0,3]] = -1.0000000000000002E+00 +v_z[3][[0,4,0,1,0,0]] = 3.7500000000000000E-01 +v_z[3][[0,2,0,3,0,0]] = 7.5000000000000000E-01 +v_z[3][[0,0,0,5,0,0]] = 3.7500000000000000E-01 +v_z[3][[0,2,0,1,0,2]] = 3.0000000000000000E+00 +v_z[3][[0,0,0,3,0,2]] = 3.0000000000000000E+00 +v_z[3][[0,0,0,1,0,4]] = 1.0000000000000004E+00 +v_z[3][[0,4,0,1,0,1]] = -1.8750000000000000E+00 +v_z[3][[0,2,0,3,0,1]] = -3.7500000000000000E+00 +v_z[3][[0,0,0,5,0,1]] = -1.8750000000000000E+00 +v_z[3][[0,2,0,1,0,3]] = -5.0000000000000000E+00 +v_z[3][[0,0,0,3,0,3]] = -5.0000000000000000E+00 +v_z[3][[0,0,0,1,0,5]] = -1.0000000000000007E+00 +v_z[3][[0,6,0,1,0,0]] = 3.1250000000000000E-01 +v_z[3][[0,4,0,3,0,0]] = 9.3750000000000000E-01 +v_z[3][[0,2,0,5,0,0]] = 9.3750000000000000E-01 +v_z[3][[0,0,0,7,0,0]] = 3.1250000000000000E-01 +v_z[3][[0,4,0,1,0,2]] = 5.6250000000000000E+00 +v_z[3][[0,2,0,3,0,2]] = 1.1250000000000000E+01 +v_z[3][[0,0,0,5,0,2]] = 5.6250000000000000E+00 +v_z[3][[0,2,0,1,0,4]] = 7.5000000000000009E+00 +v_z[3][[0,0,0,3,0,4]] = 7.5000000000000009E+00 +v_z[3][[0,0,0,1,0,6]] = 1.0000000000000011E+00 +v_z[3][[0,6,0,1,0,1]] = -2.1875000000000000E+00 +v_z[3][[0,4,0,3,0,1]] = -6.5625000000000000E+00 +v_z[3][[0,2,0,5,0,1]] = -6.5625000000000000E+00 +v_z[3][[0,0,0,7,0,1]] = -2.1875000000000000E+00 +v_z[3][[0,4,0,1,0,3]] = -1.3125000000000000E+01 +v_z[3][[0,2,0,3,0,3]] = -2.6250000000000000E+01 +v_z[3][[0,0,0,5,0,3]] = -1.3125000000000000E+01 +v_z[3][[0,2,0,1,0,5]] = -1.0500000000000002E+01 +v_z[3][[0,0,0,3,0,5]] = -1.0500000000000002E+01 +v_z[3][[0,0,0,1,0,7]] = -1.0000000000000016E+00 +v_z[3][[0,8,0,1,0,0]] = 2.7343750000000000E-01 +v_z[3][[0,6,0,3,0,0]] = 1.0937500000000000E+00 +v_z[3][[0,4,0,5,0,0]] = 1.6406250000000000E+00 +v_z[3][[0,2,0,7,0,0]] = 1.0937500000000000E+00 +v_z[3][[0,0,0,9,0,0]] = 2.7343750000000000E-01 +v_z[3][[0,6,0,1,0,2]] = 8.7500000000000000E+00 +v_z[3][[0,4,0,3,0,2]] = 2.6250000000000000E+01 +v_z[3][[0,2,0,5,0,2]] = 2.6250000000000000E+01 +v_z[3][[0,0,0,7,0,2]] = 8.7500000000000000E+00 +v_z[3][[0,4,0,1,0,4]] = 2.6250000000000000E+01 +v_z[3][[0,2,0,3,0,4]] = 5.2500000000000000E+01 +v_z[3][[0,0,0,5,0,4]] = 2.6250000000000000E+01 +v_z[3][[0,2,0,1,0,6]] = 1.4000000000000004E+01 +v_z[3][[0,0,0,3,0,6]] = 1.4000000000000004E+01 +v_z[3][[0,0,0,1,0,8]] = 1.0000000000000011E+00 +v_z[3][[0,8,0,1,0,1]] = -2.4609375000000000E+00 +v_z[3][[0,6,0,3,0,1]] = -9.8437500000000000E+00 +v_z[3][[0,4,0,5,0,1]] = -1.4765625000000000E+01 +v_z[3][[0,2,0,7,0,1]] = -9.8437500000000000E+00 +v_z[3][[0,0,0,9,0,1]] = -2.4609375000000000E+00 +v_z[3][[0,6,0,1,0,3]] = -2.6250000000000000E+01 +v_z[3][[0,4,0,3,0,3]] = -7.8750000000000000E+01 +v_z[3][[0,2,0,5,0,3]] = -7.8750000000000000E+01 +v_z[3][[0,0,0,7,0,3]] = -2.6250000000000000E+01 +v_z[3][[0,4,0,1,0,5]] = -4.7250000000000000E+01 +v_z[3][[0,2,0,3,0,5]] = -9.4500000000000000E+01 +v_z[3][[0,0,0,5,0,5]] = -4.7250000000000000E+01 +v_z[3][[0,2,0,1,0,7]] = -1.8000000000000007E+01 +v_z[3][[0,0,0,3,0,7]] = -1.8000000000000007E+01 +v_z[3][[0,0,0,1,0,9]] = -1.0000000000000007E+00 +v_z[4][[0,0,0,1,0,0]] = 1.0000000000000000E+00 +v_z[5][[0,0,0,0,1,0]] = 1.0000000000000000E+00 +v_z[5][[0,0,0,0,0,1]] = 2.6043986254701483E-03 +v_z[5][[0,2,0,0,0,0]] = -5.0000000000000000E-01 +v_z[5][[0,0,0,2,0,0]] = -5.0000000000000000E-01 +v_z[5][[0,0,0,0,0,2]] = -3.8964235999048476E-03 +v_z[5][[0,2,0,0,0,1]] = 1.0000000000000000E+00 +v_z[5][[0,0,0,2,0,1]] = 1.0000000000000000E+00 +v_z[5][[0,0,0,0,0,3]] = 5.1783183994265885E-03 +v_z[5][[0,4,0,0,0,0]] = -3.7499999999999989E-01 +v_z[5][[0,2,0,2,0,0]] = -7.4999999999999978E-01 +v_z[5][[0,0,0,4,0,0]] = -3.7499999999999989E-01 +v_z[5][[0,2,0,0,0,2]] = -1.5000000000000004E+00 +v_z[5][[0,0,0,2,0,2]] = -1.5000000000000004E+00 +v_z[5][[0,0,0,0,0,4]] = -6.4476054832588265E-03 +v_z[5][[0,4,0,0,0,1]] = 1.4999999999999998E+00 +v_z[5][[0,2,0,2,0,1]] = 2.9999999999999996E+00 +v_z[5][[0,0,0,4,0,1]] = 1.4999999999999998E+00 +v_z[5][[0,2,0,0,0,3]] = 2.0000000000000000E+00 +v_z[5][[0,0,0,2,0,3]] = 2.0000000000000000E+00 +v_z[5][[0,0,0,0,0,5]] = 7.7018400315425131E-03 +v_z[5][[0,6,0,0,0,0]] = -3.1250000000000000E-01 +v_z[5][[0,4,0,2,0,0]] = -9.3749999999999989E-01 +v_z[5][[0,2,0,4,0,0]] = -9.3750000000000000E-01 +v_z[5][[0,0,0,6,0,0]] = -3.1250000000000000E-01 +v_z[5][[0,4,0,0,0,2]] = -3.7500000000000000E+00 +v_z[5][[0,2,0,2,0,2]] = -7.5000000000000000E+00 +v_z[5][[0,0,0,4,0,2]] = -3.7500000000000000E+00 +v_z[5][[0,2,0,0,0,4]] = -2.5000000000000000E+00 +v_z[5][[0,0,0,2,0,4]] = -2.5000000000000000E+00 +v_z[5][[0,0,0,0,0,6]] = -8.9386151661894897E-03 +v_z[5][[0,6,0,0,0,1]] = 1.8750000000000007E+00 +v_z[5][[0,4,0,2,0,1]] = 5.6249999999999982E+00 +v_z[5][[0,2,0,4,0,1]] = 5.6250000000000000E+00 +v_z[5][[0,0,0,6,0,1]] = 1.8750000000000007E+00 +v_z[5][[0,4,0,0,0,3]] = 7.5000000000000018E+00 +v_z[5][[0,2,0,2,0,3]] = 1.5000000000000004E+01 +v_z[5][[0,0,0,4,0,3]] = 7.5000000000000018E+00 +v_z[5][[0,2,0,0,0,5]] = 3.0000000000000009E+00 +v_z[5][[0,0,0,2,0,5]] = 3.0000000000000009E+00 +v_z[5][[0,0,0,0,0,7]] = 1.0155567073438281E-02 +v_z[5][[0,8,0,0,0,0]] = -2.7343750000000006E-01 +v_z[5][[0,6,0,2,0,0]] = -1.0937500000000002E+00 +v_z[5][[0,4,0,4,0,0]] = -1.6406250000000000E+00 +v_z[5][[0,2,0,6,0,0]] = -1.0937500000000002E+00 +v_z[5][[0,0,0,8,0,0]] = -2.7343750000000006E-01 +v_z[5][[0,6,0,0,0,2]] = -6.5625000000000009E+00 +v_z[5][[0,4,0,2,0,2]] = -1.9687500000000000E+01 +v_z[5][[0,2,0,4,0,2]] = -1.9687500000000000E+01 +v_z[5][[0,0,0,6,0,2]] = -6.5625000000000027E+00 +v_z[5][[0,4,0,0,0,4]] = -1.3125000000000004E+01 +v_z[5][[0,2,0,2,0,4]] = -2.6250000000000007E+01 +v_z[5][[0,0,0,4,0,4]] = -1.3125000000000004E+01 +v_z[5][[0,2,0,0,0,6]] = -3.5000000000000067E+00 +v_z[5][[0,0,0,2,0,6]] = -3.5000000000000067E+00 +v_z[5][[0,0,0,0,0,8]] = -1.1350380016698304E-02 +v_z[5][[0,8,0,0,0,1]] = 2.1875000000000000E+00 +v_z[5][[0,6,0,2,0,1]] = 8.7499999999999982E+00 +v_z[5][[0,4,0,4,0,1]] = 1.3125000000000002E+01 +v_z[5][[0,2,0,6,0,1]] = 8.7499999999999982E+00 +v_z[5][[0,0,0,8,0,1]] = 2.1874999999999996E+00 +v_z[5][[0,6,0,0,0,3]] = 1.7500000000000000E+01 +v_z[5][[0,4,0,2,0,3]] = 5.2499999999999986E+01 +v_z[5][[0,2,0,4,0,3]] = 5.2500000000000007E+01 +v_z[5][[0,0,0,6,0,3]] = 1.7500000000000004E+01 +v_z[5][[0,4,0,0,0,5]] = 2.1000000000000004E+01 +v_z[5][[0,2,0,2,0,5]] = 4.1999999999999993E+01 +v_z[5][[0,0,0,4,0,5]] = 2.1000000000000004E+01 +v_z[5][[0,2,0,0,0,7]] = 4.0000000000000018E+00 +v_z[5][[0,0,0,2,0,7]] = 4.0000000000000018E+00 +v_z[5][[0,0,0,0,0,9]] = 1.2520791228544791E-02 +v_z[5][[0,10,0,0,0,0]] = -2.4609375000000000E-01 +v_z[5][[0,8,0,2,0,0]] = -1.2304687500000000E+00 +v_z[5][[0,6,0,4,0,0]] = -2.4609374999999996E+00 +v_z[5][[0,4,0,6,0,0]] = -2.4609374999999996E+00 +v_z[5][[0,2,0,8,0,0]] = -1.2304687499999998E+00 +v_z[5][[0,0,0,10,0,0]] = -2.4609375000000000E-01 +v_z[5][[0,8,0,0,0,2]] = -9.8437499999999982E+00 +v_z[5][[0,6,0,2,0,2]] = -3.9375000000000000E+01 +v_z[5][[0,4,0,4,0,2]] = -5.9062500000000000E+01 +v_z[5][[0,2,0,6,0,2]] = -3.9375000000000000E+01 +v_z[5][[0,0,0,8,0,2]] = -9.8437500000000000E+00 +v_z[5][[0,6,0,0,0,4]] = -3.9375000000000007E+01 +v_z[5][[0,4,0,2,0,4]] = -1.1812499999999999E+02 +v_z[5][[0,2,0,4,0,4]] = -1.1812499999999999E+02 +v_z[5][[0,0,0,6,0,4]] = -3.9375000000000007E+01 +v_z[5][[0,4,0,0,0,6]] = -3.1500000000000014E+01 +v_z[5][[0,2,0,2,0,6]] = -6.3000000000000028E+01 +v_z[5][[0,0,0,4,0,6]] = -3.1500000000000014E+01 +v_z[5][[0,2,0,0,0,8]] = -4.5000000000000062E+00 +v_z[5][[0,0,0,2,0,8]] = -4.5000000000000062E+00 +v_z[5][[0,0,0,0,0,10]] = -1.3664595671042536E-02 +v_z[6][[0,0,0,0,0,1]] = 1.0000000000000000E+00 \ No newline at end of file diff --git a/test/bmad_maps/patch.jl b/test/bmad_maps/patch.jl index 5ba5f0f9..61b71bbc 100644 --- a/test/bmad_maps/patch.jl +++ b/test/bmad_maps/patch.jl @@ -10,2470 +10,2470 @@ using GTPSA d_z = Descriptor(6, 10) v_z = zeros(TPS64{d_z}, 6) -v_z[1][[0, 0, 0, 0, 0, 0]] = -1.0743571132816715E+01 -v_z[1][[1, 0, 0, 0, 0, 0]] = 7.8517557231785995E-01 -v_z[1][[0, 1, 0, 0, 0, 0]] = -5.6094891908376905E+00 -v_z[1][[0, 0, 1, 0, 0, 0]] = 3.0577399960603300E+00 -v_z[1][[0, 0, 0, 1, 0, 0]] = -2.1845253547124880E+01 -v_z[1][[1, 1, 0, 0, 0, 0]] = 2.2849095286856108E-01 -v_z[1][[0, 2, 0, 0, 0, 0]] = -1.6323960850395909E+00 -v_z[1][[0, 1, 1, 0, 0, 0]] = 2.7644031914573355E+00 -v_z[1][[1, 0, 0, 1, 0, 0]] = 8.8982127049833493E-01 -v_z[1][[0, 1, 0, 1, 0, 0]] = -2.6106686635351355E+01 -v_z[1][[0, 0, 1, 1, 0, 0]] = 1.0765523663456493E+01 -v_z[1][[0, 0, 0, 2, 0, 0]] = -7.6911573351163469E+01 -v_z[1][[0, 1, 0, 0, 0, 1]] = 5.6094891908376896E+00 -v_z[1][[0, 0, 0, 1, 0, 1]] = 2.1845253547124884E+01 -v_z[1][[0, 0, 0, 0, 0, 2]] = -4.9498895237805478E-15 -v_z[1][[1, 2, 0, 0, 0, 0]] = 6.6492281960152180E-02 -v_z[1][[0, 3, 0, 0, 0, 0]] = -3.2797819629575895E+00 -v_z[1][[0, 2, 1, 0, 0, 0]] = 8.0445844419784474E-01 -v_z[1][[1, 1, 0, 1, 0, 0]] = 1.0634019431387043E+00 -v_z[1][[0, 2, 0, 1, 0, 0]] = -2.4267085035079237E+01 -v_z[1][[0, 1, 1, 1, 0, 0]] = 1.2865593532298867E+01 -v_z[1][[1, 0, 0, 2, 0, 0]] = 3.1328340395648699E+00 -v_z[1][[0, 1, 0, 2, 0, 0]] = -1.1710148241909523E+02 -v_z[1][[0, 0, 1, 2, 0, 0]] = 3.7902666641953118E+01 -v_z[1][[0, 0, 0, 3, 0, 0]] = -2.8170868574928659E+02 -v_z[1][[1, 1, 0, 0, 0, 1]] = -2.2849095286856108E-01 -v_z[1][[0, 2, 0, 0, 0, 1]] = 3.2647921700791822E+00 -v_z[1][[0, 1, 1, 0, 0, 1]] = -2.7644031914573355E+00 -v_z[1][[1, 0, 0, 1, 0, 1]] = -8.8982127049833482E-01 -v_z[1][[0, 1, 0, 1, 0, 1]] = 5.2213373270702689E+01 -v_z[1][[0, 0, 1, 1, 0, 1]] = -1.0765523663456493E+01 -v_z[1][[0, 0, 0, 2, 0, 1]] = 1.5382314670232694E+02 -v_z[1][[1, 0, 0, 0, 0, 2]] = 1.7252404443511759E-16 -v_z[1][[0, 1, 0, 0, 0, 2]] = -5.6094891908376958E+00 -v_z[1][[0, 0, 0, 1, 0, 2]] = -2.1845253547124926E+01 -v_z[1][[0, 0, 0, 0, 0, 3]] = 7.2438811879117269E-15 -v_z[1][[1, 3, 0, 0, 0, 0]] = 1.3359514216398530E-01 -v_z[1][[0, 4, 0, 0, 0, 0]] = -1.7706349001324773E+00 -v_z[1][[0, 3, 1, 0, 0, 0]] = 1.6163039837019832E+00 -v_z[1][[1, 2, 0, 1, 0, 0]] = 9.8846957260641899E-01 -v_z[1][[0, 3, 0, 1, 0, 0]] = -3.1662492180468746E+01 -v_z[1][[0, 2, 1, 1, 0, 0]] = 1.1959022477111088E+01 -v_z[1][[1, 1, 0, 2, 0, 0]] = 4.7698869522671110E+00 -v_z[1][[0, 2, 0, 2, 0, 0]] = -1.5878746625757370E+02 -v_z[1][[0, 1, 1, 2, 0, 0]] = 5.7708589982217148E+01 -v_z[1][[1, 0, 0, 3, 0, 0]] = 1.1474821298049745E+01 -v_z[1][[0, 1, 0, 3, 0, 0]] = -5.0731680673172895E+02 -v_z[1][[0, 0, 1, 3, 0, 0]] = 1.3882839657103938E+02 -v_z[1][[0, 0, 0, 4, 0, 0]] = -1.0302803128101277E+03 -v_z[1][[1, 2, 0, 0, 0, 1]] = -1.3298456392030442E-01 -v_z[1][[0, 3, 0, 0, 0, 1]] = 9.8393458888727636E+00 -v_z[1][[0, 2, 1, 0, 0, 1]] = -1.6089168883956895E+00 -v_z[1][[1, 1, 0, 1, 0, 1]] = -2.1268038862774086E+00 -v_z[1][[0, 2, 0, 1, 0, 1]] = 7.2801255105237701E+01 -v_z[1][[0, 1, 1, 1, 0, 1]] = -2.5731187064597734E+01 -v_z[1][[1, 0, 0, 2, 0, 1]] = -6.2656680791297408E+00 -v_z[1][[0, 1, 0, 2, 0, 1]] = 3.5130444725728557E+02 -v_z[1][[0, 0, 1, 2, 0, 1]] = -7.5805333283906236E+01 -v_z[1][[0, 0, 0, 3, 0, 1]] = 8.4512605724785942E+02 -v_z[1][[1, 1, 0, 0, 0, 2]] = 2.2849095286856136E-01 -v_z[1][[0, 2, 0, 0, 0, 2]] = -4.8971882551187793E+00 -v_z[1][[0, 1, 1, 0, 0, 2]] = 2.7644031914573364E+00 -v_z[1][[1, 0, 0, 1, 0, 2]] = 8.8982127049833626E-01 -v_z[1][[0, 1, 0, 1, 0, 2]] = -7.8320059906054126E+01 -v_z[1][[0, 0, 1, 1, 0, 2]] = 1.0765523663456493E+01 -v_z[1][[0, 0, 0, 2, 0, 2]] = -2.3073472005349069E+02 -v_z[1][[1, 0, 0, 0, 0, 3]] = -2.5229488262226576E-16 -v_z[1][[0, 1, 0, 0, 0, 3]] = 5.6094891908377065E+00 -v_z[1][[0, 0, 0, 1, 0, 3]] = 2.1845253547124972E+01 -v_z[1][[0, 0, 0, 0, 0, 4]] = -2.1914628912378018E-15 -v_z[1][[1, 4, 0, 0, 0, 0]] = 7.2123154488721586E-02 -v_z[1][[0, 5, 0, 0, 0, 0]] = -2.8563428489539713E+00 -v_z[1][[0, 4, 1, 0, 0, 0]] = 8.7258368851603418E-01 -v_z[1][[1, 3, 0, 1, 0, 0]] = 1.2897062036103688E+00 -v_z[1][[0, 4, 0, 1, 0, 0]] = -3.0312134940176684E+01 -v_z[1][[0, 3, 1, 1, 0, 0]] = 1.5603540974130993E+01 -v_z[1][[1, 2, 0, 2, 0, 0]] = 6.4678793798262815E+00 -v_z[1][[0, 3, 0, 2, 0, 0]] = -2.1927671023173218E+02 -v_z[1][[0, 2, 1, 2, 0, 0]] = 7.8251791482694642E+01 -v_z[1][[1, 1, 0, 3, 0, 0]] = 2.0664501995244535E+01 -v_z[1][[0, 2, 0, 3, 0, 0]] = -8.6513175313332124E+02 -v_z[1][[0, 1, 1, 3, 0, 0]] = 2.5000996559540562E+02 -v_z[1][[1, 0, 0, 4, 0, 0]] = 4.1966339961972288E+01 -v_z[1][[0, 1, 0, 4, 0, 0]] = -2.1452031308196892E+03 -v_z[1][[0, 0, 1, 4, 0, 0]] = 5.0773075549908083E+02 -v_z[1][[0, 0, 0, 5, 0, 0]] = -3.7709395496087236E+03 -v_z[1][[1, 3, 0, 0, 0, 1]] = -4.0078542649195592E-01 -v_z[1][[0, 4, 0, 0, 0, 1]] = 7.0825396005299108E+00 -v_z[1][[0, 3, 1, 0, 0, 1]] = -4.8489119511059497E+00 -v_z[1][[1, 2, 0, 1, 0, 1]] = -2.9654087178192570E+00 -v_z[1][[0, 3, 0, 1, 0, 1]] = 1.2664996872187503E+02 -v_z[1][[0, 2, 1, 1, 0, 1]] = -3.5877067431333259E+01 -v_z[1][[1, 1, 0, 2, 0, 1]] = -1.4309660856801329E+01 -v_z[1][[0, 2, 0, 2, 0, 1]] = 6.3514986503029456E+02 -v_z[1][[0, 1, 1, 2, 0, 1]] = -1.7312576994665142E+02 -v_z[1][[1, 0, 0, 3, 0, 1]] = -3.4424463894149241E+01 -v_z[1][[0, 1, 0, 3, 0, 1]] = 2.0292672269269158E+03 -v_z[1][[0, 0, 1, 3, 0, 1]] = -4.1648518971311813E+02 -v_z[1][[0, 0, 0, 4, 0, 1]] = 4.1211212512405100E+03 -v_z[1][[1, 2, 0, 0, 0, 2]] = 1.9947684588045703E-01 -v_z[1][[0, 3, 0, 0, 0, 2]] = -1.9678691777745545E+01 -v_z[1][[0, 2, 1, 0, 0, 2]] = 2.4133753325935352E+00 -v_z[1][[1, 1, 0, 1, 0, 2]] = 3.1902058294161142E+00 -v_z[1][[0, 2, 0, 1, 0, 2]] = -1.4560251021047560E+02 -v_z[1][[0, 1, 1, 1, 0, 2]] = 3.8596780596896608E+01 -v_z[1][[1, 0, 0, 2, 0, 2]] = 9.3985021186946263E+00 -v_z[1][[0, 1, 0, 2, 0, 2]] = -7.0260889451457183E+02 -v_z[1][[0, 0, 1, 2, 0, 2]] = 1.1370799992585935E+02 -v_z[1][[0, 0, 0, 3, 0, 2]] = -1.6902521144957207E+03 -v_z[1][[1, 1, 0, 0, 0, 3]] = -2.2849095286856169E-01 -v_z[1][[0, 2, 0, 0, 0, 3]] = 6.5295843401583813E+00 -v_z[1][[0, 1, 1, 0, 0, 3]] = -2.7644031914573377E+00 -v_z[1][[1, 0, 0, 1, 0, 3]] = -8.8982127049834037E-01 -v_z[1][[0, 1, 0, 1, 0, 3]] = 1.0442674654140562E+02 -v_z[1][[0, 0, 1, 1, 0, 3]] = -1.0765523663456497E+01 -v_z[1][[0, 0, 0, 2, 0, 3]] = 3.0764629340465484E+02 -v_z[1][[1, 0, 0, 0, 0, 4]] = 1.7995354337663871E-16 -v_z[1][[0, 1, 0, 0, 0, 4]] = -5.6094891908377145E+00 -v_z[1][[0, 0, 0, 1, 0, 4]] = -2.1845253547125086E+01 -v_z[1][[0, 0, 0, 0, 0, 5]] = 1.0133244271832888E-14 -v_z[1][[1, 5, 0, 0, 0, 0]] = 1.1634722468897954E-01 -v_z[1][[0, 6, 0, 0, 0, 0]] = -1.9205804144593430E+00 -v_z[1][[0, 5, 1, 0, 0, 0]] = 1.4076296466426661E+00 -v_z[1][[1, 4, 0, 1, 0, 0]] = 1.2347021912929459E+00 -v_z[1][[0, 5, 0, 1, 0, 0]] = -3.7972056469390871E+01 -v_z[1][[0, 4, 1, 1, 0, 0]] = 1.4938073631620018E+01 -v_z[1][[1, 3, 0, 2, 0, 0]] = 8.9317837610896316E+00 -v_z[1][[0, 4, 0, 2, 0, 0]] = -2.6083328263844919E+02 -v_z[1][[0, 3, 1, 2, 0, 0]] = 1.0806139684999448E+02 -v_z[1][[1, 2, 0, 3, 0, 0]] = 3.5239354583863886E+01 -v_z[1][[0, 3, 0, 3, 0, 0]] = -1.2997924605510857E+03 -v_z[1][[0, 2, 1, 3, 0, 0]] = 4.2634416397470272E+02 -v_z[1][[1, 1, 0, 4, 0, 0]] = 8.7380417500084576E+01 -v_z[1][[0, 2, 0, 4, 0, 0]] = -4.2841417630260339E+03 -v_z[1][[0, 1, 1, 4, 0, 0]] = 1.0571740455170743E+03 -v_z[1][[1, 0, 0, 5, 0, 0]] = 1.5360143171452651E+02 -v_z[1][[0, 1, 0, 5, 0, 0]] = -8.9070022963532228E+03 -v_z[1][[0, 0, 1, 5, 0, 0]] = 1.8583505504846444E+03 -v_z[1][[0, 0, 0, 6, 0, 0]] = -1.3801271729517675E+04 -v_z[1][[1, 4, 0, 0, 0, 1]] = -2.8849261795488618E-01 -v_z[1][[0, 5, 0, 0, 0, 1]] = 1.4281714244769860E+01 -v_z[1][[0, 4, 1, 0, 0, 1]] = -3.4903347540641367E+00 -v_z[1][[1, 3, 0, 1, 0, 1]] = -5.1588248144414752E+00 -v_z[1][[0, 4, 0, 1, 0, 1]] = 1.5156067470088342E+02 -v_z[1][[0, 3, 1, 1, 0, 1]] = -6.2414163896523974E+01 -v_z[1][[1, 2, 0, 2, 0, 1]] = -2.5871517519305122E+01 -v_z[1][[0, 3, 0, 2, 0, 1]] = 1.0963835511586608E+03 -v_z[1][[0, 2, 1, 2, 0, 1]] = -3.1300716593077857E+02 -v_z[1][[1, 1, 0, 3, 0, 1]] = -8.2658007980978155E+01 -v_z[1][[0, 2, 0, 3, 0, 1]] = 4.3256587656666061E+03 -v_z[1][[0, 1, 1, 3, 0, 1]] = -1.0000398623816225E+03 -v_z[1][[1, 0, 0, 4, 0, 1]] = -1.6786535984788921E+02 -v_z[1][[0, 1, 0, 4, 0, 1]] = 1.0726015654098443E+04 -v_z[1][[0, 0, 1, 4, 0, 1]] = -2.0309230219963233E+03 -v_z[1][[0, 0, 0, 5, 0, 1]] = 1.8854697748043611E+04 -v_z[1][[1, 3, 0, 0, 0, 2]] = 8.0157085298391229E-01 -v_z[1][[0, 4, 0, 0, 0, 2]] = -1.7706349001324774E+01 -v_z[1][[0, 3, 1, 0, 0, 2]] = 9.6978239022119030E+00 -v_z[1][[1, 2, 0, 1, 0, 2]] = 5.9308174356385166E+00 -v_z[1][[0, 3, 0, 1, 0, 2]] = -3.1662492180468769E+02 -v_z[1][[0, 2, 1, 1, 0, 2]] = 7.1754134862666533E+01 -v_z[1][[1, 1, 0, 2, 0, 2]] = 2.8619321713602684E+01 -v_z[1][[0, 2, 0, 2, 0, 2]] = -1.5878746625757381E+03 -v_z[1][[0, 1, 1, 2, 0, 2]] = 3.4625153989330295E+02 -v_z[1][[1, 0, 0, 3, 0, 2]] = 6.8848927788298582E+01 -v_z[1][[0, 1, 0, 3, 0, 2]] = -5.0731680673172923E+03 -v_z[1][[0, 0, 1, 3, 0, 2]] = 8.3297037942623626E+02 -v_z[1][[0, 0, 0, 4, 0, 2]] = -1.0302803128101286E+04 -v_z[1][[1, 2, 0, 0, 0, 3]] = -2.6596912784060939E-01 -v_z[1][[0, 3, 0, 0, 0, 3]] = 3.2797819629575940E+01 -v_z[1][[0, 2, 1, 0, 0, 3]] = -3.2178337767913816E+00 -v_z[1][[1, 1, 0, 1, 0, 3]] = -4.2536077725548260E+00 -v_z[1][[0, 2, 0, 1, 0, 3]] = 2.4267085035079293E+02 -v_z[1][[0, 1, 1, 1, 0, 3]] = -5.1462374129195510E+01 -v_z[1][[1, 0, 0, 2, 0, 3]] = -1.2531336158259528E+01 -v_z[1][[0, 1, 0, 2, 0, 3]] = 1.1710148241909549E+03 -v_z[1][[0, 0, 1, 2, 0, 3]] = -1.5161066656781253E+02 -v_z[1][[0, 0, 0, 3, 0, 3]] = 2.8170868574928732E+03 -v_z[1][[1, 1, 0, 0, 0, 4]] = 2.2849095286856194E-01 -v_z[1][[0, 2, 0, 0, 0, 4]] = -8.1619804251980028E+00 -v_z[1][[0, 1, 1, 0, 0, 4]] = 2.7644031914573390E+00 -v_z[1][[1, 0, 0, 1, 0, 4]] = 8.8982127049834014E-01 -v_z[1][[0, 1, 0, 1, 0, 4]] = -1.3053343317675740E+02 -v_z[1][[0, 0, 1, 1, 0, 4]] = 1.0765523663456500E+01 -v_z[1][[0, 0, 0, 2, 0, 4]] = -3.8455786675581987E+02 -v_z[1][[1, 0, 0, 0, 0, 5]] = -3.6545995587257747E-16 -v_z[1][[0, 1, 0, 0, 0, 5]] = 5.6094891908377296E+00 -v_z[1][[0, 0, 0, 1, 0, 5]] = 2.1845253547125168E+01 -v_z[1][[0, 0, 0, 0, 0, 6]] = 2.5324787872032580E-15 -v_z[1][[1, 6, 0, 0, 0, 0]] = 7.8230875224305413E-02 -v_z[1][[0, 7, 0, 0, 0, 0]] = -2.7476380359339938E+00 -v_z[1][[0, 6, 1, 0, 0, 0]] = 9.4647809213249023E-01 -v_z[1][[1, 5, 0, 1, 0, 0]] = 1.5467132692298293E+00 -v_z[1][[0, 6, 0, 1, 0, 0]] = -3.7366759410493245E+01 -v_z[1][[0, 5, 1, 1, 0, 0]] = 1.8712947029408021E+01 -v_z[1][[1, 4, 0, 2, 0, 0]] = 1.0624504881342686E+01 -v_z[1][[0, 5, 0, 2, 0, 0]] = -3.3716997537060104E+02 -v_z[1][[0, 4, 1, 2, 0, 0]] = 1.2854082331449248E+02 -v_z[1][[1, 3, 0, 3, 0, 0]] = 5.2944360482551922E+01 -v_z[1][[0, 4, 0, 3, 0, 0]] = -1.7896734887206335E+03 -v_z[1][[0, 3, 1, 3, 0, 0]] = 6.4054859612681048E+02 -v_z[1][[1, 2, 0, 4, 0, 0]] = 1.7450566359173794E+02 -v_z[1][[0, 3, 0, 4, 0, 0]] = -7.0359269934403610E+03 -v_z[1][[0, 2, 1, 4, 0, 0]] = 2.1112608937207301E+03 -v_z[1][[1, 1, 0, 5, 0, 0]] = 3.6280833649173564E+02 -v_z[1][[0, 2, 0, 5, 0, 0]] = -2.0070956906228679E+04 -v_z[1][[0, 1, 1, 5, 0, 0]] = 4.3894452305165114E+03 -v_z[1][[1, 0, 0, 6, 0, 0]] = 5.6216629019022321E+02 -v_z[1][[0, 1, 0, 6, 0, 0]] = -3.6463131674050994E+04 -v_z[1][[0, 0, 1, 6, 0, 0]] = 6.8013821432375980E+03 -v_z[1][[0, 0, 0, 7, 0, 0]] = -5.0512811010502097E+04 -v_z[1][[1, 5, 0, 0, 0, 1]] = -5.8173612344489756E-01 -v_z[1][[0, 6, 0, 0, 0, 1]] = 1.1523482486756066E+01 -v_z[1][[0, 5, 1, 0, 0, 1]] = -7.0381482332133309E+00 -v_z[1][[1, 4, 0, 1, 0, 1]] = -6.1735109564647281E+00 -v_z[1][[0, 5, 0, 1, 0, 1]] = 2.2783233881634521E+02 -v_z[1][[0, 4, 1, 1, 0, 1]] = -7.4690368158100085E+01 -v_z[1][[1, 3, 0, 2, 0, 1]] = -4.4658918805448153E+01 -v_z[1][[0, 4, 0, 2, 0, 1]] = 1.5649996958306951E+03 -v_z[1][[0, 3, 1, 2, 0, 1]] = -5.4030698424997240E+02 -v_z[1][[1, 2, 0, 3, 0, 1]] = -1.7619677291931936E+02 -v_z[1][[0, 3, 0, 3, 0, 1]] = 7.7987547633065133E+03 -v_z[1][[0, 2, 1, 3, 0, 1]] = -2.1317208198735134E+03 -v_z[1][[1, 1, 0, 4, 0, 1]] = -4.3690208750042302E+02 -v_z[1][[0, 2, 0, 4, 0, 1]] = 2.5704850578156180E+04 -v_z[1][[0, 1, 1, 4, 0, 1]] = -5.2858702275853702E+03 -v_z[1][[1, 0, 0, 5, 0, 1]] = -7.6800715857263299E+02 -v_z[1][[0, 1, 0, 5, 0, 1]] = 5.3442013778119312E+04 -v_z[1][[0, 0, 1, 5, 0, 1]] = -9.2917527524232228E+03 -v_z[1][[0, 0, 0, 6, 0, 1]] = 8.2807630377105990E+04 -v_z[1][[1, 4, 0, 0, 0, 2]] = 7.2123154488721619E-01 -v_z[1][[0, 5, 0, 0, 0, 2]] = -4.2845142734309590E+01 -v_z[1][[0, 4, 1, 0, 0, 2]] = 8.7258368851603443E+00 -v_z[1][[1, 3, 0, 1, 0, 2]] = 1.2897062036103693E+01 -v_z[1][[0, 4, 0, 1, 0, 2]] = -4.5468202410265036E+02 -v_z[1][[0, 3, 1, 1, 0, 2]] = 1.5603540974130999E+02 -v_z[1][[1, 2, 0, 2, 0, 2]] = 6.4678793798262845E+01 -v_z[1][[0, 3, 0, 2, 0, 2]] = -3.2891506534759856E+03 -v_z[1][[0, 2, 1, 2, 0, 2]] = 7.8251791482694648E+02 -v_z[1][[1, 1, 0, 3, 0, 2]] = 2.0664501995244555E+02 -v_z[1][[0, 2, 0, 3, 0, 2]] = -1.2976976296999819E+04 -v_z[1][[0, 1, 1, 3, 0, 2]] = 2.5000996559540572E+03 -v_z[1][[1, 0, 0, 4, 0, 2]] = 4.1966339961972352E+02 -v_z[1][[0, 1, 0, 4, 0, 2]] = -3.2178046962295371E+04 -v_z[1][[0, 0, 1, 4, 0, 2]] = 5.0773075549908081E+03 -v_z[1][[0, 0, 0, 5, 0, 2]] = -5.6564093244130869E+04 -v_z[1][[1, 3, 0, 0, 0, 3]] = -1.3359514216398545E+00 -v_z[1][[0, 4, 0, 0, 0, 3]] = 3.5412698002649620E+01 -v_z[1][[0, 3, 1, 0, 0, 3]] = -1.6163039837019838E+01 -v_z[1][[1, 2, 0, 1, 0, 3]] = -9.8846957260642085E+00 -v_z[1][[0, 3, 0, 1, 0, 3]] = 6.3324984360937572E+02 -v_z[1][[0, 2, 1, 1, 0, 3]] = -1.1959022477111094E+02 -v_z[1][[1, 1, 0, 2, 0, 3]] = -4.7698869522671203E+01 -v_z[1][[0, 2, 0, 2, 0, 3]] = 3.1757493251514816E+03 -v_z[1][[0, 1, 1, 2, 0, 3]] = -5.7708589982217177E+02 -v_z[1][[1, 0, 0, 3, 0, 3]] = -1.1474821298049781E+02 -v_z[1][[0, 1, 0, 3, 0, 3]] = 1.0146336134634608E+04 -v_z[1][[0, 0, 1, 3, 0, 3]] = -1.3882839657103939E+03 -v_z[1][[0, 0, 0, 4, 0, 3]] = 2.0605606256202624E+04 -v_z[1][[1, 2, 0, 0, 0, 4]] = 3.3246140980076244E-01 -v_z[1][[0, 3, 0, 0, 0, 4]] = -4.9196729444363939E+01 -v_z[1][[0, 2, 1, 0, 0, 4]] = 4.0222922209892298E+00 -v_z[1][[1, 1, 0, 1, 0, 4]] = 5.3170097156935370E+00 -v_z[1][[0, 2, 0, 1, 0, 4]] = -3.6400627552618982E+02 -v_z[1][[0, 1, 1, 1, 0, 4]] = 6.4327967661494412E+01 -v_z[1][[1, 0, 0, 2, 0, 4]] = 1.5664170197824404E+01 -v_z[1][[0, 1, 0, 2, 0, 4]] = -1.7565222362864388E+03 -v_z[1][[0, 0, 1, 2, 0, 4]] = 1.8951333320976568E+02 -v_z[1][[0, 0, 0, 3, 0, 4]] = -4.2256302862393295E+03 -v_z[1][[1, 1, 0, 0, 0, 5]] = -2.2849095286856244E-01 -v_z[1][[0, 2, 0, 0, 0, 5]] = 9.7943765102376030E+00 -v_z[1][[0, 1, 1, 0, 0, 5]] = -2.7644031914573408E+00 -v_z[1][[1, 0, 0, 1, 0, 5]] = -8.8982127049834159E-01 -v_z[1][[0, 1, 0, 1, 0, 5]] = 1.5664011981210950E+02 -v_z[1][[0, 0, 1, 1, 0, 5]] = -1.0765523663456502E+01 -v_z[1][[0, 0, 0, 2, 0, 5]] = 4.6146944010698581E+02 -v_z[1][[1, 0, 0, 0, 0, 6]] = -1.9661215073453894E-16 -v_z[1][[0, 1, 0, 0, 0, 6]] = -5.6094891908377260E+00 -v_z[1][[0, 0, 0, 1, 0, 6]] = -2.1845253547125431E+01 -v_z[1][[0, 0, 0, 0, 0, 7]] = 1.5946520037479239E-14 -v_z[1][[1, 7, 0, 0, 0, 0]] = 1.1191935871699366E-01 -v_z[1][[0, 8, 0, 0, 0, 0]] = -2.0832240052022275E+00 -v_z[1][[0, 7, 1, 0, 0, 0]] = 1.3540590055707442E+00 -v_z[1][[1, 6, 0, 1, 0, 0]] = 1.5220577440918279E+00 -v_z[1][[0, 7, 0, 1, 0, 0]] = -4.5123199662931391E+01 -v_z[1][[0, 6, 1, 1, 0, 0]] = 1.8414651576030682E+01 -v_z[1][[1, 5, 0, 2, 0, 0]] = 1.3733922346607343E+01 -v_z[1][[0, 6, 0, 2, 0, 0]] = -3.8645846339874373E+02 -v_z[1][[0, 5, 1, 2, 0, 0]] = 1.6616018397904998E+02 -v_z[1][[1, 4, 0, 3, 0, 0]] = 7.2898652060743814E+01 -v_z[1][[0, 5, 0, 3, 0, 0]] = -2.4530031517954440E+03 -v_z[1][[0, 4, 1, 3, 0, 0]] = 8.8196606421254023E+02 -v_z[1][[1, 3, 0, 4, 0, 0]] = 2.8659394970769853E+02 -v_z[1][[0, 4, 0, 4, 0, 0]] = -1.0804400560350688E+04 -v_z[1][[0, 3, 1, 4, 0, 0]] = 3.4673636714188424E+03 -v_z[1][[1, 2, 0, 5, 0, 0]] = 8.1754896256483153E+02 -v_z[1][[0, 3, 0, 5, 0, 0]] = -3.5851558885893253E+04 -v_z[1][[0, 2, 1, 5, 0, 0]] = 9.8911354384649439E+03 -v_z[1][[1, 1, 0, 6, 0, 0]] = 1.4852503351613470E+03 -v_z[1][[0, 2, 0, 6, 0, 0]] = -9.0610372101529851E+04 -v_z[1][[0, 1, 1, 6, 0, 0]] = 1.7969336269497562E+04 -v_z[1][[1, 0, 0, 7, 0, 0]] = 2.0575349960047552E+03 -v_z[1][[0, 1, 0, 7, 0, 0]] = -1.4759548695862401E+05 -v_z[1][[0, 0, 1, 7, 0, 0]] = 2.4893135759132612E+04 -v_z[1][[0, 0, 0, 8, 0, 0]] = -1.8487696890223675E+05 -v_z[1][[1, 6, 0, 0, 0, 1]] = -4.6938525134583198E-01 -v_z[1][[0, 7, 0, 0, 0, 1]] = 1.9233466251537962E+01 -v_z[1][[0, 6, 1, 0, 0, 1]] = -5.6788685527949418E+00 -v_z[1][[1, 5, 0, 1, 0, 1]] = -9.2802796153789728E+00 -v_z[1][[0, 6, 0, 1, 0, 1]] = 2.6156731587345263E+02 -v_z[1][[0, 5, 1, 1, 0, 1]] = -1.1227768217644811E+02 -v_z[1][[1, 4, 0, 2, 0, 1]] = -6.3747029288056098E+01 -v_z[1][[0, 5, 0, 2, 0, 1]] = 2.3601898275942071E+03 -v_z[1][[0, 4, 1, 2, 0, 1]] = -7.7124493988695508E+02 -v_z[1][[1, 3, 0, 3, 0, 1]] = -3.1766616289531157E+02 -v_z[1][[0, 4, 0, 3, 0, 1]] = 1.2527714421044437E+04 -v_z[1][[0, 3, 1, 3, 0, 1]] = -3.8432915767608638E+03 -v_z[1][[1, 2, 0, 4, 0, 1]] = -1.0470339815504274E+03 -v_z[1][[0, 3, 0, 4, 0, 1]] = 4.9251488954082532E+04 -v_z[1][[0, 2, 1, 4, 0, 1]] = -1.2667565362324382E+04 -v_z[1][[1, 1, 0, 5, 0, 1]] = -2.1768500189504139E+03 -v_z[1][[0, 2, 0, 5, 0, 1]] = 1.4049669834360076E+05 -v_z[1][[0, 1, 1, 5, 0, 1]] = -2.6336671383099070E+04 -v_z[1][[1, 0, 0, 6, 0, 1]] = -3.3729977411413406E+03 -v_z[1][[0, 1, 0, 6, 0, 1]] = 2.5524192171835635E+05 -v_z[1][[0, 0, 1, 6, 0, 1]] = -4.0808292859425601E+04 -v_z[1][[0, 0, 0, 7, 0, 1]] = 3.5358967707351438E+05 -v_z[1][[1, 5, 0, 0, 0, 2]] = 1.7452083703346930E+00 -v_z[1][[0, 6, 0, 0, 0, 2]] = -4.0332188703646253E+01 -v_z[1][[0, 5, 1, 0, 0, 2]] = 2.1114444699639993E+01 -v_z[1][[1, 4, 0, 1, 0, 2]] = 1.8520532869394195E+01 -v_z[1][[0, 5, 0, 1, 0, 2]] = -7.9741318585720887E+02 -v_z[1][[0, 4, 1, 1, 0, 2]] = 2.2407110447430031E+02 -v_z[1][[1, 3, 0, 2, 0, 2]] = 1.3397675641634453E+02 -v_z[1][[0, 4, 0, 2, 0, 2]] = -5.4774989354074351E+03 -v_z[1][[0, 3, 1, 2, 0, 2]] = 1.6209209527499174E+03 -v_z[1][[1, 2, 0, 3, 0, 2]] = 5.2859031875795847E+02 -v_z[1][[0, 3, 0, 3, 0, 2]] = -2.7295641671572812E+04 -v_z[1][[0, 2, 1, 3, 0, 2]] = 6.3951624596205411E+03 -v_z[1][[1, 1, 0, 4, 0, 2]] = 1.3107062625012702E+03 -v_z[1][[0, 2, 0, 4, 0, 2]] = -8.9966977023546744E+04 -v_z[1][[0, 1, 1, 4, 0, 2]] = 1.5857610682756118E+04 -v_z[1][[1, 0, 0, 5, 0, 2]] = 2.3040214757179019E+03 -v_z[1][[0, 1, 0, 5, 0, 2]] = -1.8704704822341783E+05 -v_z[1][[0, 0, 1, 5, 0, 2]] = 2.7875258257269670E+04 -v_z[1][[0, 0, 0, 6, 0, 2]] = -2.8982670631987107E+05 -v_z[1][[1, 4, 0, 0, 0, 3]] = -1.4424630897744335E+00 -v_z[1][[0, 5, 0, 0, 0, 3]] = 9.9971999713389096E+01 -v_z[1][[0, 4, 1, 0, 0, 3]] = -1.7451673770320696E+01 -v_z[1][[1, 3, 0, 1, 0, 3]] = -2.5794124072207403E+01 -v_z[1][[0, 4, 0, 1, 0, 3]] = 1.0609247229061857E+03 -v_z[1][[0, 3, 1, 1, 0, 3]] = -3.1207081948261998E+02 -v_z[1][[1, 2, 0, 2, 0, 3]] = -1.2935758759652580E+02 -v_z[1][[0, 3, 0, 2, 0, 3]] = 7.6746848581106406E+03 -v_z[1][[0, 2, 1, 2, 0, 3]] = -1.5650358296538934E+03 -v_z[1][[1, 1, 0, 3, 0, 3]] = -4.1329003990489161E+02 -v_z[1][[0, 2, 0, 3, 0, 3]] = 3.0279611359666287E+04 -v_z[1][[0, 1, 1, 3, 0, 3]] = -5.0001993119081171E+03 -v_z[1][[1, 0, 0, 4, 0, 3]] = -8.3932679923944943E+02 -v_z[1][[0, 1, 0, 4, 0, 3]] = 7.5082109578689327E+04 -v_z[1][[0, 0, 1, 4, 0, 3]] = -1.0154615109981616E+04 -v_z[1][[0, 0, 0, 5, 0, 3]] = 1.3198288423630554E+05 -v_z[1][[1, 3, 0, 0, 0, 4]] = 2.0039271324597836E+00 -v_z[1][[0, 4, 0, 0, 0, 4]] = -6.1972221504636806E+01 -v_z[1][[0, 3, 1, 0, 0, 4]] = 2.4244559755529764E+01 -v_z[1][[1, 2, 0, 1, 0, 4]] = 1.4827043589096323E+01 -v_z[1][[0, 3, 0, 1, 0, 4]] = -1.1081872263164094E+03 -v_z[1][[0, 2, 1, 1, 0, 4]] = 1.7938533715666648E+02 -v_z[1][[1, 1, 0, 2, 0, 4]] = 7.1548304284006861E+01 -v_z[1][[0, 2, 0, 2, 0, 4]] = -5.5575613190151034E+03 -v_z[1][[0, 1, 1, 2, 0, 4]] = 8.6562884973325822E+02 -v_z[1][[1, 0, 0, 3, 0, 4]] = 1.7212231947074685E+02 -v_z[1][[0, 1, 0, 3, 0, 4]] = -1.7756088235610612E+04 -v_z[1][[0, 0, 1, 3, 0, 4]] = 2.0824259485655912E+03 -v_z[1][[0, 0, 0, 4, 0, 4]] = -3.6059810948354745E+04 -v_z[1][[1, 2, 0, 0, 0, 5]] = -3.9895369176091355E-01 -v_z[1][[0, 3, 0, 0, 0, 5]] = 6.8875421222109537E+01 -v_z[1][[0, 2, 1, 0, 0, 5]] = -4.8267506651870802E+00 -v_z[1][[1, 1, 0, 1, 0, 5]] = -6.3804116588322533E+00 -v_z[1][[0, 2, 0, 1, 0, 5]] = 5.0960878573666753E+02 -v_z[1][[0, 1, 1, 1, 0, 5]] = -7.7193561193793329E+01 -v_z[1][[1, 0, 0, 2, 0, 5]] = -1.8797004237389270E+01 -v_z[1][[0, 1, 0, 2, 0, 5]] = 2.4591311308010258E+03 -v_z[1][[0, 0, 1, 2, 0, 5]] = -2.2741599985171885E+02 -v_z[1][[0, 0, 0, 3, 0, 5]] = 5.9158824007350695E+03 -v_z[1][[1, 1, 0, 0, 0, 6]] = 2.2849095286856230E-01 -v_z[1][[0, 2, 0, 0, 0, 6]] = -1.1426772595277267E+01 -v_z[1][[0, 1, 1, 0, 0, 6]] = 2.7644031914573413E+00 -v_z[1][[1, 0, 0, 1, 0, 6]] = 8.8982127049834292E-01 -v_z[1][[0, 1, 0, 1, 0, 6]] = -1.8274680644746192E+02 -v_z[1][[0, 0, 1, 1, 0, 6]] = 1.0765523663456506E+01 -v_z[1][[0, 0, 0, 2, 0, 6]] = -5.3838101345815335E+02 -v_z[1][[1, 0, 0, 0, 0, 7]] = -3.5990708675327733E-16 -v_z[1][[0, 1, 0, 0, 0, 7]] = 5.6094891908377402E+00 -v_z[1][[0, 0, 0, 1, 0, 7]] = 2.1845253547125790E+01 -v_z[1][[0, 0, 0, 0, 0, 8]] = -8.2423875839205964E-14 -v_z[1][[1, 8, 0, 0, 0, 0]] = 8.4855825868208237E-02 -v_z[1][[0, 9, 0, 0, 0, 0]] = -2.7612000018433696E+00 -v_z[1][[0, 8, 1, 0, 0, 0]] = 1.0266302140144778E+00 -v_z[1][[1, 7, 0, 1, 0, 0]] = 1.8380003128095692E+00 -v_z[1][[0, 8, 0, 1, 0, 0]] = -4.5308051167958354E+01 -v_z[1][[0, 7, 1, 1, 0, 0]] = 2.2237090207913706E+01 -v_z[1][[1, 6, 0, 2, 0, 0]] = 1.5741587075402254E+01 -v_z[1][[0, 7, 0, 2, 0, 0]] = -4.7822186351533998E+02 -v_z[1][[0, 6, 1, 2, 0, 0]] = 1.9044996313214227E+02 -v_z[1][[1, 5, 0, 3, 0, 0]] = 9.9918015433349197E+01 -v_z[1][[0, 6, 0, 3, 0, 0]] = -3.1292707353125975E+03 -v_z[1][[0, 5, 1, 3, 0, 0]] = 1.2088604703177236E+03 -v_z[1][[1, 4, 0, 4, 0, 0]] = 4.4009493471177905E+02 -v_z[1][[0, 5, 0, 4, 0, 0]] = -1.5814308036943294E+04 -v_z[1][[0, 4, 1, 4, 0, 0]] = 5.3244989650040734E+03 -v_z[1][[1, 3, 0, 5, 0, 0]] = 1.4603391811577299E+03 -v_z[1][[0, 4, 0, 5, 0, 0]] = -6.0156812934494854E+04 -v_z[1][[0, 3, 1, 5, 0, 0]] = 1.7667948084250267E+04 -v_z[1][[1, 2, 0, 6, 0, 0]] = 3.6908263046606335E+03 -v_z[1][[0, 3, 0, 6, 0, 0]] = -1.7492866377259529E+05 -v_z[1][[0, 2, 1, 6, 0, 0]] = 4.4653549243972564E+04 -v_z[1][[1, 1, 0, 7, 0, 0]] = 6.0119972259432416E+03 -v_z[1][[0, 2, 0, 7, 0, 0]] = -3.9836775127209508E+05 -v_z[1][[0, 1, 1, 7, 0, 0]] = 7.2736290473568399E+04 -v_z[1][[1, 0, 0, 8, 0, 0]] = 7.5305813686065876E+03 -v_z[1][[0, 1, 0, 8, 0, 0]] = -5.9195371108016104E+05 -v_z[1][[0, 0, 1, 8, 0, 0]] = 9.1108916600650991E+04 -v_z[1][[0, 0, 0, 9, 0, 0]] = -6.7665094900912954E+05 -v_z[1][[1, 7, 0, 0, 0, 1]] = -7.8343551101895492E-01 -v_z[1][[0, 8, 0, 0, 0, 1]] = 1.6665792041617824E+01 -v_z[1][[0, 7, 1, 0, 0, 1]] = -9.4784130389952068E+00 -v_z[1][[1, 6, 0, 1, 0, 1]] = -1.0654404208642791E+01 -v_z[1][[0, 7, 0, 1, 0, 1]] = 3.6098559730345130E+02 -v_z[1][[0, 6, 1, 1, 0, 1]] = -1.2890256103221478E+02 -v_z[1][[1, 5, 0, 2, 0, 1]] = -9.6137456426251376E+01 -v_z[1][[0, 6, 0, 2, 0, 1]] = 3.0916677071899503E+03 -v_z[1][[0, 5, 1, 2, 0, 1]] = -1.1631212878533497E+03 -v_z[1][[1, 4, 0, 3, 0, 1]] = -5.1029056442520653E+02 -v_z[1][[0, 5, 0, 3, 0, 1]] = 1.9624025214363552E+04 -v_z[1][[0, 4, 1, 3, 0, 1]] = -6.1737624494877809E+03 -v_z[1][[1, 3, 0, 4, 0, 1]] = -2.0061576479538899E+03 -v_z[1][[0, 4, 0, 4, 0, 1]] = 8.6435204482805566E+04 -v_z[1][[0, 3, 1, 4, 0, 1]] = -2.4271545699931896E+04 -v_z[1][[1, 2, 0, 5, 0, 1]] = -5.7228427379538189E+03 -v_z[1][[0, 3, 0, 5, 0, 1]] = 2.8681247108714626E+05 -v_z[1][[0, 2, 1, 5, 0, 1]] = -6.9237948069254620E+04 -v_z[1][[1, 1, 0, 6, 0, 1]] = -1.0396752346129429E+04 -v_z[1][[0, 2, 0, 6, 0, 1]] = 7.2488297681223776E+05 -v_z[1][[0, 1, 1, 6, 0, 1]] = -1.2578535388648296E+05 -v_z[1][[1, 0, 0, 7, 0, 1]] = -1.4402744972033288E+04 -v_z[1][[0, 1, 0, 7, 0, 1]] = 1.1807638956689870E+06 -v_z[1][[0, 0, 1, 7, 0, 1]] = -1.7425195031392833E+05 -v_z[1][[0, 0, 0, 8, 0, 1]] = 1.4790157512178964E+06 -v_z[1][[1, 6, 0, 0, 0, 2]] = 1.6428483797104128E+00 -v_z[1][[0, 7, 0, 0, 0, 2]] = -7.6933865006151876E+01 -v_z[1][[0, 6, 1, 0, 0, 2]] = 1.9876039934782295E+01 -v_z[1][[1, 5, 0, 1, 0, 2]] = 3.2480978653826412E+01 -v_z[1][[0, 6, 0, 1, 0, 2]] = -1.0462692634938119E+03 -v_z[1][[0, 5, 1, 1, 0, 2]] = 3.9297188761756843E+02 -v_z[1][[1, 4, 0, 2, 0, 2]] = 2.2311460250819641E+02 -v_z[1][[0, 5, 0, 2, 0, 2]] = -9.4407593103768377E+03 -v_z[1][[0, 4, 1, 2, 0, 2]] = 2.6993572896043424E+03 -v_z[1][[1, 3, 0, 3, 0, 2]] = 1.1118315701335907E+03 -v_z[1][[0, 4, 0, 3, 0, 2]] = -5.0110857684177783E+04 -v_z[1][[0, 3, 1, 3, 0, 2]] = 1.3451520518663019E+04 -v_z[1][[1, 2, 0, 4, 0, 2]] = 3.6646189354264975E+03 -v_z[1][[0, 3, 0, 4, 0, 2]] = -1.9700595581633024E+05 -v_z[1][[0, 2, 1, 4, 0, 2]] = 4.4336478768135341E+04 -v_z[1][[1, 1, 0, 5, 0, 2]] = 7.6189750663264549E+03 -v_z[1][[0, 2, 0, 5, 0, 2]] = -5.6198679337440373E+05 -v_z[1][[0, 1, 1, 5, 0, 2]] = 9.2178349840846771E+04 -v_z[1][[1, 0, 0, 6, 0, 2]] = 1.1805492093994690E+04 -v_z[1][[0, 1, 0, 6, 0, 2]] = -1.0209676868734277E+06 -v_z[1][[0, 0, 1, 6, 0, 2]] = 1.4282902500798958E+05 -v_z[1][[0, 0, 0, 7, 0, 2]] = -1.4143587082940557E+06 -v_z[1][[1, 5, 0, 0, 0, 3]] = -4.0721528641142868E+00 -v_z[1][[0, 6, 0, 0, 0, 3]] = 1.0755250320972337E+02 -v_z[1][[0, 5, 1, 0, 0, 3]] = -4.9267037632493320E+01 -v_z[1][[1, 4, 0, 1, 0, 3]] = -4.3214576695253143E+01 -v_z[1][[0, 5, 0, 1, 0, 3]] = 2.1264351622858931E+03 -v_z[1][[0, 4, 1, 1, 0, 3]] = -5.2283257710670091E+02 -v_z[1][[1, 3, 0, 2, 0, 3]] = -3.1261243163813737E+02 -v_z[1][[0, 4, 0, 2, 0, 3]] = 1.4606663827753182E+04 -v_z[1][[0, 3, 1, 2, 0, 3]] = -3.7821488897498075E+03 -v_z[1][[1, 2, 0, 3, 0, 3]] = -1.2333774104352374E+03 -v_z[1][[0, 3, 0, 3, 0, 3]] = 7.2788377790860919E+04 -v_z[1][[0, 2, 1, 3, 0, 3]] = -1.4922045739114597E+04 -v_z[1][[1, 1, 0, 4, 0, 3]] = -3.0583146125029680E+03 -v_z[1][[0, 2, 0, 4, 0, 3]] = 2.3991193872945820E+05 -v_z[1][[0, 1, 1, 4, 0, 3]] = -3.7001091593097619E+04 -v_z[1][[1, 0, 0, 5, 0, 3]] = -5.3760501100084657E+03 -v_z[1][[0, 1, 0, 5, 0, 3]] = 4.9879212859578017E+05 -v_z[1][[0, 0, 1, 5, 0, 3]] = -6.5042269266962554E+04 -v_z[1][[0, 0, 0, 6, 0, 3]] = 7.7287121685299347E+05 -v_z[1][[1, 4, 0, 0, 0, 4]] = 2.5243104071052573E+00 -v_z[1][[0, 5, 0, 0, 0, 4]] = -1.9994399942677828E+02 -v_z[1][[0, 4, 1, 0, 0, 4]] = 3.0540429098061225E+01 -v_z[1][[1, 3, 0, 1, 0, 4]] = 4.5139717126362982E+01 -v_z[1][[0, 4, 0, 1, 0, 4]] = -2.1218494458123719E+03 -v_z[1][[0, 3, 1, 1, 0, 4]] = 5.4612393409458514E+02 -v_z[1][[1, 2, 0, 2, 0, 4]] = 2.2637577829392040E+02 -v_z[1][[0, 3, 0, 2, 0, 4]] = -1.5349369716221308E+04 -v_z[1][[0, 2, 1, 2, 0, 4]] = 2.7388127018943142E+03 -v_z[1][[1, 1, 0, 3, 0, 4]] = 7.2325756983356086E+02 -v_z[1][[0, 2, 0, 3, 0, 4]] = -6.0559222719332793E+04 -v_z[1][[0, 1, 1, 3, 0, 4]] = 8.7503487958392088E+03 -v_z[1][[1, 0, 0, 4, 0, 4]] = 1.4688218986690388E+03 -v_z[1][[0, 1, 0, 4, 0, 4]] = -1.5016421915737938E+05 -v_z[1][[0, 0, 1, 4, 0, 4]] = 1.7770576442467827E+04 -v_z[1][[0, 0, 0, 5, 0, 4]] = -2.6396576847261144E+05 -v_z[1][[1, 3, 0, 0, 0, 5]] = -2.8054979854436963E+00 -v_z[1][[0, 4, 0, 0, 0, 5]] = 9.9155554407418990E+01 -v_z[1][[0, 3, 1, 0, 0, 5]] = -3.3942383657741672E+01 -v_z[1][[1, 2, 0, 1, 0, 5]] = -2.0757861024734858E+01 -v_z[1][[0, 3, 0, 1, 0, 5]] = 1.7730995621062582E+03 -v_z[1][[0, 2, 1, 1, 0, 5]] = -2.5113947201933317E+02 -v_z[1][[1, 1, 0, 2, 0, 5]] = -1.0016762599760965E+02 -v_z[1][[0, 2, 0, 2, 0, 5]] = 8.8920981104242019E+03 -v_z[1][[0, 1, 1, 2, 0, 5]] = -1.2118803896265617E+03 -v_z[1][[1, 0, 0, 3, 0, 5]] = -2.4097124725904555E+02 -v_z[1][[0, 1, 0, 3, 0, 5]] = 2.8409741176977197E+04 -v_z[1][[0, 0, 1, 3, 0, 5]] = -2.9153963279918280E+03 -v_z[1][[0, 0, 0, 4, 0, 5]] = 5.7695697517368113E+04 -v_z[1][[1, 2, 0, 0, 0, 6]] = 4.6544597372106977E-01 -v_z[1][[0, 3, 0, 0, 0, 6]] = -9.1833894962812934E+01 -v_z[1][[0, 2, 1, 0, 0, 6]] = 5.6312091093849297E+00 -v_z[1][[1, 1, 0, 1, 0, 6]] = 7.4438136019709695E+00 -v_z[1][[0, 2, 0, 1, 0, 6]] = -6.7947838098222655E+02 -v_z[1][[0, 1, 1, 1, 0, 6]] = 9.0059154726092231E+01 -v_z[1][[1, 0, 0, 2, 0, 6]] = 2.1929838276954115E+01 -v_z[1][[0, 1, 0, 2, 0, 6]] = -3.2788415077347163E+03 -v_z[1][[0, 0, 1, 2, 0, 6]] = 2.6531866649367197E+02 -v_z[1][[0, 0, 0, 3, 0, 6]] = -7.8878432009800608E+03 -v_z[1][[1, 1, 0, 0, 0, 7]] = -2.2849095286856286E-01 -v_z[1][[0, 2, 0, 0, 0, 7]] = 1.3059168680317033E+01 -v_z[1][[0, 1, 1, 0, 0, 7]] = -2.7644031914573435E+00 -v_z[1][[1, 0, 0, 1, 0, 7]] = -8.8982127049835447E-01 -v_z[1][[0, 1, 0, 1, 0, 7]] = 2.0885349308281579E+02 -v_z[1][[0, 0, 1, 1, 0, 7]] = -1.0765523663456511E+01 -v_z[1][[0, 0, 0, 2, 0, 7]] = 6.1529258680933174E+02 -v_z[1][[1, 0, 0, 0, 0, 8]] = 2.6545721163057274E-15 -v_z[1][[0, 1, 0, 0, 0, 8]] = -5.6094891908377855E+00 -v_z[1][[0, 0, 0, 1, 0, 8]] = -2.1845253547126898E+01 -v_z[1][[0, 0, 0, 0, 0, 9]] = 1.2471094400677167E-13 -v_z[1][[1, 9, 0, 0, 0, 0]] = 1.1247177737901123E-01 -v_z[1][[0, 10, 0, 0, 0, 0]] = -2.2596410039266686E+00 -v_z[1][[0, 9, 1, 0, 0, 0]] = 1.3607424558042447E+00 -v_z[1][[1, 8, 0, 1, 0, 0]] = 1.8455298569598280E+00 -v_z[1][[0, 9, 0, 1, 0, 0]] = -5.3213210385579700E+01 -v_z[1][[0, 8, 1, 1, 0, 0]] = 2.2328186575703683E+01 -v_z[1][[1, 7, 0, 2, 0, 0]] = 1.9479379594077045E+01 -v_z[1][[0, 8, 0, 2, 0, 0]] = -5.3955441054869914E+02 -v_z[1][[0, 7, 1, 2, 0, 0]] = 2.3567173422595815E+02 -v_z[1][[1, 6, 0, 3, 0, 0]] = 1.2746437826516340E+02 -v_z[1][[0, 7, 0, 3, 0, 0]] = -4.0570879629263409E+03 -v_z[1][[0, 6, 1, 3, 0, 0]] = 1.5421307918306879E+03 -v_z[1][[1, 5, 0, 4, 0, 0]] = 6.4416316519873885E+02 -v_z[1][[0, 6, 0, 4, 0, 0]] = -2.1922719542534251E+04 -v_z[1][[0, 5, 1, 4, 0, 0]] = 7.7934232727324215E+03 -v_z[1][[1, 4, 0, 5, 0, 0]] = 2.4503634896720137E+03 -v_z[1][[0, 5, 0, 5, 0, 0]] = -9.3886683721892274E+04 -v_z[1][[0, 4, 1, 5, 0, 0]] = 2.9645780570473809E+04 -v_z[1][[1, 3, 0, 6, 0, 0]] = 7.1253577125541015E+03 -v_z[1][[0, 4, 0, 6, 0, 0]] = -3.1647966648642858E+05 -v_z[1][[0, 3, 1, 6, 0, 0]] = 8.6206308624352911E+04 -v_z[1][[1, 2, 0, 7, 0, 0]] = 1.6226687312088872E+04 -v_z[1][[0, 3, 0, 7, 0, 0]] = -8.2602067719102546E+05 -v_z[1][[0, 2, 1, 7, 0, 0]] = 1.9631895980635393E+05 -v_z[1][[1, 1, 0, 8, 0, 0]] = 2.4112011432289764E+04 -v_z[1][[0, 2, 0, 8, 0, 0]] = -1.7167582646948544E+06 -v_z[1][[0, 1, 1, 8, 0, 0]] = 2.9171973996808793E+05 -v_z[1][[1, 0, 0, 9, 0, 0]] = 2.7561978433087799E+04 -v_z[1][[0, 1, 0, 9, 0, 0]] = -2.3559716966320458E+06 -v_z[1][[0, 0, 1, 9, 0, 0]] = 3.3345924723389174E+05 -v_z[1][[0, 0, 0, 10, 0, 0]] = -2.4765466763020824E+06 -v_z[1][[1, 8, 0, 0, 0, 1]] = -6.7884660694566534E-01 -v_z[1][[0, 9, 0, 0, 0, 1]] = 2.4850800016590341E+01 -v_z[1][[0, 8, 1, 0, 0, 1]] = -8.2130417121158210E+00 -v_z[1][[1, 7, 0, 1, 0, 1]] = -1.4704002502476541E+01 -v_z[1][[0, 8, 0, 1, 0, 1]] = 4.0777246051162541E+02 -v_z[1][[0, 7, 1, 1, 0, 1]] = -1.7789672166330962E+02 -v_z[1][[1, 6, 0, 2, 0, 1]] = -1.2593269660321801E+02 -v_z[1][[0, 7, 0, 2, 0, 1]] = 4.3039967716380579E+03 -v_z[1][[0, 6, 1, 2, 0, 1]] = -1.5235997050571380E+03 -v_z[1][[1, 5, 0, 3, 0, 1]] = -7.9934412346679335E+02 -v_z[1][[0, 6, 0, 3, 0, 1]] = 2.8163436617813404E+04 -v_z[1][[0, 5, 1, 3, 0, 1]] = -9.6708837625417873E+03 -v_z[1][[1, 4, 0, 4, 0, 1]] = -3.5207594776942324E+03 -v_z[1][[0, 5, 0, 4, 0, 1]] = 1.4232877233248961E+05 -v_z[1][[0, 4, 1, 4, 0, 1]] = -4.2595991720032580E+04 -v_z[1][[1, 3, 0, 5, 0, 1]] = -1.1682713449261839E+04 -v_z[1][[0, 4, 0, 5, 0, 1]] = 5.4141131641045364E+05 -v_z[1][[0, 3, 1, 5, 0, 1]] = -1.4134358467400214E+05 -v_z[1][[1, 2, 0, 6, 0, 1]] = -2.9526610437285046E+04 -v_z[1][[0, 3, 0, 6, 0, 1]] = 1.5743579739533577E+06 -v_z[1][[0, 2, 1, 6, 0, 1]] = -3.5722839395178051E+05 -v_z[1][[1, 1, 0, 7, 0, 1]] = -4.8095977807545940E+04 -v_z[1][[0, 2, 0, 7, 0, 1]] = 3.5853097614488462E+06 -v_z[1][[0, 1, 1, 7, 0, 1]] = -5.8189032378854731E+05 -v_z[1][[1, 0, 0, 8, 0, 1]] = -6.0244650948852519E+04 -v_z[1][[0, 1, 0, 8, 0, 1]] = 5.3275833997214325E+06 -v_z[1][[0, 0, 1, 8, 0, 1]] = -7.2887133280520805E+05 -v_z[1][[0, 0, 0, 9, 0, 1]] = 6.0898585410821931E+06 -v_z[1][[1, 7, 0, 0, 0, 2]] = 3.1337420440758201E+00 -v_z[1][[0, 8, 0, 0, 0, 2]] = -7.4996064187280240E+01 -v_z[1][[0, 7, 1, 0, 0, 2]] = 3.7913652155980827E+01 -v_z[1][[1, 6, 0, 1, 0, 2]] = 4.2617616834571180E+01 -v_z[1][[0, 7, 0, 1, 0, 2]] = -1.6244351878655318E+03 -v_z[1][[0, 6, 1, 1, 0, 2]] = 5.1561024412885899E+02 -v_z[1][[1, 5, 0, 2, 0, 2]] = 3.8454982570500556E+02 -v_z[1][[0, 6, 0, 2, 0, 2]] = -1.3912504682354780E+04 -v_z[1][[0, 5, 1, 2, 0, 2]] = 4.6524851514133989E+03 -v_z[1][[1, 4, 0, 3, 0, 2]] = 2.0411622577008268E+03 -v_z[1][[0, 5, 0, 3, 0, 2]] = -8.8308113464636030E+04 -v_z[1][[0, 4, 1, 3, 0, 2]] = 2.4695049797951127E+04 -v_z[1][[1, 3, 0, 4, 0, 2]] = 8.0246305918155631E+03 -v_z[1][[0, 4, 0, 4, 0, 2]] = -3.8895842017262551E+05 -v_z[1][[0, 3, 1, 4, 0, 2]] = 9.7086182799727598E+04 -v_z[1][[1, 2, 0, 5, 0, 2]] = 2.2891370951815297E+04 -v_z[1][[0, 3, 0, 5, 0, 2]] = -1.2906561198921569E+06 -v_z[1][[0, 2, 1, 5, 0, 2]] = 2.7695179227701848E+05 -v_z[1][[1, 1, 0, 6, 0, 2]] = 4.1587009384517740E+04 -v_z[1][[0, 2, 0, 6, 0, 2]] = -3.2619733956550742E+06 -v_z[1][[0, 1, 1, 6, 0, 2]] = 5.0314141554593190E+05 -v_z[1][[1, 0, 0, 7, 0, 2]] = 5.7610979888132882E+04 -v_z[1][[0, 1, 0, 7, 0, 2]] = -5.3134375305104563E+06 -v_z[1][[0, 0, 1, 7, 0, 2]] = 6.9700780125571333E+05 -v_z[1][[0, 0, 0, 8, 0, 2]] = -6.6555708804804888E+06 -v_z[1][[1, 6, 0, 0, 0, 3]] = -4.3809290125611042E+00 -v_z[1][[0, 7, 0, 0, 0, 3]] = 2.3080159501845574E+02 -v_z[1][[0, 6, 1, 0, 0, 3]] = -5.3002773159419462E+01 -v_z[1][[1, 5, 0, 1, 0, 3]] = -8.6615943076870508E+01 -v_z[1][[0, 6, 0, 1, 0, 3]] = 3.1388077904814377E+03 -v_z[1][[0, 5, 1, 1, 0, 3]] = -1.0479250336468494E+03 -v_z[1][[1, 4, 0, 2, 0, 3]] = -5.9497227335519096E+02 -v_z[1][[0, 5, 0, 2, 0, 3]] = 2.8322277931130528E+04 -v_z[1][[0, 4, 1, 2, 0, 3]] = -7.1982861056115817E+03 -v_z[1][[1, 3, 0, 3, 0, 3]] = -2.9648841870229107E+03 -v_z[1][[0, 4, 0, 3, 0, 3]] = 1.5033257305253352E+05 -v_z[1][[0, 3, 1, 3, 0, 3]] = -3.5870721383101394E+04 -v_z[1][[1, 2, 0, 4, 0, 3]] = -9.7723171611373255E+03 -v_z[1][[0, 3, 0, 4, 0, 3]] = 5.9101786744899151E+05 -v_z[1][[0, 2, 1, 4, 0, 3]] = -1.1823061004836092E+05 -v_z[1][[1, 1, 0, 5, 0, 3]] = -2.0317266843537262E+04 -v_z[1][[0, 2, 0, 5, 0, 3]] = 1.6859603801232090E+06 -v_z[1][[0, 1, 1, 5, 0, 3]] = -2.4580893290892494E+05 -v_z[1][[1, 0, 0, 6, 0, 3]] = -3.1481312250652813E+04 -v_z[1][[0, 1, 0, 6, 0, 3]] = 3.0629030606202735E+06 -v_z[1][[0, 0, 1, 6, 0, 3]] = -3.8087740002130548E+05 -v_z[1][[0, 0, 0, 7, 0, 3]] = 4.2430761248822017E+06 -v_z[1][[1, 5, 0, 0, 0, 4]] = 8.1443057282285736E+00 -v_z[1][[0, 6, 0, 0, 0, 4]] = -2.4199313222187786E+02 -v_z[1][[0, 5, 1, 0, 0, 4]] = 9.8534075264986654E+01 -v_z[1][[1, 4, 0, 1, 0, 4]] = 8.6429153390506343E+01 -v_z[1][[0, 5, 0, 1, 0, 4]] = -4.7844791151432619E+03 -v_z[1][[0, 4, 1, 1, 0, 4]] = 1.0456651542134018E+03 -v_z[1][[1, 3, 0, 2, 0, 4]] = 6.2522486327627530E+02 -v_z[1][[0, 4, 0, 2, 0, 4]] = -3.2864993612444705E+04 -v_z[1][[0, 3, 1, 2, 0, 4]] = 7.5642977794996186E+03 -v_z[1][[1, 2, 0, 3, 0, 4]] = 2.4667548208704789E+03 -v_z[1][[0, 3, 0, 3, 0, 4]] = -1.6377385002943737E+05 -v_z[1][[0, 2, 1, 3, 0, 4]] = 2.9844091478229209E+04 -v_z[1][[1, 1, 0, 4, 0, 4]] = 6.1166292250059450E+03 -v_z[1][[0, 2, 0, 4, 0, 4]] = -5.3980186214128311E+05 -v_z[1][[0, 1, 1, 4, 0, 4]] = 7.4002183186195296E+04 -v_z[1][[1, 0, 0, 5, 0, 4]] = 1.0752100220016966E+04 -v_z[1][[0, 1, 0, 5, 0, 4]] = -1.1222822893405126E+06 -v_z[1][[0, 0, 1, 5, 0, 4]] = 1.3008453853392515E+05 -v_z[1][[0, 0, 0, 6, 0, 4]] = -1.7389602379192240E+06 -v_z[1][[1, 4, 0, 0, 0, 5]] = -4.0388966513684164E+00 -v_z[1][[0, 5, 0, 0, 0, 5]] = 3.5989919896820101E+02 -v_z[1][[0, 4, 1, 0, 0, 5]] = -4.8864686556897972E+01 -v_z[1][[1, 3, 0, 1, 0, 5]] = -7.2223547402180813E+01 -v_z[1][[0, 4, 0, 1, 0, 5]] = 3.8193290024622829E+03 -v_z[1][[0, 3, 1, 1, 0, 5]] = -8.7379829455133643E+02 -v_z[1][[1, 2, 0, 2, 0, 5]] = -3.6220124527027258E+02 -v_z[1][[0, 3, 0, 2, 0, 5]] = 2.7628865489198437E+04 -v_z[1][[0, 2, 1, 2, 0, 5]] = -4.3821003230309043E+03 -v_z[1][[1, 1, 0, 3, 0, 5]] = -1.1572121117336978E+03 -v_z[1][[0, 2, 0, 3, 0, 5]] = 1.0900660089479947E+05 -v_z[1][[0, 1, 1, 3, 0, 5]] = -1.4000558073342732E+04 -v_z[1][[1, 0, 0, 4, 0, 5]] = -2.3501150378704615E+03 -v_z[1][[0, 1, 0, 4, 0, 5]] = 2.7029559448328731E+05 -v_z[1][[0, 0, 1, 4, 0, 5]] = -2.8432922307948531E+04 -v_z[1][[0, 0, 0, 5, 0, 5]] = 4.7513838325070945E+05 -v_z[1][[1, 3, 0, 0, 0, 6]] = 3.7406639805915991E+00 -v_z[1][[0, 4, 0, 0, 0, 6]] = -1.4873333161112899E+02 -v_z[1][[0, 3, 1, 0, 0, 6]] = 4.5256511543655577E+01 -v_z[1][[1, 2, 0, 1, 0, 6]] = 2.7677148032979854E+01 -v_z[1][[0, 3, 0, 1, 0, 6]] = -2.6596493431593990E+03 -v_z[1][[0, 2, 1, 1, 0, 6]] = 3.3485262935911101E+02 -v_z[1][[1, 1, 0, 2, 0, 6]] = 1.3355683466347955E+02 -v_z[1][[0, 2, 0, 2, 0, 6]] = -1.3338147165636381E+04 -v_z[1][[0, 1, 1, 2, 0, 6]] = 1.6158405195020823E+03 -v_z[1][[1, 0, 0, 3, 0, 6]] = 3.2129499634539292E+02 -v_z[1][[0, 1, 0, 3, 0, 6]] = -4.2614611765465932E+04 -v_z[1][[0, 0, 1, 3, 0, 6]] = 3.8871951039891046E+03 -v_z[1][[0, 0, 0, 4, 0, 6]] = -8.6543546276051464E+04 -v_z[1][[1, 2, 0, 0, 0, 7]] = -5.3193825568122666E-01 -v_z[1][[0, 3, 0, 0, 0, 7]] = 1.1807215066647414E+02 -v_z[1][[0, 2, 1, 0, 0, 7]] = -6.4356675535827828E+00 -v_z[1][[1, 1, 0, 1, 0, 7]] = -8.5072155451097018E+00 -v_z[1][[0, 2, 0, 1, 0, 7]] = 8.7361506126286884E+02 -v_z[1][[0, 1, 1, 1, 0, 7]] = -1.0292474825839125E+02 -v_z[1][[1, 0, 0, 2, 0, 7]] = -2.5062672316519023E+01 -v_z[1][[0, 1, 0, 2, 0, 7]] = 4.2156533670875087E+03 -v_z[1][[0, 0, 1, 2, 0, 7]] = -3.0322133313562523E+02 -v_z[1][[0, 0, 0, 3, 0, 7]] = 1.0141512686974531E+04 -v_z[1][[1, 1, 0, 0, 0, 8]] = 2.2849095286856613E-01 -v_z[1][[0, 2, 0, 0, 0, 8]] = -1.4691564765356519E+01 -v_z[1][[0, 1, 1, 0, 0, 8]] = 2.7644031914573519E+00 -v_z[1][[1, 0, 0, 1, 0, 8]] = 8.8982127049838522E-01 -v_z[1][[0, 1, 0, 1, 0, 8]] = -2.3496017971816880E+02 -v_z[1][[0, 0, 1, 1, 0, 8]] = 1.0765523663456506E+01 -v_z[1][[0, 0, 0, 2, 0, 8]] = -6.9220416016051286E+02 -v_z[1][[1, 0, 0, 0, 0, 9]] = -3.7212339881573755E-15 -v_z[1][[0, 1, 0, 0, 0, 9]] = 5.6094891908377535E+00 -v_z[1][[0, 0, 0, 1, 0, 9]] = 2.1845253547128063E+01 -v_z[1][[0, 0, 0, 0, 0, 10]] = -1.4466546441382276E-13 -v_z[2][[0, 0, 0, 0, 0, 0]] = 8.1555963638229567E-01 -v_z[2][[0, 1, 0, 0, 0, 0]] = 5.4784266868711706E-01 -v_z[2][[0, 0, 0, 1, 0, 0]] = 1.8636225441262336E-01 -v_z[2][[0, 0, 0, 0, 0, 1]] = 8.1555963638229567E-01 -v_z[2][[0, 2, 0, 0, 0, 0]] = -4.0777981819114784E-01 -v_z[2][[0, 0, 0, 2, 0, 0]] = -4.0777981819114784E-01 -v_z[2][[0, 0, 0, 1, 0, 1]] = -4.8360018722269390E-18 -v_z[2][[0, 0, 0, 0, 0, 2]] = -5.3075002763572164E-17 -v_z[2][[0, 2, 0, 1, 0, 0]] = 2.4180009361134695E-18 -v_z[2][[0, 0, 0, 3, 0, 0]] = -1.1606404493344653E-16 -v_z[2][[0, 2, 0, 0, 0, 1]] = 4.0777981819114784E-01 -v_z[2][[0, 0, 0, 2, 0, 1]] = 4.0777981819114789E-01 -v_z[2][[0, 0, 0, 1, 0, 2]] = -2.9016011233361634E-17 -v_z[2][[0, 0, 0, 0, 0, 3]] = 5.1866002295515430E-17 -v_z[2][[0, 4, 0, 0, 0, 0]] = -1.0194495454778696E-01 -v_z[2][[0, 2, 0, 2, 0, 0]] = -2.0388990909557395E-01 -v_z[2][[0, 0, 0, 4, 0, 0]] = -1.0194495454778749E-01 -v_z[2][[0, 0, 0, 3, 0, 1]] = 4.6425617973378614E-16 -v_z[2][[0, 2, 0, 0, 0, 2]] = -4.0777981819114784E-01 -v_z[2][[0, 0, 0, 2, 0, 2]] = -4.0777981819114806E-01 -v_z[2][[0, 0, 0, 1, 0, 3]] = 3.8688014977815512E-17 -v_z[2][[0, 0, 0, 0, 0, 4]] = -8.5596997570179838E-17 -v_z[2][[0, 2, 0, 3, 0, 0]] = -2.3212808986689307E-16 -v_z[2][[0, 0, 0, 5, 0, 0]] = -1.2380164792900964E-15 -v_z[2][[0, 4, 0, 0, 0, 1]] = 3.0583486364336088E-01 -v_z[2][[0, 2, 0, 2, 0, 1]] = 6.1166972728672198E-01 -v_z[2][[0, 0, 0, 4, 0, 1]] = 3.0583486364336304E-01 -v_z[2][[0, 2, 0, 1, 0, 2]] = -1.9344007488907756E-17 -v_z[2][[0, 0, 0, 3, 0, 2]] = -1.2380164792900964E-15 -v_z[2][[0, 2, 0, 0, 0, 3]] = 4.0777981819114795E-01 -v_z[2][[0, 0, 0, 2, 0, 3]] = 4.0777981819114817E-01 -v_z[2][[0, 0, 0, 1, 0, 4]] = 3.8688014977815512E-17 -v_z[2][[0, 0, 0, 0, 0, 5]] = 7.2540028083404084E-18 -v_z[2][[0, 6, 0, 0, 0, 0]] = -5.0972477273893479E-02 -v_z[2][[0, 4, 0, 2, 0, 0]] = -1.5291743182168044E-01 -v_z[2][[0, 2, 0, 4, 0, 0]] = -1.5291743182168091E-01 -v_z[2][[0, 0, 0, 6, 0, 0]] = -5.0972477273898385E-02 -v_z[2][[0, 4, 0, 1, 0, 1]] = -3.8688014977815512E-17 -v_z[2][[0, 4, 0, 0, 0, 2]] = -6.1166972728672175E-01 -v_z[2][[0, 2, 0, 2, 0, 2]] = -1.2233394545734440E+00 -v_z[2][[0, 0, 0, 4, 0, 2]] = -6.1166972728672608E-01 -v_z[2][[0, 0, 0, 3, 0, 3]] = 2.4760329585801927E-15 -v_z[2][[0, 2, 0, 0, 0, 4]] = -4.0777981819114806E-01 -v_z[2][[0, 0, 0, 2, 0, 4]] = -4.0777981819114767E-01 -v_z[2][[0, 0, 0, 1, 0, 5]] = -3.8688014977815512E-17 -v_z[2][[0, 0, 0, 0, 0, 6]] = -1.5668598952367885E-16 -v_z[2][[0, 0, 0, 7, 0, 0]] = -1.9808263668641542E-14 -v_z[2][[0, 6, 0, 0, 0, 1]] = 2.5486238636946740E-01 -v_z[2][[0, 4, 0, 2, 0, 1]] = 7.6458715910840203E-01 -v_z[2][[0, 2, 0, 4, 0, 1]] = 7.6458715910840636E-01 -v_z[2][[0, 0, 0, 6, 0, 1]] = 2.5486238636950181E-01 -v_z[2][[0, 4, 0, 1, 0, 2]] = 7.7376029955631023E-17 -v_z[2][[0, 2, 0, 3, 0, 2]] = 4.9520659171603855E-15 -v_z[2][[0, 4, 0, 0, 0, 3]] = 1.0194495454778696E+00 -v_z[2][[0, 2, 0, 2, 0, 3]] = 2.0388990909557396E+00 -v_z[2][[0, 0, 0, 4, 0, 3]] = 1.0194495454779280E+00 -v_z[2][[0, 2, 0, 1, 0, 4]] = 1.5475205991126205E-16 -v_z[2][[0, 2, 0, 0, 0, 5]] = 4.0777981819114850E-01 -v_z[2][[0, 0, 0, 2, 0, 5]] = 4.0777981819114567E-01 -v_z[2][[0, 0, 0, 0, 0, 7]] = 2.4180009361134692E-17 -v_z[2][[0, 8, 0, 0, 0, 0]] = -3.1857798296183425E-02 -v_z[2][[0, 6, 0, 2, 0, 0]] = -1.2743119318473370E-01 -v_z[2][[0, 4, 0, 4, 0, 0]] = -1.9114678977710037E-01 -v_z[2][[0, 2, 0, 6, 0, 0]] = -1.2743119318475091E-01 -v_z[2][[0, 0, 0, 8, 0, 0]] = -3.1857798296663124E-02 -v_z[2][[0, 6, 0, 1, 0, 1]] = -5.8032022466723267E-17 -v_z[2][[0, 4, 0, 3, 0, 1]] = -1.2380164792900964E-15 -v_z[2][[0, 2, 0, 5, 0, 1]] = -7.9233054674566168E-14 -v_z[2][[0, 0, 0, 7, 0, 1]] = -3.1693221869826467E-13 -v_z[2][[0, 6, 0, 0, 0, 2]] = -7.6458715910840214E-01 -v_z[2][[0, 4, 0, 2, 0, 2]] = -2.2937614773252069E+00 -v_z[2][[0, 2, 0, 4, 0, 2]] = -2.2937614773251997E+00 -v_z[2][[0, 0, 0, 6, 0, 2]] = -7.6458715910787156E-01 -v_z[2][[0, 4, 0, 1, 0, 3]] = -1.5475205991126205E-16 -v_z[2][[0, 2, 0, 3, 0, 3]] = -9.9041318343207710E-15 -v_z[2][[0, 0, 0, 5, 0, 3]] = 6.3386443739652934E-13 -v_z[2][[0, 4, 0, 0, 0, 4]] = -1.5291743182168047E+00 -v_z[2][[0, 2, 0, 2, 0, 4]] = -3.0583486364336090E+00 -v_z[2][[0, 0, 0, 4, 0, 4]] = -1.5291743182168529E+00 -v_z[2][[0, 2, 0, 1, 0, 5]] = -3.0950411982252409E-16 -v_z[2][[0, 2, 0, 0, 0, 6]] = -4.0777981819114795E-01 -v_z[2][[0, 0, 0, 2, 0, 6]] = -4.0777981819114495E-01 -v_z[2][[0, 0, 0, 1, 0, 7]] = 4.6425617973378614E-16 -v_z[2][[0, 0, 0, 0, 0, 8]] = 6.0256394873358070E-16 -v_z[2][[0, 8, 0, 1, 0, 0]] = 4.8360018722269390E-18 -v_z[2][[0, 0, 0, 9, 0, 0]] = -3.8031866243791761E-12 -v_z[2][[0, 8, 0, 0, 0, 1]] = 2.2300458807328399E-01 -v_z[2][[0, 6, 0, 2, 0, 1]] = 8.9201835229313575E-01 -v_z[2][[0, 4, 0, 4, 0, 1]] = 1.3380275284397261E+00 -v_z[2][[0, 2, 0, 6, 0, 1]] = 8.9201835229230564E-01 -v_z[2][[0, 0, 0, 8, 0, 1]] = 2.2300458806681700E-01 -v_z[2][[0, 6, 0, 1, 0, 2]] = 7.7376029955631023E-17 -v_z[2][[0, 2, 0, 5, 0, 2]] = -3.1693221869826467E-13 -v_z[2][[0, 0, 0, 7, 0, 2]] = 1.2677288747930585E-11 -v_z[2][[0, 6, 0, 0, 0, 3]] = 1.7840367045862719E+00 -v_z[2][[0, 4, 0, 2, 0, 3]] = 5.3521101137588154E+00 -v_z[2][[0, 2, 0, 4, 0, 3]] = 5.3521101137584290E+00 -v_z[2][[0, 0, 0, 6, 0, 3]] = 1.7840367045915837E+00 -v_z[2][[0, 4, 0, 1, 0, 4]] = -3.0950411982252409E-16 -v_z[2][[0, 2, 0, 3, 0, 4]] = -3.9616527337283084E-14 -v_z[2][[0, 0, 0, 5, 0, 4]] = -1.2677288747930587E-12 -v_z[2][[0, 4, 0, 0, 0, 5]] = 2.1408440455035276E+00 -v_z[2][[0, 2, 0, 2, 0, 5]] = 4.2816880910070463E+00 -v_z[2][[0, 0, 0, 4, 0, 5]] = 2.1408440455035951E+00 -v_z[2][[0, 2, 0, 1, 0, 6]] = -6.1900823964504819E-16 -v_z[2][[0, 0, 0, 3, 0, 6]] = 3.9616527337283084E-14 -v_z[2][[0, 2, 0, 0, 0, 7]] = 4.0777981819114800E-01 -v_z[2][[0, 0, 0, 2, 0, 7]] = 4.0777981819114251E-01 -v_z[2][[0, 0, 0, 1, 0, 8]] = -6.1900823964504819E-16 -v_z[2][[0, 0, 0, 0, 0, 9]] = 4.8360018722269383E-17 -v_z[2][[0, 10, 0, 0, 0, 0]] = -2.2300458807328397E-02 -v_z[2][[0, 8, 0, 2, 0, 0]] = -1.1150229403664200E-01 -v_z[2][[0, 6, 0, 4, 0, 0]] = -2.2300458807328438E-01 -v_z[2][[0, 4, 0, 6, 0, 0]] = -2.2300458807323487E-01 -v_z[2][[0, 2, 0, 8, 0, 0]] = -1.1150229403340850E-01 -v_z[2][[0, 0, 0, 10, 0, 0]] = -2.2300458833811095E-02 -v_z[2][[0, 8, 0, 1, 0, 1]] = -7.7376029955631023E-17 -v_z[2][[0, 6, 0, 3, 0, 1]] = 4.9520659171603855E-15 -v_z[2][[0, 4, 0, 5, 0, 1]] = 1.5846610934913234E-13 -v_z[2][[0, 2, 0, 7, 0, 1]] = -7.6063732487583521E-12 -v_z[2][[0, 0, 0, 9, 0, 1]] = -2.0283661996688939E-11 -v_z[2][[0, 8, 0, 0, 0, 2]] = -8.9201835229313586E-01 -v_z[2][[0, 6, 0, 2, 0, 2]] = -3.5680734091725430E+00 -v_z[2][[0, 4, 0, 4, 0, 2]] = -5.3521101137585081E+00 -v_z[2][[0, 2, 0, 6, 0, 2]] = -3.5680734091755610E+00 -v_z[2][[0, 0, 0, 8, 0, 2]] = -8.9201835219627512E-01 -v_z[2][[0, 6, 0, 1, 0, 3]] = -3.0950411982252409E-16 -v_z[2][[0, 2, 0, 5, 0, 3]] = -2.5354577495861174E-12 -v_z[2][[0, 6, 0, 0, 0, 4]] = -3.5680734091725443E+00 -v_z[2][[0, 4, 0, 2, 0, 4]] = -1.0704220227517652E+01 -v_z[2][[0, 2, 0, 4, 0, 4]] = -1.0704220227517176E+01 -v_z[2][[0, 0, 0, 6, 0, 4]] = -3.5680734091806330E+00 -v_z[2][[0, 0, 0, 5, 0, 5]] = 1.0141830998344469E-11 -v_z[2][[0, 4, 0, 0, 0, 6]] = -2.8544587273380353E+00 -v_z[2][[0, 2, 0, 2, 0, 6]] = -5.7089174546760839E+00 -v_z[2][[0, 0, 0, 4, 0, 6]] = -2.8544587273391810E+00 -v_z[2][[0, 2, 0, 1, 0, 7]] = -1.2380164792900964E-15 -v_z[2][[0, 0, 0, 3, 0, 7]] = -1.5846610934913234E-13 -v_z[2][[0, 2, 0, 0, 0, 8]] = -4.0777981819115044E-01 -v_z[2][[0, 0, 0, 2, 0, 8]] = -4.0777981819114045E-01 -v_z[2][[0, 0, 0, 1, 0, 9]] = 6.1900823964504819E-16 -v_z[2][[0, 0, 0, 0, 0, 10]] = 5.8032022466723267E-17 -v_z[3][[0, 0, 0, 0, 0, 0]] = -4.6658276726731325E+00 -v_z[3][[1, 0, 0, 0, 0, 0]] = -6.8423966858081142E-01 -v_z[3][[0, 1, 0, 0, 0, 0]] = 4.8883780394693792E+00 -v_z[3][[0, 0, 1, 0, 0, 0]] = 2.0114356699449174E+00 -v_z[3][[0, 0, 0, 1, 0, 0]] = -1.4370195719809907E+01 -v_z[3][[1, 1, 0, 0, 0, 0]] = -1.9911797994806493E-01 -v_z[3][[0, 2, 0, 0, 0, 0]] = 1.4225482753148295E+00 -v_z[3][[0, 1, 1, 0, 0, 0]] = -2.4090335846321635E+00 -v_z[3][[1, 0, 0, 1, 0, 0]] = 5.8534023352610209E-01 -v_z[3][[0, 1, 0, 1, 0, 0]] = 1.3028917991211632E+01 -v_z[3][[0, 0, 1, 1, 0, 0]] = 7.0817526441791134E+00 -v_z[3][[0, 0, 0, 2, 0, 0]] = -5.0593798776036557E+01 -v_z[3][[0, 1, 0, 0, 0, 1]] = -4.8883780394693792E+00 -v_z[3][[0, 0, 0, 1, 0, 1]] = 1.4370195719809907E+01 -v_z[3][[0, 0, 0, 0, 0, 2]] = -2.9908780050024673E-15 -v_z[3][[1, 2, 0, 0, 0, 0]] = -5.7944564980911231E-02 -v_z[3][[0, 3, 0, 0, 0, 0]] = 2.8581593753950005E+00 -v_z[3][[0, 2, 1, 0, 0, 0]] = -7.0104368838175568E-01 -v_z[3][[1, 1, 0, 1, 0, 0]] = -5.3070605635906531E-01 -v_z[3][[0, 2, 0, 1, 0, 0]] = 1.6148280707295586E+00 -v_z[3][[0, 1, 1, 1, 0, 0]] = -6.4207597609725653E+00 -v_z[3][[1, 0, 0, 2, 0, 0]] = 2.0608338653114426E+00 -v_z[3][[0, 1, 0, 2, 0, 0]] = 3.3592581872007251E+01 -v_z[3][[0, 0, 1, 2, 0, 0]] = 2.4933047207376632E+01 -v_z[3][[0, 0, 0, 3, 0, 0]] = -1.8531297617831805E+02 -v_z[3][[1, 1, 0, 0, 0, 1]] = 1.9911797994806493E-01 -v_z[3][[0, 2, 0, 0, 0, 1]] = -2.8450965506296599E+00 -v_z[3][[0, 1, 1, 0, 0, 1]] = 2.4090335846321635E+00 -v_z[3][[1, 0, 0, 1, 0, 1]] = -5.8534023352610187E-01 -v_z[3][[0, 1, 0, 1, 0, 1]] = -2.6057835982423267E+01 -v_z[3][[0, 0, 1, 1, 0, 1]] = -7.0817526441791134E+00 -v_z[3][[0, 0, 0, 2, 0, 1]] = 1.0118759755207309E+02 -v_z[3][[1, 0, 0, 0, 0, 2]] = 1.1348938017852014E-16 -v_z[3][[0, 1, 0, 0, 0, 2]] = 4.8883780394693819E+00 -v_z[3][[0, 0, 0, 1, 0, 2]] = -1.4370195719809935E+01 -v_z[3][[0, 0, 0, 0, 0, 3]] = 4.6363579969391675E-15 -v_z[3][[1, 3, 0, 0, 0, 0]] = -1.1642121714057356E-01 -v_z[3][[0, 4, 0, 0, 0, 0]] = 1.5430162118617257E+00 -v_z[3][[0, 3, 1, 0, 0, 0]] = -1.4085248460663733E+00 -v_z[3][[1, 2, 0, 1, 0, 0]] = -6.5776685193112305E-02 -v_z[3][[0, 3, 0, 1, 0, 0]] = 1.7047235097162371E+01 -v_z[3][[0, 2, 1, 1, 0, 0]] = -7.9580077980559594E-01 -v_z[3][[1, 1, 0, 2, 0, 0]] = -1.3683244195901194E+00 -v_z[3][[0, 2, 0, 2, 0, 0]] = -9.1245776304085222E+00 -v_z[3][[0, 1, 1, 2, 0, 0]] = -1.6554705317544272E+01 -v_z[3][[1, 0, 0, 3, 0, 0]] = 7.5483412241978947E+00 -v_z[3][[0, 1, 0, 3, 0, 0]] = 7.0858159706055531E+01 -v_z[3][[0, 0, 1, 3, 0, 0]] = 9.1323784633105760E+01 -v_z[3][[0, 0, 0, 4, 0, 0]] = -6.7773668588511680E+02 -v_z[3][[1, 2, 0, 0, 0, 1]] = 1.1588912996182243E-01 -v_z[3][[0, 3, 0, 0, 0, 1]] = -8.5744781261849994E+00 -v_z[3][[0, 2, 1, 0, 0, 1]] = 1.4020873767635114E+00 -v_z[3][[1, 1, 0, 1, 0, 1]] = 1.0614121127181306E+00 -v_z[3][[0, 2, 0, 1, 0, 1]] = -4.8444842121886591E+00 -v_z[3][[0, 1, 1, 1, 0, 1]] = 1.2841519521945131E+01 -v_z[3][[1, 0, 0, 2, 0, 1]] = -4.1216677306228862E+00 -v_z[3][[0, 1, 0, 2, 0, 1]] = -1.0077774561602180E+02 -v_z[3][[0, 0, 1, 2, 0, 1]] = -4.9866094414753263E+01 -v_z[3][[0, 0, 0, 3, 0, 1]] = 5.5593892853495402E+02 -v_z[3][[1, 1, 0, 0, 0, 2]] = -1.9911797994806507E-01 -v_z[3][[0, 2, 0, 0, 0, 2]] = 4.2676448259444886E+00 -v_z[3][[0, 1, 1, 0, 0, 2]] = -2.4090335846321631E+00 -v_z[3][[1, 0, 0, 1, 0, 2]] = 5.8534023352610287E-01 -v_z[3][[0, 1, 0, 1, 0, 2]] = 3.9086753973634913E+01 -v_z[3][[0, 0, 1, 1, 0, 2]] = 7.0817526441791134E+00 -v_z[3][[0, 0, 0, 2, 0, 2]] = -1.5178139632810982E+02 -v_z[3][[1, 0, 0, 0, 0, 3]] = -1.6596405413960474E-16 -v_z[3][[0, 1, 0, 0, 0, 3]] = -4.8883780394693872E+00 -v_z[3][[0, 0, 0, 1, 0, 3]] = 1.4370195719809978E+01 -v_z[3][[0, 0, 0, 0, 0, 4]] = -1.9572025000280723E-15 -v_z[3][[1, 4, 0, 0, 0, 0]] = -6.2851577486910795E-02 -v_z[3][[0, 5, 0, 0, 0, 0]] = 2.4891542136899751E+00 -v_z[3][[0, 4, 1, 0, 0, 0]] = -7.6041129511544314E-01 -v_z[3][[1, 3, 0, 1, 0, 0]] = -6.9438390174405951E-01 -v_z[3][[0, 4, 0, 1, 0, 0]] = 9.4045575769822491E+00 -v_z[3][[0, 3, 1, 1, 0, 0]] = -8.4010200403080937E+00 -v_z[3][[1, 2, 0, 2, 0, 0]] = 3.7167081820935799E-01 -v_z[3][[0, 3, 0, 2, 0, 0]] = 7.6811129081828000E+01 -v_z[3][[0, 2, 1, 2, 0, 0]] = 4.4966681749563335E+00 -v_z[3][[1, 1, 0, 3, 0, 0]] = -2.8862607412086341E+00 -v_z[3][[0, 2, 0, 3, 0, 0]] = -1.0694677343791216E+02 -v_z[3][[0, 1, 1, 3, 0, 0]] = -3.4919493766411421E+01 -v_z[3][[1, 0, 0, 4, 0, 0]] = 2.7606203681576986E+01 -v_z[3][[0, 1, 0, 4, 0, 0]] = 6.9655297916990961E+01 -v_z[3][[0, 0, 1, 4, 0, 0]] = 3.3399430744757893E+02 -v_z[3][[0, 0, 0, 5, 0, 0]] = -2.4805910015441850E+03 -v_z[3][[1, 3, 0, 0, 0, 1]] = 3.4926365142172067E-01 -v_z[3][[0, 4, 0, 0, 0, 1]] = -6.1720648474469009E+00 -v_z[3][[0, 3, 1, 0, 0, 1]] = 4.2255745381991199E+00 -v_z[3][[1, 2, 0, 1, 0, 1]] = 1.9733005557933692E-01 -v_z[3][[0, 3, 0, 1, 0, 1]] = -6.8188940388649499E+01 -v_z[3][[0, 2, 1, 1, 0, 1]] = 2.3874023394167878E+00 -v_z[3][[1, 1, 0, 2, 0, 1]] = 4.1049732587703582E+00 -v_z[3][[0, 2, 0, 2, 0, 1]] = 3.6498310521634096E+01 -v_z[3][[0, 1, 1, 2, 0, 1]] = 4.9664115952632827E+01 -v_z[3][[1, 0, 0, 3, 0, 1]] = -2.2645023672593688E+01 -v_z[3][[0, 1, 0, 3, 0, 1]] = -2.8343263882422224E+02 -v_z[3][[0, 0, 1, 3, 0, 1]] = -2.7397135389931731E+02 -v_z[3][[0, 0, 0, 4, 0, 1]] = 2.7109467435404663E+03 -v_z[3][[1, 2, 0, 0, 0, 2]] = -1.7383369494273357E-01 -v_z[3][[0, 3, 0, 0, 0, 2]] = 1.7148956252370009E+01 -v_z[3][[0, 2, 1, 0, 0, 2]] = -2.1031310651452677E+00 -v_z[3][[1, 1, 0, 1, 0, 2]] = -1.5921181690771964E+00 -v_z[3][[0, 2, 0, 1, 0, 2]] = 9.6889684243773306E+00 -v_z[3][[0, 1, 1, 1, 0, 2]] = -1.9262279282917689E+01 -v_z[3][[1, 0, 0, 2, 0, 2]] = 6.1825015959343395E+00 -v_z[3][[0, 1, 0, 2, 0, 2]] = 2.0155549123204358E+02 -v_z[3][[0, 0, 1, 2, 0, 2]] = 7.4799141622129895E+01 -v_z[3][[0, 0, 0, 3, 0, 2]] = -1.1118778570699096E+03 -v_z[3][[1, 1, 0, 0, 0, 3]] = 1.9911797994806527E-01 -v_z[3][[0, 2, 0, 0, 0, 3]] = -5.6901931012593172E+00 -v_z[3][[0, 1, 1, 0, 0, 3]] = 2.4090335846321631E+00 -v_z[3][[1, 0, 0, 1, 0, 3]] = -5.8534023352610554E-01 -v_z[3][[0, 1, 0, 1, 0, 3]] = -5.2115671964846577E+01 -v_z[3][[0, 0, 1, 1, 0, 3]] = -7.0817526441791152E+00 -v_z[3][[0, 0, 0, 2, 0, 3]] = 2.0237519510414688E+02 -v_z[3][[1, 0, 0, 0, 0, 4]] = 1.1837663651818530E-16 -v_z[3][[0, 1, 0, 0, 0, 4]] = 4.8883780394693881E+00 -v_z[3][[0, 0, 0, 1, 0, 4]] = -1.4370195719810029E+01 -v_z[3][[0, 0, 0, 0, 0, 5]] = 6.4768768996221705E-15 -v_z[3][[1, 5, 0, 0, 0, 0]] = -1.0139055425078426E-01 -v_z[3][[0, 6, 0, 0, 0, 0]] = 1.6736859278404346E+00 -v_z[3][[0, 5, 1, 0, 0, 0]] = -1.2266760159896968E+00 -v_z[3][[1, 4, 0, 1, 0, 0]] = -3.8307522288870377E-01 -v_z[3][[0, 5, 0, 1, 0, 0]] = 2.1652694732616098E+01 -v_z[3][[0, 4, 1, 1, 0, 0]] = -4.6346446344023757E+00 -v_z[3][[1, 3, 0, 2, 0, 0]] = -3.1287426497734154E+00 -v_z[3][[0, 4, 0, 2, 0, 0]] = 4.5704197357211484E+01 -v_z[3][[0, 3, 1, 2, 0, 0]] = -3.7853166865900754E+01 -v_z[3][[1, 2, 0, 3, 0, 0]] = 4.3562558617565301E+00 -v_z[3][[0, 3, 0, 3, 0, 0]] = 2.8652017396875630E+02 -v_z[3][[0, 2, 1, 3, 0, 0]] = 5.2704264461498497E+01 -v_z[3][[1, 1, 0, 4, 0, 0]] = -2.8372646513681588E+00 -v_z[3][[0, 2, 0, 4, 0, 0]] = -7.1216348792350163E+02 -v_z[3][[0, 1, 1, 4, 0, 0]] = -3.4326713415926349E+01 -v_z[3][[1, 0, 0, 5, 0, 0]] = 1.0104174949579699E+02 -v_z[3][[0, 1, 0, 5, 0, 0]] = -4.3957108366176982E+02 -v_z[3][[0, 0, 1, 5, 0, 0]] = 1.2224559934208469E+03 -v_z[3][[0, 0, 0, 6, 0, 0]] = -9.0787216320293410E+03 -v_z[3][[1, 4, 0, 0, 0, 1]] = 2.5140630994764335E-01 -v_z[3][[0, 5, 0, 0, 0, 1]] = -1.2445771068449877E+01 -v_z[3][[0, 4, 1, 0, 0, 1]] = 3.0416451804617726E+00 -v_z[3][[1, 3, 0, 1, 0, 1]] = 2.7775356069762380E+00 -v_z[3][[0, 4, 0, 1, 0, 1]] = -4.7022787884911224E+01 -v_z[3][[0, 3, 1, 1, 0, 1]] = 3.3604080161232375E+01 -v_z[3][[1, 2, 0, 2, 0, 1]] = -1.4866832728374302E+00 -v_z[3][[0, 3, 0, 2, 0, 1]] = -3.8405564540913997E+02 -v_z[3][[0, 2, 1, 2, 0, 1]] = -1.7986672699825334E+01 -v_z[3][[1, 1, 0, 3, 0, 1]] = 1.1545042964834536E+01 -v_z[3][[0, 2, 0, 3, 0, 1]] = 5.3473386718956044E+02 -v_z[3][[0, 1, 1, 3, 0, 1]] = 1.3967797506564557E+02 -v_z[3][[1, 0, 0, 4, 0, 1]] = -1.1042481472630799E+02 -v_z[3][[0, 1, 0, 4, 0, 1]] = -3.4827648958495416E+02 -v_z[3][[0, 0, 1, 4, 0, 1]] = -1.3359772297903157E+03 -v_z[3][[0, 0, 0, 5, 0, 1]] = 1.2402955007720926E+04 -v_z[3][[1, 3, 0, 0, 0, 2]] = -6.9852730284344156E-01 -v_z[3][[0, 4, 0, 0, 0, 2]] = 1.5430162118617256E+01 -v_z[3][[0, 3, 1, 0, 0, 2]] = -8.4511490763982398E+00 -v_z[3][[1, 2, 0, 1, 0, 2]] = -3.9466011115867428E-01 -v_z[3][[0, 3, 0, 1, 0, 2]] = 1.7047235097162380E+02 -v_z[3][[0, 2, 1, 1, 0, 2]] = -4.7748046788335792E+00 -v_z[3][[1, 1, 0, 2, 0, 2]] = -8.2099465175407218E+00 -v_z[3][[0, 2, 0, 2, 0, 2]] = -9.1245776304085538E+01 -v_z[3][[0, 1, 1, 2, 0, 2]] = -9.9328231905265596E+01 -v_z[3][[1, 0, 0, 3, 0, 2]] = 4.5290047345187439E+01 -v_z[3][[0, 1, 0, 3, 0, 2]] = 7.0858159706055653E+02 -v_z[3][[0, 0, 1, 3, 0, 2]] = 5.4794270779863461E+02 -v_z[3][[0, 0, 0, 4, 0, 2]] = -6.7773668588511719E+03 -v_z[3][[1, 2, 0, 0, 0, 3]] = 2.3177825992364506E-01 -v_z[3][[0, 3, 0, 0, 0, 3]] = -2.8581593753950028E+01 -v_z[3][[0, 2, 1, 0, 0, 3]] = 2.8041747535270241E+00 -v_z[3][[1, 1, 0, 1, 0, 3]] = 2.1228242254362648E+00 -v_z[3][[0, 2, 0, 1, 0, 3]] = -1.6148280707295449E+01 -v_z[3][[0, 1, 1, 1, 0, 3]] = 2.5683039043890250E+01 -v_z[3][[1, 0, 0, 2, 0, 3]] = -8.2433354612458025E+00 -v_z[3][[0, 1, 0, 2, 0, 3]] = -3.3592581872007253E+02 -v_z[3][[0, 0, 1, 2, 0, 3]] = -9.9732188829506555E+01 -v_z[3][[0, 0, 0, 3, 0, 3]] = 1.8531297617831863E+03 -v_z[3][[1, 1, 0, 0, 0, 4]] = -1.9911797994806540E-01 -v_z[3][[0, 2, 0, 0, 0, 4]] = 7.1127413765741458E+00 -v_z[3][[0, 1, 1, 0, 0, 4]] = -2.4090335846321631E+00 -v_z[3][[1, 0, 0, 1, 0, 4]] = 5.8534023352610542E-01 -v_z[3][[0, 1, 0, 1, 0, 4]] = 6.5144589956058255E+01 -v_z[3][[0, 0, 1, 1, 0, 4]] = 7.0817526441791170E+00 -v_z[3][[0, 0, 0, 2, 0, 4]] = -2.5296899388018446E+02 -v_z[3][[1, 0, 0, 0, 0, 5]] = -2.4040604895305627E-16 -v_z[3][[0, 1, 0, 0, 0, 5]] = -4.8883780394693952E+00 -v_z[3][[0, 0, 0, 1, 0, 5]] = 1.4370195719810091E+01 -v_z[3][[0, 0, 0, 0, 0, 6]] = 1.7035339554873419E-15 -v_z[3][[1, 6, 0, 0, 0, 0]] = -6.8174138400978829E-02 -v_z[3][[0, 7, 0, 0, 0, 0]] = 2.3944236236712908E+00 -v_z[3][[0, 6, 1, 0, 0, 0]] = -8.2480642408162030E-01 -v_z[3][[1, 5, 0, 1, 0, 0]] = -8.8197778501979773E-01 -v_z[3][[0, 6, 0, 1, 0, 0]] = 1.6199685125506132E+01 -v_z[3][[0, 5, 1, 1, 0, 0]] = -1.0670629069089385E+01 -v_z[3][[1, 4, 0, 2, 0, 0]] = -1.8616660535328640E+00 -v_z[3][[0, 5, 0, 2, 0, 0]] = 1.3501415232478138E+02 -v_z[3][[0, 4, 1, 2, 0, 0]] = -2.2523410731165718E+01 -v_z[3][[1, 3, 0, 3, 0, 0]] = -1.1670807330036041E+01 -v_z[3][[0, 4, 0, 3, 0, 0]] = 1.7006604714323853E+02 -v_z[3][[0, 3, 1, 3, 0, 0]] = -1.4119953820926253E+02 -v_z[3][[1, 2, 0, 4, 0, 0]] = 2.9008508336128550E+01 -v_z[3][[0, 3, 0, 4, 0, 0]] = 8.8442576608850811E+02 -v_z[3][[0, 2, 1, 4, 0, 0]] = 3.5096012344059830E+02 -v_z[3][[1, 1, 0, 5, 0, 0]] = 1.7905019930049804E+01 -v_z[3][[0, 2, 0, 5, 0, 0]] = -3.9778538364504307E+03 -v_z[3][[0, 1, 1, 5, 0, 0]] = 2.1662430663594205E+02 -v_z[3][[1, 0, 0, 6, 0, 0]] = 3.6980296885481499E+02 -v_z[3][[0, 1, 0, 6, 0, 0]] = -4.1502497781845068E+03 -v_z[3][[0, 0, 1, 6, 0, 0]] = 4.4740699554117991E+03 -v_z[3][[0, 0, 0, 7, 0, 0]] = -3.3228224108857685E+04 -v_z[3][[1, 5, 0, 0, 0, 1]] = 5.0695277125392113E-01 -v_z[3][[0, 6, 0, 0, 0, 1]] = -1.0042115567042607E+01 -v_z[3][[0, 5, 1, 0, 0, 1]] = 6.1333800799484841E+00 -v_z[3][[1, 4, 0, 1, 0, 1]] = 1.9153761144435197E+00 -v_z[3][[0, 5, 0, 1, 0, 1]] = -1.2991616839569653E+02 -v_z[3][[0, 4, 1, 1, 0, 1]] = 2.3173223172011870E+01 -v_z[3][[1, 3, 0, 2, 0, 1]] = 1.5643713248867087E+01 -v_z[3][[0, 4, 0, 2, 0, 1]] = -2.7422518414326908E+02 -v_z[3][[0, 3, 1, 2, 0, 1]] = 1.8926583432950369E+02 -v_z[3][[1, 2, 0, 3, 0, 1]] = -2.1781279308782615E+01 -v_z[3][[0, 3, 0, 3, 0, 1]] = -1.7191210438125370E+03 -v_z[3][[0, 2, 1, 3, 0, 1]] = -2.6352132230749271E+02 -v_z[3][[1, 1, 0, 4, 0, 1]] = 1.4186323256840808E+01 -v_z[3][[0, 2, 0, 4, 0, 1]] = 4.2729809275410071E+03 -v_z[3][[0, 1, 1, 4, 0, 1]] = 1.7163356707963203E+02 -v_z[3][[1, 0, 0, 5, 0, 1]] = -5.0520874747898517E+02 -v_z[3][[0, 1, 0, 5, 0, 1]] = 2.6374265019706136E+03 -v_z[3][[0, 0, 1, 5, 0, 1]] = -6.1122799671042349E+03 -v_z[3][[0, 0, 0, 6, 0, 1]] = 5.4472329792176010E+04 -v_z[3][[1, 4, 0, 0, 0, 2]] = -6.2851577486910826E-01 -v_z[3][[0, 5, 0, 0, 0, 2]] = 3.7337313205349631E+01 -v_z[3][[0, 4, 1, 0, 0, 2]] = -7.6041129511544323E+00 -v_z[3][[1, 3, 0, 1, 0, 2]] = -6.9438390174405971E+00 -v_z[3][[0, 4, 0, 1, 0, 2]] = 1.4106836365473364E+02 -v_z[3][[0, 3, 1, 1, 0, 2]] = -8.4010200403080944E+01 -v_z[3][[1, 2, 0, 2, 0, 2]] = 3.7167081820935906E+00 -v_z[3][[0, 3, 0, 2, 0, 2]] = 1.1521669362274206E+03 -v_z[3][[0, 2, 1, 2, 0, 2]] = 4.4966681749563179E+01 -v_z[3][[1, 1, 0, 3, 0, 2]] = -2.8862607412086362E+01 -v_z[3][[0, 2, 0, 3, 0, 2]] = -1.6042016015686836E+03 -v_z[3][[0, 1, 1, 3, 0, 2]] = -3.4919493766411370E+02 -v_z[3][[1, 0, 0, 4, 0, 2]] = 2.7606203681577028E+02 -v_z[3][[0, 1, 0, 4, 0, 2]] = 1.0448294687548539E+03 -v_z[3][[0, 0, 1, 4, 0, 2]] = 3.3399430744757892E+03 -v_z[3][[0, 0, 0, 5, 0, 2]] = -3.7208865023162783E+04 -v_z[3][[1, 3, 0, 0, 0, 3]] = 1.1642121714057363E+00 -v_z[3][[0, 4, 0, 0, 0, 3]] = -3.0860324237234504E+01 -v_z[3][[0, 3, 1, 0, 0, 3]] = 1.4085248460663735E+01 -v_z[3][[1, 2, 0, 1, 0, 3]] = 6.5776685193112172E-01 -v_z[3][[0, 3, 0, 1, 0, 3]] = -3.4094470194324799E+02 -v_z[3][[0, 2, 1, 1, 0, 3]] = 7.9580077980559807E+00 -v_z[3][[1, 1, 0, 2, 0, 3]] = 1.3683244195901203E+01 -v_z[3][[0, 2, 0, 2, 0, 3]] = 1.8249155260817201E+02 -v_z[3][[0, 1, 1, 2, 0, 3]] = 1.6554705317544256E+02 -v_z[3][[1, 0, 0, 3, 0, 3]] = -7.5483412241979181E+01 -v_z[3][[0, 1, 0, 3, 0, 3]] = -1.4171631941211069E+03 -v_z[3][[0, 0, 1, 3, 0, 3]] = -9.1323784633105777E+02 -v_z[3][[0, 0, 0, 4, 0, 3]] = 1.3554733717702378E+04 -v_z[3][[1, 2, 0, 0, 0, 4]] = -2.8972282490455620E-01 -v_z[3][[0, 3, 0, 0, 0, 4]] = 4.2872390630925061E+01 -v_z[3][[0, 2, 1, 0, 0, 4]] = -3.5052184419087822E+00 -v_z[3][[1, 1, 0, 1, 0, 4]] = -2.6535302817953328E+00 -v_z[3][[0, 2, 0, 1, 0, 4]] = 2.4222421060943333E+01 -v_z[3][[0, 1, 1, 1, 0, 4]] = -3.2103798804862805E+01 -v_z[3][[1, 0, 0, 2, 0, 4]] = 1.0304169326557250E+01 -v_z[3][[0, 1, 0, 2, 0, 4]] = 5.0388872808010780E+02 -v_z[3][[0, 0, 1, 2, 0, 4]] = 1.2466523603688321E+02 -v_z[3][[0, 0, 0, 3, 0, 4]] = -2.7796946426747900E+03 -v_z[3][[1, 1, 0, 0, 0, 5]] = 1.9911797994806568E-01 -v_z[3][[0, 2, 0, 0, 0, 5]] = -8.5352896518890091E+00 -v_z[3][[0, 1, 1, 0, 0, 5]] = 2.4090335846321627E+00 -v_z[3][[1, 0, 0, 1, 0, 5]] = -5.8534023352610642E-01 -v_z[3][[0, 1, 0, 1, 0, 5]] = -7.8173507947269826E+01 -v_z[3][[0, 0, 1, 1, 0, 5]] = -7.0817526441791188E+00 -v_z[3][[0, 0, 0, 2, 0, 5]] = 3.0356279265622265E+02 -v_z[3][[1, 0, 0, 0, 0, 6]] = -1.2933496426824239E-16 -v_z[3][[0, 1, 0, 0, 0, 6]] = 4.8883780394693961E+00 -v_z[3][[0, 0, 0, 1, 0, 6]] = -1.4370195719810257E+01 -v_z[3][[0, 0, 0, 0, 0, 7]] = 1.0105393170925861E-14 -v_z[3][[1, 7, 0, 0, 0, 0]] = -9.7531899381723505E-02 -v_z[3][[0, 8, 0, 0, 0, 0]] = 1.8154213568963600E+00 -v_z[3][[0, 7, 1, 0, 0, 0]] = -1.1799919888943220E+00 -v_z[3][[1, 6, 0, 1, 0, 0]] = -6.5986070470434477E-01 -v_z[3][[0, 7, 0, 1, 0, 0]] = 2.6915923473076582E+01 -v_z[3][[0, 6, 1, 1, 0, 0]] = -7.9833403253007491E+00 -v_z[3][[1, 5, 0, 2, 0, 0]] = -5.4995225529302436E+00 -v_z[3][[0, 6, 0, 2, 0, 0]] = 1.1636365808974371E+02 -v_z[3][[0, 5, 1, 2, 0, 0]] = -6.6536103534731083E+01 -v_z[3][[1, 4, 0, 3, 0, 0]] = -6.9272890704234165E+00 -v_z[3][[0, 5, 0, 3, 0, 0]] = 6.9448914761986168E+02 -v_z[3][[0, 4, 1, 3, 0, 0]] = -8.3809970478095465E+01 -v_z[3][[1, 3, 0, 4, 0, 0]] = -3.6025256339764653E+01 -v_z[3][[0, 4, 0, 4, 0, 0]] = 4.2687799892127913E+02 -v_z[3][[0, 3, 1, 4, 0, 0]] = -4.3585241493566491E+02 -v_z[3][[1, 2, 0, 5, 0, 0]] = 1.6202965769984559E+02 -v_z[3][[0, 3, 0, 5, 0, 0]] = 1.9020206596320597E+03 -v_z[3][[0, 2, 1, 5, 0, 0]] = 1.9603196416877513E+03 -v_z[3][[1, 1, 0, 6, 0, 0]] = 1.6905185021281932E+02 -v_z[3][[0, 2, 0, 6, 0, 0]] = -2.0288173238434756E+04 -v_z[3][[0, 1, 1, 6, 0, 0]] = 2.0452778037076941E+03 -v_z[3][[1, 0, 0, 7, 0, 0]] = 1.3534830588788498E+03 -v_z[3][[0, 1, 0, 7, 0, 0]] = -2.4491705232851138E+04 -v_z[3][[0, 0, 1, 7, 0, 0]] = 1.6375146764346662E+04 -v_z[3][[0, 0, 0, 8, 0, 0]] = -1.2161535326102954E+05 -v_z[3][[1, 6, 0, 0, 0, 1]] = 4.0904483040587314E-01 -v_z[3][[0, 7, 0, 0, 0, 1]] = -1.6760965365699040E+01 -v_z[3][[0, 6, 1, 0, 0, 1]] = 4.9488385444897229E+00 -v_z[3][[1, 5, 0, 1, 0, 1]] = 5.2918667101187875E+00 -v_z[3][[0, 6, 0, 1, 0, 1]] = -1.1339779587854296E+02 -v_z[3][[0, 5, 1, 1, 0, 1]] = 6.4023774414536319E+01 -v_z[3][[1, 4, 0, 2, 0, 1]] = 1.1169996321197186E+01 -v_z[3][[0, 5, 0, 2, 0, 1]] = -9.4509906627346959E+02 -v_z[3][[0, 4, 1, 2, 0, 1]] = 1.3514046438699427E+02 -v_z[3][[1, 3, 0, 3, 0, 1]] = 7.0024843980216247E+01 -v_z[3][[0, 4, 0, 3, 0, 1]] = -1.1904623300026672E+03 -v_z[3][[0, 3, 1, 3, 0, 1]] = 8.4719722925557608E+02 -v_z[3][[1, 2, 0, 4, 0, 1]] = -1.7405105001677128E+02 -v_z[3][[0, 3, 0, 4, 0, 1]] = -6.1909803626195471E+03 -v_z[3][[0, 2, 1, 4, 0, 1]] = -2.1057607406435909E+03 -v_z[3][[1, 1, 0, 5, 0, 1]] = -1.0743011958029876E+02 -v_z[3][[0, 2, 0, 5, 0, 1]] = 2.7844976855153032E+04 -v_z[3][[0, 1, 1, 5, 0, 1]] = -1.2997458398156505E+03 -v_z[3][[1, 0, 0, 6, 0, 1]] = -2.2188178131288910E+03 -v_z[3][[0, 1, 0, 6, 0, 1]] = 2.9051748447291324E+04 -v_z[3][[0, 0, 1, 6, 0, 1]] = -2.6844419732470804E+04 -v_z[3][[0, 0, 0, 7, 0, 1]] = 2.3259756876200356E+05 -v_z[3][[1, 5, 0, 0, 0, 2]] = -1.5208583137617637E+00 -v_z[3][[0, 6, 0, 0, 0, 2]] = 3.5147404484649137E+01 -v_z[3][[0, 5, 1, 0, 0, 2]] = -1.8400140239845456E+01 -v_z[3][[1, 4, 0, 1, 0, 2]] = -5.7461283433305610E+00 -v_z[3][[0, 5, 0, 1, 0, 2]] = 4.5470658938493813E+02 -v_z[3][[0, 4, 1, 1, 0, 2]] = -6.9519669516035648E+01 -v_z[3][[1, 3, 0, 2, 0, 2]] = -4.6931139746601268E+01 -v_z[3][[0, 4, 0, 2, 0, 2]] = 9.5978814450144205E+02 -v_z[3][[0, 3, 1, 2, 0, 2]] = -5.6779750298851093E+02 -v_z[3][[1, 2, 0, 3, 0, 2]] = 6.5343837926347931E+01 -v_z[3][[0, 3, 0, 3, 0, 2]] = 6.0169236533438789E+03 -v_z[3][[0, 2, 1, 3, 0, 2]] = 7.9056396692247745E+02 -v_z[3][[1, 1, 0, 4, 0, 2]] = -4.2558969770522367E+01 -v_z[3][[0, 2, 0, 4, 0, 2]] = -1.4955433246393530E+04 -v_z[3][[0, 1, 1, 4, 0, 2]] = -5.1490070123889291E+02 -v_z[3][[1, 0, 0, 5, 0, 2]] = 1.5156262424369575E+03 -v_z[3][[0, 1, 0, 5, 0, 2]] = -9.2309927568972889E+03 -v_z[3][[0, 0, 1, 5, 0, 2]] = 1.8336839901312705E+04 -v_z[3][[0, 0, 0, 6, 0, 2]] = -1.9065315427261608E+05 -v_z[3][[1, 4, 0, 0, 0, 3]] = 1.2570315497382163E+00 -v_z[3][[0, 5, 0, 0, 0, 3]] = -8.7120397479149148E+01 -v_z[3][[0, 4, 1, 0, 0, 3]] = 1.5208225902308870E+01 -v_z[3][[1, 3, 0, 1, 0, 3]] = 1.3887678034881201E+01 -v_z[3][[0, 4, 0, 1, 0, 3]] = -3.2915951519437806E+02 -v_z[3][[0, 3, 1, 1, 0, 3]] = 1.6802040080616183E+02 -v_z[3][[1, 2, 0, 2, 0, 3]] = -7.4334163641871882E+00 -v_z[3][[0, 3, 0, 2, 0, 3]] = -2.6883895178639827E+03 -v_z[3][[0, 2, 1, 2, 0, 3]] = -8.9933363499126358E+01 -v_z[3][[1, 1, 0, 3, 0, 3]] = 5.7725214824172838E+01 -v_z[3][[0, 2, 0, 3, 0, 3]] = 3.7431370703269331E+03 -v_z[3][[0, 1, 1, 3, 0, 3]] = 6.9838987532822648E+02 -v_z[3][[1, 0, 0, 4, 0, 3]] = -5.5212407363154216E+02 -v_z[3][[0, 1, 0, 4, 0, 3]] = -2.4379354270946551E+03 -v_z[3][[0, 0, 1, 4, 0, 3]] = -6.6798861489515784E+03 -v_z[3][[0, 0, 0, 5, 0, 3]] = 8.6820685054046655E+04 -v_z[3][[1, 3, 0, 0, 0, 4]] = -1.7463182571086058E+00 -v_z[3][[0, 4, 0, 0, 0, 4]] = 5.4005567415160456E+01 -v_z[3][[0, 3, 1, 0, 0, 4]] = -2.1127872690995602E+01 -v_z[3][[1, 2, 0, 1, 0, 4]] = -9.8665027789668436E-01 -v_z[3][[0, 3, 0, 1, 0, 4]] = 5.9665322840068382E+02 -v_z[3][[0, 2, 1, 1, 0, 4]] = -1.1937011697084003E+01 -v_z[3][[1, 1, 0, 2, 0, 4]] = -2.0524866293851829E+01 -v_z[3][[0, 2, 0, 2, 0, 4]] = -3.1936021706429921E+02 -v_z[3][[0, 1, 1, 2, 0, 4]] = -2.4832057976316366E+02 -v_z[3][[1, 0, 0, 3, 0, 4]] = 1.1322511836296886E+02 -v_z[3][[0, 1, 0, 3, 0, 4]] = 2.4800355897119393E+03 -v_z[3][[0, 0, 1, 3, 0, 4]] = 1.3698567694965870E+03 -v_z[3][[0, 0, 0, 4, 0, 4]] = -2.3720784005979280E+04 -v_z[3][[1, 2, 0, 0, 0, 5]] = 3.4766738988546919E-01 -v_z[3][[0, 3, 0, 0, 0, 5]] = -6.0021346883295102E+01 -v_z[3][[0, 2, 1, 0, 0, 5]] = 4.2062621302905416E+00 -v_z[3][[1, 1, 0, 1, 0, 5]] = 3.1842363381544017E+00 -v_z[3][[0, 2, 0, 1, 0, 5]] = -3.3911389485320768E+01 -v_z[3][[0, 1, 1, 1, 0, 5]] = 3.8524558565835363E+01 -v_z[3][[1, 0, 0, 2, 0, 5]] = -1.2365003191868691E+01 -v_z[3][[0, 1, 0, 2, 0, 5]] = -7.0544421931214902E+02 -v_z[3][[0, 0, 1, 2, 0, 5]] = -1.4959828324425987E+02 -v_z[3][[0, 0, 0, 3, 0, 5]] = 3.8915724997447123E+03 -v_z[3][[1, 1, 0, 0, 0, 6]] = -1.9911797994806563E-01 -v_z[3][[0, 2, 0, 0, 0, 6]] = 9.9578379272038084E+00 -v_z[3][[0, 1, 1, 0, 0, 6]] = -2.4090335846321644E+00 -v_z[3][[1, 0, 0, 1, 0, 6]] = 5.8534023352610731E-01 -v_z[3][[0, 1, 0, 1, 0, 6]] = 9.1202425938481582E+01 -v_z[3][[0, 0, 1, 1, 0, 6]] = 7.0817526441791214E+00 -v_z[3][[0, 0, 0, 2, 0, 6]] = -3.5415659143226151E+02 -v_z[3][[1, 0, 0, 0, 0, 7]] = -2.3675327303637054E-16 -v_z[3][[0, 1, 0, 0, 0, 7]] = -4.8883780394694138E+00 -v_z[3][[0, 0, 0, 1, 0, 7]] = 1.4370195719810486E+01 -v_z[3][[0, 0, 0, 0, 0, 8]] = -5.3747785298076987E-14 -v_z[3][[1, 8, 0, 0, 0, 0]] = -7.3947438275256142E-02 -v_z[3][[0, 9, 0, 0, 0, 0]] = 2.4062421715047946E+00 -v_z[3][[0, 8, 1, 0, 0, 0]] = -8.9465482900675231E-01 -v_z[3][[1, 7, 0, 1, 0, 0]] = -1.0963645338234680E+00 -v_z[3][[0, 8, 0, 1, 0, 0]] = 2.3039339797884143E+01 -v_z[3][[0, 7, 1, 1, 0, 0]] = -1.3264392214450979E+01 -v_z[3][[1, 6, 0, 2, 0, 0]] = -4.7398332025712531E+00 -v_z[3][[0, 7, 0, 2, 0, 0]] = 2.1095387350517970E+02 -v_z[3][[0, 6, 1, 2, 0, 0]] = -5.7344983981491751E+01 -v_z[3][[1, 5, 0, 3, 0, 0]] = -2.8288580599410913E+01 -v_z[3][[0, 6, 0, 3, 0, 0]] = 6.8037847699461577E+02 -v_z[3][[0, 5, 1, 3, 0, 0]] = -3.4225006070938167E+02 -v_z[3][[1, 4, 0, 4, 0, 0]] = -1.7387993347319679E+01 -v_z[3][[0, 5, 0, 4, 0, 0]] = 3.1152645558300051E+03 -v_z[3][[0, 4, 1, 4, 0, 0]] = -2.1036904830984804E+02 -v_z[3][[1, 3, 0, 5, 0, 0]] = -7.7474881956247941E+01 -v_z[3][[0, 4, 0, 5, 0, 0]] = -2.2091182228993137E+02 -v_z[3][[0, 3, 1, 5, 0, 0]] = -9.3733168971828582E+02 -v_z[3][[1, 2, 0, 6, 0, 0]] = 8.2639682108382658E+02 -v_z[3][[0, 3, 0, 6, 0, 0]] = -8.0610949868853197E+02 -v_z[3][[0, 2, 1, 6, 0, 0]] = 9.9981814637906664E+03 -v_z[3][[1, 1, 0, 7, 0, 0]] = 9.9761901229270006E+02 -v_z[3][[0, 2, 0, 7, 0, 0]] = -9.7830173730697483E+04 -v_z[3][[0, 1, 1, 7, 0, 0]] = 1.2069717189314295E+04 -v_z[3][[1, 0, 0, 8, 0, 0]] = 4.9537501552630520E+03 -v_z[3][[0, 1, 0, 8, 0, 0]] = -1.2368400389125964E+05 -v_z[3][[0, 0, 1, 8, 0, 0]] = 5.9933063287494202E+04 -v_z[3][[0, 0, 0, 9, 0, 0]] = -4.4511301048900193E+05 -v_z[3][[1, 7, 0, 0, 0, 1]] = 6.8272329567206413E-01 -v_z[3][[0, 8, 0, 0, 0, 1]] = -1.4523370855170885E+01 -v_z[3][[0, 7, 1, 0, 0, 1]] = 8.2599439222602538E+00 -v_z[3][[1, 6, 0, 1, 0, 1]] = 4.6190249329304169E+00 -v_z[3][[0, 7, 0, 1, 0, 1]] = -2.1532738778461257E+02 -v_z[3][[0, 6, 1, 1, 0, 1]] = 5.5883382277105255E+01 -v_z[3][[1, 5, 0, 2, 0, 1]] = 3.8496657870511683E+01 -v_z[3][[0, 6, 0, 2, 0, 1]] = -9.3090926471794967E+02 -v_z[3][[0, 5, 1, 2, 0, 1]] = 4.6575272474311760E+02 -v_z[3][[1, 4, 0, 3, 0, 1]] = 4.8491023492963905E+01 -v_z[3][[0, 5, 0, 3, 0, 1]] = -5.5559131809588953E+03 -v_z[3][[0, 4, 1, 3, 0, 1]] = 5.8666979334666894E+02 -v_z[3][[1, 3, 0, 4, 0, 1]] = 2.5217679437835272E+02 -v_z[3][[0, 4, 0, 4, 0, 1]] = -3.4150239913702130E+03 -v_z[3][[0, 3, 1, 4, 0, 1]] = 3.0509669045496539E+03 -v_z[3][[1, 2, 0, 5, 0, 1]] = -1.1342076038989176E+03 -v_z[3][[0, 3, 0, 5, 0, 1]] = -1.5216165277056416E+04 -v_z[3][[0, 2, 1, 5, 0, 1]] = -1.3722237491814260E+04 -v_z[3][[1, 1, 0, 6, 0, 1]] = -1.1833629514897334E+03 -v_z[3][[0, 2, 0, 6, 0, 1]] = 1.6230538590747834E+05 -v_z[3][[0, 1, 1, 6, 0, 1]] = -1.4316944625953867E+04 -v_z[3][[1, 0, 0, 7, 0, 1]] = -9.4743814121519499E+03 -v_z[3][[0, 1, 0, 7, 0, 1]] = 1.9593364186280617E+05 -v_z[3][[0, 0, 1, 7, 0, 1]] = -1.1462602735042667E+05 -v_z[3][[0, 0, 0, 8, 0, 1]] = 9.7292282608823781E+05 -v_z[3][[1, 6, 0, 0, 0, 2]] = -1.4316569064205560E+00 -v_z[3][[0, 7, 0, 0, 0, 2]] = 6.7043861462796187E+01 -v_z[3][[0, 6, 1, 0, 0, 2]] = -1.7320934905714029E+01 -v_z[3][[1, 5, 0, 1, 0, 2]] = -1.8521533485415759E+01 -v_z[3][[0, 6, 0, 1, 0, 2]] = 4.5359118351417175E+02 -v_z[3][[0, 5, 1, 1, 0, 2]] = -2.2408321045087706E+02 -v_z[3][[1, 4, 0, 2, 0, 2]] = -3.9094987124190112E+01 -v_z[3][[0, 5, 0, 2, 0, 2]] = 3.7803962650938784E+03 -v_z[3][[0, 4, 1, 2, 0, 2]] = -4.7299162535448068E+02 -v_z[3][[1, 3, 0, 3, 0, 2]] = -2.4508695393075681E+02 -v_z[3][[0, 4, 0, 3, 0, 2]] = 4.7618493200106604E+03 -v_z[3][[0, 3, 1, 3, 0, 2]] = -2.9651903023945115E+03 -v_z[3][[1, 2, 0, 4, 0, 2]] = 6.0917867505869913E+02 -v_z[3][[0, 3, 0, 4, 0, 2]] = 2.4763921450478141E+04 -v_z[3][[0, 2, 1, 4, 0, 2]] = 7.3701625922525582E+03 -v_z[3][[1, 1, 0, 5, 0, 2]] = 3.7600541853104505E+02 -v_z[3][[0, 2, 0, 5, 0, 2]] = -1.1137990742061229E+05 -v_z[3][[0, 1, 1, 5, 0, 2]] = 4.5491104393548012E+03 -v_z[3][[1, 0, 0, 6, 0, 2]] = 7.7658623459511173E+03 -v_z[3][[0, 1, 0, 6, 0, 2]] = -1.1620699378916669E+05 -v_z[3][[0, 0, 1, 6, 0, 2]] = 9.3955469063647804E+04 -v_z[3][[0, 0, 0, 7, 0, 2]] = -9.3039027504801296E+05 -v_z[3][[1, 5, 0, 0, 0, 3]] = 3.5486693987774500E+00 -v_z[3][[0, 6, 0, 0, 0, 3]] = -9.3726411959064393E+01 -v_z[3][[0, 5, 1, 0, 0, 3]] = 4.2933660559639392E+01 -v_z[3][[1, 4, 0, 1, 0, 3]] = 1.3407632801104645E+01 -v_z[3][[0, 5, 0, 1, 0, 3]] = -1.2125509050265021E+03 -v_z[3][[0, 4, 1, 1, 0, 3]] = 1.6221256220408327E+02 -v_z[3][[1, 3, 0, 2, 0, 3]] = 1.0950599274206969E+02 -v_z[3][[0, 4, 0, 2, 0, 3]] = -2.5594350520038420E+03 -v_z[3][[0, 3, 1, 2, 0, 3]] = 1.3248608403065257E+03 -v_z[3][[1, 2, 0, 3, 0, 3]] = -1.5246895516147868E+02 -v_z[3][[0, 3, 0, 3, 0, 3]] = -1.6045129742250359E+04 -v_z[3][[0, 2, 1, 3, 0, 3]] = -1.8446492561524456E+03 -v_z[3][[1, 1, 0, 4, 0, 3]] = 9.9304262797886850E+01 -v_z[3][[0, 2, 0, 4, 0, 3]] = 3.9881155323716055E+04 -v_z[3][[0, 1, 1, 4, 0, 3]] = 1.2014349695573983E+03 -v_z[3][[1, 0, 0, 5, 0, 3]] = -3.5364612323529195E+03 -v_z[3][[0, 1, 0, 5, 0, 3]] = 2.4615980685058701E+04 -v_z[3][[0, 0, 1, 5, 0, 3]] = -4.2785959769729634E+04 -v_z[3][[0, 0, 0, 6, 0, 3]] = 5.0840841139364539E+05 -v_z[3][[1, 4, 0, 0, 0, 4]] = -2.1998052120418814E+00 -v_z[3][[0, 5, 0, 0, 0, 4]] = 1.7424079495829841E+02 -v_z[3][[0, 4, 1, 0, 0, 4]] = -2.6614395329040526E+01 -v_z[3][[1, 3, 0, 1, 0, 4]] = -2.4303436561042112E+01 -v_z[3][[0, 4, 0, 1, 0, 4]] = 6.5831903038875805E+02 -v_z[3][[0, 3, 1, 1, 0, 4]] = -2.9403570141078319E+02 -v_z[3][[1, 2, 0, 2, 0, 4]] = 1.3008478637327627E+01 -v_z[3][[0, 3, 0, 2, 0, 4]] = 5.3767790357279646E+03 -v_z[3][[0, 2, 1, 2, 0, 4]] = 1.5738338612347070E+02 -v_z[3][[1, 1, 0, 3, 0, 4]] = -1.0101912594230248E+02 -v_z[3][[0, 2, 0, 3, 0, 4]] = -7.4862741406539126E+03 -v_z[3][[0, 1, 1, 3, 0, 4]] = -1.2221822818243954E+03 -v_z[3][[1, 0, 0, 4, 0, 4]] = 9.6621712885520026E+02 -v_z[3][[0, 1, 0, 4, 0, 4]] = 4.8758708541891456E+03 -v_z[3][[0, 0, 1, 4, 0, 4]] = 1.1689800760665261E+04 -v_z[3][[0, 0, 0, 5, 0, 4]] = -1.7364137010809354E+05 -v_z[3][[1, 3, 0, 0, 0, 5]] = 2.4448455599520482E+00 -v_z[3][[0, 4, 0, 0, 0, 5]] = -8.6408907864256776E+01 -v_z[3][[0, 3, 1, 0, 0, 5]] = 2.9579021767393851E+01 -v_z[3][[1, 2, 0, 1, 0, 5]] = 1.3813103890553666E+00 -v_z[3][[0, 3, 0, 1, 0, 5]] = -9.5464516544109472E+02 -v_z[3][[0, 2, 1, 1, 0, 5]] = 1.6711816375917635E+01 -v_z[3][[1, 1, 0, 2, 0, 5]] = 2.8734812811392544E+01 -v_z[3][[0, 2, 0, 2, 0, 5]] = 5.1097634730288411E+02 -v_z[3][[0, 1, 1, 2, 0, 5]] = 3.4764881166842912E+02 -v_z[3][[1, 0, 0, 3, 0, 5]] = -1.5851516570815636E+02 -v_z[3][[0, 1, 0, 3, 0, 5]] = -3.9680569435389975E+03 -v_z[3][[0, 0, 1, 3, 0, 5]] = -1.9177994772952218E+03 -v_z[3][[0, 0, 0, 4, 0, 5]] = 3.7953254409567162E+04 -v_z[3][[1, 2, 0, 0, 0, 6]] = -4.0561195486637880E-01 -v_z[3][[0, 3, 0, 0, 0, 6]] = 8.0028462511060155E+01 -v_z[3][[0, 2, 1, 0, 0, 6]] = -4.9073058186722989E+00 -v_z[3][[1, 1, 0, 1, 0, 6]] = -3.7149423945134705E+00 -v_z[3][[0, 2, 0, 1, 0, 6]] = 4.5215185980427236E+01 -v_z[3][[0, 1, 1, 1, 0, 6]] = -4.4945318326807907E+01 -v_z[3][[1, 0, 0, 2, 0, 6]] = 1.4425837057180118E+01 -v_z[3][[0, 1, 0, 2, 0, 6]] = 9.4059229241619698E+02 -v_z[3][[0, 0, 1, 2, 0, 6]] = 1.7453133045163653E+02 -v_z[3][[0, 0, 0, 3, 0, 6]] = -5.1887633329929322E+03 -v_z[3][[1, 1, 0, 0, 0, 7]] = 1.9911797994806596E-01 -v_z[3][[0, 2, 0, 0, 0, 7]] = -1.1380386202518560E+01 -v_z[3][[0, 1, 1, 0, 0, 7]] = 2.4090335846321644E+00 -v_z[3][[1, 0, 0, 1, 0, 7]] = -5.8534023352611486E-01 -v_z[3][[0, 1, 0, 1, 0, 7]] = -1.0423134392969297E+02 -v_z[3][[0, 0, 1, 1, 0, 7]] = -7.0817526441791241E+00 -v_z[3][[0, 0, 0, 2, 0, 7]] = 4.0475039020830764E+02 -v_z[3][[1, 0, 0, 0, 0, 8]] = 1.7462246790302828E-15 -v_z[3][[0, 1, 0, 0, 0, 8]] = 4.8883780394695009E+00 -v_z[3][[0, 0, 0, 1, 0, 8]] = -1.4370195719811198E+01 -v_z[3][[0, 0, 0, 0, 0, 9]] = 8.0918353229703886E-14 -v_z[3][[1, 9, 0, 0, 0, 0]] = -9.8013303510358002E-02 -v_z[3][[0, 10, 0, 0, 0, 0]] = 1.9691595945530533E+00 -v_z[3][[0, 9, 1, 0, 0, 0]] = -1.1858162681179443E+00 -v_z[3][[1, 8, 0, 1, 0, 0]] = -9.3845990691622905E-01 -v_z[3][[0, 9, 0, 1, 0, 0]] = 3.2915299179007832E+01 -v_z[3][[0, 8, 1, 1, 0, 0]] = -1.1353979355262840E+01 -v_z[3][[1, 7, 0, 2, 0, 0]] = -8.5927702021856192E+00 -v_z[3][[0, 8, 0, 2, 0, 0]] = 2.0569049838702117E+02 -v_z[3][[0, 7, 1, 2, 0, 0]] = -1.0395983329828286E+02 -v_z[3][[1, 6, 0, 3, 0, 0]] = -2.7713811584427830E+01 -v_z[3][[0, 7, 0, 3, 0, 0]] = 1.3523006950409115E+03 -v_z[3][[0, 6, 1, 3, 0, 0]] = -3.3529620420249398E+02 -v_z[3][[1, 5, 0, 4, 0, 0]] = -1.2689386548099395E+02 -v_z[3][[0, 6, 0, 4, 0, 0]] = 3.4448842817765822E+03 -v_z[3][[0, 5, 1, 4, 0, 0]] = -1.5352284294328506E+03 -v_z[3][[1, 4, 0, 5, 0, 0]] = 8.9983866726065571E+00 -v_z[3][[0, 5, 0, 5, 0, 0]] = 1.2240947340486435E+04 -v_z[3][[0, 4, 1, 5, 0, 0]] = 1.0886719374848508E+02 -v_z[3][[1, 3, 0, 6, 0, 0]] = 3.2835204990265993E+01 -v_z[3][[0, 4, 0, 6, 0, 0]] = -1.2390498478914637E+04 -v_z[3][[0, 3, 1, 6, 0, 0]] = 3.9725750331778545E+02 -v_z[3][[1, 2, 0, 7, 0, 0]] = 3.9849100077658695E+03 -v_z[3][[0, 3, 0, 7, 0, 0]] = -4.2659825384033880E+04 -v_z[3][[0, 2, 1, 7, 0, 0]] = 4.8211527873819359E+04 -v_z[3][[1, 1, 0, 8, 0, 0]] = 5.0380123648107447E+03 -v_z[3][[0, 2, 0, 8, 0, 0]] = -4.5387389318823919E+05 -v_z[3][[0, 1, 1, 8, 0, 0]] = 6.0952511620431425E+04 -v_z[3][[1, 0, 0, 9, 0, 0]] = 1.8130758869620873E+04 -v_z[3][[0, 1, 0, 9, 0, 0]] = -5.7728637645122502E+05 -v_z[3][[0, 0, 1, 9, 0, 0]] = 2.1935541452949526E+05 -v_z[3][[0, 0, 0, 10, 0, 0]] = -1.6291163831508628E+06 -v_z[3][[1, 8, 0, 0, 0, 1]] = 5.9157950620204913E-01 -v_z[3][[0, 9, 0, 0, 0, 1]] = -2.1656179543543153E+01 -v_z[3][[0, 8, 1, 0, 0, 1]] = 7.1572386320540158E+00 -v_z[3][[1, 7, 0, 1, 0, 1]] = 8.7709162705877368E+00 -v_z[3][[0, 8, 0, 1, 0, 1]] = -2.0735405818095745E+02 -v_z[3][[0, 7, 1, 1, 0, 1]] = 1.0611513771560784E+02 -v_z[3][[1, 6, 0, 2, 0, 1]] = 3.7918665620570067E+01 -v_z[3][[0, 7, 0, 2, 0, 1]] = -1.8985848615466186E+03 -v_z[3][[0, 6, 1, 2, 0, 1]] = 4.5875987185193389E+02 -v_z[3][[1, 5, 0, 3, 0, 1]] = 2.2630864479528731E+02 -v_z[3][[0, 6, 0, 3, 0, 1]] = -6.1234062929515285E+03 -v_z[3][[0, 5, 1, 3, 0, 1]] = 2.7380004856750534E+03 -v_z[3][[1, 4, 0, 4, 0, 1]] = 1.3910394677855675E+02 -v_z[3][[0, 5, 0, 4, 0, 1]] = -2.8037381002470127E+04 -v_z[3][[0, 4, 1, 4, 0, 1]] = 1.6829523864787880E+03 -v_z[3][[1, 3, 0, 5, 0, 1]] = 6.1979905564998444E+02 -v_z[3][[0, 4, 0, 5, 0, 1]] = 1.9882064006092410E+03 -v_z[3][[0, 3, 1, 5, 0, 1]] = 7.4986535177462647E+03 -v_z[3][[1, 2, 0, 6, 0, 1]] = -6.6111745686705945E+03 -v_z[3][[0, 3, 0, 6, 0, 1]] = 7.2549854881971642E+03 -v_z[3][[0, 2, 1, 6, 0, 1]] = -7.9985451710325317E+04 -v_z[3][[1, 1, 0, 7, 0, 1]] = -7.9809520983416151E+03 -v_z[3][[0, 2, 0, 7, 0, 1]] = 8.8047156357627816E+05 -v_z[3][[0, 1, 1, 7, 0, 1]] = -9.6557737514514272E+04 -v_z[3][[1, 0, 0, 8, 0, 1]] = -3.9630001242104299E+04 -v_z[3][[0, 1, 0, 8, 0, 1]] = 1.1131560350213232E+06 -v_z[3][[0, 0, 1, 8, 0, 1]] = -4.7946450629995367E+05 -v_z[3][[0, 0, 0, 9, 0, 1]] = 4.0060170944010336E+06 -v_z[3][[1, 7, 0, 0, 0, 2]] = -2.7308931826882574E+00 -v_z[3][[0, 8, 0, 0, 0, 2]] = 6.5355168848269017E+01 -v_z[3][[0, 7, 1, 0, 0, 2]] = -3.3039775689041015E+01 -v_z[3][[1, 6, 0, 1, 0, 2]] = -1.8476099731721668E+01 -v_z[3][[0, 7, 0, 1, 0, 2]] = 9.6897324503075708E+02 -v_z[3][[0, 6, 1, 1, 0, 2]] = -2.2353352910842096E+02 -v_z[3][[1, 5, 0, 2, 0, 2]] = -1.5398663148204682E+02 -v_z[3][[0, 6, 0, 2, 0, 2]] = 4.1890916912307730E+03 -v_z[3][[0, 5, 1, 2, 0, 2]] = -1.8630108989724704E+03 -v_z[3][[1, 4, 0, 3, 0, 2]] = -1.9396409397185562E+02 -v_z[3][[0, 5, 0, 3, 0, 2]] = 2.5001609314315047E+04 -v_z[3][[0, 4, 1, 3, 0, 2]] = -2.3466791733866721E+03 -v_z[3][[1, 3, 0, 4, 0, 2]] = -1.0087071775134114E+03 -v_z[3][[0, 4, 0, 4, 0, 2]] = 1.5367607961165882E+04 -v_z[3][[0, 3, 1, 4, 0, 2]] = -1.2203867618198594E+04 -v_z[3][[1, 2, 0, 5, 0, 2]] = 4.5368304155956785E+03 -v_z[3][[0, 3, 0, 5, 0, 2]] = 6.8472743746755004E+04 -v_z[3][[0, 2, 1, 5, 0, 2]] = 5.4888949967257009E+04 -v_z[3][[1, 1, 0, 6, 0, 2]] = 4.7334518059589482E+03 -v_z[3][[0, 2, 0, 6, 0, 2]] = -7.3037423658365128E+05 -v_z[3][[0, 1, 1, 6, 0, 2]] = 5.7267778503815527E+04 -v_z[3][[1, 0, 0, 7, 0, 2]] = 3.7897525648607618E+04 -v_z[3][[0, 1, 0, 7, 0, 2]] = -8.8170138838263927E+05 -v_z[3][[0, 0, 1, 7, 0, 2]] = 4.5850410940170666E+05 -v_z[3][[0, 0, 0, 8, 0, 2]] = -4.3781527173970398E+06 -v_z[3][[1, 6, 0, 0, 0, 3]] = 3.8177517504548164E+00 -v_z[3][[0, 7, 0, 0, 0, 3]] = -2.0113158438838855E+02 -v_z[3][[0, 6, 1, 0, 0, 3]] = 4.6189159748570745E+01 -v_z[3][[1, 5, 0, 1, 0, 3]] = 4.9390755961108695E+01 -v_z[3][[0, 6, 0, 1, 0, 3]] = -1.3607735505425169E+03 -v_z[3][[0, 5, 1, 1, 0, 3]] = 5.9755522786900542E+02 -v_z[3][[1, 4, 0, 2, 0, 3]] = 1.0425329899784035E+02 -v_z[3][[0, 5, 0, 2, 0, 3]] = -1.1341188795281643E+04 -v_z[3][[0, 4, 1, 2, 0, 3]] = 1.2613110009452807E+03 -v_z[3][[1, 3, 0, 3, 0, 3]] = 6.5356521048201876E+02 -v_z[3][[0, 4, 0, 3, 0, 3]] = -1.4285547960031934E+04 -v_z[3][[0, 3, 1, 3, 0, 3]] = 7.9071741397187016E+03 -v_z[3][[1, 2, 0, 4, 0, 3]] = -1.6244764668231919E+03 -v_z[3][[0, 3, 0, 4, 0, 3]] = -7.4291764351434336E+04 -v_z[3][[0, 2, 1, 4, 0, 3]] = -1.9653766912673491E+04 -v_z[3][[1, 1, 0, 5, 0, 3]] = -1.0026811160827765E+03 -v_z[3][[0, 2, 0, 5, 0, 3]] = 3.3413972226183623E+05 -v_z[3][[0, 1, 1, 5, 0, 3]] = -1.2130961171612958E+04 -v_z[3][[1, 0, 0, 6, 0, 3]] = -2.0708966255869847E+04 -v_z[3][[0, 1, 0, 6, 0, 3]] = 3.4862098136748734E+05 -v_z[3][[0, 0, 1, 6, 0, 3]] = -2.5054791750306077E+05 -v_z[3][[0, 0, 0, 7, 0, 3]] = 2.7911708251440637E+06 -v_z[3][[1, 5, 0, 0, 0, 4]] = -7.0973387975549018E+00 -v_z[3][[0, 6, 0, 0, 0, 4]] = 2.1088442690789492E+02 -v_z[3][[0, 5, 1, 0, 0, 4]] = -8.5867321119278799E+01 -v_z[3][[1, 4, 0, 1, 0, 4]] = -2.6815265602209301E+01 -v_z[3][[0, 5, 0, 1, 0, 4]] = 2.7282395363096307E+03 -v_z[3][[0, 4, 1, 1, 0, 4]] = -3.2442512440816648E+02 -v_z[3][[1, 3, 0, 2, 0, 4]] = -2.1901198548413944E+02 -v_z[3][[0, 4, 0, 2, 0, 4]] = 5.7587288670086482E+03 -v_z[3][[0, 3, 1, 2, 0, 4]] = -2.6497216806130509E+03 -v_z[3][[1, 2, 0, 3, 0, 4]] = 3.0493791032295871E+02 -v_z[3][[0, 3, 0, 3, 0, 4]] = 3.6101541920063370E+04 -v_z[3][[0, 2, 1, 3, 0, 4]] = 3.6892985123048929E+03 -v_z[3][[1, 1, 0, 4, 0, 4]] = -1.9860852559577370E+02 -v_z[3][[0, 2, 0, 4, 0, 4]] = -8.9732599478361590E+04 -v_z[3][[0, 1, 1, 4, 0, 4]] = -2.4028699391147820E+03 -v_z[3][[1, 0, 0, 5, 0, 4]] = 7.0729224647058609E+03 -v_z[3][[0, 1, 0, 5, 0, 4]] = -5.5385956541385865E+04 -v_z[3][[0, 0, 1, 5, 0, 4]] = 8.5571919539459297E+04 -v_z[3][[0, 0, 0, 6, 0, 4]] = -1.1439189256356955E+06 -v_z[3][[1, 4, 0, 0, 0, 5]] = 3.5196883392670104E+00 -v_z[3][[0, 5, 0, 0, 0, 5]] = -3.1363343092493733E+02 -v_z[3][[0, 4, 1, 0, 0, 5]] = 4.2583032526464855E+01 -v_z[3][[1, 3, 0, 1, 0, 5]] = 3.8885498497667385E+01 -v_z[3][[0, 4, 0, 1, 0, 5]] = -1.1849742546997636E+03 -v_z[3][[0, 3, 1, 1, 0, 5]] = 4.7045712225725322E+02 -v_z[3][[1, 2, 0, 2, 0, 5]] = -2.0813565819723976E+01 -v_z[3][[0, 3, 0, 2, 0, 5]] = -9.6782022643103446E+03 -v_z[3][[0, 2, 1, 2, 0, 5]] = -2.5181341779755348E+02 -v_z[3][[1, 1, 0, 3, 0, 5]] = 1.6163060150768376E+02 -v_z[3][[0, 2, 0, 3, 0, 5]] = 1.3475293453176981E+04 -v_z[3][[0, 1, 1, 3, 0, 5]] = 1.9554916509190298E+03 -v_z[3][[1, 0, 0, 4, 0, 5]] = -1.5459474061683202E+03 -v_z[3][[0, 1, 0, 4, 0, 5]] = -8.7765675375386090E+03 -v_z[3][[0, 0, 1, 4, 0, 5]] = -1.8703681217064423E+04 -v_z[3][[0, 0, 0, 5, 0, 5]] = 3.1255446619457408E+05 -v_z[3][[1, 3, 0, 0, 0, 6]] = -3.2597940799360661E+00 -v_z[3][[0, 4, 0, 0, 0, 6]] = 1.2961336179638513E+02 -v_z[3][[0, 3, 1, 0, 0, 6]] = -3.9438695689858463E+01 -v_z[3][[1, 2, 0, 1, 0, 6]] = -1.8417471854071525E+00 -v_z[3][[0, 3, 0, 1, 0, 6]] = 1.4319677481616418E+03 -v_z[3][[0, 2, 1, 1, 0, 6]] = -2.2282421834556857E+01 -v_z[3][[1, 1, 0, 2, 0, 6]] = -3.8313083748523347E+01 -v_z[3][[0, 2, 0, 2, 0, 6]] = -7.6646452095434336E+02 -v_z[3][[0, 1, 1, 2, 0, 6]] = -4.6353174889123886E+02 -v_z[3][[1, 0, 0, 3, 0, 6]] = 2.1135355427754106E+02 -v_z[3][[0, 1, 0, 3, 0, 6]] = 5.9520854153084065E+03 -v_z[3][[0, 0, 1, 3, 0, 6]] = 2.5570659697269630E+03 -v_z[3][[0, 0, 0, 4, 0, 6]] = -5.6929881614350321E+04 -v_z[3][[1, 2, 0, 0, 0, 7]] = 4.6355651984728818E-01 -v_z[3][[0, 3, 0, 0, 0, 7]] = -1.0289373751422039E+02 -v_z[3][[0, 2, 1, 0, 0, 7]] = 5.6083495070540597E+00 -v_z[3][[1, 1, 0, 1, 0, 7]] = 4.2456484508725474E+00 -v_z[3][[0, 2, 0, 1, 0, 7]] = -5.8133810546263696E+01 -v_z[3][[0, 1, 1, 1, 0, 7]] = 5.1366078087780437E+01 -v_z[3][[1, 0, 0, 2, 0, 7]] = -1.6486670922491584E+01 -v_z[3][[0, 1, 0, 2, 0, 7]] = -1.2093329473922688E+03 -v_z[3][[0, 0, 1, 2, 0, 7]] = -1.9946437765901325E+02 -v_z[3][[0, 0, 0, 3, 0, 7]] = 6.6712671424195878E+03 -v_z[3][[1, 1, 0, 0, 0, 8]] = -1.9911797994806765E-01 -v_z[3][[0, 2, 0, 0, 0, 8]] = 1.2802934477833471E+01 -v_z[3][[0, 1, 1, 0, 0, 8]] = -2.4090335846321573E+00 -v_z[3][[1, 0, 0, 1, 0, 8]] = 5.8534023352613507E-01 -v_z[3][[0, 1, 0, 1, 0, 8]] = 1.1726026192090642E+02 -v_z[3][[0, 0, 1, 1, 0, 8]] = 7.0817526441791214E+00 -v_z[3][[0, 0, 0, 2, 0, 8]] = -4.5534418898435518E+02 -v_z[3][[1, 0, 0, 0, 0, 9]] = -2.4478938005307911E-15 -v_z[3][[0, 1, 0, 0, 0, 9]] = -4.8883780394696998E+00 -v_z[3][[0, 0, 0, 1, 0, 9]] = 1.4370195719811958E+01 -v_z[3][[0, 0, 0, 0, 0, 10]] = -9.2722592696757856E-14 -v_z[4][[0, 0, 0, 0, 0, 0]] = 5.1056863393444984E-01 -v_z[4][[0, 1, 0, 0, 0, 0]] = -8.3281830218258979E-01 -v_z[4][[0, 0, 0, 1, 0, 0]] = 2.1385356109267489E-01 -v_z[4][[0, 0, 0, 0, 0, 1]] = 5.1056863393444984E-01 -v_z[4][[0, 2, 0, 0, 0, 0]] = -2.5528431696722492E-01 -v_z[4][[0, 0, 0, 2, 0, 0]] = -2.5528431696722492E-01 -v_z[4][[0, 0, 0, 1, 0, 1]] = 7.3515830342890819E-18 -v_z[4][[0, 0, 0, 0, 0, 2]] = -1.6481295189900569E-17 -v_z[4][[0, 2, 0, 1, 0, 0]] = -3.6757915171445410E-18 -v_z[4][[0, 0, 0, 3, 0, 0]] = 1.7643799282293797E-16 -v_z[4][[0, 2, 0, 0, 0, 1]] = 2.5528431696722492E-01 -v_z[4][[0, 0, 0, 2, 0, 1]] = 2.5528431696722481E-01 -v_z[4][[0, 0, 0, 1, 0, 2]] = 4.4109498205734491E-17 -v_z[4][[0, 0, 0, 0, 0, 3]] = 1.8319190948472838E-17 -v_z[4][[0, 4, 0, 0, 0, 0]] = -6.3821079241806231E-02 -v_z[4][[0, 2, 0, 2, 0, 0]] = -1.2764215848361241E-01 -v_z[4][[0, 0, 0, 4, 0, 0]] = -6.3821079241805440E-02 -v_z[4][[0, 0, 0, 3, 0, 1]] = -7.0575197129175186E-16 -v_z[4][[0, 2, 0, 0, 0, 2]] = -2.5528431696722492E-01 -v_z[4][[0, 0, 0, 2, 0, 2]] = -2.5528431696722459E-01 -v_z[4][[0, 0, 0, 1, 0, 3]] = -5.8812664274312655E-17 -v_z[4][[0, 0, 0, 0, 0, 4]] = -6.4206818275529741E-17 -v_z[4][[0, 2, 0, 3, 0, 0]] = 3.5287598564587593E-16 -v_z[4][[0, 0, 0, 5, 0, 0]] = 1.8820052567780050E-15 -v_z[4][[0, 4, 0, 0, 0, 1]] = 1.9146323772541871E-01 -v_z[4][[0, 2, 0, 2, 0, 1]] = 3.8292647545083708E-01 -v_z[4][[0, 0, 0, 4, 0, 1]] = 1.9146323772541538E-01 -v_z[4][[0, 2, 0, 1, 0, 2]] = 2.9406332137156328E-17 -v_z[4][[0, 0, 0, 3, 0, 2]] = 1.8820052567780050E-15 -v_z[4][[0, 2, 0, 0, 0, 3]] = 2.5528431696722498E-01 -v_z[4][[0, 0, 0, 2, 0, 3]] = 2.5528431696722464E-01 -v_z[4][[0, 0, 0, 1, 0, 4]] = -5.8812664274312655E-17 -v_z[4][[0, 0, 0, 0, 0, 5]] = -1.1027374551433623E-17 -v_z[4][[0, 6, 0, 0, 0, 0]] = -3.1910539620903115E-02 -v_z[4][[0, 4, 0, 2, 0, 0]] = -9.5731618862709339E-02 -v_z[4][[0, 2, 0, 4, 0, 0]] = -9.5731618862708631E-02 -v_z[4][[0, 0, 0, 6, 0, 0]] = -3.1910539620895663E-02 -v_z[4][[0, 4, 0, 1, 0, 1]] = 5.8812664274312655E-17 -v_z[4][[0, 4, 0, 0, 0, 2]] = -3.8292647545083741E-01 -v_z[4][[0, 2, 0, 2, 0, 2]] = -7.6585295090167416E-01 -v_z[4][[0, 0, 0, 4, 0, 2]] = -3.8292647545083075E-01 -v_z[4][[0, 0, 0, 3, 0, 3]] = -3.7640105135560099E-15 -v_z[4][[0, 2, 0, 0, 0, 4]] = -2.5528431696722503E-01 -v_z[4][[0, 0, 0, 2, 0, 4]] = -2.5528431696722564E-01 -v_z[4][[0, 0, 0, 1, 0, 5]] = 5.8812664274312655E-17 -v_z[4][[0, 0, 0, 0, 0, 6]] = -1.5046838565392672E-16 -v_z[4][[0, 0, 0, 7, 0, 0]] = 3.0112084108448080E-14 -v_z[4][[0, 6, 0, 0, 0, 1]] = 1.5955269810451558E-01 -v_z[4][[0, 4, 0, 2, 0, 1]] = 4.7865809431354689E-01 -v_z[4][[0, 2, 0, 4, 0, 1]] = 4.7865809431354034E-01 -v_z[4][[0, 0, 0, 6, 0, 1]] = 1.5955269810446326E-01 -v_z[4][[0, 4, 0, 1, 0, 2]] = -1.1762532854862531E-16 -v_z[4][[0, 2, 0, 3, 0, 2]] = -7.5280210271120199E-15 -v_z[4][[0, 4, 0, 0, 0, 3]] = 6.3821079241806233E-01 -v_z[4][[0, 2, 0, 2, 0, 3]] = 1.2764215848361238E+00 -v_z[4][[0, 0, 0, 4, 0, 3]] = 6.3821079241797352E-01 -v_z[4][[0, 2, 0, 1, 0, 4]] = -2.3525065709725062E-16 -v_z[4][[0, 2, 0, 0, 0, 5]] = 2.5528431696722548E-01 -v_z[4][[0, 0, 0, 2, 0, 5]] = 2.5528431696722975E-01 -v_z[4][[0, 0, 0, 0, 0, 7]] = -3.6757915171445406E-17 -v_z[4][[0, 8, 0, 0, 0, 0]] = -1.9944087263064448E-02 -v_z[4][[0, 6, 0, 2, 0, 0]] = -7.9776349052257806E-02 -v_z[4][[0, 4, 0, 4, 0, 0]] = -1.1966452357838696E-01 -v_z[4][[0, 2, 0, 6, 0, 0]] = -7.9776349052231632E-02 -v_z[4][[0, 0, 0, 8, 0, 0]] = -1.9944087262335215E-02 -v_z[4][[0, 6, 0, 1, 0, 1]] = 8.8218996411468983E-17 -v_z[4][[0, 4, 0, 3, 0, 1]] = 1.8820052567780050E-15 -v_z[4][[0, 2, 0, 5, 0, 1]] = 1.2044833643379232E-13 -v_z[4][[0, 0, 0, 7, 0, 1]] = 4.8179334573516927E-13 -v_z[4][[0, 6, 0, 0, 0, 2]] = -4.7865809431354672E-01 -v_z[4][[0, 4, 0, 2, 0, 2]] = -1.4359742829406397E+00 -v_z[4][[0, 2, 0, 4, 0, 2]] = -1.4359742829406510E+00 -v_z[4][[0, 0, 0, 6, 0, 2]] = -4.7865809431435336E-01 -v_z[4][[0, 4, 0, 1, 0, 3]] = 2.3525065709725062E-16 -v_z[4][[0, 2, 0, 3, 0, 3]] = 1.5056042054224040E-14 -v_z[4][[0, 0, 0, 5, 0, 3]] = -9.6358669147033854E-13 -v_z[4][[0, 4, 0, 0, 0, 4]] = -9.5731618862709378E-01 -v_z[4][[0, 2, 0, 2, 0, 4]] = -1.9146323772541880E+00 -v_z[4][[0, 0, 0, 4, 0, 4]] = -9.5731618862702061E-01 -v_z[4][[0, 2, 0, 1, 0, 5]] = 4.7050131419450124E-16 -v_z[4][[0, 2, 0, 0, 0, 6]] = -2.5528431696722476E-01 -v_z[4][[0, 0, 0, 2, 0, 6]] = -2.5528431696722931E-01 -v_z[4][[0, 0, 0, 1, 0, 7]] = -7.0575197129175186E-16 -v_z[4][[0, 0, 0, 0, 0, 8]] = 6.3863145778715229E-16 -v_z[4][[0, 8, 0, 1, 0, 0]] = -7.3515830342890819E-18 -v_z[4][[0, 0, 0, 9, 0, 0]] = 5.7815201488220313E-12 -v_z[4][[0, 8, 0, 0, 0, 1]] = 1.3960861084145115E-01 -v_z[4][[0, 6, 0, 2, 0, 1]] = 5.5843444336580494E-01 -v_z[4][[0, 4, 0, 4, 0, 1]] = 8.3765166504867306E-01 -v_z[4][[0, 2, 0, 6, 0, 1]] = 5.5843444336706682E-01 -v_z[4][[0, 0, 0, 8, 0, 1]] = 1.3960861085128212E-01 -v_z[4][[0, 6, 0, 1, 0, 2]] = -1.1762532854862531E-16 -v_z[4][[0, 2, 0, 5, 0, 2]] = 4.8179334573516927E-13 -v_z[4][[0, 0, 0, 7, 0, 2]] = -1.9271733829406769E-11 -v_z[4][[0, 6, 0, 0, 0, 3]] = 1.1168688867316092E+00 -v_z[4][[0, 4, 0, 2, 0, 3]] = 3.3506066601948277E+00 -v_z[4][[0, 2, 0, 4, 0, 3]] = 3.3506066601954148E+00 -v_z[4][[0, 0, 0, 6, 0, 3]] = 1.1168688867235341E+00 -v_z[4][[0, 4, 0, 1, 0, 4]] = 4.7050131419450124E-16 -v_z[4][[0, 2, 0, 3, 0, 4]] = 6.0224168216896159E-14 -v_z[4][[0, 0, 0, 5, 0, 4]] = 1.9271733829406771E-12 -v_z[4][[0, 4, 0, 0, 0, 5]] = 1.3402426640779317E+00 -v_z[4][[0, 2, 0, 2, 0, 5]] = 2.6804853281558767E+00 -v_z[4][[0, 0, 0, 4, 0, 5]] = 1.3402426640778293E+00 -v_z[4][[0, 2, 0, 1, 0, 6]] = 9.4100262838900248E-16 -v_z[4][[0, 0, 0, 3, 0, 6]] = -6.0224168216896159E-14 -v_z[4][[0, 2, 0, 0, 0, 7]] = 2.5528431696722470E-01 -v_z[4][[0, 0, 0, 2, 0, 7]] = 2.5528431696723308E-01 -v_z[4][[0, 0, 0, 1, 0, 8]] = 9.4100262838900248E-16 -v_z[4][[0, 0, 0, 0, 0, 9]] = -7.3515830342890813E-17 -v_z[4][[0, 10, 0, 0, 0, 0]] = -1.3960861084145113E-02 -v_z[4][[0, 8, 0, 2, 0, 0]] = -6.9804305420725563E-02 -v_z[4][[0, 6, 0, 4, 0, 0]] = -1.3960861084145054E-01 -v_z[4][[0, 4, 0, 6, 0, 0]] = -1.3960861084152582E-01 -v_z[4][[0, 2, 0, 8, 0, 0]] = -6.9804305425641061E-02 -v_z[4][[0, 0, 0, 10, 0, 0]] = -1.3960861043886700E-02 -v_z[4][[0, 8, 0, 1, 0, 1]] = 1.1762532854862531E-16 -v_z[4][[0, 6, 0, 3, 0, 1]] = -7.5280210271120199E-15 -v_z[4][[0, 4, 0, 5, 0, 1]] = -2.4089667286758464E-13 -v_z[4][[0, 2, 0, 7, 0, 1]] = 1.1563040297644063E-11 -v_z[4][[0, 0, 0, 9, 0, 1]] = 3.0834774127050833E-11 -v_z[4][[0, 8, 0, 0, 0, 2]] = -5.5843444336580461E-01 -v_z[4][[0, 6, 0, 2, 0, 2]] = -2.2337377734632198E+00 -v_z[4][[0, 4, 0, 4, 0, 2]] = -3.3506066601952944E+00 -v_z[4][[0, 2, 0, 6, 0, 2]] = -2.2337377734586314E+00 -v_z[4][[0, 0, 0, 8, 0, 2]] = -5.5843444351305016E-01 -v_z[4][[0, 6, 0, 1, 0, 3]] = 4.7050131419450124E-16 -v_z[4][[0, 2, 0, 5, 0, 3]] = 3.8543467658813542E-12 -v_z[4][[0, 6, 0, 0, 0, 4]] = -2.2337377734632189E+00 -v_z[4][[0, 4, 0, 2, 0, 4]] = -6.7012133203896260E+00 -v_z[4][[0, 2, 0, 4, 0, 4]] = -6.7012133203903490E+00 -v_z[4][[0, 0, 0, 6, 0, 4]] = -2.2337377734509234E+00 -v_z[4][[0, 0, 0, 5, 0, 5]] = -1.5417387063525417E-11 -v_z[4][[0, 4, 0, 0, 0, 6]] = -1.7869902187705740E+00 -v_z[4][[0, 2, 0, 2, 0, 6]] = -3.5739804375411270E+00 -v_z[4][[0, 0, 0, 4, 0, 6]] = -1.7869902187688320E+00 -v_z[4][[0, 2, 0, 1, 0, 7]] = 1.8820052567780050E-15 -v_z[4][[0, 0, 0, 3, 0, 7]] = 2.4089667286758464E-13 -v_z[4][[0, 2, 0, 0, 0, 8]] = -2.5528431696722725E-01 -v_z[4][[0, 0, 0, 2, 0, 8]] = -2.5528431696724246E-01 -v_z[4][[0, 0, 0, 1, 0, 9]] = -9.4100262838900248E-16 -v_z[4][[0, 0, 0, 0, 0, 10]] = -8.8218996411468983E-17 -v_z[5][[0, 0, 0, 0, 0, 0]] = 5.4978140034254439E+00 -v_z[5][[1, 0, 0, 0, 0, 0]] = -2.9100619138474915E-01 -v_z[5][[0, 1, 0, 0, 0, 0]] = 2.0790204670029593E+00 -v_z[5][[0, 0, 1, 0, 0, 0]] = -3.5207452815893663E+00 -v_z[5][[0, 0, 0, 1, 0, 0]] = 2.5153078237606248E+01 -v_z[5][[0, 0, 0, 0, 1, 0]] = 1.0000000000000000E+00 -v_z[5][[0, 0, 0, 0, 0, 1]] = -4.2879710302052843E-03 -v_z[5][[1, 1, 0, 0, 0, 0]] = -8.4684603424257252E-02 -v_z[5][[0, 2, 0, 0, 0, 0]] = 4.1771319416822728E+00 -v_z[5][[0, 1, 1, 0, 0, 0]] = -1.0245586752311477E+00 -v_z[5][[1, 0, 0, 1, 0, 0]] = -1.0245586752311482E+00 -v_z[5][[0, 1, 0, 1, 0, 0]] = 1.4639402999056788E+01 -v_z[5][[0, 0, 1, 1, 0, 0]] = -1.2395647337833786E+01 -v_z[5][[0, 0, 0, 2, 0, 0]] = 9.2129705636269378E+01 -v_z[5][[1, 0, 0, 0, 0, 1]] = -5.5511151231257827E-17 -v_z[5][[0, 1, 0, 0, 0, 1]] = -2.0790204670029588E+00 -v_z[5][[0, 0, 1, 0, 0, 1]] = 4.4408920985006262E-16 -v_z[5][[0, 0, 0, 1, 0, 1]] = -2.5153078237606252E+01 -v_z[5][[0, 0, 0, 0, 1, 1]] = 2.2204460492503131E-16 -v_z[5][[0, 0, 0, 0, 0, 2]] = 6.4152051665264213E-03 -v_z[5][[1, 2, 0, 0, 0, 0]] = -1.7014683960379556E-01 -v_z[5][[0, 3, 0, 0, 0, 0]] = 2.2550814907620169E+00 -v_z[5][[0, 2, 1, 0, 0, 0]] = -2.0585255587239035E+00 -v_z[5][[1, 1, 0, 1, 0, 0]] = -5.9630583585844110E-01 -v_z[5][[0, 2, 0, 1, 0, 0]] = 3.1543313603959199E+01 -v_z[5][[0, 1, 1, 1, 0, 0]] = -7.2144202430630324E+00 -v_z[5][[1, 0, 0, 2, 0, 0]] = -3.7527132172238939E+00 -v_z[5][[0, 1, 0, 2, 0, 0]] = 7.9391434018324674E+01 -v_z[5][[0, 0, 1, 2, 0, 0]] = -4.5402289517718778E+01 -v_z[5][[0, 0, 0, 3, 0, 0]] = 3.3694176553191681E+02 -v_z[5][[1, 1, 0, 0, 0, 1]] = 8.4684603424257293E-02 -v_z[5][[0, 2, 0, 0, 0, 1]] = -8.3542638833645437E+00 -v_z[5][[0, 1, 1, 0, 0, 1]] = 1.0245586752311477E+00 -v_z[5][[1, 0, 0, 1, 0, 1]] = 1.0245586752311482E+00 -v_z[5][[0, 1, 0, 1, 0, 1]] = -2.9278805998113565E+01 -v_z[5][[0, 0, 1, 1, 0, 1]] = 1.2395647337833786E+01 -v_z[5][[0, 0, 0, 2, 0, 1]] = -1.8425941127253878E+02 -v_z[5][[1, 0, 0, 0, 0, 2]] = -2.6422006943471743E-16 -v_z[5][[0, 1, 0, 0, 0, 2]] = 2.0790204670029628E+00 -v_z[5][[0, 0, 1, 0, 0, 2]] = 3.1918911957973251E-16 -v_z[5][[0, 0, 0, 1, 0, 2]] = 2.5153078237606298E+01 -v_z[5][[0, 0, 0, 0, 1, 2]] = -1.1969591984239969E-16 -v_z[5][[0, 0, 0, 0, 0, 3]] = -8.5257606361732411E-03 -v_z[5][[1, 3, 0, 0, 0, 0]] = -9.1856085481380967E-02 -v_z[5][[0, 4, 0, 0, 0, 0]] = 3.6378396751722311E+00 -v_z[5][[0, 3, 1, 0, 0, 0]] = -1.1113230203279798E+00 -v_z[5][[1, 2, 0, 1, 0, 0]] = -1.2848517105216446E+00 -v_z[5][[0, 3, 0, 1, 0, 0]] = 2.4438568573271166E+01 -v_z[5][[0, 2, 1, 1, 0, 0]] = -1.5544808774808001E+01 -v_z[5][[1, 1, 0, 2, 0, 0]] = -3.2338460403984737E+00 -v_z[5][[0, 2, 0, 2, 0, 0]] = 1.8409885222493961E+02 -v_z[5][[0, 1, 1, 2, 0, 0]] = -3.9124762720481627E+01 -v_z[5][[1, 0, 0, 3, 0, 0]] = -1.3724626690314659E+01 -v_z[5][[0, 1, 0, 3, 0, 0]] = 3.8488885812405482E+02 -v_z[5][[0, 0, 1, 3, 0, 0]] = -1.6604772026177963E+02 -v_z[5][[0, 0, 0, 4, 0, 0]] = 1.2332440150134682E+03 -v_z[5][[1, 2, 0, 0, 0, 1]] = 3.4029367920759113E-01 -v_z[5][[0, 3, 0, 0, 0, 1]] = -6.7652444722860512E+00 -v_z[5][[0, 2, 1, 0, 0, 1]] = 4.1170511174478062E+00 -v_z[5][[1, 1, 0, 1, 0, 1]] = 1.1926116717168820E+00 -v_z[5][[0, 2, 0, 1, 0, 1]] = -9.4629940811877589E+01 -v_z[5][[0, 1, 1, 1, 0, 1]] = 1.4428840486126067E+01 -v_z[5][[1, 0, 0, 2, 0, 1]] = 7.5054264344477852E+00 -v_z[5][[0, 1, 0, 2, 0, 1]] = -2.3817430205497402E+02 -v_z[5][[0, 0, 1, 2, 0, 1]] = 9.0804579035437570E+01 -v_z[5][[0, 0, 0, 3, 0, 1]] = -1.0108252965957502E+03 -v_z[5][[1, 1, 0, 0, 0, 2]] = -8.4684603424257390E-02 -v_z[5][[0, 2, 0, 0, 0, 2]] = 1.2531395825046827E+01 -v_z[5][[0, 1, 1, 0, 0, 2]] = -1.0245586752311484E+00 -v_z[5][[1, 0, 0, 1, 0, 2]] = -1.0245586752311493E+00 -v_z[5][[0, 1, 0, 1, 0, 2]] = 4.3918208997170396E+01 -v_z[5][[0, 0, 1, 1, 0, 2]] = -1.2395647337833784E+01 -v_z[5][[0, 0, 0, 2, 0, 2]] = 2.7638911690880843E+02 -v_z[5][[1, 0, 0, 0, 0, 3]] = 2.2865823817719289E-16 -v_z[5][[0, 1, 0, 0, 0, 3]] = -2.0790204670029686E+00 -v_z[5][[0, 0, 1, 0, 0, 3]] = 1.8908485888147197E-16 -v_z[5][[0, 0, 0, 1, 0, 3]] = -2.5153078237606376E+01 -v_z[5][[0, 0, 0, 0, 1, 3]] = 2.7018318138338770E-16 -v_z[5][[0, 0, 0, 0, 0, 4]] = 1.0615558331213077E-02 -v_z[5][[1, 4, 0, 0, 0, 0]] = -1.4817988331644005E-01 -v_z[5][[0, 5, 0, 0, 0, 0]] = 2.4460521724965796E+00 -v_z[5][[0, 4, 1, 0, 0, 0]] = -1.7927578191044640E+00 -v_z[5][[1, 3, 0, 1, 0, 0]] = -9.9545460024614640E-01 -v_z[5][[0, 4, 0, 1, 0, 0]] = 3.8835473216624251E+01 -v_z[5][[0, 3, 1, 1, 0, 0]] = -1.2043530999034003E+01 -v_z[5][[1, 2, 0, 2, 0, 0]] = -7.4988863933621523E+00 -v_z[5][[0, 3, 0, 2, 0, 0]] = 1.8095889368872000E+02 -v_z[5][[0, 2, 1, 2, 0, 0]] = -9.0725454193852315E+01 -v_z[5][[1, 1, 0, 3, 0, 0]] = -1.5677652447374554E+01 -v_z[5][[0, 2, 0, 3, 0, 0]] = 9.5070101515342105E+02 -v_z[5][[0, 1, 1, 3, 0, 0]] = -1.8967644852447160E+02 -v_z[5][[1, 0, 0, 4, 0, 0]] = -5.0233647044035905E+01 -v_z[5][[0, 1, 0, 4, 0, 0]] = 1.7539328696012308E+03 -v_z[5][[0, 0, 1, 4, 0, 0]] = -6.0775296554938973E+02 -v_z[5][[0, 0, 0, 5, 0, 0]] = 4.5135530644526725E+03 -v_z[5][[1, 3, 0, 0, 0, 1]] = 2.7556825644414296E-01 -v_z[5][[0, 4, 0, 0, 0, 1]] = -1.4551358700688930E+01 -v_z[5][[0, 3, 1, 0, 0, 1]] = 3.3339690609839394E+00 -v_z[5][[1, 2, 0, 1, 0, 1]] = 3.8545551315649336E+00 -v_z[5][[0, 3, 0, 1, 0, 1]] = -9.7754274293084620E+01 -v_z[5][[0, 2, 1, 1, 0, 1]] = 4.6634426324424005E+01 -v_z[5][[1, 1, 0, 2, 0, 1]] = 9.7015381211954210E+00 -v_z[5][[0, 2, 0, 2, 0, 1]] = -7.3639540889975831E+02 -v_z[5][[0, 1, 1, 2, 0, 1]] = 1.1737428816144487E+02 -v_z[5][[1, 0, 0, 3, 0, 1]] = 4.1173880070943980E+01 -v_z[5][[0, 1, 0, 3, 0, 1]] = -1.5395554324962191E+03 -v_z[5][[0, 0, 1, 3, 0, 1]] = 4.9814316078533869E+02 -v_z[5][[0, 0, 0, 4, 0, 1]] = -4.9329760600538702E+03 -v_z[5][[1, 2, 0, 0, 0, 2]] = -5.1044051881138730E-01 -v_z[5][[0, 3, 0, 0, 0, 2]] = 1.3530488944572106E+01 -v_z[5][[0, 2, 1, 0, 0, 2]] = -6.1755766761717101E+00 -v_z[5][[1, 1, 0, 1, 0, 2]] = -1.7889175075753250E+00 -v_z[5][[0, 2, 0, 1, 0, 2]] = 1.8925988162375532E+02 -v_z[5][[0, 1, 1, 1, 0, 2]] = -2.1643260729189109E+01 -v_z[5][[1, 0, 0, 2, 0, 2]] = -1.1258139651671700E+01 -v_z[5][[0, 1, 0, 2, 0, 2]] = 4.7634860410994838E+02 -v_z[5][[0, 0, 1, 2, 0, 2]] = -1.3620686855315631E+02 -v_z[5][[0, 0, 0, 3, 0, 2]] = 2.0216505931915030E+03 -v_z[5][[1, 1, 0, 0, 0, 3]] = 8.4684603424257571E-02 -v_z[5][[0, 2, 0, 0, 0, 3]] = -1.6708527766729123E+01 -v_z[5][[0, 1, 1, 0, 0, 3]] = 1.0245586752311504E+00 -v_z[5][[1, 0, 0, 1, 0, 3]] = 1.0245586752311548E+00 -v_z[5][[0, 1, 0, 1, 0, 3]] = -5.8557611996227308E+01 -v_z[5][[0, 0, 1, 1, 0, 3]] = 1.2395647337833795E+01 -v_z[5][[0, 0, 0, 2, 0, 3]] = -3.6851882254507893E+02 -v_z[5][[1, 0, 0, 0, 0, 4]] = -2.0513105103425744E-16 -v_z[5][[0, 1, 0, 0, 0, 4]] = 2.0790204670029744E+00 -v_z[5][[0, 0, 1, 0, 0, 4]] = 5.7419347054832315E-16 -v_z[5][[0, 0, 0, 1, 0, 4]] = 2.5153078237606479E+01 -v_z[5][[0, 0, 0, 0, 1, 4]] = -3.8575913297034248E-16 -v_z[5][[0, 0, 0, 0, 0, 5]] = -1.2680573016581917E-02 -v_z[5][[1, 5, 0, 0, 0, 0]] = -9.9634881652476415E-02 -v_z[5][[0, 6, 0, 0, 0, 0]] = 3.4993931711641166E+00 -v_z[5][[0, 5, 1, 0, 0, 0]] = -1.2054349695807027E+00 -v_z[5][[1, 4, 0, 1, 0, 0]] = -1.5818827665915940E+00 -v_z[5][[0, 5, 0, 1, 0, 0]] = 3.3962499457750638E+01 -v_z[5][[0, 4, 1, 1, 0, 0]] = -1.9138446024130758E+01 -v_z[5][[1, 3, 0, 2, 0, 0]] = -7.3709866696082793E+00 -v_z[5][[0, 4, 0, 2, 0, 0]] = 2.9715835621794565E+02 -v_z[5][[0, 3, 1, 2, 0, 0]] = -8.9178056364341316E+01 -v_z[5][[1, 2, 0, 3, 0, 0]] = -3.8724841684394718E+01 -v_z[5][[0, 3, 0, 3, 0, 0]] = 1.1220936167800312E+03 -v_z[5][[0, 2, 1, 3, 0, 0]] = -4.6851341200630185E+02 -v_z[5][[1, 1, 0, 4, 0, 0]] = -7.1442831781769911E+01 -v_z[5][[0, 2, 0, 4, 0, 0]] = 4.5911469856944595E+03 -v_z[5][[0, 1, 1, 4, 0, 0]] = -8.6435278817312133E+02 -v_z[5][[1, 0, 0, 5, 0, 0]] = -1.8385025898687647E+02 -v_z[5][[0, 1, 0, 5, 0, 0]] = 7.6828971162092921E+03 -v_z[5][[0, 0, 1, 5, 0, 0]] = -2.2243167018780773E+03 -v_z[5][[0, 0, 0, 6, 0, 0]] = 1.6519655391100547E+04 -v_z[5][[1, 4, 0, 0, 0, 1]] = 5.9271953326576021E-01 -v_z[5][[0, 5, 0, 0, 0, 1]] = -1.2230260862482897E+01 -v_z[5][[0, 4, 1, 0, 0, 1]] = 7.1710312764178576E+00 -v_z[5][[1, 3, 0, 1, 0, 1]] = 3.9818184009845856E+00 -v_z[5][[0, 4, 0, 1, 0, 1]] = -1.9417736608312123E+02 -v_z[5][[0, 3, 1, 1, 0, 1]] = 4.8174123996136004E+01 -v_z[5][[1, 2, 0, 2, 0, 1]] = 2.9995545573448613E+01 -v_z[5][[0, 3, 0, 2, 0, 1]] = -9.0479446844359995E+02 -v_z[5][[0, 2, 1, 2, 0, 1]] = 3.6290181677540926E+02 -v_z[5][[1, 1, 0, 3, 0, 1]] = 6.2710609789498214E+01 -v_z[5][[0, 2, 0, 3, 0, 1]] = -4.7535050757671042E+03 -v_z[5][[0, 1, 1, 3, 0, 1]] = 7.5870579409788604E+02 -v_z[5][[1, 0, 0, 4, 0, 1]] = 2.0093458817614368E+02 -v_z[5][[0, 1, 0, 4, 0, 1]] = -8.7696643480061539E+03 -v_z[5][[0, 0, 1, 4, 0, 1]] = 2.4310118621975580E+03 -v_z[5][[0, 0, 0, 5, 0, 1]] = -2.2567765322263363E+04 -v_z[5][[1, 3, 0, 0, 0, 2]] = -5.5113651288828613E-01 -v_z[5][[0, 4, 0, 0, 0, 2]] = 3.6378396751722320E+01 -v_z[5][[0, 3, 1, 0, 0, 2]] = -6.6679381219678788E+00 -v_z[5][[1, 2, 0, 1, 0, 2]] = -7.7091102631298716E+00 -v_z[5][[0, 3, 0, 1, 0, 2]] = 2.4438568573271178E+02 -v_z[5][[0, 2, 1, 1, 0, 2]] = -9.3268852648847997E+01 -v_z[5][[1, 1, 0, 2, 0, 2]] = -1.9403076242390856E+01 -v_z[5][[0, 2, 0, 2, 0, 2]] = 1.8409885222493972E+03 -v_z[5][[0, 1, 1, 2, 0, 2]] = -2.3474857632288990E+02 -v_z[5][[1, 0, 0, 3, 0, 2]] = -8.2347760141888088E+01 -v_z[5][[0, 1, 0, 3, 0, 2]] = 3.8488885812405488E+03 -v_z[5][[0, 0, 1, 3, 0, 2]] = -9.9628632157067761E+02 -v_z[5][[0, 0, 0, 4, 0, 2]] = 1.2332440150134691E+04 -v_z[5][[1, 2, 0, 0, 0, 3]] = 6.8058735841518303E-01 -v_z[5][[0, 3, 0, 0, 0, 3]] = -2.2550814907620200E+01 -v_z[5][[0, 2, 1, 0, 0, 3]] = 8.2341022348956141E+00 -v_z[5][[1, 1, 0, 1, 0, 3]] = 2.3852233434337702E+00 -v_z[5][[0, 2, 0, 1, 0, 3]] = -3.1543313603959257E+02 -v_z[5][[0, 1, 1, 1, 0, 3]] = 2.8857680972252162E+01 -v_z[5][[1, 0, 0, 2, 0, 3]] = 1.5010852868895618E+01 -v_z[5][[0, 1, 0, 2, 0, 3]] = -7.9391434018324912E+02 -v_z[5][[0, 0, 1, 2, 0, 3]] = 1.8160915807087514E+02 -v_z[5][[0, 0, 0, 3, 0, 3]] = -3.3694176553191792E+03 -v_z[5][[1, 1, 0, 0, 0, 4]] = -8.4684603424257668E-02 -v_z[5][[0, 2, 0, 0, 0, 4]] = 2.0885659708411431E+01 -v_z[5][[0, 1, 1, 0, 0, 4]] = -1.0245586752311497E+00 -v_z[5][[1, 0, 0, 1, 0, 4]] = -1.0245586752311531E+00 -v_z[5][[0, 1, 0, 1, 0, 4]] = 7.3197014995284405E+01 -v_z[5][[0, 0, 1, 1, 0, 4]] = -1.2395647337833781E+01 -v_z[5][[0, 0, 0, 2, 0, 4]] = 4.6064852818135000E+02 -v_z[5][[1, 0, 0, 0, 0, 5]] = 4.6420116014966872E-16 -v_z[5][[0, 1, 0, 0, 0, 5]] = -2.0790204670029810E+00 -v_z[5][[0, 0, 1, 0, 0, 5]] = -1.7087026238371550E-16 -v_z[5][[0, 0, 0, 1, 0, 5]] = -2.5153078237606586E+01 -v_z[5][[0, 0, 0, 0, 1, 5]] = 2.1250362580715887E-16 -v_z[5][[0, 0, 0, 0, 0, 6]] = 1.4716841925778237E-02 -v_z[5][[1, 6, 0, 0, 0, 0]] = -1.4254055100899868E-01 -v_z[5][[0, 7, 0, 0, 0, 0]] = 2.6531951306794928E+00 -v_z[5][[0, 6, 1, 0, 0, 0]] = -1.7245302239517266E+00 -v_z[5][[1, 5, 0, 1, 0, 0]] = -1.3833922481880396E+00 -v_z[5][[0, 6, 0, 1, 0, 0]] = 4.7136487811566120E+01 -v_z[5][[0, 5, 1, 1, 0, 0]] = -1.6737003797818847E+01 -v_z[5][[1, 4, 0, 2, 0, 0]] = -1.2104131705253224E+01 -v_z[5][[0, 5, 0, 2, 0, 0]] = 3.0862822009114603E+02 -v_z[5][[0, 4, 1, 2, 0, 0]] = -1.4644212340026482E+02 -v_z[5][[1, 3, 0, 3, 0, 0]] = -4.5706165211009520E+01 -v_z[5][[0, 4, 0, 3, 0, 0]] = 1.9222430657825325E+03 -v_z[5][[0, 3, 1, 3, 0, 0]] = -5.5297711962921176E+02 -v_z[5][[1, 2, 0, 4, 0, 0]] = -1.8701088705802235E+02 -v_z[5][[0, 3, 0, 4, 0, 0]] = 6.2746234468478260E+03 -v_z[5][[0, 2, 1, 4, 0, 0]] = -2.2625556352677609E+03 -v_z[5][[1, 1, 0, 5, 0, 0]] = -3.1294694100508968E+02 -v_z[5][[0, 2, 0, 5, 0, 0]] = 2.1225051313112064E+04 -v_z[5][[0, 1, 1, 5, 0, 0]] = -3.7861959592287772E+03 -v_z[5][[1, 0, 0, 6, 0, 0]] = -6.7289403240816171E+02 -v_z[5][[0, 1, 0, 6, 0, 0]] = 3.2743866072015313E+04 -v_z[5][[0, 0, 1, 6, 0, 0]] = -8.1410243484421708E+03 -v_z[5][[0, 0, 0, 7, 0, 0]] = 6.0461965092007638E+04 -v_z[5][[1, 5, 0, 0, 0, 1]] = 4.9817440826238185E-01 -v_z[5][[0, 6, 0, 0, 0, 1]] = -2.0996359026984713E+01 -v_z[5][[0, 5, 1, 0, 0, 1]] = 6.0271748479035132E+00 -v_z[5][[1, 4, 0, 1, 0, 1]] = 7.9094138329579682E+00 -v_z[5][[0, 5, 0, 1, 0, 1]] = -2.0377499674650386E+02 -v_z[5][[0, 4, 1, 1, 0, 1]] = 9.5692230120653818E+01 -v_z[5][[1, 3, 0, 2, 0, 1]] = 3.6854933348041392E+01 -v_z[5][[0, 4, 0, 2, 0, 1]] = -1.7829501373076737E+03 -v_z[5][[0, 3, 1, 2, 0, 1]] = 4.4589028182170671E+02 -v_z[5][[1, 2, 0, 3, 0, 1]] = 1.9362420842197355E+02 -v_z[5][[0, 3, 0, 3, 0, 1]] = -6.7325617006801858E+03 -v_z[5][[0, 2, 1, 3, 0, 1]] = 2.3425670600315102E+03 -v_z[5][[1, 1, 0, 4, 0, 1]] = 3.5721415890884947E+02 -v_z[5][[0, 2, 0, 4, 0, 1]] = -2.7546881914166745E+04 -v_z[5][[0, 1, 1, 4, 0, 1]] = 4.3217639408656059E+03 -v_z[5][[1, 0, 0, 5, 0, 1]] = 9.1925129493438271E+02 -v_z[5][[0, 1, 0, 5, 0, 1]] = -4.6097382697255744E+04 -v_z[5][[0, 0, 1, 5, 0, 1]] = 1.1121583509390392E+04 -v_z[5][[0, 0, 0, 6, 0, 1]] = -9.9117932346603193E+04 -v_z[5][[1, 4, 0, 0, 0, 2]] = -1.4817988331644008E+00 -v_z[5][[0, 5, 0, 0, 0, 2]] = 3.6690782587448695E+01 -v_z[5][[0, 4, 1, 0, 0, 2]] = -1.7927578191044642E+01 -v_z[5][[1, 3, 0, 1, 0, 2]] = -9.9545460024614627E+00 -v_z[5][[0, 4, 0, 1, 0, 2]] = 5.8253209824936403E+02 -v_z[5][[0, 3, 1, 1, 0, 2]] = -1.2043530999034000E+02 -v_z[5][[1, 2, 0, 2, 0, 2]] = -7.4988863933621531E+01 -v_z[5][[0, 3, 0, 2, 0, 2]] = 2.7143834053308005E+03 -v_z[5][[0, 2, 1, 2, 0, 2]] = -9.0725454193852295E+02 -v_z[5][[1, 1, 0, 3, 0, 2]] = -1.5677652447374567E+02 -v_z[5][[0, 2, 0, 3, 0, 2]] = 1.4260515227301321E+04 -v_z[5][[0, 1, 1, 3, 0, 2]] = -1.8967644852447165E+03 -v_z[5][[1, 0, 0, 4, 0, 2]] = -5.0233647044035973E+02 -v_z[5][[0, 1, 0, 4, 0, 2]] = 2.6308993044018502E+04 -v_z[5][[0, 0, 1, 4, 0, 2]] = -6.0775296554938977E+03 -v_z[5][[0, 0, 0, 5, 0, 2]] = 6.7703295966790116E+04 -v_z[5][[1, 3, 0, 0, 0, 3]] = 9.1856085481381100E-01 -v_z[5][[0, 4, 0, 0, 0, 3]] = -7.2756793503444726E+01 -v_z[5][[0, 3, 1, 0, 0, 3]] = 1.1113230203279805E+01 -v_z[5][[1, 2, 0, 1, 0, 3]] = 1.2848517105216466E+01 -v_z[5][[0, 3, 0, 1, 0, 3]] = -4.8877137146542378E+02 -v_z[5][[0, 2, 1, 1, 0, 3]] = 1.5544808774808001E+02 -v_z[5][[1, 1, 0, 2, 0, 3]] = 3.2338460403984811E+01 -v_z[5][[0, 2, 0, 2, 0, 3]] = -3.6819770444988003E+03 -v_z[5][[0, 1, 1, 2, 0, 3]] = 3.9124762720481681E+02 -v_z[5][[1, 0, 0, 3, 0, 3]] = 1.3724626690314713E+02 -v_z[5][[0, 1, 0, 3, 0, 3]] = -7.6977771624811194E+03 -v_z[5][[0, 0, 1, 3, 0, 3]] = 1.6604772026177966E+03 -v_z[5][[0, 0, 0, 4, 0, 3]] = -2.4664880300269440E+04 -v_z[5][[1, 2, 0, 0, 0, 4]] = -8.5073419801898031E-01 -v_z[5][[0, 3, 0, 0, 0, 4]] = 3.3826222361430325E+01 -v_z[5][[0, 2, 1, 0, 0, 4]] = -1.0292627793619518E+01 -v_z[5][[1, 1, 0, 1, 0, 4]] = -2.9815291792922154E+00 -v_z[5][[0, 2, 0, 1, 0, 4]] = 4.7314970405938942E+02 -v_z[5][[0, 1, 1, 1, 0, 4]] = -3.6072101215315222E+01 -v_z[5][[1, 0, 0, 2, 0, 4]] = -1.8763566086119539E+01 -v_z[5][[0, 1, 0, 2, 0, 4]] = 1.1908715102748793E+03 -v_z[5][[0, 0, 1, 2, 0, 4]] = -2.2701144758859397E+02 -v_z[5][[0, 0, 0, 3, 0, 4]] = 5.0541264829787870E+03 -v_z[5][[1, 1, 0, 0, 0, 5]] = 8.4684603424257959E-02 -v_z[5][[0, 2, 0, 0, 0, 5]] = -2.5062791650093693E+01 -v_z[5][[0, 1, 1, 0, 0, 5]] = 1.0245586752311540E+00 -v_z[5][[1, 0, 0, 1, 0, 5]] = 1.0245586752311577E+00 -v_z[5][[0, 1, 0, 1, 0, 5]] = -8.7836417994341843E+01 -v_z[5][[0, 0, 1, 1, 0, 5]] = 1.2395647337833793E+01 -v_z[5][[0, 0, 0, 2, 0, 5]] = -5.5277823381762244E+02 -v_z[5][[1, 0, 0, 0, 0, 6]] = 1.5742615544489524E-16 -v_z[5][[0, 1, 0, 0, 0, 6]] = 2.0790204670029784E+00 -v_z[5][[0, 0, 1, 0, 0, 6]] = 7.1644079557842133E-16 -v_z[5][[0, 0, 0, 1, 0, 6]] = 2.5153078237606888E+01 -v_z[5][[0, 0, 0, 0, 1, 6]] = -9.4715901788333667E-16 -v_z[5][[0, 0, 0, 0, 0, 7]] = -1.6720473194997081E-02 -v_z[5][[1, 7, 0, 0, 0, 0]] = -1.0807242209243918E-01 -v_z[5][[0, 8, 0, 0, 0, 0]] = 3.5166656977015154E+00 -v_z[5][[0, 7, 1, 0, 0, 0]] = -1.3075167519333761E+00 -v_z[5][[1, 6, 0, 1, 0, 0]] = -1.9200074460494170E+00 -v_z[5][[0, 7, 0, 1, 0, 0]] = 4.4009267518748409E+01 -v_z[5][[0, 6, 1, 1, 0, 0]] = -2.3229255446862631E+01 -v_z[5][[1, 5, 0, 2, 0, 0]] = -1.2571332913153057E+01 -v_z[5][[0, 6, 0, 2, 0, 0]] = 4.3767658870419461E+02 -v_z[5][[0, 5, 1, 2, 0, 0]] = -1.5209456825182960E+02 -v_z[5][[1, 4, 0, 3, 0, 0]] = -7.8298599890883324E+01 -v_z[5][[0, 5, 0, 3, 0, 0]] = 2.2809796787303831E+03 -v_z[5][[0, 4, 1, 3, 0, 0]] = -9.4729746061110063E+02 -v_z[5][[1, 3, 0, 4, 0, 0]] = -2.5558382260606041E+02 -v_z[5][[0, 4, 0, 4, 0, 0]] = 1.1258202056635084E+04 -v_z[5][[0, 3, 1, 4, 0, 0]] = -3.0921869160547981E+03 -v_z[5][[1, 2, 0, 5, 0, 0]] = -8.6455861384640912E+02 -v_z[5][[0, 3, 0, 5, 0, 0]] = 3.2772489528973783E+04 -v_z[5][[0, 2, 1, 5, 0, 0]] = -1.0459882815114224E+04 -v_z[5][[1, 1, 0, 6, 0, 0]] = -1.3337537349417701E+03 -v_z[5][[0, 2, 0, 6, 0, 0]] = 9.5162043246978981E+04 -v_z[5][[0, 1, 1, 6, 0, 0]] = -1.6136451072581945E+04 -v_z[5][[1, 0, 0, 7, 0, 0]] = -2.4627932323576110E+03 -v_z[5][[0, 1, 0, 7, 0, 0]] = 1.3676809278716292E+05 -v_z[5][[0, 0, 1, 7, 0, 0]] = -2.9796162106012292E+04 -v_z[5][[0, 0, 0, 8, 0, 0]] = 2.2129119868953433E+05 -v_z[5][[1, 6, 0, 0, 0, 1]] = 8.5524330605399168E-01 -v_z[5][[0, 7, 0, 0, 0, 1]] = -1.8572365914756457E+01 -v_z[5][[0, 6, 1, 0, 0, 1]] = 1.0347181343710361E+01 -v_z[5][[1, 5, 0, 1, 0, 1]] = 8.3003534891282342E+00 -v_z[5][[0, 6, 0, 1, 0, 1]] = -3.2995541468096286E+02 -v_z[5][[0, 5, 1, 1, 0, 1]] = 1.0042202278691309E+02 -v_z[5][[1, 4, 0, 2, 0, 1]] = 7.2624790231519370E+01 -v_z[5][[0, 5, 0, 2, 0, 1]] = -2.1603975406380218E+03 -v_z[5][[0, 4, 1, 2, 0, 1]] = 8.7865274040158897E+02 -v_z[5][[1, 3, 0, 3, 0, 1]] = 2.7423699126605720E+02 -v_z[5][[0, 4, 0, 3, 0, 1]] = -1.3455701460477732E+04 -v_z[5][[0, 3, 1, 3, 0, 1]] = 3.3178627177752696E+03 -v_z[5][[1, 2, 0, 4, 0, 1]] = 1.1220653223481338E+03 -v_z[5][[0, 3, 0, 4, 0, 1]] = -4.3922364127934779E+04 -v_z[5][[0, 2, 1, 4, 0, 1]] = 1.3575333811606566E+04 -v_z[5][[1, 1, 0, 5, 0, 1]] = 1.8776816460305381E+03 -v_z[5][[0, 2, 0, 5, 0, 1]] = -1.4857535919178449E+05 -v_z[5][[0, 1, 1, 5, 0, 1]] = 2.2717175755372667E+04 -v_z[5][[1, 0, 0, 6, 0, 1]] = 4.0373641944489723E+03 -v_z[5][[0, 1, 0, 6, 0, 1]] = -2.2920706250410655E+05 -v_z[5][[0, 0, 1, 6, 0, 1]] = 4.8846146090653026E+04 -v_z[5][[0, 0, 0, 7, 0, 1]] = -4.2323375564405316E+05 -v_z[5][[1, 5, 0, 0, 0, 2]] = -1.4945232247871465E+00 -v_z[5][[0, 6, 0, 0, 0, 2]] = 7.3487256594446507E+01 -v_z[5][[0, 5, 1, 0, 0, 2]] = -1.8081524543710533E+01 -v_z[5][[1, 4, 0, 1, 0, 2]] = -2.3728241498873921E+01 -v_z[5][[0, 5, 0, 1, 0, 2]] = 7.1321248861276376E+02 -v_z[5][[0, 4, 1, 1, 0, 2]] = -2.8707669036196125E+02 -v_z[5][[1, 3, 0, 2, 0, 2]] = -1.1056480004412420E+02 -v_z[5][[0, 4, 0, 2, 0, 2]] = 6.2403254805768602E+03 -v_z[5][[0, 3, 1, 2, 0, 2]] = -1.3376708454651198E+03 -v_z[5][[1, 2, 0, 3, 0, 2]] = -5.8087262526592099E+02 -v_z[5][[0, 3, 0, 3, 0, 2]] = 2.3563965952380662E+04 -v_z[5][[0, 2, 1, 3, 0, 2]] = -7.0277011800945274E+03 -v_z[5][[1, 1, 0, 4, 0, 2]] = -1.0716424767265498E+03 -v_z[5][[0, 2, 0, 4, 0, 2]] = 9.6414086699583713E+04 -v_z[5][[0, 1, 1, 4, 0, 2]] = -1.2965291822596826E+04 -v_z[5][[1, 0, 0, 5, 0, 2]] = -2.7577538848031513E+03 -v_z[5][[0, 1, 0, 5, 0, 2]] = 1.6134083944039536E+05 -v_z[5][[0, 0, 1, 5, 0, 2]] = -3.3364750528171149E+04 -v_z[5][[0, 0, 0, 6, 0, 2]] = 3.4691276321311126E+05 -v_z[5][[1, 4, 0, 0, 0, 3]] = 2.9635976663288046E+00 -v_z[5][[0, 5, 0, 0, 0, 3]] = -8.5611826037380382E+01 -v_z[5][[0, 4, 1, 0, 0, 3]] = 3.5855156382089284E+01 -v_z[5][[1, 3, 0, 1, 0, 3]] = 1.9909092004922954E+01 -v_z[5][[0, 4, 0, 1, 0, 3]] = -1.3592415625818512E+03 -v_z[5][[0, 3, 1, 1, 0, 3]] = 2.4087061998068015E+02 -v_z[5][[1, 2, 0, 2, 0, 3]] = 1.4997772786724323E+02 -v_z[5][[0, 3, 0, 2, 0, 3]] = -6.3335612791052108E+03 -v_z[5][[0, 2, 1, 2, 0, 3]] = 1.8145090838770457E+03 -v_z[5][[1, 1, 0, 3, 0, 3]] = 3.1355304894749167E+02 -v_z[5][[0, 2, 0, 3, 0, 3]] = -3.3274535530369787E+04 -v_z[5][[0, 1, 1, 3, 0, 3]] = 3.7935289704894367E+03 -v_z[5][[1, 0, 0, 4, 0, 3]] = 1.0046729408807223E+03 -v_z[5][[0, 1, 0, 4, 0, 3]] = -6.1387650436043266E+04 -v_z[5][[0, 0, 1, 4, 0, 3]] = 1.2155059310987792E+04 -v_z[5][[0, 0, 0, 5, 0, 3]] = -1.5797435725584379E+05 -v_z[5][[1, 3, 0, 0, 0, 4]] = -1.3778412822207171E+00 -v_z[5][[0, 4, 0, 0, 0, 4]] = 1.2732438863102827E+02 -v_z[5][[0, 3, 1, 0, 0, 4]] = -1.6669845304919704E+01 -v_z[5][[1, 2, 0, 1, 0, 4]] = -1.9272775657824710E+01 -v_z[5][[0, 3, 0, 1, 0, 4]] = 8.5534990006449345E+02 -v_z[5][[0, 2, 1, 1, 0, 4]] = -2.3317213162211999E+02 -v_z[5][[1, 1, 0, 2, 0, 4]] = -4.8507690605977260E+01 -v_z[5][[0, 2, 0, 2, 0, 4]] = 6.4434598278729109E+03 -v_z[5][[0, 1, 1, 2, 0, 4]] = -5.8687144080722510E+02 -v_z[5][[1, 0, 0, 3, 0, 4]] = -2.0586940035472068E+02 -v_z[5][[0, 1, 0, 3, 0, 4]] = 1.3471110034342004E+04 -v_z[5][[0, 0, 1, 3, 0, 4]] = -2.4907158039266947E+03 -v_z[5][[0, 0, 0, 4, 0, 4]] = 4.3163540525471733E+04 -v_z[5][[1, 2, 0, 0, 0, 5]] = 1.0208810376227742E+00 -v_z[5][[0, 3, 0, 0, 0, 5]] = -4.7356711306002524E+01 -v_z[5][[0, 2, 1, 0, 0, 5]] = 1.2351153352343424E+01 -v_z[5][[1, 1, 0, 1, 0, 5]] = 3.5778350151506655E+00 -v_z[5][[0, 2, 0, 1, 0, 5]] = -6.6240958568314704E+02 -v_z[5][[0, 1, 1, 1, 0, 5]] = 4.3286521458378303E+01 -v_z[5][[1, 0, 0, 2, 0, 5]] = 2.2516279303343417E+01 -v_z[5][[0, 1, 0, 2, 0, 5]] = -1.6672201143848406E+03 -v_z[5][[0, 0, 1, 2, 0, 5]] = 2.7241373710631274E+02 -v_z[5][[0, 0, 0, 3, 0, 5]] = -7.0757770761703132E+03 -v_z[5][[1, 1, 0, 0, 0, 6]] = -8.4684603424257876E-02 -v_z[5][[0, 2, 0, 0, 0, 6]] = 2.9239923591776098E+01 -v_z[5][[0, 1, 1, 0, 0, 6]] = -1.0245586752311520E+00 -v_z[5][[1, 0, 0, 1, 0, 6]] = -1.0245586752311566E+00 -v_z[5][[0, 1, 0, 1, 0, 6]] = 1.0247582099339952E+02 -v_z[5][[0, 0, 1, 1, 0, 6]] = -1.2395647337833761E+01 -v_z[5][[0, 0, 0, 2, 0, 6]] = 6.4490793945389532E+02 -v_z[5][[1, 0, 0, 0, 0, 7]] = 6.4293188828390413E-16 -v_z[5][[0, 1, 0, 0, 0, 7]] = -2.0790204670029850E+00 -v_z[5][[0, 0, 1, 0, 0, 7]] = 1.1102230246251565E-15 -v_z[5][[0, 0, 0, 1, 0, 7]] = -2.5153078237607343E+01 -v_z[5][[0, 0, 0, 0, 1, 7]] = -4.2869353900076845E-16 -v_z[5][[0, 0, 0, 0, 0, 8]] = 1.8687654116278180E-02 -v_z[5][[1, 8, 0, 0, 0, 0]] = -1.4324411169210405E-01 -v_z[5][[0, 9, 0, 0, 0, 0]] = 2.8778799081282531E+00 -v_z[5][[0, 8, 1, 0, 0, 0]] = -1.7330422694981393E+00 -v_z[5][[1, 7, 0, 1, 0, 0]] = -1.7926265883230306E+00 -v_z[5][[0, 8, 0, 1, 0, 0]] = 5.6564930765138286E+01 -v_z[5][[0, 7, 1, 1, 0, 0]] = -2.1688135130243538E+01 -v_z[5][[1, 6, 0, 2, 0, 0]] = -1.7827851592017915E+01 -v_z[5][[0, 7, 0, 2, 0, 0]] = 4.6689373981867334E+02 -v_z[5][[0, 6, 1, 2, 0, 0]] = -2.1569068367513086E+02 -v_z[5][[1, 5, 0, 3, 0, 0]] = -9.2910994662082643E+01 -v_z[5][[0, 6, 0, 3, 0, 0]] = 3.3488666655922548E+03 -v_z[5][[0, 5, 1, 3, 0, 0]] = -1.1240858639732894E+03 -v_z[5][[1, 4, 0, 4, 0, 0]] = -4.5857960109968462E+02 -v_z[5][[0, 5, 0, 4, 0, 0]] = 1.4879163857825844E+04 -v_z[5][[0, 4, 1, 4, 0, 0]] = -5.5481361380047247E+03 -v_z[5][[1, 3, 0, 5, 0, 0]] = -1.3349196523243306E+03 -v_z[5][[0, 4, 0, 5, 0, 0]] = 6.1629616345595183E+04 -v_z[5][[0, 3, 1, 5, 0, 0]] = -1.6150556951580058E+04 -v_z[5][[1, 2, 0, 6, 0, 0]] = -3.8762292249241600E+03 -v_z[5][[0, 3, 0, 6, 0, 0]] = 1.6306203116672821E+05 -v_z[5][[0, 2, 1, 6, 0, 0]] = -4.6896650854988322E+04 -v_z[5][[1, 1, 0, 7, 0, 0]] = -5.5709656939881670E+03 -v_z[5][[0, 2, 0, 7, 0, 0]] = 4.1700148883533425E+05 -v_z[5][[0, 1, 1, 7, 0, 0]] = -6.7400460064688959E+04 -v_z[5][[1, 0, 0, 8, 0, 0]] = -9.0138397864433209E+03 -v_z[5][[0, 1, 0, 8, 0, 0]] = 5.6251894409106125E+05 -v_z[5][[0, 0, 1, 8, 0, 0]] = -1.0905415361133685E+05 -v_z[5][[0, 0, 0, 9, 0, 0]] = 8.0992716172496649E+05 -v_z[5][[1, 7, 0, 0, 0, 1]] = 7.5650695464707385E-01 -v_z[5][[0, 8, 0, 0, 0, 1]] = -2.8133325581612130E+01 -v_z[5][[0, 7, 1, 0, 0, 1]] = 9.1526172635336298E+00 -v_z[5][[1, 6, 0, 1, 0, 1]] = 1.3440052122345909E+01 -v_z[5][[0, 7, 0, 1, 0, 1]] = -3.5207414014998744E+02 -v_z[5][[0, 6, 1, 1, 0, 1]] = 1.6260478812803842E+02 -v_z[5][[1, 5, 0, 2, 0, 1]] = 8.7999330392071414E+01 -v_z[5][[0, 6, 0, 2, 0, 1]] = -3.5014127096335578E+03 -v_z[5][[0, 5, 1, 2, 0, 1]] = 1.0646619777628071E+03 -v_z[5][[1, 4, 0, 3, 0, 1]] = 5.4809019923618303E+02 -v_z[5][[0, 5, 0, 3, 0, 1]] = -1.8247837429843057E+04 -v_z[5][[0, 4, 1, 3, 0, 1]] = 6.6310822242777031E+03 -v_z[5][[1, 3, 0, 4, 0, 1]] = 1.7890867582424232E+03 -v_z[5][[0, 4, 0, 4, 0, 1]] = -9.0065616453080700E+04 -v_z[5][[0, 3, 1, 4, 0, 1]] = 2.1645308412383587E+04 -v_z[5][[1, 2, 0, 5, 0, 1]] = 6.0519102969248615E+03 -v_z[5][[0, 3, 0, 5, 0, 1]] = -2.6217991623179038E+05 -v_z[5][[0, 2, 1, 5, 0, 1]] = 7.3219179705799572E+04 -v_z[5][[1, 1, 0, 6, 0, 1]] = 9.3362761445923952E+03 -v_z[5][[0, 2, 0, 6, 0, 1]] = -7.6129634597583138E+05 -v_z[5][[0, 1, 1, 6, 0, 1]] = 1.1295515750807358E+05 -v_z[5][[1, 0, 0, 7, 0, 1]] = 1.7239552626503275E+04 -v_z[5][[0, 1, 0, 7, 0, 1]] = -1.0941447422972973E+06 -v_z[5][[0, 0, 1, 7, 0, 1]] = 2.0857313474208614E+05 -v_z[5][[0, 0, 0, 8, 0, 1]] = -1.7703295895162774E+06 -v_z[5][[1, 6, 0, 0, 0, 2]] = -2.9933515711889704E+00 -v_z[5][[0, 7, 0, 0, 0, 2]] = 7.4289463659025856E+01 -v_z[5][[0, 6, 1, 0, 0, 2]] = -3.6215134702986269E+01 -v_z[5][[1, 5, 0, 1, 0, 2]] = -2.9051237211948823E+01 -v_z[5][[0, 6, 0, 1, 0, 2]] = 1.3198216587238519E+03 -v_z[5][[0, 5, 1, 1, 0, 2]] = -3.5147707975419576E+02 -v_z[5][[1, 4, 0, 2, 0, 2]] = -2.5418676581031784E+02 -v_z[5][[0, 5, 0, 2, 0, 2]] = 8.6415901625520964E+03 -v_z[5][[0, 4, 1, 2, 0, 2]] = -3.0752845914055611E+03 -v_z[5][[1, 3, 0, 3, 0, 2]] = -9.5982946943120032E+02 -v_z[5][[0, 4, 0, 3, 0, 2]] = 5.3822805841910966E+04 -v_z[5][[0, 3, 1, 3, 0, 2]] = -1.1612519512213454E+04 -v_z[5][[1, 2, 0, 4, 0, 2]] = -3.9272286282184705E+03 -v_z[5][[0, 3, 0, 4, 0, 2]] = 1.7568945651173935E+05 -v_z[5][[0, 2, 1, 4, 0, 2]] = -4.7513668340622957E+04 -v_z[5][[1, 1, 0, 5, 0, 2]] = -6.5718857611068906E+03 -v_z[5][[0, 2, 0, 5, 0, 2]] = 5.9430143676713866E+05 -v_z[5][[0, 1, 1, 5, 0, 2]] = -7.9510115143804345E+04 -v_z[5][[1, 0, 0, 6, 0, 2]] = -1.4130774680571401E+04 -v_z[5][[0, 1, 0, 6, 0, 2]] = 9.1682825001642900E+05 -v_z[5][[0, 0, 1, 6, 0, 2]] = -1.7096151131728559E+05 -v_z[5][[0, 0, 0, 7, 0, 2]] = 1.6929350225762099E+06 -v_z[5][[1, 5, 0, 0, 0, 3]] = 3.4872208578366766E+00 -v_z[5][[0, 6, 0, 0, 0, 3]] = -1.9596601758519074E+02 -v_z[5][[0, 5, 1, 0, 0, 3]] = 4.2190223935324610E+01 -v_z[5][[1, 4, 0, 1, 0, 3]] = 5.5365896830705836E+01 -v_z[5][[0, 5, 0, 1, 0, 3]] = -1.9018999696340388E+03 -v_z[5][[0, 4, 1, 1, 0, 3]] = 6.6984561084457653E+02 -v_z[5][[1, 3, 0, 2, 0, 3]] = 2.5798453343629012E+02 -v_z[5][[0, 4, 0, 2, 0, 3]] = -1.6640867948204985E+04 -v_z[5][[0, 3, 1, 2, 0, 3]] = 3.1212319727519462E+03 -v_z[5][[1, 2, 0, 3, 0, 3]] = 1.3553694589538168E+03 -v_z[5][[0, 3, 0, 3, 0, 3]] = -6.2837242539681822E+04 -v_z[5][[0, 2, 1, 3, 0, 3]] = 1.6397969420220568E+04 -v_z[5][[1, 1, 0, 4, 0, 3]] = 2.5004991123619520E+03 -v_z[5][[0, 2, 0, 4, 0, 3]] = -2.5710423119889002E+05 -v_z[5][[0, 1, 1, 4, 0, 3]] = 3.0252347586059288E+04 -v_z[5][[1, 0, 0, 5, 0, 3]] = 6.4347590645407199E+03 -v_z[5][[0, 1, 0, 5, 0, 3]] = -4.3024223850772006E+05 -v_z[5][[0, 0, 1, 5, 0, 3]] = 7.7851084565732686E+04 -v_z[5][[0, 0, 0, 6, 0, 3]] = -9.2510070190163504E+05 -v_z[5][[1, 4, 0, 0, 0, 4]] = -5.1862959160754052E+00 -v_z[5][[0, 5, 0, 0, 0, 4]] = 1.7122365207476082E+02 -v_z[5][[0, 4, 1, 0, 0, 4]] = -6.2746523668656266E+01 -v_z[5][[1, 3, 0, 1, 0, 4]] = -3.4840911008615201E+01 -v_z[5][[0, 4, 0, 1, 0, 4]] = 2.7184831251637038E+03 -v_z[5][[0, 3, 1, 1, 0, 4]] = -4.2152358496619041E+02 -v_z[5][[1, 2, 0, 2, 0, 4]] = -2.6246102376767601E+02 -v_z[5][[0, 3, 0, 2, 0, 4]] = 1.2667122558210453E+04 -v_z[5][[0, 2, 1, 2, 0, 4]] = -3.1753908967848320E+03 -v_z[5][[1, 1, 0, 3, 0, 4]] = -5.4871783565811120E+02 -v_z[5][[0, 2, 0, 3, 0, 4]] = 6.6549071060739807E+04 -v_z[5][[0, 1, 1, 3, 0, 4]] = -6.6386756983565156E+03 -v_z[5][[1, 0, 0, 4, 0, 4]] = -1.7581776465412672E+03 -v_z[5][[0, 1, 0, 4, 0, 4]] = 1.2277530087208727E+05 -v_z[5][[0, 0, 1, 4, 0, 4]] = -2.1271353794228649E+04 -v_z[5][[0, 0, 0, 5, 0, 4]] = 3.1594871451168787E+05 -v_z[5][[1, 3, 0, 0, 0, 5]] = 1.9289777951090046E+00 -v_z[5][[0, 4, 0, 0, 0, 5]] = -2.0371902180964531E+02 -v_z[5][[0, 3, 1, 0, 0, 5]] = 2.3337783426887597E+01 -v_z[5][[1, 2, 0, 1, 0, 5]] = 2.6981885920954600E+01 -v_z[5][[0, 3, 0, 1, 0, 5]] = -1.3685598401031925E+03 -v_z[5][[0, 2, 1, 1, 0, 5]] = 3.2644098427096816E+02 -v_z[5][[1, 1, 0, 2, 0, 5]] = 6.7910766848368212E+01 -v_z[5][[0, 2, 0, 2, 0, 5]] = -1.0309535724596695E+04 -v_z[5][[0, 1, 1, 2, 0, 5]] = 8.2162001713011603E+02 -v_z[5][[1, 0, 0, 3, 0, 5]] = 2.8821716049660881E+02 -v_z[5][[0, 1, 0, 3, 0, 5]] = -2.1553776054947451E+04 -v_z[5][[0, 0, 1, 3, 0, 5]] = 3.4870021254973708E+03 -v_z[5][[0, 0, 0, 4, 0, 5]] = -6.9061664840755402E+04 -v_z[5][[1, 2, 0, 0, 0, 6]] = -1.1910278772265745E+00 -v_z[5][[0, 3, 0, 0, 0, 6]] = 6.3142281741336816E+01 -v_z[5][[0, 2, 1, 0, 0, 6]] = -1.4409678911067328E+01 -v_z[5][[1, 1, 0, 1, 0, 6]] = -4.1741408510091169E+00 -v_z[5][[0, 2, 0, 1, 0, 6]] = 8.8321278091086617E+02 -v_z[5][[0, 1, 1, 1, 0, 6]] = -5.0500941701441391E+01 -v_z[5][[1, 0, 0, 2, 0, 6]] = -2.6268992520567281E+01 -v_z[5][[0, 1, 0, 2, 0, 6]] = 2.2229601525131357E+03 -v_z[5][[0, 0, 1, 2, 0, 6]] = -3.1781602662403157E+02 -v_z[5][[0, 0, 0, 3, 0, 6]] = 9.4343694348937079E+03 -v_z[5][[1, 1, 0, 0, 0, 7]] = 8.4684603424258320E-02 -v_z[5][[0, 2, 0, 0, 0, 7]] = -3.3417055533458594E+01 -v_z[5][[0, 1, 1, 0, 0, 7]] = 1.0245586752311533E+00 -v_z[5][[1, 0, 0, 1, 0, 7]] = 1.0245586752311711E+00 -v_z[5][[0, 1, 0, 1, 0, 7]] = -1.1711522399245857E+02 -v_z[5][[0, 0, 1, 1, 0, 7]] = 1.2395647337833816E+01 -v_z[5][[0, 0, 0, 2, 0, 7]] = -7.3703764509018333E+02 -v_z[5][[1, 0, 0, 0, 0, 8]] = -3.7281918004172798E-15 -v_z[5][[0, 1, 0, 0, 0, 8]] = 2.0790204670029779E+00 -v_z[5][[0, 0, 1, 0, 0, 8]] = -4.6412526599759474E-15 -v_z[5][[0, 0, 0, 1, 0, 8]] = 2.5153078237608710E+01 -v_z[5][[0, 0, 0, 0, 1, 8]] = 1.1024167689832609E-15 -v_z[5][[0, 0, 0, 0, 0, 9]] = -2.0614659191799459E-02 -v_z[5][[1, 9, 0, 0, 0, 0]] = -1.1722449229843630E-01 -v_z[5][[0, 10, 0, 0, 0, 0]] = 3.6191226002153227E+00 -v_z[5][[0, 9, 1, 0, 0, 0]] = -1.4182432895414268E+00 -v_z[5][[1, 8, 0, 1, 0, 0]] = -2.3040555904058344E+00 -v_z[5][[0, 9, 0, 1, 0, 0]] = 5.4942235582501361E+01 -v_z[5][[0, 8, 1, 1, 0, 0]] = -2.7875670994627747E+01 -v_z[5][[1, 7, 0, 2, 0, 0]] = -1.9017951879430232E+01 -v_z[5][[0, 8, 0, 2, 0, 0]] = 6.1105247150460241E+02 -v_z[5][[0, 7, 1, 2, 0, 0]] = -2.3008914011891585E+02 -v_z[5][[1, 6, 0, 3, 0, 0]] = -1.3640916479538996E+02 -v_z[5][[0, 7, 0, 3, 0, 0]] = 3.9605268573249014E+03 -v_z[5][[0, 6, 1, 3, 0, 0]] = -1.6503495029902799E+03 -v_z[5][[1, 5, 0, 4, 0, 0]] = -6.0607199908952589E+02 -v_z[5][[0, 6, 0, 4, 0, 0]] = 2.2746601193742510E+04 -v_z[5][[0, 5, 1, 4, 0, 0]] = -7.3325763996432579E+03 -v_z[5][[1, 4, 0, 5, 0, 0]] = -2.5103550937809996E+03 -v_z[5][[0, 5, 0, 5, 0, 0]] = 8.9172391338259491E+04 -v_z[5][[0, 4, 1, 5, 0, 0]] = -3.0371590410108565E+04 -v_z[5][[1, 3, 0, 6, 0, 0]] = -6.6419949500615085E+03 -v_z[5][[0, 4, 0, 6, 0, 0]] = 3.2118443095543981E+05 -v_z[5][[0, 3, 1, 6, 0, 0]] = -8.0358332822725439E+04 -v_z[5][[1, 2, 0, 7, 0, 0]] = -1.6985694114041777E+04 -v_z[5][[0, 3, 0, 7, 0, 0]] = 7.8235715052174986E+05 -v_z[5][[0, 2, 1, 7, 0, 0]] = -2.0550182153157677E+05 -v_z[5][[1, 1, 0, 8, 0, 0]] = -2.2913047011823739E+04 -v_z[5][[0, 2, 0, 8, 0, 0]] = 1.7950412225431991E+06 -v_z[5][[0, 1, 1, 8, 0, 0]] = -2.7721404060113488E+05 -v_z[5][[1, 0, 0, 9, 0, 0]] = -3.2990709606666569E+04 -v_z[5][[0, 1, 0, 9, 0, 0]] = 2.2855487727843015E+06 -v_z[5][[0, 0, 1, 9, 0, 0]] = -3.9913887959306751E+05 -v_z[5][[0, 0, 0, 10, 0, 0]] = 2.9643386612610365E+06 -v_z[5][[1, 8, 0, 0, 0, 1]] = 1.1459528935368319E+00 -v_z[5][[0, 9, 0, 0, 0, 1]] = -2.5900919173154289E+01 -v_z[5][[0, 8, 1, 0, 0, 1]] = 1.3864338155985115E+01 -v_z[5][[1, 7, 0, 1, 0, 1]] = 1.4341012706584236E+01 -v_z[5][[0, 8, 0, 1, 0, 1]] = -5.0908437688624468E+02 -v_z[5][[0, 7, 1, 1, 0, 1]] = 1.7350508104194827E+02 -v_z[5][[1, 6, 0, 2, 0, 1]] = 1.4262281273614326E+02 -v_z[5][[0, 7, 0, 2, 0, 1]] = -4.2020436583680594E+03 -v_z[5][[0, 6, 1, 2, 0, 1]] = 1.7255254694010466E+03 -v_z[5][[1, 5, 0, 3, 0, 1]] = 7.4328795729666115E+02 -v_z[5][[0, 6, 0, 3, 0, 1]] = -3.0139799990330321E+04 -v_z[5][[0, 5, 1, 3, 0, 1]] = 8.9926869117863134E+03 -v_z[5][[1, 4, 0, 4, 0, 1]] = 3.6686368087974779E+03 -v_z[5][[0, 5, 0, 4, 0, 1]] = -1.3391247472043251E+05 -v_z[5][[0, 4, 1, 4, 0, 1]] = 4.4385089104037797E+04 -v_z[5][[1, 3, 0, 5, 0, 1]] = 1.0679357218594645E+04 -v_z[5][[0, 4, 0, 5, 0, 1]] = -5.5466654711035662E+05 -v_z[5][[0, 3, 1, 5, 0, 1]] = 1.2920445561264045E+05 -v_z[5][[1, 2, 0, 6, 0, 1]] = 3.1009833799393251E+04 -v_z[5][[0, 3, 0, 6, 0, 1]] = -1.4675582805005531E+06 -v_z[5][[0, 2, 1, 6, 0, 1]] = 3.7517320683990652E+05 -v_z[5][[1, 1, 0, 7, 0, 1]] = 4.4567725551905343E+04 -v_z[5][[0, 2, 0, 7, 0, 1]] = -3.7530133995180000E+06 -v_z[5][[0, 1, 1, 7, 0, 1]] = 5.3920368051751168E+05 -v_z[5][[1, 0, 0, 8, 0, 1]] = 7.2110718291546291E+04 -v_z[5][[0, 1, 0, 8, 0, 1]] = -5.0626704968195325E+06 -v_z[5][[0, 0, 1, 8, 0, 1]] = 8.7243322889069468E+05 -v_z[5][[0, 0, 0, 9, 0, 1]] = -7.2893444555247305E+06 -v_z[5][[1, 7, 0, 0, 0, 2]] = -3.0260278185882958E+00 -v_z[5][[0, 8, 0, 0, 0, 2]] = 1.2659996511725460E+02 -v_z[5][[0, 7, 1, 0, 0, 2]] = -3.6610469054134519E+01 -v_z[5][[1, 6, 0, 1, 0, 2]] = -5.3760208489383672E+01 -v_z[5][[0, 7, 0, 1, 0, 2]] = 1.5843336306749445E+03 -v_z[5][[0, 6, 1, 1, 0, 2]] = -6.5041915251215346E+02 -v_z[5][[1, 5, 0, 2, 0, 2]] = -3.5199732156828577E+02 -v_z[5][[0, 6, 0, 2, 0, 2]] = 1.5756357193351016E+04 -v_z[5][[0, 5, 1, 2, 0, 2]] = -4.2586479110512300E+03 -v_z[5][[1, 4, 0, 3, 0, 2]] = -2.1923607969447330E+03 -v_z[5][[0, 5, 0, 3, 0, 2]] = 8.2115268434293801E+04 -v_z[5][[0, 4, 1, 3, 0, 2]] = -2.6524328897110812E+04 -v_z[5][[1, 3, 0, 4, 0, 2]] = -7.1563470329696966E+03 -v_z[5][[0, 4, 0, 4, 0, 2]] = 4.0529527403886378E+05 -v_z[5][[0, 3, 1, 4, 0, 2]] = -8.6581233649534392E+04 -v_z[5][[1, 2, 0, 5, 0, 2]] = -2.4207641187699464E+04 -v_z[5][[0, 3, 0, 5, 0, 2]] = 1.1798096230430561E+06 -v_z[5][[0, 2, 1, 5, 0, 2]] = -2.9287671882319835E+05 -v_z[5][[1, 1, 0, 6, 0, 2]] = -3.7345104578369581E+04 -v_z[5][[0, 2, 0, 6, 0, 2]] = 3.4258335568912425E+06 -v_z[5][[0, 1, 1, 6, 0, 2]] = -4.5182063003229455E+05 -v_z[5][[1, 0, 0, 7, 0, 2]] = -6.8958210506012794E+04 -v_z[5][[0, 1, 0, 7, 0, 2]] = 4.9236513403378557E+06 -v_z[5][[0, 0, 1, 7, 0, 2]] = -8.3429253896834422E+05 -v_z[5][[0, 0, 0, 8, 0, 2]] = 7.9664831528231949E+06 -v_z[5][[1, 6, 0, 0, 0, 3]] = 7.9822708565039262E+00 -v_z[5][[0, 7, 0, 0, 0, 3]] = -2.2286839097707767E+02 -v_z[5][[0, 6, 1, 0, 0, 3]] = 9.6573692541296722E+01 -v_z[5][[1, 5, 0, 1, 0, 3]] = 7.7469965898530276E+01 -v_z[5][[0, 6, 0, 1, 0, 3]] = -3.9594649761715591E+03 -v_z[5][[0, 5, 1, 1, 0, 3]] = 9.3727221267785569E+02 -v_z[5][[1, 4, 0, 2, 0, 3]] = 6.7783137549418097E+02 -v_z[5][[0, 5, 0, 2, 0, 3]] = -2.5924770487656315E+04 -v_z[5][[0, 4, 1, 2, 0, 3]] = 8.2007589104148319E+03 -v_z[5][[1, 3, 0, 3, 0, 3]] = 2.5595452518165366E+03 -v_z[5][[0, 4, 0, 3, 0, 3]] = -1.6146841752573312E+05 -v_z[5][[0, 3, 1, 3, 0, 3]] = 3.0966718699235873E+04 -v_z[5][[1, 2, 0, 4, 0, 3]] = 1.0472609675249256E+04 -v_z[5][[0, 3, 0, 4, 0, 3]] = -5.2706836953521869E+05 -v_z[5][[0, 2, 1, 4, 0, 3]] = 1.2670311557499463E+05 -v_z[5][[1, 1, 0, 5, 0, 3]] = 1.7525028696285077E+04 -v_z[5][[0, 2, 0, 5, 0, 3]] = -1.7829043103014142E+06 -v_z[5][[0, 1, 1, 5, 0, 3]] = 2.1202697371681177E+05 -v_z[5][[1, 0, 0, 6, 0, 3]] = 3.7682065814857429E+04 -v_z[5][[0, 1, 0, 6, 0, 3]] = -2.7504847500492707E+06 -v_z[5][[0, 0, 1, 6, 0, 3]] = 4.5589736351276177E+05 -v_z[5][[0, 0, 0, 7, 0, 3]] = -5.0788050677286722E+06 -v_z[5][[1, 5, 0, 0, 0, 4]] = -6.9744417156733522E+00 -v_z[5][[0, 6, 0, 0, 0, 4]] = 4.4092353956667932E+02 -v_z[5][[0, 5, 1, 0, 0, 4]] = -8.4380447870649192E+01 -v_z[5][[1, 4, 0, 1, 0, 4]] = -1.1073179366141173E+02 -v_z[5][[0, 5, 0, 1, 0, 4]] = 4.2792749316765903E+03 -v_z[5][[0, 4, 1, 1, 0, 4]] = -1.3396912216891533E+03 -v_z[5][[1, 3, 0, 2, 0, 4]] = -5.1596906687258047E+02 -v_z[5][[0, 4, 0, 2, 0, 4]] = 3.7441952883461272E+04 -v_z[5][[0, 3, 1, 2, 0, 4]] = -6.2424639455038996E+03 -v_z[5][[1, 2, 0, 3, 0, 4]] = -2.7107389179076386E+03 -v_z[5][[0, 3, 0, 3, 0, 4]] = 1.4138379571428444E+05 -v_z[5][[0, 2, 1, 3, 0, 4]] = -3.2795938840441144E+04 -v_z[5][[1, 1, 0, 4, 0, 4]] = -5.0009982247239113E+03 -v_z[5][[0, 2, 0, 4, 0, 4]] = 5.7848452019750490E+05 -v_z[5][[0, 1, 1, 4, 0, 4]] = -6.0504695172118591E+04 -v_z[5][[1, 0, 0, 5, 0, 4]] = -1.2869518129081482E+04 -v_z[5][[0, 1, 0, 5, 0, 4]] = 9.6804503664237820E+05 -v_z[5][[0, 0, 1, 5, 0, 4]] = -1.5570216913146549E+05 -v_z[5][[0, 0, 0, 6, 0, 4]] = 2.0814765792786658E+06 -v_z[5][[1, 4, 0, 0, 0, 5]] = 8.2980734657206554E+00 -v_z[5][[0, 5, 0, 0, 0, 5]] = -3.0820257373456968E+02 -v_z[5][[0, 4, 1, 0, 0, 5]] = 1.0039443786985001E+02 -v_z[5][[1, 3, 0, 1, 0, 5]] = 5.5745457613784311E+01 -v_z[5][[0, 4, 0, 1, 0, 5]] = -4.8932696252946753E+03 -v_z[5][[0, 3, 1, 1, 0, 5]] = 6.7443773594590516E+02 -v_z[5][[1, 2, 0, 2, 0, 5]] = 4.1993763802828141E+02 -v_z[5][[0, 3, 0, 2, 0, 5]] = -2.2800820604778877E+04 -v_z[5][[0, 2, 1, 2, 0, 5]] = 5.0806254348557304E+03 -v_z[5][[1, 1, 0, 3, 0, 5]] = 8.7794853705297828E+02 -v_z[5][[0, 2, 0, 3, 0, 5]] = -1.1978832790933197E+05 -v_z[5][[0, 1, 1, 3, 0, 5]] = 1.0621881117370427E+04 -v_z[5][[1, 0, 0, 4, 0, 5]] = 2.8130842344660255E+03 -v_z[5][[0, 1, 0, 4, 0, 5]] = -2.2099554156976193E+05 -v_z[5][[0, 0, 1, 4, 0, 5]] = 3.4034166070765801E+04 -v_z[5][[0, 0, 0, 5, 0, 5]] = -5.6870768612104887E+05 -v_z[5][[1, 3, 0, 0, 0, 6]] = -2.5719703934786748E+00 -v_z[5][[0, 4, 0, 0, 0, 6]] = 3.0557853271446834E+02 -v_z[5][[0, 3, 1, 0, 0, 6]] = -3.1117044569183498E+01 -v_z[5][[1, 2, 0, 1, 0, 6]] = -3.5975847894606204E+01 -v_z[5][[0, 3, 0, 1, 0, 6]] = 2.0528397601548004E+03 -v_z[5][[0, 2, 1, 1, 0, 6]] = -4.3525464569462429E+02 -v_z[5][[1, 1, 0, 2, 0, 6]] = -9.0547689131157512E+01 -v_z[5][[0, 2, 0, 2, 0, 6]] = 1.5464303586895127E+04 -v_z[5][[0, 1, 1, 2, 0, 6]] = -1.0954933561734879E+03 -v_z[5][[1, 0, 0, 3, 0, 6]] = -3.8428954732881044E+02 -v_z[5][[0, 1, 0, 3, 0, 6]] = 3.2330664082421325E+04 -v_z[5][[0, 0, 1, 3, 0, 6]] = -4.6493361673298295E+03 -v_z[5][[0, 0, 0, 4, 0, 6]] = 1.0359249726113217E+05 -v_z[5][[1, 2, 0, 0, 0, 7]] = 1.3611747168303754E+00 -v_z[5][[0, 3, 0, 0, 0, 7]] = -8.1182933667433332E+01 -v_z[5][[0, 2, 1, 0, 0, 7]] = 1.6468204469791239E+01 -v_z[5][[1, 1, 0, 1, 0, 7]] = 4.7704466868675670E+00 -v_z[5][[0, 2, 0, 1, 0, 7]] = -1.1355592897425472E+03 -v_z[5][[0, 1, 1, 1, 0, 7]] = 5.7715361944504536E+01 -v_z[5][[1, 0, 0, 2, 0, 7]] = 3.0021705737791201E+01 -v_z[5][[0, 1, 0, 2, 0, 7]] = -2.8580916246597503E+03 -v_z[5][[0, 0, 1, 2, 0, 7]] = 3.6321831614175045E+02 -v_z[5][[0, 0, 0, 3, 0, 7]] = -1.2129903559149261E+04 -v_z[5][[1, 1, 0, 0, 0, 8]] = -8.4684603424260013E-02 -v_z[5][[0, 2, 0, 0, 0, 8]] = 3.7594187475140821E+01 -v_z[5][[0, 1, 1, 0, 0, 8]] = -1.0245586752311648E+00 -v_z[5][[1, 0, 0, 1, 0, 8]] = -1.0245586752312092E+00 -v_z[5][[0, 1, 0, 1, 0, 8]] = 1.3175462699151592E+02 -v_z[5][[0, 0, 1, 1, 0, 8]] = -1.2395647337833829E+01 -v_z[5][[0, 0, 0, 2, 0, 8]] = 8.2916735072647430E+02 -v_z[5][[1, 0, 0, 0, 0, 9]] = 4.9923173234267537E-15 -v_z[5][[0, 1, 0, 0, 0, 9]] = -2.0790204670028354E+00 -v_z[5][[0, 0, 1, 0, 0, 9]] = 3.2213814948889308E-15 -v_z[5][[0, 0, 0, 1, 0, 9]] = -2.5153078237610146E+01 -v_z[5][[0, 0, 0, 0, 1, 9]] = -1.3769367590565906E-15 -v_z[5][[0, 0, 0, 0, 0, 10]] = 2.2497857971639640E-02 -v_z[6][[0, 0, 0, 0, 0, 1]] = 1.0000000000000000E+00 -v_z[6][[0, 0, 0, 0, 0, 2]] = -1.1102230246251565E-16 -v_z[6][[0, 0, 0, 0, 0, 3]] = 6.2450045135165055E-17 -v_z[6][[0, 0, 0, 0, 0, 4]] = -6.9605779473569385E-17 -v_z[6][[0, 0, 0, 0, 0, 5]] = 1.2305694657710475E-16 -v_z[6][[0, 0, 0, 0, 0, 6]] = -1.3178477406561306E-16 -v_z[6][[0, 0, 0, 0, 0, 7]] = 1.5761589082508021E-16 -v_z[6][[0, 0, 0, 0, 0, 8]] = 4.9755392948075405E-16 -v_z[6][[0, 0, 0, 0, 0, 9]] = -5.9377009602526454E-16 -v_z[6][[0, 0, 0, 0, 0, 10]] = 4.0075161613674359E-16 +v_z[1][[0,0,0,0,0,0]] = -1.0743571132816715E+01 +v_z[1][[1,0,0,0,0,0]] = 7.8517557231785995E-01 +v_z[1][[0,1,0,0,0,0]] = -5.6094891908376905E+00 +v_z[1][[0,0,1,0,0,0]] = 3.0577399960603300E+00 +v_z[1][[0,0,0,1,0,0]] = -2.1845253547124880E+01 +v_z[1][[1,1,0,0,0,0]] = 2.2849095286856108E-01 +v_z[1][[0,2,0,0,0,0]] = -1.6323960850395909E+00 +v_z[1][[0,1,1,0,0,0]] = 2.7644031914573355E+00 +v_z[1][[1,0,0,1,0,0]] = 8.8982127049833493E-01 +v_z[1][[0,1,0,1,0,0]] = -2.6106686635351355E+01 +v_z[1][[0,0,1,1,0,0]] = 1.0765523663456493E+01 +v_z[1][[0,0,0,2,0,0]] = -7.6911573351163469E+01 +v_z[1][[0,1,0,0,0,1]] = 5.6094891908376896E+00 +v_z[1][[0,0,0,1,0,1]] = 2.1845253547124884E+01 +v_z[1][[0,0,0,0,0,2]] = -4.9498895237805478E-15 +v_z[1][[1,2,0,0,0,0]] = 6.6492281960152180E-02 +v_z[1][[0,3,0,0,0,0]] = -3.2797819629575895E+00 +v_z[1][[0,2,1,0,0,0]] = 8.0445844419784474E-01 +v_z[1][[1,1,0,1,0,0]] = 1.0634019431387043E+00 +v_z[1][[0,2,0,1,0,0]] = -2.4267085035079237E+01 +v_z[1][[0,1,1,1,0,0]] = 1.2865593532298867E+01 +v_z[1][[1,0,0,2,0,0]] = 3.1328340395648699E+00 +v_z[1][[0,1,0,2,0,0]] = -1.1710148241909523E+02 +v_z[1][[0,0,1,2,0,0]] = 3.7902666641953118E+01 +v_z[1][[0,0,0,3,0,0]] = -2.8170868574928659E+02 +v_z[1][[1,1,0,0,0,1]] = -2.2849095286856108E-01 +v_z[1][[0,2,0,0,0,1]] = 3.2647921700791822E+00 +v_z[1][[0,1,1,0,0,1]] = -2.7644031914573355E+00 +v_z[1][[1,0,0,1,0,1]] = -8.8982127049833482E-01 +v_z[1][[0,1,0,1,0,1]] = 5.2213373270702689E+01 +v_z[1][[0,0,1,1,0,1]] = -1.0765523663456493E+01 +v_z[1][[0,0,0,2,0,1]] = 1.5382314670232694E+02 +v_z[1][[1,0,0,0,0,2]] = 1.7252404443511759E-16 +v_z[1][[0,1,0,0,0,2]] = -5.6094891908376958E+00 +v_z[1][[0,0,0,1,0,2]] = -2.1845253547124926E+01 +v_z[1][[0,0,0,0,0,3]] = 7.2438811879117269E-15 +v_z[1][[1,3,0,0,0,0]] = 1.3359514216398530E-01 +v_z[1][[0,4,0,0,0,0]] = -1.7706349001324773E+00 +v_z[1][[0,3,1,0,0,0]] = 1.6163039837019832E+00 +v_z[1][[1,2,0,1,0,0]] = 9.8846957260641899E-01 +v_z[1][[0,3,0,1,0,0]] = -3.1662492180468746E+01 +v_z[1][[0,2,1,1,0,0]] = 1.1959022477111088E+01 +v_z[1][[1,1,0,2,0,0]] = 4.7698869522671110E+00 +v_z[1][[0,2,0,2,0,0]] = -1.5878746625757370E+02 +v_z[1][[0,1,1,2,0,0]] = 5.7708589982217148E+01 +v_z[1][[1,0,0,3,0,0]] = 1.1474821298049745E+01 +v_z[1][[0,1,0,3,0,0]] = -5.0731680673172895E+02 +v_z[1][[0,0,1,3,0,0]] = 1.3882839657103938E+02 +v_z[1][[0,0,0,4,0,0]] = -1.0302803128101277E+03 +v_z[1][[1,2,0,0,0,1]] = -1.3298456392030442E-01 +v_z[1][[0,3,0,0,0,1]] = 9.8393458888727636E+00 +v_z[1][[0,2,1,0,0,1]] = -1.6089168883956895E+00 +v_z[1][[1,1,0,1,0,1]] = -2.1268038862774086E+00 +v_z[1][[0,2,0,1,0,1]] = 7.2801255105237701E+01 +v_z[1][[0,1,1,1,0,1]] = -2.5731187064597734E+01 +v_z[1][[1,0,0,2,0,1]] = -6.2656680791297408E+00 +v_z[1][[0,1,0,2,0,1]] = 3.5130444725728557E+02 +v_z[1][[0,0,1,2,0,1]] = -7.5805333283906236E+01 +v_z[1][[0,0,0,3,0,1]] = 8.4512605724785942E+02 +v_z[1][[1,1,0,0,0,2]] = 2.2849095286856136E-01 +v_z[1][[0,2,0,0,0,2]] = -4.8971882551187793E+00 +v_z[1][[0,1,1,0,0,2]] = 2.7644031914573364E+00 +v_z[1][[1,0,0,1,0,2]] = 8.8982127049833626E-01 +v_z[1][[0,1,0,1,0,2]] = -7.8320059906054126E+01 +v_z[1][[0,0,1,1,0,2]] = 1.0765523663456493E+01 +v_z[1][[0,0,0,2,0,2]] = -2.3073472005349069E+02 +v_z[1][[1,0,0,0,0,3]] = -2.5229488262226576E-16 +v_z[1][[0,1,0,0,0,3]] = 5.6094891908377065E+00 +v_z[1][[0,0,0,1,0,3]] = 2.1845253547124972E+01 +v_z[1][[0,0,0,0,0,4]] = -2.1914628912378018E-15 +v_z[1][[1,4,0,0,0,0]] = 7.2123154488721586E-02 +v_z[1][[0,5,0,0,0,0]] = -2.8563428489539713E+00 +v_z[1][[0,4,1,0,0,0]] = 8.7258368851603418E-01 +v_z[1][[1,3,0,1,0,0]] = 1.2897062036103688E+00 +v_z[1][[0,4,0,1,0,0]] = -3.0312134940176684E+01 +v_z[1][[0,3,1,1,0,0]] = 1.5603540974130993E+01 +v_z[1][[1,2,0,2,0,0]] = 6.4678793798262815E+00 +v_z[1][[0,3,0,2,0,0]] = -2.1927671023173218E+02 +v_z[1][[0,2,1,2,0,0]] = 7.8251791482694642E+01 +v_z[1][[1,1,0,3,0,0]] = 2.0664501995244535E+01 +v_z[1][[0,2,0,3,0,0]] = -8.6513175313332124E+02 +v_z[1][[0,1,1,3,0,0]] = 2.5000996559540562E+02 +v_z[1][[1,0,0,4,0,0]] = 4.1966339961972288E+01 +v_z[1][[0,1,0,4,0,0]] = -2.1452031308196892E+03 +v_z[1][[0,0,1,4,0,0]] = 5.0773075549908083E+02 +v_z[1][[0,0,0,5,0,0]] = -3.7709395496087236E+03 +v_z[1][[1,3,0,0,0,1]] = -4.0078542649195592E-01 +v_z[1][[0,4,0,0,0,1]] = 7.0825396005299108E+00 +v_z[1][[0,3,1,0,0,1]] = -4.8489119511059497E+00 +v_z[1][[1,2,0,1,0,1]] = -2.9654087178192570E+00 +v_z[1][[0,3,0,1,0,1]] = 1.2664996872187503E+02 +v_z[1][[0,2,1,1,0,1]] = -3.5877067431333259E+01 +v_z[1][[1,1,0,2,0,1]] = -1.4309660856801329E+01 +v_z[1][[0,2,0,2,0,1]] = 6.3514986503029456E+02 +v_z[1][[0,1,1,2,0,1]] = -1.7312576994665142E+02 +v_z[1][[1,0,0,3,0,1]] = -3.4424463894149241E+01 +v_z[1][[0,1,0,3,0,1]] = 2.0292672269269158E+03 +v_z[1][[0,0,1,3,0,1]] = -4.1648518971311813E+02 +v_z[1][[0,0,0,4,0,1]] = 4.1211212512405100E+03 +v_z[1][[1,2,0,0,0,2]] = 1.9947684588045703E-01 +v_z[1][[0,3,0,0,0,2]] = -1.9678691777745545E+01 +v_z[1][[0,2,1,0,0,2]] = 2.4133753325935352E+00 +v_z[1][[1,1,0,1,0,2]] = 3.1902058294161142E+00 +v_z[1][[0,2,0,1,0,2]] = -1.4560251021047560E+02 +v_z[1][[0,1,1,1,0,2]] = 3.8596780596896608E+01 +v_z[1][[1,0,0,2,0,2]] = 9.3985021186946263E+00 +v_z[1][[0,1,0,2,0,2]] = -7.0260889451457183E+02 +v_z[1][[0,0,1,2,0,2]] = 1.1370799992585935E+02 +v_z[1][[0,0,0,3,0,2]] = -1.6902521144957207E+03 +v_z[1][[1,1,0,0,0,3]] = -2.2849095286856169E-01 +v_z[1][[0,2,0,0,0,3]] = 6.5295843401583813E+00 +v_z[1][[0,1,1,0,0,3]] = -2.7644031914573377E+00 +v_z[1][[1,0,0,1,0,3]] = -8.8982127049834037E-01 +v_z[1][[0,1,0,1,0,3]] = 1.0442674654140562E+02 +v_z[1][[0,0,1,1,0,3]] = -1.0765523663456497E+01 +v_z[1][[0,0,0,2,0,3]] = 3.0764629340465484E+02 +v_z[1][[1,0,0,0,0,4]] = 1.7995354337663871E-16 +v_z[1][[0,1,0,0,0,4]] = -5.6094891908377145E+00 +v_z[1][[0,0,0,1,0,4]] = -2.1845253547125086E+01 +v_z[1][[0,0,0,0,0,5]] = 1.0133244271832888E-14 +v_z[1][[1,5,0,0,0,0]] = 1.1634722468897954E-01 +v_z[1][[0,6,0,0,0,0]] = -1.9205804144593430E+00 +v_z[1][[0,5,1,0,0,0]] = 1.4076296466426661E+00 +v_z[1][[1,4,0,1,0,0]] = 1.2347021912929459E+00 +v_z[1][[0,5,0,1,0,0]] = -3.7972056469390871E+01 +v_z[1][[0,4,1,1,0,0]] = 1.4938073631620018E+01 +v_z[1][[1,3,0,2,0,0]] = 8.9317837610896316E+00 +v_z[1][[0,4,0,2,0,0]] = -2.6083328263844919E+02 +v_z[1][[0,3,1,2,0,0]] = 1.0806139684999448E+02 +v_z[1][[1,2,0,3,0,0]] = 3.5239354583863886E+01 +v_z[1][[0,3,0,3,0,0]] = -1.2997924605510857E+03 +v_z[1][[0,2,1,3,0,0]] = 4.2634416397470272E+02 +v_z[1][[1,1,0,4,0,0]] = 8.7380417500084576E+01 +v_z[1][[0,2,0,4,0,0]] = -4.2841417630260339E+03 +v_z[1][[0,1,1,4,0,0]] = 1.0571740455170743E+03 +v_z[1][[1,0,0,5,0,0]] = 1.5360143171452651E+02 +v_z[1][[0,1,0,5,0,0]] = -8.9070022963532228E+03 +v_z[1][[0,0,1,5,0,0]] = 1.8583505504846444E+03 +v_z[1][[0,0,0,6,0,0]] = -1.3801271729517675E+04 +v_z[1][[1,4,0,0,0,1]] = -2.8849261795488618E-01 +v_z[1][[0,5,0,0,0,1]] = 1.4281714244769860E+01 +v_z[1][[0,4,1,0,0,1]] = -3.4903347540641367E+00 +v_z[1][[1,3,0,1,0,1]] = -5.1588248144414752E+00 +v_z[1][[0,4,0,1,0,1]] = 1.5156067470088342E+02 +v_z[1][[0,3,1,1,0,1]] = -6.2414163896523974E+01 +v_z[1][[1,2,0,2,0,1]] = -2.5871517519305122E+01 +v_z[1][[0,3,0,2,0,1]] = 1.0963835511586608E+03 +v_z[1][[0,2,1,2,0,1]] = -3.1300716593077857E+02 +v_z[1][[1,1,0,3,0,1]] = -8.2658007980978155E+01 +v_z[1][[0,2,0,3,0,1]] = 4.3256587656666061E+03 +v_z[1][[0,1,1,3,0,1]] = -1.0000398623816225E+03 +v_z[1][[1,0,0,4,0,1]] = -1.6786535984788921E+02 +v_z[1][[0,1,0,4,0,1]] = 1.0726015654098443E+04 +v_z[1][[0,0,1,4,0,1]] = -2.0309230219963233E+03 +v_z[1][[0,0,0,5,0,1]] = 1.8854697748043611E+04 +v_z[1][[1,3,0,0,0,2]] = 8.0157085298391229E-01 +v_z[1][[0,4,0,0,0,2]] = -1.7706349001324774E+01 +v_z[1][[0,3,1,0,0,2]] = 9.6978239022119030E+00 +v_z[1][[1,2,0,1,0,2]] = 5.9308174356385166E+00 +v_z[1][[0,3,0,1,0,2]] = -3.1662492180468769E+02 +v_z[1][[0,2,1,1,0,2]] = 7.1754134862666533E+01 +v_z[1][[1,1,0,2,0,2]] = 2.8619321713602684E+01 +v_z[1][[0,2,0,2,0,2]] = -1.5878746625757381E+03 +v_z[1][[0,1,1,2,0,2]] = 3.4625153989330295E+02 +v_z[1][[1,0,0,3,0,2]] = 6.8848927788298582E+01 +v_z[1][[0,1,0,3,0,2]] = -5.0731680673172923E+03 +v_z[1][[0,0,1,3,0,2]] = 8.3297037942623626E+02 +v_z[1][[0,0,0,4,0,2]] = -1.0302803128101286E+04 +v_z[1][[1,2,0,0,0,3]] = -2.6596912784060939E-01 +v_z[1][[0,3,0,0,0,3]] = 3.2797819629575940E+01 +v_z[1][[0,2,1,0,0,3]] = -3.2178337767913816E+00 +v_z[1][[1,1,0,1,0,3]] = -4.2536077725548260E+00 +v_z[1][[0,2,0,1,0,3]] = 2.4267085035079293E+02 +v_z[1][[0,1,1,1,0,3]] = -5.1462374129195510E+01 +v_z[1][[1,0,0,2,0,3]] = -1.2531336158259528E+01 +v_z[1][[0,1,0,2,0,3]] = 1.1710148241909549E+03 +v_z[1][[0,0,1,2,0,3]] = -1.5161066656781253E+02 +v_z[1][[0,0,0,3,0,3]] = 2.8170868574928732E+03 +v_z[1][[1,1,0,0,0,4]] = 2.2849095286856194E-01 +v_z[1][[0,2,0,0,0,4]] = -8.1619804251980028E+00 +v_z[1][[0,1,1,0,0,4]] = 2.7644031914573390E+00 +v_z[1][[1,0,0,1,0,4]] = 8.8982127049834014E-01 +v_z[1][[0,1,0,1,0,4]] = -1.3053343317675740E+02 +v_z[1][[0,0,1,1,0,4]] = 1.0765523663456500E+01 +v_z[1][[0,0,0,2,0,4]] = -3.8455786675581987E+02 +v_z[1][[1,0,0,0,0,5]] = -3.6545995587257747E-16 +v_z[1][[0,1,0,0,0,5]] = 5.6094891908377296E+00 +v_z[1][[0,0,0,1,0,5]] = 2.1845253547125168E+01 +v_z[1][[0,0,0,0,0,6]] = 2.5324787872032580E-15 +v_z[1][[1,6,0,0,0,0]] = 7.8230875224305413E-02 +v_z[1][[0,7,0,0,0,0]] = -2.7476380359339938E+00 +v_z[1][[0,6,1,0,0,0]] = 9.4647809213249023E-01 +v_z[1][[1,5,0,1,0,0]] = 1.5467132692298293E+00 +v_z[1][[0,6,0,1,0,0]] = -3.7366759410493245E+01 +v_z[1][[0,5,1,1,0,0]] = 1.8712947029408021E+01 +v_z[1][[1,4,0,2,0,0]] = 1.0624504881342686E+01 +v_z[1][[0,5,0,2,0,0]] = -3.3716997537060104E+02 +v_z[1][[0,4,1,2,0,0]] = 1.2854082331449248E+02 +v_z[1][[1,3,0,3,0,0]] = 5.2944360482551922E+01 +v_z[1][[0,4,0,3,0,0]] = -1.7896734887206335E+03 +v_z[1][[0,3,1,3,0,0]] = 6.4054859612681048E+02 +v_z[1][[1,2,0,4,0,0]] = 1.7450566359173794E+02 +v_z[1][[0,3,0,4,0,0]] = -7.0359269934403610E+03 +v_z[1][[0,2,1,4,0,0]] = 2.1112608937207301E+03 +v_z[1][[1,1,0,5,0,0]] = 3.6280833649173564E+02 +v_z[1][[0,2,0,5,0,0]] = -2.0070956906228679E+04 +v_z[1][[0,1,1,5,0,0]] = 4.3894452305165114E+03 +v_z[1][[1,0,0,6,0,0]] = 5.6216629019022321E+02 +v_z[1][[0,1,0,6,0,0]] = -3.6463131674050994E+04 +v_z[1][[0,0,1,6,0,0]] = 6.8013821432375980E+03 +v_z[1][[0,0,0,7,0,0]] = -5.0512811010502097E+04 +v_z[1][[1,5,0,0,0,1]] = -5.8173612344489756E-01 +v_z[1][[0,6,0,0,0,1]] = 1.1523482486756066E+01 +v_z[1][[0,5,1,0,0,1]] = -7.0381482332133309E+00 +v_z[1][[1,4,0,1,0,1]] = -6.1735109564647281E+00 +v_z[1][[0,5,0,1,0,1]] = 2.2783233881634521E+02 +v_z[1][[0,4,1,1,0,1]] = -7.4690368158100085E+01 +v_z[1][[1,3,0,2,0,1]] = -4.4658918805448153E+01 +v_z[1][[0,4,0,2,0,1]] = 1.5649996958306951E+03 +v_z[1][[0,3,1,2,0,1]] = -5.4030698424997240E+02 +v_z[1][[1,2,0,3,0,1]] = -1.7619677291931936E+02 +v_z[1][[0,3,0,3,0,1]] = 7.7987547633065133E+03 +v_z[1][[0,2,1,3,0,1]] = -2.1317208198735134E+03 +v_z[1][[1,1,0,4,0,1]] = -4.3690208750042302E+02 +v_z[1][[0,2,0,4,0,1]] = 2.5704850578156180E+04 +v_z[1][[0,1,1,4,0,1]] = -5.2858702275853702E+03 +v_z[1][[1,0,0,5,0,1]] = -7.6800715857263299E+02 +v_z[1][[0,1,0,5,0,1]] = 5.3442013778119312E+04 +v_z[1][[0,0,1,5,0,1]] = -9.2917527524232228E+03 +v_z[1][[0,0,0,6,0,1]] = 8.2807630377105990E+04 +v_z[1][[1,4,0,0,0,2]] = 7.2123154488721619E-01 +v_z[1][[0,5,0,0,0,2]] = -4.2845142734309590E+01 +v_z[1][[0,4,1,0,0,2]] = 8.7258368851603443E+00 +v_z[1][[1,3,0,1,0,2]] = 1.2897062036103693E+01 +v_z[1][[0,4,0,1,0,2]] = -4.5468202410265036E+02 +v_z[1][[0,3,1,1,0,2]] = 1.5603540974130999E+02 +v_z[1][[1,2,0,2,0,2]] = 6.4678793798262845E+01 +v_z[1][[0,3,0,2,0,2]] = -3.2891506534759856E+03 +v_z[1][[0,2,1,2,0,2]] = 7.8251791482694648E+02 +v_z[1][[1,1,0,3,0,2]] = 2.0664501995244555E+02 +v_z[1][[0,2,0,3,0,2]] = -1.2976976296999819E+04 +v_z[1][[0,1,1,3,0,2]] = 2.5000996559540572E+03 +v_z[1][[1,0,0,4,0,2]] = 4.1966339961972352E+02 +v_z[1][[0,1,0,4,0,2]] = -3.2178046962295371E+04 +v_z[1][[0,0,1,4,0,2]] = 5.0773075549908081E+03 +v_z[1][[0,0,0,5,0,2]] = -5.6564093244130869E+04 +v_z[1][[1,3,0,0,0,3]] = -1.3359514216398545E+00 +v_z[1][[0,4,0,0,0,3]] = 3.5412698002649620E+01 +v_z[1][[0,3,1,0,0,3]] = -1.6163039837019838E+01 +v_z[1][[1,2,0,1,0,3]] = -9.8846957260642085E+00 +v_z[1][[0,3,0,1,0,3]] = 6.3324984360937572E+02 +v_z[1][[0,2,1,1,0,3]] = -1.1959022477111094E+02 +v_z[1][[1,1,0,2,0,3]] = -4.7698869522671203E+01 +v_z[1][[0,2,0,2,0,3]] = 3.1757493251514816E+03 +v_z[1][[0,1,1,2,0,3]] = -5.7708589982217177E+02 +v_z[1][[1,0,0,3,0,3]] = -1.1474821298049781E+02 +v_z[1][[0,1,0,3,0,3]] = 1.0146336134634608E+04 +v_z[1][[0,0,1,3,0,3]] = -1.3882839657103939E+03 +v_z[1][[0,0,0,4,0,3]] = 2.0605606256202624E+04 +v_z[1][[1,2,0,0,0,4]] = 3.3246140980076244E-01 +v_z[1][[0,3,0,0,0,4]] = -4.9196729444363939E+01 +v_z[1][[0,2,1,0,0,4]] = 4.0222922209892298E+00 +v_z[1][[1,1,0,1,0,4]] = 5.3170097156935370E+00 +v_z[1][[0,2,0,1,0,4]] = -3.6400627552618982E+02 +v_z[1][[0,1,1,1,0,4]] = 6.4327967661494412E+01 +v_z[1][[1,0,0,2,0,4]] = 1.5664170197824404E+01 +v_z[1][[0,1,0,2,0,4]] = -1.7565222362864388E+03 +v_z[1][[0,0,1,2,0,4]] = 1.8951333320976568E+02 +v_z[1][[0,0,0,3,0,4]] = -4.2256302862393295E+03 +v_z[1][[1,1,0,0,0,5]] = -2.2849095286856244E-01 +v_z[1][[0,2,0,0,0,5]] = 9.7943765102376030E+00 +v_z[1][[0,1,1,0,0,5]] = -2.7644031914573408E+00 +v_z[1][[1,0,0,1,0,5]] = -8.8982127049834159E-01 +v_z[1][[0,1,0,1,0,5]] = 1.5664011981210950E+02 +v_z[1][[0,0,1,1,0,5]] = -1.0765523663456502E+01 +v_z[1][[0,0,0,2,0,5]] = 4.6146944010698581E+02 +v_z[1][[1,0,0,0,0,6]] = -1.9661215073453894E-16 +v_z[1][[0,1,0,0,0,6]] = -5.6094891908377260E+00 +v_z[1][[0,0,0,1,0,6]] = -2.1845253547125431E+01 +v_z[1][[0,0,0,0,0,7]] = 1.5946520037479239E-14 +v_z[1][[1,7,0,0,0,0]] = 1.1191935871699366E-01 +v_z[1][[0,8,0,0,0,0]] = -2.0832240052022275E+00 +v_z[1][[0,7,1,0,0,0]] = 1.3540590055707442E+00 +v_z[1][[1,6,0,1,0,0]] = 1.5220577440918279E+00 +v_z[1][[0,7,0,1,0,0]] = -4.5123199662931391E+01 +v_z[1][[0,6,1,1,0,0]] = 1.8414651576030682E+01 +v_z[1][[1,5,0,2,0,0]] = 1.3733922346607343E+01 +v_z[1][[0,6,0,2,0,0]] = -3.8645846339874373E+02 +v_z[1][[0,5,1,2,0,0]] = 1.6616018397904998E+02 +v_z[1][[1,4,0,3,0,0]] = 7.2898652060743814E+01 +v_z[1][[0,5,0,3,0,0]] = -2.4530031517954440E+03 +v_z[1][[0,4,1,3,0,0]] = 8.8196606421254023E+02 +v_z[1][[1,3,0,4,0,0]] = 2.8659394970769853E+02 +v_z[1][[0,4,0,4,0,0]] = -1.0804400560350688E+04 +v_z[1][[0,3,1,4,0,0]] = 3.4673636714188424E+03 +v_z[1][[1,2,0,5,0,0]] = 8.1754896256483153E+02 +v_z[1][[0,3,0,5,0,0]] = -3.5851558885893253E+04 +v_z[1][[0,2,1,5,0,0]] = 9.8911354384649439E+03 +v_z[1][[1,1,0,6,0,0]] = 1.4852503351613470E+03 +v_z[1][[0,2,0,6,0,0]] = -9.0610372101529851E+04 +v_z[1][[0,1,1,6,0,0]] = 1.7969336269497562E+04 +v_z[1][[1,0,0,7,0,0]] = 2.0575349960047552E+03 +v_z[1][[0,1,0,7,0,0]] = -1.4759548695862401E+05 +v_z[1][[0,0,1,7,0,0]] = 2.4893135759132612E+04 +v_z[1][[0,0,0,8,0,0]] = -1.8487696890223675E+05 +v_z[1][[1,6,0,0,0,1]] = -4.6938525134583198E-01 +v_z[1][[0,7,0,0,0,1]] = 1.9233466251537962E+01 +v_z[1][[0,6,1,0,0,1]] = -5.6788685527949418E+00 +v_z[1][[1,5,0,1,0,1]] = -9.2802796153789728E+00 +v_z[1][[0,6,0,1,0,1]] = 2.6156731587345263E+02 +v_z[1][[0,5,1,1,0,1]] = -1.1227768217644811E+02 +v_z[1][[1,4,0,2,0,1]] = -6.3747029288056098E+01 +v_z[1][[0,5,0,2,0,1]] = 2.3601898275942071E+03 +v_z[1][[0,4,1,2,0,1]] = -7.7124493988695508E+02 +v_z[1][[1,3,0,3,0,1]] = -3.1766616289531157E+02 +v_z[1][[0,4,0,3,0,1]] = 1.2527714421044437E+04 +v_z[1][[0,3,1,3,0,1]] = -3.8432915767608638E+03 +v_z[1][[1,2,0,4,0,1]] = -1.0470339815504274E+03 +v_z[1][[0,3,0,4,0,1]] = 4.9251488954082532E+04 +v_z[1][[0,2,1,4,0,1]] = -1.2667565362324382E+04 +v_z[1][[1,1,0,5,0,1]] = -2.1768500189504139E+03 +v_z[1][[0,2,0,5,0,1]] = 1.4049669834360076E+05 +v_z[1][[0,1,1,5,0,1]] = -2.6336671383099070E+04 +v_z[1][[1,0,0,6,0,1]] = -3.3729977411413406E+03 +v_z[1][[0,1,0,6,0,1]] = 2.5524192171835635E+05 +v_z[1][[0,0,1,6,0,1]] = -4.0808292859425601E+04 +v_z[1][[0,0,0,7,0,1]] = 3.5358967707351438E+05 +v_z[1][[1,5,0,0,0,2]] = 1.7452083703346930E+00 +v_z[1][[0,6,0,0,0,2]] = -4.0332188703646253E+01 +v_z[1][[0,5,1,0,0,2]] = 2.1114444699639993E+01 +v_z[1][[1,4,0,1,0,2]] = 1.8520532869394195E+01 +v_z[1][[0,5,0,1,0,2]] = -7.9741318585720887E+02 +v_z[1][[0,4,1,1,0,2]] = 2.2407110447430031E+02 +v_z[1][[1,3,0,2,0,2]] = 1.3397675641634453E+02 +v_z[1][[0,4,0,2,0,2]] = -5.4774989354074351E+03 +v_z[1][[0,3,1,2,0,2]] = 1.6209209527499174E+03 +v_z[1][[1,2,0,3,0,2]] = 5.2859031875795847E+02 +v_z[1][[0,3,0,3,0,2]] = -2.7295641671572812E+04 +v_z[1][[0,2,1,3,0,2]] = 6.3951624596205411E+03 +v_z[1][[1,1,0,4,0,2]] = 1.3107062625012702E+03 +v_z[1][[0,2,0,4,0,2]] = -8.9966977023546744E+04 +v_z[1][[0,1,1,4,0,2]] = 1.5857610682756118E+04 +v_z[1][[1,0,0,5,0,2]] = 2.3040214757179019E+03 +v_z[1][[0,1,0,5,0,2]] = -1.8704704822341783E+05 +v_z[1][[0,0,1,5,0,2]] = 2.7875258257269670E+04 +v_z[1][[0,0,0,6,0,2]] = -2.8982670631987107E+05 +v_z[1][[1,4,0,0,0,3]] = -1.4424630897744335E+00 +v_z[1][[0,5,0,0,0,3]] = 9.9971999713389096E+01 +v_z[1][[0,4,1,0,0,3]] = -1.7451673770320696E+01 +v_z[1][[1,3,0,1,0,3]] = -2.5794124072207403E+01 +v_z[1][[0,4,0,1,0,3]] = 1.0609247229061857E+03 +v_z[1][[0,3,1,1,0,3]] = -3.1207081948261998E+02 +v_z[1][[1,2,0,2,0,3]] = -1.2935758759652580E+02 +v_z[1][[0,3,0,2,0,3]] = 7.6746848581106406E+03 +v_z[1][[0,2,1,2,0,3]] = -1.5650358296538934E+03 +v_z[1][[1,1,0,3,0,3]] = -4.1329003990489161E+02 +v_z[1][[0,2,0,3,0,3]] = 3.0279611359666287E+04 +v_z[1][[0,1,1,3,0,3]] = -5.0001993119081171E+03 +v_z[1][[1,0,0,4,0,3]] = -8.3932679923944943E+02 +v_z[1][[0,1,0,4,0,3]] = 7.5082109578689327E+04 +v_z[1][[0,0,1,4,0,3]] = -1.0154615109981616E+04 +v_z[1][[0,0,0,5,0,3]] = 1.3198288423630554E+05 +v_z[1][[1,3,0,0,0,4]] = 2.0039271324597836E+00 +v_z[1][[0,4,0,0,0,4]] = -6.1972221504636806E+01 +v_z[1][[0,3,1,0,0,4]] = 2.4244559755529764E+01 +v_z[1][[1,2,0,1,0,4]] = 1.4827043589096323E+01 +v_z[1][[0,3,0,1,0,4]] = -1.1081872263164094E+03 +v_z[1][[0,2,1,1,0,4]] = 1.7938533715666648E+02 +v_z[1][[1,1,0,2,0,4]] = 7.1548304284006861E+01 +v_z[1][[0,2,0,2,0,4]] = -5.5575613190151034E+03 +v_z[1][[0,1,1,2,0,4]] = 8.6562884973325822E+02 +v_z[1][[1,0,0,3,0,4]] = 1.7212231947074685E+02 +v_z[1][[0,1,0,3,0,4]] = -1.7756088235610612E+04 +v_z[1][[0,0,1,3,0,4]] = 2.0824259485655912E+03 +v_z[1][[0,0,0,4,0,4]] = -3.6059810948354745E+04 +v_z[1][[1,2,0,0,0,5]] = -3.9895369176091355E-01 +v_z[1][[0,3,0,0,0,5]] = 6.8875421222109537E+01 +v_z[1][[0,2,1,0,0,5]] = -4.8267506651870802E+00 +v_z[1][[1,1,0,1,0,5]] = -6.3804116588322533E+00 +v_z[1][[0,2,0,1,0,5]] = 5.0960878573666753E+02 +v_z[1][[0,1,1,1,0,5]] = -7.7193561193793329E+01 +v_z[1][[1,0,0,2,0,5]] = -1.8797004237389270E+01 +v_z[1][[0,1,0,2,0,5]] = 2.4591311308010258E+03 +v_z[1][[0,0,1,2,0,5]] = -2.2741599985171885E+02 +v_z[1][[0,0,0,3,0,5]] = 5.9158824007350695E+03 +v_z[1][[1,1,0,0,0,6]] = 2.2849095286856230E-01 +v_z[1][[0,2,0,0,0,6]] = -1.1426772595277267E+01 +v_z[1][[0,1,1,0,0,6]] = 2.7644031914573413E+00 +v_z[1][[1,0,0,1,0,6]] = 8.8982127049834292E-01 +v_z[1][[0,1,0,1,0,6]] = -1.8274680644746192E+02 +v_z[1][[0,0,1,1,0,6]] = 1.0765523663456506E+01 +v_z[1][[0,0,0,2,0,6]] = -5.3838101345815335E+02 +v_z[1][[1,0,0,0,0,7]] = -3.5990708675327733E-16 +v_z[1][[0,1,0,0,0,7]] = 5.6094891908377402E+00 +v_z[1][[0,0,0,1,0,7]] = 2.1845253547125790E+01 +v_z[1][[0,0,0,0,0,8]] = -8.2423875839205964E-14 +v_z[1][[1,8,0,0,0,0]] = 8.4855825868208237E-02 +v_z[1][[0,9,0,0,0,0]] = -2.7612000018433696E+00 +v_z[1][[0,8,1,0,0,0]] = 1.0266302140144778E+00 +v_z[1][[1,7,0,1,0,0]] = 1.8380003128095692E+00 +v_z[1][[0,8,0,1,0,0]] = -4.5308051167958354E+01 +v_z[1][[0,7,1,1,0,0]] = 2.2237090207913706E+01 +v_z[1][[1,6,0,2,0,0]] = 1.5741587075402254E+01 +v_z[1][[0,7,0,2,0,0]] = -4.7822186351533998E+02 +v_z[1][[0,6,1,2,0,0]] = 1.9044996313214227E+02 +v_z[1][[1,5,0,3,0,0]] = 9.9918015433349197E+01 +v_z[1][[0,6,0,3,0,0]] = -3.1292707353125975E+03 +v_z[1][[0,5,1,3,0,0]] = 1.2088604703177236E+03 +v_z[1][[1,4,0,4,0,0]] = 4.4009493471177905E+02 +v_z[1][[0,5,0,4,0,0]] = -1.5814308036943294E+04 +v_z[1][[0,4,1,4,0,0]] = 5.3244989650040734E+03 +v_z[1][[1,3,0,5,0,0]] = 1.4603391811577299E+03 +v_z[1][[0,4,0,5,0,0]] = -6.0156812934494854E+04 +v_z[1][[0,3,1,5,0,0]] = 1.7667948084250267E+04 +v_z[1][[1,2,0,6,0,0]] = 3.6908263046606335E+03 +v_z[1][[0,3,0,6,0,0]] = -1.7492866377259529E+05 +v_z[1][[0,2,1,6,0,0]] = 4.4653549243972564E+04 +v_z[1][[1,1,0,7,0,0]] = 6.0119972259432416E+03 +v_z[1][[0,2,0,7,0,0]] = -3.9836775127209508E+05 +v_z[1][[0,1,1,7,0,0]] = 7.2736290473568399E+04 +v_z[1][[1,0,0,8,0,0]] = 7.5305813686065876E+03 +v_z[1][[0,1,0,8,0,0]] = -5.9195371108016104E+05 +v_z[1][[0,0,1,8,0,0]] = 9.1108916600650991E+04 +v_z[1][[0,0,0,9,0,0]] = -6.7665094900912954E+05 +v_z[1][[1,7,0,0,0,1]] = -7.8343551101895492E-01 +v_z[1][[0,8,0,0,0,1]] = 1.6665792041617824E+01 +v_z[1][[0,7,1,0,0,1]] = -9.4784130389952068E+00 +v_z[1][[1,6,0,1,0,1]] = -1.0654404208642791E+01 +v_z[1][[0,7,0,1,0,1]] = 3.6098559730345130E+02 +v_z[1][[0,6,1,1,0,1]] = -1.2890256103221478E+02 +v_z[1][[1,5,0,2,0,1]] = -9.6137456426251376E+01 +v_z[1][[0,6,0,2,0,1]] = 3.0916677071899503E+03 +v_z[1][[0,5,1,2,0,1]] = -1.1631212878533497E+03 +v_z[1][[1,4,0,3,0,1]] = -5.1029056442520653E+02 +v_z[1][[0,5,0,3,0,1]] = 1.9624025214363552E+04 +v_z[1][[0,4,1,3,0,1]] = -6.1737624494877809E+03 +v_z[1][[1,3,0,4,0,1]] = -2.0061576479538899E+03 +v_z[1][[0,4,0,4,0,1]] = 8.6435204482805566E+04 +v_z[1][[0,3,1,4,0,1]] = -2.4271545699931896E+04 +v_z[1][[1,2,0,5,0,1]] = -5.7228427379538189E+03 +v_z[1][[0,3,0,5,0,1]] = 2.8681247108714626E+05 +v_z[1][[0,2,1,5,0,1]] = -6.9237948069254620E+04 +v_z[1][[1,1,0,6,0,1]] = -1.0396752346129429E+04 +v_z[1][[0,2,0,6,0,1]] = 7.2488297681223776E+05 +v_z[1][[0,1,1,6,0,1]] = -1.2578535388648296E+05 +v_z[1][[1,0,0,7,0,1]] = -1.4402744972033288E+04 +v_z[1][[0,1,0,7,0,1]] = 1.1807638956689870E+06 +v_z[1][[0,0,1,7,0,1]] = -1.7425195031392833E+05 +v_z[1][[0,0,0,8,0,1]] = 1.4790157512178964E+06 +v_z[1][[1,6,0,0,0,2]] = 1.6428483797104128E+00 +v_z[1][[0,7,0,0,0,2]] = -7.6933865006151876E+01 +v_z[1][[0,6,1,0,0,2]] = 1.9876039934782295E+01 +v_z[1][[1,5,0,1,0,2]] = 3.2480978653826412E+01 +v_z[1][[0,6,0,1,0,2]] = -1.0462692634938119E+03 +v_z[1][[0,5,1,1,0,2]] = 3.9297188761756843E+02 +v_z[1][[1,4,0,2,0,2]] = 2.2311460250819641E+02 +v_z[1][[0,5,0,2,0,2]] = -9.4407593103768377E+03 +v_z[1][[0,4,1,2,0,2]] = 2.6993572896043424E+03 +v_z[1][[1,3,0,3,0,2]] = 1.1118315701335907E+03 +v_z[1][[0,4,0,3,0,2]] = -5.0110857684177783E+04 +v_z[1][[0,3,1,3,0,2]] = 1.3451520518663019E+04 +v_z[1][[1,2,0,4,0,2]] = 3.6646189354264975E+03 +v_z[1][[0,3,0,4,0,2]] = -1.9700595581633024E+05 +v_z[1][[0,2,1,4,0,2]] = 4.4336478768135341E+04 +v_z[1][[1,1,0,5,0,2]] = 7.6189750663264549E+03 +v_z[1][[0,2,0,5,0,2]] = -5.6198679337440373E+05 +v_z[1][[0,1,1,5,0,2]] = 9.2178349840846771E+04 +v_z[1][[1,0,0,6,0,2]] = 1.1805492093994690E+04 +v_z[1][[0,1,0,6,0,2]] = -1.0209676868734277E+06 +v_z[1][[0,0,1,6,0,2]] = 1.4282902500798958E+05 +v_z[1][[0,0,0,7,0,2]] = -1.4143587082940557E+06 +v_z[1][[1,5,0,0,0,3]] = -4.0721528641142868E+00 +v_z[1][[0,6,0,0,0,3]] = 1.0755250320972337E+02 +v_z[1][[0,5,1,0,0,3]] = -4.9267037632493320E+01 +v_z[1][[1,4,0,1,0,3]] = -4.3214576695253143E+01 +v_z[1][[0,5,0,1,0,3]] = 2.1264351622858931E+03 +v_z[1][[0,4,1,1,0,3]] = -5.2283257710670091E+02 +v_z[1][[1,3,0,2,0,3]] = -3.1261243163813737E+02 +v_z[1][[0,4,0,2,0,3]] = 1.4606663827753182E+04 +v_z[1][[0,3,1,2,0,3]] = -3.7821488897498075E+03 +v_z[1][[1,2,0,3,0,3]] = -1.2333774104352374E+03 +v_z[1][[0,3,0,3,0,3]] = 7.2788377790860919E+04 +v_z[1][[0,2,1,3,0,3]] = -1.4922045739114597E+04 +v_z[1][[1,1,0,4,0,3]] = -3.0583146125029680E+03 +v_z[1][[0,2,0,4,0,3]] = 2.3991193872945820E+05 +v_z[1][[0,1,1,4,0,3]] = -3.7001091593097619E+04 +v_z[1][[1,0,0,5,0,3]] = -5.3760501100084657E+03 +v_z[1][[0,1,0,5,0,3]] = 4.9879212859578017E+05 +v_z[1][[0,0,1,5,0,3]] = -6.5042269266962554E+04 +v_z[1][[0,0,0,6,0,3]] = 7.7287121685299347E+05 +v_z[1][[1,4,0,0,0,4]] = 2.5243104071052573E+00 +v_z[1][[0,5,0,0,0,4]] = -1.9994399942677828E+02 +v_z[1][[0,4,1,0,0,4]] = 3.0540429098061225E+01 +v_z[1][[1,3,0,1,0,4]] = 4.5139717126362982E+01 +v_z[1][[0,4,0,1,0,4]] = -2.1218494458123719E+03 +v_z[1][[0,3,1,1,0,4]] = 5.4612393409458514E+02 +v_z[1][[1,2,0,2,0,4]] = 2.2637577829392040E+02 +v_z[1][[0,3,0,2,0,4]] = -1.5349369716221308E+04 +v_z[1][[0,2,1,2,0,4]] = 2.7388127018943142E+03 +v_z[1][[1,1,0,3,0,4]] = 7.2325756983356086E+02 +v_z[1][[0,2,0,3,0,4]] = -6.0559222719332793E+04 +v_z[1][[0,1,1,3,0,4]] = 8.7503487958392088E+03 +v_z[1][[1,0,0,4,0,4]] = 1.4688218986690388E+03 +v_z[1][[0,1,0,4,0,4]] = -1.5016421915737938E+05 +v_z[1][[0,0,1,4,0,4]] = 1.7770576442467827E+04 +v_z[1][[0,0,0,5,0,4]] = -2.6396576847261144E+05 +v_z[1][[1,3,0,0,0,5]] = -2.8054979854436963E+00 +v_z[1][[0,4,0,0,0,5]] = 9.9155554407418990E+01 +v_z[1][[0,3,1,0,0,5]] = -3.3942383657741672E+01 +v_z[1][[1,2,0,1,0,5]] = -2.0757861024734858E+01 +v_z[1][[0,3,0,1,0,5]] = 1.7730995621062582E+03 +v_z[1][[0,2,1,1,0,5]] = -2.5113947201933317E+02 +v_z[1][[1,1,0,2,0,5]] = -1.0016762599760965E+02 +v_z[1][[0,2,0,2,0,5]] = 8.8920981104242019E+03 +v_z[1][[0,1,1,2,0,5]] = -1.2118803896265617E+03 +v_z[1][[1,0,0,3,0,5]] = -2.4097124725904555E+02 +v_z[1][[0,1,0,3,0,5]] = 2.8409741176977197E+04 +v_z[1][[0,0,1,3,0,5]] = -2.9153963279918280E+03 +v_z[1][[0,0,0,4,0,5]] = 5.7695697517368113E+04 +v_z[1][[1,2,0,0,0,6]] = 4.6544597372106977E-01 +v_z[1][[0,3,0,0,0,6]] = -9.1833894962812934E+01 +v_z[1][[0,2,1,0,0,6]] = 5.6312091093849297E+00 +v_z[1][[1,1,0,1,0,6]] = 7.4438136019709695E+00 +v_z[1][[0,2,0,1,0,6]] = -6.7947838098222655E+02 +v_z[1][[0,1,1,1,0,6]] = 9.0059154726092231E+01 +v_z[1][[1,0,0,2,0,6]] = 2.1929838276954115E+01 +v_z[1][[0,1,0,2,0,6]] = -3.2788415077347163E+03 +v_z[1][[0,0,1,2,0,6]] = 2.6531866649367197E+02 +v_z[1][[0,0,0,3,0,6]] = -7.8878432009800608E+03 +v_z[1][[1,1,0,0,0,7]] = -2.2849095286856286E-01 +v_z[1][[0,2,0,0,0,7]] = 1.3059168680317033E+01 +v_z[1][[0,1,1,0,0,7]] = -2.7644031914573435E+00 +v_z[1][[1,0,0,1,0,7]] = -8.8982127049835447E-01 +v_z[1][[0,1,0,1,0,7]] = 2.0885349308281579E+02 +v_z[1][[0,0,1,1,0,7]] = -1.0765523663456511E+01 +v_z[1][[0,0,0,2,0,7]] = 6.1529258680933174E+02 +v_z[1][[1,0,0,0,0,8]] = 2.6545721163057274E-15 +v_z[1][[0,1,0,0,0,8]] = -5.6094891908377855E+00 +v_z[1][[0,0,0,1,0,8]] = -2.1845253547126898E+01 +v_z[1][[0,0,0,0,0,9]] = 1.2471094400677167E-13 +v_z[1][[1,9,0,0,0,0]] = 1.1247177737901123E-01 +v_z[1][[0,10,0,0,0,0]] = -2.2596410039266686E+00 +v_z[1][[0,9,1,0,0,0]] = 1.3607424558042447E+00 +v_z[1][[1,8,0,1,0,0]] = 1.8455298569598280E+00 +v_z[1][[0,9,0,1,0,0]] = -5.3213210385579700E+01 +v_z[1][[0,8,1,1,0,0]] = 2.2328186575703683E+01 +v_z[1][[1,7,0,2,0,0]] = 1.9479379594077045E+01 +v_z[1][[0,8,0,2,0,0]] = -5.3955441054869914E+02 +v_z[1][[0,7,1,2,0,0]] = 2.3567173422595815E+02 +v_z[1][[1,6,0,3,0,0]] = 1.2746437826516340E+02 +v_z[1][[0,7,0,3,0,0]] = -4.0570879629263409E+03 +v_z[1][[0,6,1,3,0,0]] = 1.5421307918306879E+03 +v_z[1][[1,5,0,4,0,0]] = 6.4416316519873885E+02 +v_z[1][[0,6,0,4,0,0]] = -2.1922719542534251E+04 +v_z[1][[0,5,1,4,0,0]] = 7.7934232727324215E+03 +v_z[1][[1,4,0,5,0,0]] = 2.4503634896720137E+03 +v_z[1][[0,5,0,5,0,0]] = -9.3886683721892274E+04 +v_z[1][[0,4,1,5,0,0]] = 2.9645780570473809E+04 +v_z[1][[1,3,0,6,0,0]] = 7.1253577125541015E+03 +v_z[1][[0,4,0,6,0,0]] = -3.1647966648642858E+05 +v_z[1][[0,3,1,6,0,0]] = 8.6206308624352911E+04 +v_z[1][[1,2,0,7,0,0]] = 1.6226687312088872E+04 +v_z[1][[0,3,0,7,0,0]] = -8.2602067719102546E+05 +v_z[1][[0,2,1,7,0,0]] = 1.9631895980635393E+05 +v_z[1][[1,1,0,8,0,0]] = 2.4112011432289764E+04 +v_z[1][[0,2,0,8,0,0]] = -1.7167582646948544E+06 +v_z[1][[0,1,1,8,0,0]] = 2.9171973996808793E+05 +v_z[1][[1,0,0,9,0,0]] = 2.7561978433087799E+04 +v_z[1][[0,1,0,9,0,0]] = -2.3559716966320458E+06 +v_z[1][[0,0,1,9,0,0]] = 3.3345924723389174E+05 +v_z[1][[0,0,0,10,0,0]] = -2.4765466763020824E+06 +v_z[1][[1,8,0,0,0,1]] = -6.7884660694566534E-01 +v_z[1][[0,9,0,0,0,1]] = 2.4850800016590341E+01 +v_z[1][[0,8,1,0,0,1]] = -8.2130417121158210E+00 +v_z[1][[1,7,0,1,0,1]] = -1.4704002502476541E+01 +v_z[1][[0,8,0,1,0,1]] = 4.0777246051162541E+02 +v_z[1][[0,7,1,1,0,1]] = -1.7789672166330962E+02 +v_z[1][[1,6,0,2,0,1]] = -1.2593269660321801E+02 +v_z[1][[0,7,0,2,0,1]] = 4.3039967716380579E+03 +v_z[1][[0,6,1,2,0,1]] = -1.5235997050571380E+03 +v_z[1][[1,5,0,3,0,1]] = -7.9934412346679335E+02 +v_z[1][[0,6,0,3,0,1]] = 2.8163436617813404E+04 +v_z[1][[0,5,1,3,0,1]] = -9.6708837625417873E+03 +v_z[1][[1,4,0,4,0,1]] = -3.5207594776942324E+03 +v_z[1][[0,5,0,4,0,1]] = 1.4232877233248961E+05 +v_z[1][[0,4,1,4,0,1]] = -4.2595991720032580E+04 +v_z[1][[1,3,0,5,0,1]] = -1.1682713449261839E+04 +v_z[1][[0,4,0,5,0,1]] = 5.4141131641045364E+05 +v_z[1][[0,3,1,5,0,1]] = -1.4134358467400214E+05 +v_z[1][[1,2,0,6,0,1]] = -2.9526610437285046E+04 +v_z[1][[0,3,0,6,0,1]] = 1.5743579739533577E+06 +v_z[1][[0,2,1,6,0,1]] = -3.5722839395178051E+05 +v_z[1][[1,1,0,7,0,1]] = -4.8095977807545940E+04 +v_z[1][[0,2,0,7,0,1]] = 3.5853097614488462E+06 +v_z[1][[0,1,1,7,0,1]] = -5.8189032378854731E+05 +v_z[1][[1,0,0,8,0,1]] = -6.0244650948852519E+04 +v_z[1][[0,1,0,8,0,1]] = 5.3275833997214325E+06 +v_z[1][[0,0,1,8,0,1]] = -7.2887133280520805E+05 +v_z[1][[0,0,0,9,0,1]] = 6.0898585410821931E+06 +v_z[1][[1,7,0,0,0,2]] = 3.1337420440758201E+00 +v_z[1][[0,8,0,0,0,2]] = -7.4996064187280240E+01 +v_z[1][[0,7,1,0,0,2]] = 3.7913652155980827E+01 +v_z[1][[1,6,0,1,0,2]] = 4.2617616834571180E+01 +v_z[1][[0,7,0,1,0,2]] = -1.6244351878655318E+03 +v_z[1][[0,6,1,1,0,2]] = 5.1561024412885899E+02 +v_z[1][[1,5,0,2,0,2]] = 3.8454982570500556E+02 +v_z[1][[0,6,0,2,0,2]] = -1.3912504682354780E+04 +v_z[1][[0,5,1,2,0,2]] = 4.6524851514133989E+03 +v_z[1][[1,4,0,3,0,2]] = 2.0411622577008268E+03 +v_z[1][[0,5,0,3,0,2]] = -8.8308113464636030E+04 +v_z[1][[0,4,1,3,0,2]] = 2.4695049797951127E+04 +v_z[1][[1,3,0,4,0,2]] = 8.0246305918155631E+03 +v_z[1][[0,4,0,4,0,2]] = -3.8895842017262551E+05 +v_z[1][[0,3,1,4,0,2]] = 9.7086182799727598E+04 +v_z[1][[1,2,0,5,0,2]] = 2.2891370951815297E+04 +v_z[1][[0,3,0,5,0,2]] = -1.2906561198921569E+06 +v_z[1][[0,2,1,5,0,2]] = 2.7695179227701848E+05 +v_z[1][[1,1,0,6,0,2]] = 4.1587009384517740E+04 +v_z[1][[0,2,0,6,0,2]] = -3.2619733956550742E+06 +v_z[1][[0,1,1,6,0,2]] = 5.0314141554593190E+05 +v_z[1][[1,0,0,7,0,2]] = 5.7610979888132882E+04 +v_z[1][[0,1,0,7,0,2]] = -5.3134375305104563E+06 +v_z[1][[0,0,1,7,0,2]] = 6.9700780125571333E+05 +v_z[1][[0,0,0,8,0,2]] = -6.6555708804804888E+06 +v_z[1][[1,6,0,0,0,3]] = -4.3809290125611042E+00 +v_z[1][[0,7,0,0,0,3]] = 2.3080159501845574E+02 +v_z[1][[0,6,1,0,0,3]] = -5.3002773159419462E+01 +v_z[1][[1,5,0,1,0,3]] = -8.6615943076870508E+01 +v_z[1][[0,6,0,1,0,3]] = 3.1388077904814377E+03 +v_z[1][[0,5,1,1,0,3]] = -1.0479250336468494E+03 +v_z[1][[1,4,0,2,0,3]] = -5.9497227335519096E+02 +v_z[1][[0,5,0,2,0,3]] = 2.8322277931130528E+04 +v_z[1][[0,4,1,2,0,3]] = -7.1982861056115817E+03 +v_z[1][[1,3,0,3,0,3]] = -2.9648841870229107E+03 +v_z[1][[0,4,0,3,0,3]] = 1.5033257305253352E+05 +v_z[1][[0,3,1,3,0,3]] = -3.5870721383101394E+04 +v_z[1][[1,2,0,4,0,3]] = -9.7723171611373255E+03 +v_z[1][[0,3,0,4,0,3]] = 5.9101786744899151E+05 +v_z[1][[0,2,1,4,0,3]] = -1.1823061004836092E+05 +v_z[1][[1,1,0,5,0,3]] = -2.0317266843537262E+04 +v_z[1][[0,2,0,5,0,3]] = 1.6859603801232090E+06 +v_z[1][[0,1,1,5,0,3]] = -2.4580893290892494E+05 +v_z[1][[1,0,0,6,0,3]] = -3.1481312250652813E+04 +v_z[1][[0,1,0,6,0,3]] = 3.0629030606202735E+06 +v_z[1][[0,0,1,6,0,3]] = -3.8087740002130548E+05 +v_z[1][[0,0,0,7,0,3]] = 4.2430761248822017E+06 +v_z[1][[1,5,0,0,0,4]] = 8.1443057282285736E+00 +v_z[1][[0,6,0,0,0,4]] = -2.4199313222187786E+02 +v_z[1][[0,5,1,0,0,4]] = 9.8534075264986654E+01 +v_z[1][[1,4,0,1,0,4]] = 8.6429153390506343E+01 +v_z[1][[0,5,0,1,0,4]] = -4.7844791151432619E+03 +v_z[1][[0,4,1,1,0,4]] = 1.0456651542134018E+03 +v_z[1][[1,3,0,2,0,4]] = 6.2522486327627530E+02 +v_z[1][[0,4,0,2,0,4]] = -3.2864993612444705E+04 +v_z[1][[0,3,1,2,0,4]] = 7.5642977794996186E+03 +v_z[1][[1,2,0,3,0,4]] = 2.4667548208704789E+03 +v_z[1][[0,3,0,3,0,4]] = -1.6377385002943737E+05 +v_z[1][[0,2,1,3,0,4]] = 2.9844091478229209E+04 +v_z[1][[1,1,0,4,0,4]] = 6.1166292250059450E+03 +v_z[1][[0,2,0,4,0,4]] = -5.3980186214128311E+05 +v_z[1][[0,1,1,4,0,4]] = 7.4002183186195296E+04 +v_z[1][[1,0,0,5,0,4]] = 1.0752100220016966E+04 +v_z[1][[0,1,0,5,0,4]] = -1.1222822893405126E+06 +v_z[1][[0,0,1,5,0,4]] = 1.3008453853392515E+05 +v_z[1][[0,0,0,6,0,4]] = -1.7389602379192240E+06 +v_z[1][[1,4,0,0,0,5]] = -4.0388966513684164E+00 +v_z[1][[0,5,0,0,0,5]] = 3.5989919896820101E+02 +v_z[1][[0,4,1,0,0,5]] = -4.8864686556897972E+01 +v_z[1][[1,3,0,1,0,5]] = -7.2223547402180813E+01 +v_z[1][[0,4,0,1,0,5]] = 3.8193290024622829E+03 +v_z[1][[0,3,1,1,0,5]] = -8.7379829455133643E+02 +v_z[1][[1,2,0,2,0,5]] = -3.6220124527027258E+02 +v_z[1][[0,3,0,2,0,5]] = 2.7628865489198437E+04 +v_z[1][[0,2,1,2,0,5]] = -4.3821003230309043E+03 +v_z[1][[1,1,0,3,0,5]] = -1.1572121117336978E+03 +v_z[1][[0,2,0,3,0,5]] = 1.0900660089479947E+05 +v_z[1][[0,1,1,3,0,5]] = -1.4000558073342732E+04 +v_z[1][[1,0,0,4,0,5]] = -2.3501150378704615E+03 +v_z[1][[0,1,0,4,0,5]] = 2.7029559448328731E+05 +v_z[1][[0,0,1,4,0,5]] = -2.8432922307948531E+04 +v_z[1][[0,0,0,5,0,5]] = 4.7513838325070945E+05 +v_z[1][[1,3,0,0,0,6]] = 3.7406639805915991E+00 +v_z[1][[0,4,0,0,0,6]] = -1.4873333161112899E+02 +v_z[1][[0,3,1,0,0,6]] = 4.5256511543655577E+01 +v_z[1][[1,2,0,1,0,6]] = 2.7677148032979854E+01 +v_z[1][[0,3,0,1,0,6]] = -2.6596493431593990E+03 +v_z[1][[0,2,1,1,0,6]] = 3.3485262935911101E+02 +v_z[1][[1,1,0,2,0,6]] = 1.3355683466347955E+02 +v_z[1][[0,2,0,2,0,6]] = -1.3338147165636381E+04 +v_z[1][[0,1,1,2,0,6]] = 1.6158405195020823E+03 +v_z[1][[1,0,0,3,0,6]] = 3.2129499634539292E+02 +v_z[1][[0,1,0,3,0,6]] = -4.2614611765465932E+04 +v_z[1][[0,0,1,3,0,6]] = 3.8871951039891046E+03 +v_z[1][[0,0,0,4,0,6]] = -8.6543546276051464E+04 +v_z[1][[1,2,0,0,0,7]] = -5.3193825568122666E-01 +v_z[1][[0,3,0,0,0,7]] = 1.1807215066647414E+02 +v_z[1][[0,2,1,0,0,7]] = -6.4356675535827828E+00 +v_z[1][[1,1,0,1,0,7]] = -8.5072155451097018E+00 +v_z[1][[0,2,0,1,0,7]] = 8.7361506126286884E+02 +v_z[1][[0,1,1,1,0,7]] = -1.0292474825839125E+02 +v_z[1][[1,0,0,2,0,7]] = -2.5062672316519023E+01 +v_z[1][[0,1,0,2,0,7]] = 4.2156533670875087E+03 +v_z[1][[0,0,1,2,0,7]] = -3.0322133313562523E+02 +v_z[1][[0,0,0,3,0,7]] = 1.0141512686974531E+04 +v_z[1][[1,1,0,0,0,8]] = 2.2849095286856613E-01 +v_z[1][[0,2,0,0,0,8]] = -1.4691564765356519E+01 +v_z[1][[0,1,1,0,0,8]] = 2.7644031914573519E+00 +v_z[1][[1,0,0,1,0,8]] = 8.8982127049838522E-01 +v_z[1][[0,1,0,1,0,8]] = -2.3496017971816880E+02 +v_z[1][[0,0,1,1,0,8]] = 1.0765523663456506E+01 +v_z[1][[0,0,0,2,0,8]] = -6.9220416016051286E+02 +v_z[1][[1,0,0,0,0,9]] = -3.7212339881573755E-15 +v_z[1][[0,1,0,0,0,9]] = 5.6094891908377535E+00 +v_z[1][[0,0,0,1,0,9]] = 2.1845253547128063E+01 +v_z[1][[0,0,0,0,0,10]] = -1.4466546441382276E-13 +v_z[2][[0,0,0,0,0,0]] = 8.1555963638229567E-01 +v_z[2][[0,1,0,0,0,0]] = 5.4784266868711706E-01 +v_z[2][[0,0,0,1,0,0]] = 1.8636225441262336E-01 +v_z[2][[0,0,0,0,0,1]] = 8.1555963638229567E-01 +v_z[2][[0,2,0,0,0,0]] = -4.0777981819114784E-01 +v_z[2][[0,0,0,2,0,0]] = -4.0777981819114784E-01 +v_z[2][[0,0,0,1,0,1]] = -4.8360018722269390E-18 +v_z[2][[0,0,0,0,0,2]] = -5.3075002763572164E-17 +v_z[2][[0,2,0,1,0,0]] = 2.4180009361134695E-18 +v_z[2][[0,0,0,3,0,0]] = -1.1606404493344653E-16 +v_z[2][[0,2,0,0,0,1]] = 4.0777981819114784E-01 +v_z[2][[0,0,0,2,0,1]] = 4.0777981819114789E-01 +v_z[2][[0,0,0,1,0,2]] = -2.9016011233361634E-17 +v_z[2][[0,0,0,0,0,3]] = 5.1866002295515430E-17 +v_z[2][[0,4,0,0,0,0]] = -1.0194495454778696E-01 +v_z[2][[0,2,0,2,0,0]] = -2.0388990909557395E-01 +v_z[2][[0,0,0,4,0,0]] = -1.0194495454778749E-01 +v_z[2][[0,0,0,3,0,1]] = 4.6425617973378614E-16 +v_z[2][[0,2,0,0,0,2]] = -4.0777981819114784E-01 +v_z[2][[0,0,0,2,0,2]] = -4.0777981819114806E-01 +v_z[2][[0,0,0,1,0,3]] = 3.8688014977815512E-17 +v_z[2][[0,0,0,0,0,4]] = -8.5596997570179838E-17 +v_z[2][[0,2,0,3,0,0]] = -2.3212808986689307E-16 +v_z[2][[0,0,0,5,0,0]] = -1.2380164792900964E-15 +v_z[2][[0,4,0,0,0,1]] = 3.0583486364336088E-01 +v_z[2][[0,2,0,2,0,1]] = 6.1166972728672198E-01 +v_z[2][[0,0,0,4,0,1]] = 3.0583486364336304E-01 +v_z[2][[0,2,0,1,0,2]] = -1.9344007488907756E-17 +v_z[2][[0,0,0,3,0,2]] = -1.2380164792900964E-15 +v_z[2][[0,2,0,0,0,3]] = 4.0777981819114795E-01 +v_z[2][[0,0,0,2,0,3]] = 4.0777981819114817E-01 +v_z[2][[0,0,0,1,0,4]] = 3.8688014977815512E-17 +v_z[2][[0,0,0,0,0,5]] = 7.2540028083404084E-18 +v_z[2][[0,6,0,0,0,0]] = -5.0972477273893479E-02 +v_z[2][[0,4,0,2,0,0]] = -1.5291743182168044E-01 +v_z[2][[0,2,0,4,0,0]] = -1.5291743182168091E-01 +v_z[2][[0,0,0,6,0,0]] = -5.0972477273898385E-02 +v_z[2][[0,4,0,1,0,1]] = -3.8688014977815512E-17 +v_z[2][[0,4,0,0,0,2]] = -6.1166972728672175E-01 +v_z[2][[0,2,0,2,0,2]] = -1.2233394545734440E+00 +v_z[2][[0,0,0,4,0,2]] = -6.1166972728672608E-01 +v_z[2][[0,0,0,3,0,3]] = 2.4760329585801927E-15 +v_z[2][[0,2,0,0,0,4]] = -4.0777981819114806E-01 +v_z[2][[0,0,0,2,0,4]] = -4.0777981819114767E-01 +v_z[2][[0,0,0,1,0,5]] = -3.8688014977815512E-17 +v_z[2][[0,0,0,0,0,6]] = -1.5668598952367885E-16 +v_z[2][[0,0,0,7,0,0]] = -1.9808263668641542E-14 +v_z[2][[0,6,0,0,0,1]] = 2.5486238636946740E-01 +v_z[2][[0,4,0,2,0,1]] = 7.6458715910840203E-01 +v_z[2][[0,2,0,4,0,1]] = 7.6458715910840636E-01 +v_z[2][[0,0,0,6,0,1]] = 2.5486238636950181E-01 +v_z[2][[0,4,0,1,0,2]] = 7.7376029955631023E-17 +v_z[2][[0,2,0,3,0,2]] = 4.9520659171603855E-15 +v_z[2][[0,4,0,0,0,3]] = 1.0194495454778696E+00 +v_z[2][[0,2,0,2,0,3]] = 2.0388990909557396E+00 +v_z[2][[0,0,0,4,0,3]] = 1.0194495454779280E+00 +v_z[2][[0,2,0,1,0,4]] = 1.5475205991126205E-16 +v_z[2][[0,2,0,0,0,5]] = 4.0777981819114850E-01 +v_z[2][[0,0,0,2,0,5]] = 4.0777981819114567E-01 +v_z[2][[0,0,0,0,0,7]] = 2.4180009361134692E-17 +v_z[2][[0,8,0,0,0,0]] = -3.1857798296183425E-02 +v_z[2][[0,6,0,2,0,0]] = -1.2743119318473370E-01 +v_z[2][[0,4,0,4,0,0]] = -1.9114678977710037E-01 +v_z[2][[0,2,0,6,0,0]] = -1.2743119318475091E-01 +v_z[2][[0,0,0,8,0,0]] = -3.1857798296663124E-02 +v_z[2][[0,6,0,1,0,1]] = -5.8032022466723267E-17 +v_z[2][[0,4,0,3,0,1]] = -1.2380164792900964E-15 +v_z[2][[0,2,0,5,0,1]] = -7.9233054674566168E-14 +v_z[2][[0,0,0,7,0,1]] = -3.1693221869826467E-13 +v_z[2][[0,6,0,0,0,2]] = -7.6458715910840214E-01 +v_z[2][[0,4,0,2,0,2]] = -2.2937614773252069E+00 +v_z[2][[0,2,0,4,0,2]] = -2.2937614773251997E+00 +v_z[2][[0,0,0,6,0,2]] = -7.6458715910787156E-01 +v_z[2][[0,4,0,1,0,3]] = -1.5475205991126205E-16 +v_z[2][[0,2,0,3,0,3]] = -9.9041318343207710E-15 +v_z[2][[0,0,0,5,0,3]] = 6.3386443739652934E-13 +v_z[2][[0,4,0,0,0,4]] = -1.5291743182168047E+00 +v_z[2][[0,2,0,2,0,4]] = -3.0583486364336090E+00 +v_z[2][[0,0,0,4,0,4]] = -1.5291743182168529E+00 +v_z[2][[0,2,0,1,0,5]] = -3.0950411982252409E-16 +v_z[2][[0,2,0,0,0,6]] = -4.0777981819114795E-01 +v_z[2][[0,0,0,2,0,6]] = -4.0777981819114495E-01 +v_z[2][[0,0,0,1,0,7]] = 4.6425617973378614E-16 +v_z[2][[0,0,0,0,0,8]] = 6.0256394873358070E-16 +v_z[2][[0,8,0,1,0,0]] = 4.8360018722269390E-18 +v_z[2][[0,0,0,9,0,0]] = -3.8031866243791761E-12 +v_z[2][[0,8,0,0,0,1]] = 2.2300458807328399E-01 +v_z[2][[0,6,0,2,0,1]] = 8.9201835229313575E-01 +v_z[2][[0,4,0,4,0,1]] = 1.3380275284397261E+00 +v_z[2][[0,2,0,6,0,1]] = 8.9201835229230564E-01 +v_z[2][[0,0,0,8,0,1]] = 2.2300458806681700E-01 +v_z[2][[0,6,0,1,0,2]] = 7.7376029955631023E-17 +v_z[2][[0,2,0,5,0,2]] = -3.1693221869826467E-13 +v_z[2][[0,0,0,7,0,2]] = 1.2677288747930585E-11 +v_z[2][[0,6,0,0,0,3]] = 1.7840367045862719E+00 +v_z[2][[0,4,0,2,0,3]] = 5.3521101137588154E+00 +v_z[2][[0,2,0,4,0,3]] = 5.3521101137584290E+00 +v_z[2][[0,0,0,6,0,3]] = 1.7840367045915837E+00 +v_z[2][[0,4,0,1,0,4]] = -3.0950411982252409E-16 +v_z[2][[0,2,0,3,0,4]] = -3.9616527337283084E-14 +v_z[2][[0,0,0,5,0,4]] = -1.2677288747930587E-12 +v_z[2][[0,4,0,0,0,5]] = 2.1408440455035276E+00 +v_z[2][[0,2,0,2,0,5]] = 4.2816880910070463E+00 +v_z[2][[0,0,0,4,0,5]] = 2.1408440455035951E+00 +v_z[2][[0,2,0,1,0,6]] = -6.1900823964504819E-16 +v_z[2][[0,0,0,3,0,6]] = 3.9616527337283084E-14 +v_z[2][[0,2,0,0,0,7]] = 4.0777981819114800E-01 +v_z[2][[0,0,0,2,0,7]] = 4.0777981819114251E-01 +v_z[2][[0,0,0,1,0,8]] = -6.1900823964504819E-16 +v_z[2][[0,0,0,0,0,9]] = 4.8360018722269383E-17 +v_z[2][[0,10,0,0,0,0]] = -2.2300458807328397E-02 +v_z[2][[0,8,0,2,0,0]] = -1.1150229403664200E-01 +v_z[2][[0,6,0,4,0,0]] = -2.2300458807328438E-01 +v_z[2][[0,4,0,6,0,0]] = -2.2300458807323487E-01 +v_z[2][[0,2,0,8,0,0]] = -1.1150229403340850E-01 +v_z[2][[0,0,0,10,0,0]] = -2.2300458833811095E-02 +v_z[2][[0,8,0,1,0,1]] = -7.7376029955631023E-17 +v_z[2][[0,6,0,3,0,1]] = 4.9520659171603855E-15 +v_z[2][[0,4,0,5,0,1]] = 1.5846610934913234E-13 +v_z[2][[0,2,0,7,0,1]] = -7.6063732487583521E-12 +v_z[2][[0,0,0,9,0,1]] = -2.0283661996688939E-11 +v_z[2][[0,8,0,0,0,2]] = -8.9201835229313586E-01 +v_z[2][[0,6,0,2,0,2]] = -3.5680734091725430E+00 +v_z[2][[0,4,0,4,0,2]] = -5.3521101137585081E+00 +v_z[2][[0,2,0,6,0,2]] = -3.5680734091755610E+00 +v_z[2][[0,0,0,8,0,2]] = -8.9201835219627512E-01 +v_z[2][[0,6,0,1,0,3]] = -3.0950411982252409E-16 +v_z[2][[0,2,0,5,0,3]] = -2.5354577495861174E-12 +v_z[2][[0,6,0,0,0,4]] = -3.5680734091725443E+00 +v_z[2][[0,4,0,2,0,4]] = -1.0704220227517652E+01 +v_z[2][[0,2,0,4,0,4]] = -1.0704220227517176E+01 +v_z[2][[0,0,0,6,0,4]] = -3.5680734091806330E+00 +v_z[2][[0,0,0,5,0,5]] = 1.0141830998344469E-11 +v_z[2][[0,4,0,0,0,6]] = -2.8544587273380353E+00 +v_z[2][[0,2,0,2,0,6]] = -5.7089174546760839E+00 +v_z[2][[0,0,0,4,0,6]] = -2.8544587273391810E+00 +v_z[2][[0,2,0,1,0,7]] = -1.2380164792900964E-15 +v_z[2][[0,0,0,3,0,7]] = -1.5846610934913234E-13 +v_z[2][[0,2,0,0,0,8]] = -4.0777981819115044E-01 +v_z[2][[0,0,0,2,0,8]] = -4.0777981819114045E-01 +v_z[2][[0,0,0,1,0,9]] = 6.1900823964504819E-16 +v_z[2][[0,0,0,0,0,10]] = 5.8032022466723267E-17 +v_z[3][[0,0,0,0,0,0]] = -4.6658276726731325E+00 +v_z[3][[1,0,0,0,0,0]] = -6.8423966858081142E-01 +v_z[3][[0,1,0,0,0,0]] = 4.8883780394693792E+00 +v_z[3][[0,0,1,0,0,0]] = 2.0114356699449174E+00 +v_z[3][[0,0,0,1,0,0]] = -1.4370195719809907E+01 +v_z[3][[1,1,0,0,0,0]] = -1.9911797994806493E-01 +v_z[3][[0,2,0,0,0,0]] = 1.4225482753148295E+00 +v_z[3][[0,1,1,0,0,0]] = -2.4090335846321635E+00 +v_z[3][[1,0,0,1,0,0]] = 5.8534023352610209E-01 +v_z[3][[0,1,0,1,0,0]] = 1.3028917991211632E+01 +v_z[3][[0,0,1,1,0,0]] = 7.0817526441791134E+00 +v_z[3][[0,0,0,2,0,0]] = -5.0593798776036557E+01 +v_z[3][[0,1,0,0,0,1]] = -4.8883780394693792E+00 +v_z[3][[0,0,0,1,0,1]] = 1.4370195719809907E+01 +v_z[3][[0,0,0,0,0,2]] = -2.9908780050024673E-15 +v_z[3][[1,2,0,0,0,0]] = -5.7944564980911231E-02 +v_z[3][[0,3,0,0,0,0]] = 2.8581593753950005E+00 +v_z[3][[0,2,1,0,0,0]] = -7.0104368838175568E-01 +v_z[3][[1,1,0,1,0,0]] = -5.3070605635906531E-01 +v_z[3][[0,2,0,1,0,0]] = 1.6148280707295586E+00 +v_z[3][[0,1,1,1,0,0]] = -6.4207597609725653E+00 +v_z[3][[1,0,0,2,0,0]] = 2.0608338653114426E+00 +v_z[3][[0,1,0,2,0,0]] = 3.3592581872007251E+01 +v_z[3][[0,0,1,2,0,0]] = 2.4933047207376632E+01 +v_z[3][[0,0,0,3,0,0]] = -1.8531297617831805E+02 +v_z[3][[1,1,0,0,0,1]] = 1.9911797994806493E-01 +v_z[3][[0,2,0,0,0,1]] = -2.8450965506296599E+00 +v_z[3][[0,1,1,0,0,1]] = 2.4090335846321635E+00 +v_z[3][[1,0,0,1,0,1]] = -5.8534023352610187E-01 +v_z[3][[0,1,0,1,0,1]] = -2.6057835982423267E+01 +v_z[3][[0,0,1,1,0,1]] = -7.0817526441791134E+00 +v_z[3][[0,0,0,2,0,1]] = 1.0118759755207309E+02 +v_z[3][[1,0,0,0,0,2]] = 1.1348938017852014E-16 +v_z[3][[0,1,0,0,0,2]] = 4.8883780394693819E+00 +v_z[3][[0,0,0,1,0,2]] = -1.4370195719809935E+01 +v_z[3][[0,0,0,0,0,3]] = 4.6363579969391675E-15 +v_z[3][[1,3,0,0,0,0]] = -1.1642121714057356E-01 +v_z[3][[0,4,0,0,0,0]] = 1.5430162118617257E+00 +v_z[3][[0,3,1,0,0,0]] = -1.4085248460663733E+00 +v_z[3][[1,2,0,1,0,0]] = -6.5776685193112305E-02 +v_z[3][[0,3,0,1,0,0]] = 1.7047235097162371E+01 +v_z[3][[0,2,1,1,0,0]] = -7.9580077980559594E-01 +v_z[3][[1,1,0,2,0,0]] = -1.3683244195901194E+00 +v_z[3][[0,2,0,2,0,0]] = -9.1245776304085222E+00 +v_z[3][[0,1,1,2,0,0]] = -1.6554705317544272E+01 +v_z[3][[1,0,0,3,0,0]] = 7.5483412241978947E+00 +v_z[3][[0,1,0,3,0,0]] = 7.0858159706055531E+01 +v_z[3][[0,0,1,3,0,0]] = 9.1323784633105760E+01 +v_z[3][[0,0,0,4,0,0]] = -6.7773668588511680E+02 +v_z[3][[1,2,0,0,0,1]] = 1.1588912996182243E-01 +v_z[3][[0,3,0,0,0,1]] = -8.5744781261849994E+00 +v_z[3][[0,2,1,0,0,1]] = 1.4020873767635114E+00 +v_z[3][[1,1,0,1,0,1]] = 1.0614121127181306E+00 +v_z[3][[0,2,0,1,0,1]] = -4.8444842121886591E+00 +v_z[3][[0,1,1,1,0,1]] = 1.2841519521945131E+01 +v_z[3][[1,0,0,2,0,1]] = -4.1216677306228862E+00 +v_z[3][[0,1,0,2,0,1]] = -1.0077774561602180E+02 +v_z[3][[0,0,1,2,0,1]] = -4.9866094414753263E+01 +v_z[3][[0,0,0,3,0,1]] = 5.5593892853495402E+02 +v_z[3][[1,1,0,0,0,2]] = -1.9911797994806507E-01 +v_z[3][[0,2,0,0,0,2]] = 4.2676448259444886E+00 +v_z[3][[0,1,1,0,0,2]] = -2.4090335846321631E+00 +v_z[3][[1,0,0,1,0,2]] = 5.8534023352610287E-01 +v_z[3][[0,1,0,1,0,2]] = 3.9086753973634913E+01 +v_z[3][[0,0,1,1,0,2]] = 7.0817526441791134E+00 +v_z[3][[0,0,0,2,0,2]] = -1.5178139632810982E+02 +v_z[3][[1,0,0,0,0,3]] = -1.6596405413960474E-16 +v_z[3][[0,1,0,0,0,3]] = -4.8883780394693872E+00 +v_z[3][[0,0,0,1,0,3]] = 1.4370195719809978E+01 +v_z[3][[0,0,0,0,0,4]] = -1.9572025000280723E-15 +v_z[3][[1,4,0,0,0,0]] = -6.2851577486910795E-02 +v_z[3][[0,5,0,0,0,0]] = 2.4891542136899751E+00 +v_z[3][[0,4,1,0,0,0]] = -7.6041129511544314E-01 +v_z[3][[1,3,0,1,0,0]] = -6.9438390174405951E-01 +v_z[3][[0,4,0,1,0,0]] = 9.4045575769822491E+00 +v_z[3][[0,3,1,1,0,0]] = -8.4010200403080937E+00 +v_z[3][[1,2,0,2,0,0]] = 3.7167081820935799E-01 +v_z[3][[0,3,0,2,0,0]] = 7.6811129081828000E+01 +v_z[3][[0,2,1,2,0,0]] = 4.4966681749563335E+00 +v_z[3][[1,1,0,3,0,0]] = -2.8862607412086341E+00 +v_z[3][[0,2,0,3,0,0]] = -1.0694677343791216E+02 +v_z[3][[0,1,1,3,0,0]] = -3.4919493766411421E+01 +v_z[3][[1,0,0,4,0,0]] = 2.7606203681576986E+01 +v_z[3][[0,1,0,4,0,0]] = 6.9655297916990961E+01 +v_z[3][[0,0,1,4,0,0]] = 3.3399430744757893E+02 +v_z[3][[0,0,0,5,0,0]] = -2.4805910015441850E+03 +v_z[3][[1,3,0,0,0,1]] = 3.4926365142172067E-01 +v_z[3][[0,4,0,0,0,1]] = -6.1720648474469009E+00 +v_z[3][[0,3,1,0,0,1]] = 4.2255745381991199E+00 +v_z[3][[1,2,0,1,0,1]] = 1.9733005557933692E-01 +v_z[3][[0,3,0,1,0,1]] = -6.8188940388649499E+01 +v_z[3][[0,2,1,1,0,1]] = 2.3874023394167878E+00 +v_z[3][[1,1,0,2,0,1]] = 4.1049732587703582E+00 +v_z[3][[0,2,0,2,0,1]] = 3.6498310521634096E+01 +v_z[3][[0,1,1,2,0,1]] = 4.9664115952632827E+01 +v_z[3][[1,0,0,3,0,1]] = -2.2645023672593688E+01 +v_z[3][[0,1,0,3,0,1]] = -2.8343263882422224E+02 +v_z[3][[0,0,1,3,0,1]] = -2.7397135389931731E+02 +v_z[3][[0,0,0,4,0,1]] = 2.7109467435404663E+03 +v_z[3][[1,2,0,0,0,2]] = -1.7383369494273357E-01 +v_z[3][[0,3,0,0,0,2]] = 1.7148956252370009E+01 +v_z[3][[0,2,1,0,0,2]] = -2.1031310651452677E+00 +v_z[3][[1,1,0,1,0,2]] = -1.5921181690771964E+00 +v_z[3][[0,2,0,1,0,2]] = 9.6889684243773306E+00 +v_z[3][[0,1,1,1,0,2]] = -1.9262279282917689E+01 +v_z[3][[1,0,0,2,0,2]] = 6.1825015959343395E+00 +v_z[3][[0,1,0,2,0,2]] = 2.0155549123204358E+02 +v_z[3][[0,0,1,2,0,2]] = 7.4799141622129895E+01 +v_z[3][[0,0,0,3,0,2]] = -1.1118778570699096E+03 +v_z[3][[1,1,0,0,0,3]] = 1.9911797994806527E-01 +v_z[3][[0,2,0,0,0,3]] = -5.6901931012593172E+00 +v_z[3][[0,1,1,0,0,3]] = 2.4090335846321631E+00 +v_z[3][[1,0,0,1,0,3]] = -5.8534023352610554E-01 +v_z[3][[0,1,0,1,0,3]] = -5.2115671964846577E+01 +v_z[3][[0,0,1,1,0,3]] = -7.0817526441791152E+00 +v_z[3][[0,0,0,2,0,3]] = 2.0237519510414688E+02 +v_z[3][[1,0,0,0,0,4]] = 1.1837663651818530E-16 +v_z[3][[0,1,0,0,0,4]] = 4.8883780394693881E+00 +v_z[3][[0,0,0,1,0,4]] = -1.4370195719810029E+01 +v_z[3][[0,0,0,0,0,5]] = 6.4768768996221705E-15 +v_z[3][[1,5,0,0,0,0]] = -1.0139055425078426E-01 +v_z[3][[0,6,0,0,0,0]] = 1.6736859278404346E+00 +v_z[3][[0,5,1,0,0,0]] = -1.2266760159896968E+00 +v_z[3][[1,4,0,1,0,0]] = -3.8307522288870377E-01 +v_z[3][[0,5,0,1,0,0]] = 2.1652694732616098E+01 +v_z[3][[0,4,1,1,0,0]] = -4.6346446344023757E+00 +v_z[3][[1,3,0,2,0,0]] = -3.1287426497734154E+00 +v_z[3][[0,4,0,2,0,0]] = 4.5704197357211484E+01 +v_z[3][[0,3,1,2,0,0]] = -3.7853166865900754E+01 +v_z[3][[1,2,0,3,0,0]] = 4.3562558617565301E+00 +v_z[3][[0,3,0,3,0,0]] = 2.8652017396875630E+02 +v_z[3][[0,2,1,3,0,0]] = 5.2704264461498497E+01 +v_z[3][[1,1,0,4,0,0]] = -2.8372646513681588E+00 +v_z[3][[0,2,0,4,0,0]] = -7.1216348792350163E+02 +v_z[3][[0,1,1,4,0,0]] = -3.4326713415926349E+01 +v_z[3][[1,0,0,5,0,0]] = 1.0104174949579699E+02 +v_z[3][[0,1,0,5,0,0]] = -4.3957108366176982E+02 +v_z[3][[0,0,1,5,0,0]] = 1.2224559934208469E+03 +v_z[3][[0,0,0,6,0,0]] = -9.0787216320293410E+03 +v_z[3][[1,4,0,0,0,1]] = 2.5140630994764335E-01 +v_z[3][[0,5,0,0,0,1]] = -1.2445771068449877E+01 +v_z[3][[0,4,1,0,0,1]] = 3.0416451804617726E+00 +v_z[3][[1,3,0,1,0,1]] = 2.7775356069762380E+00 +v_z[3][[0,4,0,1,0,1]] = -4.7022787884911224E+01 +v_z[3][[0,3,1,1,0,1]] = 3.3604080161232375E+01 +v_z[3][[1,2,0,2,0,1]] = -1.4866832728374302E+00 +v_z[3][[0,3,0,2,0,1]] = -3.8405564540913997E+02 +v_z[3][[0,2,1,2,0,1]] = -1.7986672699825334E+01 +v_z[3][[1,1,0,3,0,1]] = 1.1545042964834536E+01 +v_z[3][[0,2,0,3,0,1]] = 5.3473386718956044E+02 +v_z[3][[0,1,1,3,0,1]] = 1.3967797506564557E+02 +v_z[3][[1,0,0,4,0,1]] = -1.1042481472630799E+02 +v_z[3][[0,1,0,4,0,1]] = -3.4827648958495416E+02 +v_z[3][[0,0,1,4,0,1]] = -1.3359772297903157E+03 +v_z[3][[0,0,0,5,0,1]] = 1.2402955007720926E+04 +v_z[3][[1,3,0,0,0,2]] = -6.9852730284344156E-01 +v_z[3][[0,4,0,0,0,2]] = 1.5430162118617256E+01 +v_z[3][[0,3,1,0,0,2]] = -8.4511490763982398E+00 +v_z[3][[1,2,0,1,0,2]] = -3.9466011115867428E-01 +v_z[3][[0,3,0,1,0,2]] = 1.7047235097162380E+02 +v_z[3][[0,2,1,1,0,2]] = -4.7748046788335792E+00 +v_z[3][[1,1,0,2,0,2]] = -8.2099465175407218E+00 +v_z[3][[0,2,0,2,0,2]] = -9.1245776304085538E+01 +v_z[3][[0,1,1,2,0,2]] = -9.9328231905265596E+01 +v_z[3][[1,0,0,3,0,2]] = 4.5290047345187439E+01 +v_z[3][[0,1,0,3,0,2]] = 7.0858159706055653E+02 +v_z[3][[0,0,1,3,0,2]] = 5.4794270779863461E+02 +v_z[3][[0,0,0,4,0,2]] = -6.7773668588511719E+03 +v_z[3][[1,2,0,0,0,3]] = 2.3177825992364506E-01 +v_z[3][[0,3,0,0,0,3]] = -2.8581593753950028E+01 +v_z[3][[0,2,1,0,0,3]] = 2.8041747535270241E+00 +v_z[3][[1,1,0,1,0,3]] = 2.1228242254362648E+00 +v_z[3][[0,2,0,1,0,3]] = -1.6148280707295449E+01 +v_z[3][[0,1,1,1,0,3]] = 2.5683039043890250E+01 +v_z[3][[1,0,0,2,0,3]] = -8.2433354612458025E+00 +v_z[3][[0,1,0,2,0,3]] = -3.3592581872007253E+02 +v_z[3][[0,0,1,2,0,3]] = -9.9732188829506555E+01 +v_z[3][[0,0,0,3,0,3]] = 1.8531297617831863E+03 +v_z[3][[1,1,0,0,0,4]] = -1.9911797994806540E-01 +v_z[3][[0,2,0,0,0,4]] = 7.1127413765741458E+00 +v_z[3][[0,1,1,0,0,4]] = -2.4090335846321631E+00 +v_z[3][[1,0,0,1,0,4]] = 5.8534023352610542E-01 +v_z[3][[0,1,0,1,0,4]] = 6.5144589956058255E+01 +v_z[3][[0,0,1,1,0,4]] = 7.0817526441791170E+00 +v_z[3][[0,0,0,2,0,4]] = -2.5296899388018446E+02 +v_z[3][[1,0,0,0,0,5]] = -2.4040604895305627E-16 +v_z[3][[0,1,0,0,0,5]] = -4.8883780394693952E+00 +v_z[3][[0,0,0,1,0,5]] = 1.4370195719810091E+01 +v_z[3][[0,0,0,0,0,6]] = 1.7035339554873419E-15 +v_z[3][[1,6,0,0,0,0]] = -6.8174138400978829E-02 +v_z[3][[0,7,0,0,0,0]] = 2.3944236236712908E+00 +v_z[3][[0,6,1,0,0,0]] = -8.2480642408162030E-01 +v_z[3][[1,5,0,1,0,0]] = -8.8197778501979773E-01 +v_z[3][[0,6,0,1,0,0]] = 1.6199685125506132E+01 +v_z[3][[0,5,1,1,0,0]] = -1.0670629069089385E+01 +v_z[3][[1,4,0,2,0,0]] = -1.8616660535328640E+00 +v_z[3][[0,5,0,2,0,0]] = 1.3501415232478138E+02 +v_z[3][[0,4,1,2,0,0]] = -2.2523410731165718E+01 +v_z[3][[1,3,0,3,0,0]] = -1.1670807330036041E+01 +v_z[3][[0,4,0,3,0,0]] = 1.7006604714323853E+02 +v_z[3][[0,3,1,3,0,0]] = -1.4119953820926253E+02 +v_z[3][[1,2,0,4,0,0]] = 2.9008508336128550E+01 +v_z[3][[0,3,0,4,0,0]] = 8.8442576608850811E+02 +v_z[3][[0,2,1,4,0,0]] = 3.5096012344059830E+02 +v_z[3][[1,1,0,5,0,0]] = 1.7905019930049804E+01 +v_z[3][[0,2,0,5,0,0]] = -3.9778538364504307E+03 +v_z[3][[0,1,1,5,0,0]] = 2.1662430663594205E+02 +v_z[3][[1,0,0,6,0,0]] = 3.6980296885481499E+02 +v_z[3][[0,1,0,6,0,0]] = -4.1502497781845068E+03 +v_z[3][[0,0,1,6,0,0]] = 4.4740699554117991E+03 +v_z[3][[0,0,0,7,0,0]] = -3.3228224108857685E+04 +v_z[3][[1,5,0,0,0,1]] = 5.0695277125392113E-01 +v_z[3][[0,6,0,0,0,1]] = -1.0042115567042607E+01 +v_z[3][[0,5,1,0,0,1]] = 6.1333800799484841E+00 +v_z[3][[1,4,0,1,0,1]] = 1.9153761144435197E+00 +v_z[3][[0,5,0,1,0,1]] = -1.2991616839569653E+02 +v_z[3][[0,4,1,1,0,1]] = 2.3173223172011870E+01 +v_z[3][[1,3,0,2,0,1]] = 1.5643713248867087E+01 +v_z[3][[0,4,0,2,0,1]] = -2.7422518414326908E+02 +v_z[3][[0,3,1,2,0,1]] = 1.8926583432950369E+02 +v_z[3][[1,2,0,3,0,1]] = -2.1781279308782615E+01 +v_z[3][[0,3,0,3,0,1]] = -1.7191210438125370E+03 +v_z[3][[0,2,1,3,0,1]] = -2.6352132230749271E+02 +v_z[3][[1,1,0,4,0,1]] = 1.4186323256840808E+01 +v_z[3][[0,2,0,4,0,1]] = 4.2729809275410071E+03 +v_z[3][[0,1,1,4,0,1]] = 1.7163356707963203E+02 +v_z[3][[1,0,0,5,0,1]] = -5.0520874747898517E+02 +v_z[3][[0,1,0,5,0,1]] = 2.6374265019706136E+03 +v_z[3][[0,0,1,5,0,1]] = -6.1122799671042349E+03 +v_z[3][[0,0,0,6,0,1]] = 5.4472329792176010E+04 +v_z[3][[1,4,0,0,0,2]] = -6.2851577486910826E-01 +v_z[3][[0,5,0,0,0,2]] = 3.7337313205349631E+01 +v_z[3][[0,4,1,0,0,2]] = -7.6041129511544323E+00 +v_z[3][[1,3,0,1,0,2]] = -6.9438390174405971E+00 +v_z[3][[0,4,0,1,0,2]] = 1.4106836365473364E+02 +v_z[3][[0,3,1,1,0,2]] = -8.4010200403080944E+01 +v_z[3][[1,2,0,2,0,2]] = 3.7167081820935906E+00 +v_z[3][[0,3,0,2,0,2]] = 1.1521669362274206E+03 +v_z[3][[0,2,1,2,0,2]] = 4.4966681749563179E+01 +v_z[3][[1,1,0,3,0,2]] = -2.8862607412086362E+01 +v_z[3][[0,2,0,3,0,2]] = -1.6042016015686836E+03 +v_z[3][[0,1,1,3,0,2]] = -3.4919493766411370E+02 +v_z[3][[1,0,0,4,0,2]] = 2.7606203681577028E+02 +v_z[3][[0,1,0,4,0,2]] = 1.0448294687548539E+03 +v_z[3][[0,0,1,4,0,2]] = 3.3399430744757892E+03 +v_z[3][[0,0,0,5,0,2]] = -3.7208865023162783E+04 +v_z[3][[1,3,0,0,0,3]] = 1.1642121714057363E+00 +v_z[3][[0,4,0,0,0,3]] = -3.0860324237234504E+01 +v_z[3][[0,3,1,0,0,3]] = 1.4085248460663735E+01 +v_z[3][[1,2,0,1,0,3]] = 6.5776685193112172E-01 +v_z[3][[0,3,0,1,0,3]] = -3.4094470194324799E+02 +v_z[3][[0,2,1,1,0,3]] = 7.9580077980559807E+00 +v_z[3][[1,1,0,2,0,3]] = 1.3683244195901203E+01 +v_z[3][[0,2,0,2,0,3]] = 1.8249155260817201E+02 +v_z[3][[0,1,1,2,0,3]] = 1.6554705317544256E+02 +v_z[3][[1,0,0,3,0,3]] = -7.5483412241979181E+01 +v_z[3][[0,1,0,3,0,3]] = -1.4171631941211069E+03 +v_z[3][[0,0,1,3,0,3]] = -9.1323784633105777E+02 +v_z[3][[0,0,0,4,0,3]] = 1.3554733717702378E+04 +v_z[3][[1,2,0,0,0,4]] = -2.8972282490455620E-01 +v_z[3][[0,3,0,0,0,4]] = 4.2872390630925061E+01 +v_z[3][[0,2,1,0,0,4]] = -3.5052184419087822E+00 +v_z[3][[1,1,0,1,0,4]] = -2.6535302817953328E+00 +v_z[3][[0,2,0,1,0,4]] = 2.4222421060943333E+01 +v_z[3][[0,1,1,1,0,4]] = -3.2103798804862805E+01 +v_z[3][[1,0,0,2,0,4]] = 1.0304169326557250E+01 +v_z[3][[0,1,0,2,0,4]] = 5.0388872808010780E+02 +v_z[3][[0,0,1,2,0,4]] = 1.2466523603688321E+02 +v_z[3][[0,0,0,3,0,4]] = -2.7796946426747900E+03 +v_z[3][[1,1,0,0,0,5]] = 1.9911797994806568E-01 +v_z[3][[0,2,0,0,0,5]] = -8.5352896518890091E+00 +v_z[3][[0,1,1,0,0,5]] = 2.4090335846321627E+00 +v_z[3][[1,0,0,1,0,5]] = -5.8534023352610642E-01 +v_z[3][[0,1,0,1,0,5]] = -7.8173507947269826E+01 +v_z[3][[0,0,1,1,0,5]] = -7.0817526441791188E+00 +v_z[3][[0,0,0,2,0,5]] = 3.0356279265622265E+02 +v_z[3][[1,0,0,0,0,6]] = -1.2933496426824239E-16 +v_z[3][[0,1,0,0,0,6]] = 4.8883780394693961E+00 +v_z[3][[0,0,0,1,0,6]] = -1.4370195719810257E+01 +v_z[3][[0,0,0,0,0,7]] = 1.0105393170925861E-14 +v_z[3][[1,7,0,0,0,0]] = -9.7531899381723505E-02 +v_z[3][[0,8,0,0,0,0]] = 1.8154213568963600E+00 +v_z[3][[0,7,1,0,0,0]] = -1.1799919888943220E+00 +v_z[3][[1,6,0,1,0,0]] = -6.5986070470434477E-01 +v_z[3][[0,7,0,1,0,0]] = 2.6915923473076582E+01 +v_z[3][[0,6,1,1,0,0]] = -7.9833403253007491E+00 +v_z[3][[1,5,0,2,0,0]] = -5.4995225529302436E+00 +v_z[3][[0,6,0,2,0,0]] = 1.1636365808974371E+02 +v_z[3][[0,5,1,2,0,0]] = -6.6536103534731083E+01 +v_z[3][[1,4,0,3,0,0]] = -6.9272890704234165E+00 +v_z[3][[0,5,0,3,0,0]] = 6.9448914761986168E+02 +v_z[3][[0,4,1,3,0,0]] = -8.3809970478095465E+01 +v_z[3][[1,3,0,4,0,0]] = -3.6025256339764653E+01 +v_z[3][[0,4,0,4,0,0]] = 4.2687799892127913E+02 +v_z[3][[0,3,1,4,0,0]] = -4.3585241493566491E+02 +v_z[3][[1,2,0,5,0,0]] = 1.6202965769984559E+02 +v_z[3][[0,3,0,5,0,0]] = 1.9020206596320597E+03 +v_z[3][[0,2,1,5,0,0]] = 1.9603196416877513E+03 +v_z[3][[1,1,0,6,0,0]] = 1.6905185021281932E+02 +v_z[3][[0,2,0,6,0,0]] = -2.0288173238434756E+04 +v_z[3][[0,1,1,6,0,0]] = 2.0452778037076941E+03 +v_z[3][[1,0,0,7,0,0]] = 1.3534830588788498E+03 +v_z[3][[0,1,0,7,0,0]] = -2.4491705232851138E+04 +v_z[3][[0,0,1,7,0,0]] = 1.6375146764346662E+04 +v_z[3][[0,0,0,8,0,0]] = -1.2161535326102954E+05 +v_z[3][[1,6,0,0,0,1]] = 4.0904483040587314E-01 +v_z[3][[0,7,0,0,0,1]] = -1.6760965365699040E+01 +v_z[3][[0,6,1,0,0,1]] = 4.9488385444897229E+00 +v_z[3][[1,5,0,1,0,1]] = 5.2918667101187875E+00 +v_z[3][[0,6,0,1,0,1]] = -1.1339779587854296E+02 +v_z[3][[0,5,1,1,0,1]] = 6.4023774414536319E+01 +v_z[3][[1,4,0,2,0,1]] = 1.1169996321197186E+01 +v_z[3][[0,5,0,2,0,1]] = -9.4509906627346959E+02 +v_z[3][[0,4,1,2,0,1]] = 1.3514046438699427E+02 +v_z[3][[1,3,0,3,0,1]] = 7.0024843980216247E+01 +v_z[3][[0,4,0,3,0,1]] = -1.1904623300026672E+03 +v_z[3][[0,3,1,3,0,1]] = 8.4719722925557608E+02 +v_z[3][[1,2,0,4,0,1]] = -1.7405105001677128E+02 +v_z[3][[0,3,0,4,0,1]] = -6.1909803626195471E+03 +v_z[3][[0,2,1,4,0,1]] = -2.1057607406435909E+03 +v_z[3][[1,1,0,5,0,1]] = -1.0743011958029876E+02 +v_z[3][[0,2,0,5,0,1]] = 2.7844976855153032E+04 +v_z[3][[0,1,1,5,0,1]] = -1.2997458398156505E+03 +v_z[3][[1,0,0,6,0,1]] = -2.2188178131288910E+03 +v_z[3][[0,1,0,6,0,1]] = 2.9051748447291324E+04 +v_z[3][[0,0,1,6,0,1]] = -2.6844419732470804E+04 +v_z[3][[0,0,0,7,0,1]] = 2.3259756876200356E+05 +v_z[3][[1,5,0,0,0,2]] = -1.5208583137617637E+00 +v_z[3][[0,6,0,0,0,2]] = 3.5147404484649137E+01 +v_z[3][[0,5,1,0,0,2]] = -1.8400140239845456E+01 +v_z[3][[1,4,0,1,0,2]] = -5.7461283433305610E+00 +v_z[3][[0,5,0,1,0,2]] = 4.5470658938493813E+02 +v_z[3][[0,4,1,1,0,2]] = -6.9519669516035648E+01 +v_z[3][[1,3,0,2,0,2]] = -4.6931139746601268E+01 +v_z[3][[0,4,0,2,0,2]] = 9.5978814450144205E+02 +v_z[3][[0,3,1,2,0,2]] = -5.6779750298851093E+02 +v_z[3][[1,2,0,3,0,2]] = 6.5343837926347931E+01 +v_z[3][[0,3,0,3,0,2]] = 6.0169236533438789E+03 +v_z[3][[0,2,1,3,0,2]] = 7.9056396692247745E+02 +v_z[3][[1,1,0,4,0,2]] = -4.2558969770522367E+01 +v_z[3][[0,2,0,4,0,2]] = -1.4955433246393530E+04 +v_z[3][[0,1,1,4,0,2]] = -5.1490070123889291E+02 +v_z[3][[1,0,0,5,0,2]] = 1.5156262424369575E+03 +v_z[3][[0,1,0,5,0,2]] = -9.2309927568972889E+03 +v_z[3][[0,0,1,5,0,2]] = 1.8336839901312705E+04 +v_z[3][[0,0,0,6,0,2]] = -1.9065315427261608E+05 +v_z[3][[1,4,0,0,0,3]] = 1.2570315497382163E+00 +v_z[3][[0,5,0,0,0,3]] = -8.7120397479149148E+01 +v_z[3][[0,4,1,0,0,3]] = 1.5208225902308870E+01 +v_z[3][[1,3,0,1,0,3]] = 1.3887678034881201E+01 +v_z[3][[0,4,0,1,0,3]] = -3.2915951519437806E+02 +v_z[3][[0,3,1,1,0,3]] = 1.6802040080616183E+02 +v_z[3][[1,2,0,2,0,3]] = -7.4334163641871882E+00 +v_z[3][[0,3,0,2,0,3]] = -2.6883895178639827E+03 +v_z[3][[0,2,1,2,0,3]] = -8.9933363499126358E+01 +v_z[3][[1,1,0,3,0,3]] = 5.7725214824172838E+01 +v_z[3][[0,2,0,3,0,3]] = 3.7431370703269331E+03 +v_z[3][[0,1,1,3,0,3]] = 6.9838987532822648E+02 +v_z[3][[1,0,0,4,0,3]] = -5.5212407363154216E+02 +v_z[3][[0,1,0,4,0,3]] = -2.4379354270946551E+03 +v_z[3][[0,0,1,4,0,3]] = -6.6798861489515784E+03 +v_z[3][[0,0,0,5,0,3]] = 8.6820685054046655E+04 +v_z[3][[1,3,0,0,0,4]] = -1.7463182571086058E+00 +v_z[3][[0,4,0,0,0,4]] = 5.4005567415160456E+01 +v_z[3][[0,3,1,0,0,4]] = -2.1127872690995602E+01 +v_z[3][[1,2,0,1,0,4]] = -9.8665027789668436E-01 +v_z[3][[0,3,0,1,0,4]] = 5.9665322840068382E+02 +v_z[3][[0,2,1,1,0,4]] = -1.1937011697084003E+01 +v_z[3][[1,1,0,2,0,4]] = -2.0524866293851829E+01 +v_z[3][[0,2,0,2,0,4]] = -3.1936021706429921E+02 +v_z[3][[0,1,1,2,0,4]] = -2.4832057976316366E+02 +v_z[3][[1,0,0,3,0,4]] = 1.1322511836296886E+02 +v_z[3][[0,1,0,3,0,4]] = 2.4800355897119393E+03 +v_z[3][[0,0,1,3,0,4]] = 1.3698567694965870E+03 +v_z[3][[0,0,0,4,0,4]] = -2.3720784005979280E+04 +v_z[3][[1,2,0,0,0,5]] = 3.4766738988546919E-01 +v_z[3][[0,3,0,0,0,5]] = -6.0021346883295102E+01 +v_z[3][[0,2,1,0,0,5]] = 4.2062621302905416E+00 +v_z[3][[1,1,0,1,0,5]] = 3.1842363381544017E+00 +v_z[3][[0,2,0,1,0,5]] = -3.3911389485320768E+01 +v_z[3][[0,1,1,1,0,5]] = 3.8524558565835363E+01 +v_z[3][[1,0,0,2,0,5]] = -1.2365003191868691E+01 +v_z[3][[0,1,0,2,0,5]] = -7.0544421931214902E+02 +v_z[3][[0,0,1,2,0,5]] = -1.4959828324425987E+02 +v_z[3][[0,0,0,3,0,5]] = 3.8915724997447123E+03 +v_z[3][[1,1,0,0,0,6]] = -1.9911797994806563E-01 +v_z[3][[0,2,0,0,0,6]] = 9.9578379272038084E+00 +v_z[3][[0,1,1,0,0,6]] = -2.4090335846321644E+00 +v_z[3][[1,0,0,1,0,6]] = 5.8534023352610731E-01 +v_z[3][[0,1,0,1,0,6]] = 9.1202425938481582E+01 +v_z[3][[0,0,1,1,0,6]] = 7.0817526441791214E+00 +v_z[3][[0,0,0,2,0,6]] = -3.5415659143226151E+02 +v_z[3][[1,0,0,0,0,7]] = -2.3675327303637054E-16 +v_z[3][[0,1,0,0,0,7]] = -4.8883780394694138E+00 +v_z[3][[0,0,0,1,0,7]] = 1.4370195719810486E+01 +v_z[3][[0,0,0,0,0,8]] = -5.3747785298076987E-14 +v_z[3][[1,8,0,0,0,0]] = -7.3947438275256142E-02 +v_z[3][[0,9,0,0,0,0]] = 2.4062421715047946E+00 +v_z[3][[0,8,1,0,0,0]] = -8.9465482900675231E-01 +v_z[3][[1,7,0,1,0,0]] = -1.0963645338234680E+00 +v_z[3][[0,8,0,1,0,0]] = 2.3039339797884143E+01 +v_z[3][[0,7,1,1,0,0]] = -1.3264392214450979E+01 +v_z[3][[1,6,0,2,0,0]] = -4.7398332025712531E+00 +v_z[3][[0,7,0,2,0,0]] = 2.1095387350517970E+02 +v_z[3][[0,6,1,2,0,0]] = -5.7344983981491751E+01 +v_z[3][[1,5,0,3,0,0]] = -2.8288580599410913E+01 +v_z[3][[0,6,0,3,0,0]] = 6.8037847699461577E+02 +v_z[3][[0,5,1,3,0,0]] = -3.4225006070938167E+02 +v_z[3][[1,4,0,4,0,0]] = -1.7387993347319679E+01 +v_z[3][[0,5,0,4,0,0]] = 3.1152645558300051E+03 +v_z[3][[0,4,1,4,0,0]] = -2.1036904830984804E+02 +v_z[3][[1,3,0,5,0,0]] = -7.7474881956247941E+01 +v_z[3][[0,4,0,5,0,0]] = -2.2091182228993137E+02 +v_z[3][[0,3,1,5,0,0]] = -9.3733168971828582E+02 +v_z[3][[1,2,0,6,0,0]] = 8.2639682108382658E+02 +v_z[3][[0,3,0,6,0,0]] = -8.0610949868853197E+02 +v_z[3][[0,2,1,6,0,0]] = 9.9981814637906664E+03 +v_z[3][[1,1,0,7,0,0]] = 9.9761901229270006E+02 +v_z[3][[0,2,0,7,0,0]] = -9.7830173730697483E+04 +v_z[3][[0,1,1,7,0,0]] = 1.2069717189314295E+04 +v_z[3][[1,0,0,8,0,0]] = 4.9537501552630520E+03 +v_z[3][[0,1,0,8,0,0]] = -1.2368400389125964E+05 +v_z[3][[0,0,1,8,0,0]] = 5.9933063287494202E+04 +v_z[3][[0,0,0,9,0,0]] = -4.4511301048900193E+05 +v_z[3][[1,7,0,0,0,1]] = 6.8272329567206413E-01 +v_z[3][[0,8,0,0,0,1]] = -1.4523370855170885E+01 +v_z[3][[0,7,1,0,0,1]] = 8.2599439222602538E+00 +v_z[3][[1,6,0,1,0,1]] = 4.6190249329304169E+00 +v_z[3][[0,7,0,1,0,1]] = -2.1532738778461257E+02 +v_z[3][[0,6,1,1,0,1]] = 5.5883382277105255E+01 +v_z[3][[1,5,0,2,0,1]] = 3.8496657870511683E+01 +v_z[3][[0,6,0,2,0,1]] = -9.3090926471794967E+02 +v_z[3][[0,5,1,2,0,1]] = 4.6575272474311760E+02 +v_z[3][[1,4,0,3,0,1]] = 4.8491023492963905E+01 +v_z[3][[0,5,0,3,0,1]] = -5.5559131809588953E+03 +v_z[3][[0,4,1,3,0,1]] = 5.8666979334666894E+02 +v_z[3][[1,3,0,4,0,1]] = 2.5217679437835272E+02 +v_z[3][[0,4,0,4,0,1]] = -3.4150239913702130E+03 +v_z[3][[0,3,1,4,0,1]] = 3.0509669045496539E+03 +v_z[3][[1,2,0,5,0,1]] = -1.1342076038989176E+03 +v_z[3][[0,3,0,5,0,1]] = -1.5216165277056416E+04 +v_z[3][[0,2,1,5,0,1]] = -1.3722237491814260E+04 +v_z[3][[1,1,0,6,0,1]] = -1.1833629514897334E+03 +v_z[3][[0,2,0,6,0,1]] = 1.6230538590747834E+05 +v_z[3][[0,1,1,6,0,1]] = -1.4316944625953867E+04 +v_z[3][[1,0,0,7,0,1]] = -9.4743814121519499E+03 +v_z[3][[0,1,0,7,0,1]] = 1.9593364186280617E+05 +v_z[3][[0,0,1,7,0,1]] = -1.1462602735042667E+05 +v_z[3][[0,0,0,8,0,1]] = 9.7292282608823781E+05 +v_z[3][[1,6,0,0,0,2]] = -1.4316569064205560E+00 +v_z[3][[0,7,0,0,0,2]] = 6.7043861462796187E+01 +v_z[3][[0,6,1,0,0,2]] = -1.7320934905714029E+01 +v_z[3][[1,5,0,1,0,2]] = -1.8521533485415759E+01 +v_z[3][[0,6,0,1,0,2]] = 4.5359118351417175E+02 +v_z[3][[0,5,1,1,0,2]] = -2.2408321045087706E+02 +v_z[3][[1,4,0,2,0,2]] = -3.9094987124190112E+01 +v_z[3][[0,5,0,2,0,2]] = 3.7803962650938784E+03 +v_z[3][[0,4,1,2,0,2]] = -4.7299162535448068E+02 +v_z[3][[1,3,0,3,0,2]] = -2.4508695393075681E+02 +v_z[3][[0,4,0,3,0,2]] = 4.7618493200106604E+03 +v_z[3][[0,3,1,3,0,2]] = -2.9651903023945115E+03 +v_z[3][[1,2,0,4,0,2]] = 6.0917867505869913E+02 +v_z[3][[0,3,0,4,0,2]] = 2.4763921450478141E+04 +v_z[3][[0,2,1,4,0,2]] = 7.3701625922525582E+03 +v_z[3][[1,1,0,5,0,2]] = 3.7600541853104505E+02 +v_z[3][[0,2,0,5,0,2]] = -1.1137990742061229E+05 +v_z[3][[0,1,1,5,0,2]] = 4.5491104393548012E+03 +v_z[3][[1,0,0,6,0,2]] = 7.7658623459511173E+03 +v_z[3][[0,1,0,6,0,2]] = -1.1620699378916669E+05 +v_z[3][[0,0,1,6,0,2]] = 9.3955469063647804E+04 +v_z[3][[0,0,0,7,0,2]] = -9.3039027504801296E+05 +v_z[3][[1,5,0,0,0,3]] = 3.5486693987774500E+00 +v_z[3][[0,6,0,0,0,3]] = -9.3726411959064393E+01 +v_z[3][[0,5,1,0,0,3]] = 4.2933660559639392E+01 +v_z[3][[1,4,0,1,0,3]] = 1.3407632801104645E+01 +v_z[3][[0,5,0,1,0,3]] = -1.2125509050265021E+03 +v_z[3][[0,4,1,1,0,3]] = 1.6221256220408327E+02 +v_z[3][[1,3,0,2,0,3]] = 1.0950599274206969E+02 +v_z[3][[0,4,0,2,0,3]] = -2.5594350520038420E+03 +v_z[3][[0,3,1,2,0,3]] = 1.3248608403065257E+03 +v_z[3][[1,2,0,3,0,3]] = -1.5246895516147868E+02 +v_z[3][[0,3,0,3,0,3]] = -1.6045129742250359E+04 +v_z[3][[0,2,1,3,0,3]] = -1.8446492561524456E+03 +v_z[3][[1,1,0,4,0,3]] = 9.9304262797886850E+01 +v_z[3][[0,2,0,4,0,3]] = 3.9881155323716055E+04 +v_z[3][[0,1,1,4,0,3]] = 1.2014349695573983E+03 +v_z[3][[1,0,0,5,0,3]] = -3.5364612323529195E+03 +v_z[3][[0,1,0,5,0,3]] = 2.4615980685058701E+04 +v_z[3][[0,0,1,5,0,3]] = -4.2785959769729634E+04 +v_z[3][[0,0,0,6,0,3]] = 5.0840841139364539E+05 +v_z[3][[1,4,0,0,0,4]] = -2.1998052120418814E+00 +v_z[3][[0,5,0,0,0,4]] = 1.7424079495829841E+02 +v_z[3][[0,4,1,0,0,4]] = -2.6614395329040526E+01 +v_z[3][[1,3,0,1,0,4]] = -2.4303436561042112E+01 +v_z[3][[0,4,0,1,0,4]] = 6.5831903038875805E+02 +v_z[3][[0,3,1,1,0,4]] = -2.9403570141078319E+02 +v_z[3][[1,2,0,2,0,4]] = 1.3008478637327627E+01 +v_z[3][[0,3,0,2,0,4]] = 5.3767790357279646E+03 +v_z[3][[0,2,1,2,0,4]] = 1.5738338612347070E+02 +v_z[3][[1,1,0,3,0,4]] = -1.0101912594230248E+02 +v_z[3][[0,2,0,3,0,4]] = -7.4862741406539126E+03 +v_z[3][[0,1,1,3,0,4]] = -1.2221822818243954E+03 +v_z[3][[1,0,0,4,0,4]] = 9.6621712885520026E+02 +v_z[3][[0,1,0,4,0,4]] = 4.8758708541891456E+03 +v_z[3][[0,0,1,4,0,4]] = 1.1689800760665261E+04 +v_z[3][[0,0,0,5,0,4]] = -1.7364137010809354E+05 +v_z[3][[1,3,0,0,0,5]] = 2.4448455599520482E+00 +v_z[3][[0,4,0,0,0,5]] = -8.6408907864256776E+01 +v_z[3][[0,3,1,0,0,5]] = 2.9579021767393851E+01 +v_z[3][[1,2,0,1,0,5]] = 1.3813103890553666E+00 +v_z[3][[0,3,0,1,0,5]] = -9.5464516544109472E+02 +v_z[3][[0,2,1,1,0,5]] = 1.6711816375917635E+01 +v_z[3][[1,1,0,2,0,5]] = 2.8734812811392544E+01 +v_z[3][[0,2,0,2,0,5]] = 5.1097634730288411E+02 +v_z[3][[0,1,1,2,0,5]] = 3.4764881166842912E+02 +v_z[3][[1,0,0,3,0,5]] = -1.5851516570815636E+02 +v_z[3][[0,1,0,3,0,5]] = -3.9680569435389975E+03 +v_z[3][[0,0,1,3,0,5]] = -1.9177994772952218E+03 +v_z[3][[0,0,0,4,0,5]] = 3.7953254409567162E+04 +v_z[3][[1,2,0,0,0,6]] = -4.0561195486637880E-01 +v_z[3][[0,3,0,0,0,6]] = 8.0028462511060155E+01 +v_z[3][[0,2,1,0,0,6]] = -4.9073058186722989E+00 +v_z[3][[1,1,0,1,0,6]] = -3.7149423945134705E+00 +v_z[3][[0,2,0,1,0,6]] = 4.5215185980427236E+01 +v_z[3][[0,1,1,1,0,6]] = -4.4945318326807907E+01 +v_z[3][[1,0,0,2,0,6]] = 1.4425837057180118E+01 +v_z[3][[0,1,0,2,0,6]] = 9.4059229241619698E+02 +v_z[3][[0,0,1,2,0,6]] = 1.7453133045163653E+02 +v_z[3][[0,0,0,3,0,6]] = -5.1887633329929322E+03 +v_z[3][[1,1,0,0,0,7]] = 1.9911797994806596E-01 +v_z[3][[0,2,0,0,0,7]] = -1.1380386202518560E+01 +v_z[3][[0,1,1,0,0,7]] = 2.4090335846321644E+00 +v_z[3][[1,0,0,1,0,7]] = -5.8534023352611486E-01 +v_z[3][[0,1,0,1,0,7]] = -1.0423134392969297E+02 +v_z[3][[0,0,1,1,0,7]] = -7.0817526441791241E+00 +v_z[3][[0,0,0,2,0,7]] = 4.0475039020830764E+02 +v_z[3][[1,0,0,0,0,8]] = 1.7462246790302828E-15 +v_z[3][[0,1,0,0,0,8]] = 4.8883780394695009E+00 +v_z[3][[0,0,0,1,0,8]] = -1.4370195719811198E+01 +v_z[3][[0,0,0,0,0,9]] = 8.0918353229703886E-14 +v_z[3][[1,9,0,0,0,0]] = -9.8013303510358002E-02 +v_z[3][[0,10,0,0,0,0]] = 1.9691595945530533E+00 +v_z[3][[0,9,1,0,0,0]] = -1.1858162681179443E+00 +v_z[3][[1,8,0,1,0,0]] = -9.3845990691622905E-01 +v_z[3][[0,9,0,1,0,0]] = 3.2915299179007832E+01 +v_z[3][[0,8,1,1,0,0]] = -1.1353979355262840E+01 +v_z[3][[1,7,0,2,0,0]] = -8.5927702021856192E+00 +v_z[3][[0,8,0,2,0,0]] = 2.0569049838702117E+02 +v_z[3][[0,7,1,2,0,0]] = -1.0395983329828286E+02 +v_z[3][[1,6,0,3,0,0]] = -2.7713811584427830E+01 +v_z[3][[0,7,0,3,0,0]] = 1.3523006950409115E+03 +v_z[3][[0,6,1,3,0,0]] = -3.3529620420249398E+02 +v_z[3][[1,5,0,4,0,0]] = -1.2689386548099395E+02 +v_z[3][[0,6,0,4,0,0]] = 3.4448842817765822E+03 +v_z[3][[0,5,1,4,0,0]] = -1.5352284294328506E+03 +v_z[3][[1,4,0,5,0,0]] = 8.9983866726065571E+00 +v_z[3][[0,5,0,5,0,0]] = 1.2240947340486435E+04 +v_z[3][[0,4,1,5,0,0]] = 1.0886719374848508E+02 +v_z[3][[1,3,0,6,0,0]] = 3.2835204990265993E+01 +v_z[3][[0,4,0,6,0,0]] = -1.2390498478914637E+04 +v_z[3][[0,3,1,6,0,0]] = 3.9725750331778545E+02 +v_z[3][[1,2,0,7,0,0]] = 3.9849100077658695E+03 +v_z[3][[0,3,0,7,0,0]] = -4.2659825384033880E+04 +v_z[3][[0,2,1,7,0,0]] = 4.8211527873819359E+04 +v_z[3][[1,1,0,8,0,0]] = 5.0380123648107447E+03 +v_z[3][[0,2,0,8,0,0]] = -4.5387389318823919E+05 +v_z[3][[0,1,1,8,0,0]] = 6.0952511620431425E+04 +v_z[3][[1,0,0,9,0,0]] = 1.8130758869620873E+04 +v_z[3][[0,1,0,9,0,0]] = -5.7728637645122502E+05 +v_z[3][[0,0,1,9,0,0]] = 2.1935541452949526E+05 +v_z[3][[0,0,0,10,0,0]] = -1.6291163831508628E+06 +v_z[3][[1,8,0,0,0,1]] = 5.9157950620204913E-01 +v_z[3][[0,9,0,0,0,1]] = -2.1656179543543153E+01 +v_z[3][[0,8,1,0,0,1]] = 7.1572386320540158E+00 +v_z[3][[1,7,0,1,0,1]] = 8.7709162705877368E+00 +v_z[3][[0,8,0,1,0,1]] = -2.0735405818095745E+02 +v_z[3][[0,7,1,1,0,1]] = 1.0611513771560784E+02 +v_z[3][[1,6,0,2,0,1]] = 3.7918665620570067E+01 +v_z[3][[0,7,0,2,0,1]] = -1.8985848615466186E+03 +v_z[3][[0,6,1,2,0,1]] = 4.5875987185193389E+02 +v_z[3][[1,5,0,3,0,1]] = 2.2630864479528731E+02 +v_z[3][[0,6,0,3,0,1]] = -6.1234062929515285E+03 +v_z[3][[0,5,1,3,0,1]] = 2.7380004856750534E+03 +v_z[3][[1,4,0,4,0,1]] = 1.3910394677855675E+02 +v_z[3][[0,5,0,4,0,1]] = -2.8037381002470127E+04 +v_z[3][[0,4,1,4,0,1]] = 1.6829523864787880E+03 +v_z[3][[1,3,0,5,0,1]] = 6.1979905564998444E+02 +v_z[3][[0,4,0,5,0,1]] = 1.9882064006092410E+03 +v_z[3][[0,3,1,5,0,1]] = 7.4986535177462647E+03 +v_z[3][[1,2,0,6,0,1]] = -6.6111745686705945E+03 +v_z[3][[0,3,0,6,0,1]] = 7.2549854881971642E+03 +v_z[3][[0,2,1,6,0,1]] = -7.9985451710325317E+04 +v_z[3][[1,1,0,7,0,1]] = -7.9809520983416151E+03 +v_z[3][[0,2,0,7,0,1]] = 8.8047156357627816E+05 +v_z[3][[0,1,1,7,0,1]] = -9.6557737514514272E+04 +v_z[3][[1,0,0,8,0,1]] = -3.9630001242104299E+04 +v_z[3][[0,1,0,8,0,1]] = 1.1131560350213232E+06 +v_z[3][[0,0,1,8,0,1]] = -4.7946450629995367E+05 +v_z[3][[0,0,0,9,0,1]] = 4.0060170944010336E+06 +v_z[3][[1,7,0,0,0,2]] = -2.7308931826882574E+00 +v_z[3][[0,8,0,0,0,2]] = 6.5355168848269017E+01 +v_z[3][[0,7,1,0,0,2]] = -3.3039775689041015E+01 +v_z[3][[1,6,0,1,0,2]] = -1.8476099731721668E+01 +v_z[3][[0,7,0,1,0,2]] = 9.6897324503075708E+02 +v_z[3][[0,6,1,1,0,2]] = -2.2353352910842096E+02 +v_z[3][[1,5,0,2,0,2]] = -1.5398663148204682E+02 +v_z[3][[0,6,0,2,0,2]] = 4.1890916912307730E+03 +v_z[3][[0,5,1,2,0,2]] = -1.8630108989724704E+03 +v_z[3][[1,4,0,3,0,2]] = -1.9396409397185562E+02 +v_z[3][[0,5,0,3,0,2]] = 2.5001609314315047E+04 +v_z[3][[0,4,1,3,0,2]] = -2.3466791733866721E+03 +v_z[3][[1,3,0,4,0,2]] = -1.0087071775134114E+03 +v_z[3][[0,4,0,4,0,2]] = 1.5367607961165882E+04 +v_z[3][[0,3,1,4,0,2]] = -1.2203867618198594E+04 +v_z[3][[1,2,0,5,0,2]] = 4.5368304155956785E+03 +v_z[3][[0,3,0,5,0,2]] = 6.8472743746755004E+04 +v_z[3][[0,2,1,5,0,2]] = 5.4888949967257009E+04 +v_z[3][[1,1,0,6,0,2]] = 4.7334518059589482E+03 +v_z[3][[0,2,0,6,0,2]] = -7.3037423658365128E+05 +v_z[3][[0,1,1,6,0,2]] = 5.7267778503815527E+04 +v_z[3][[1,0,0,7,0,2]] = 3.7897525648607618E+04 +v_z[3][[0,1,0,7,0,2]] = -8.8170138838263927E+05 +v_z[3][[0,0,1,7,0,2]] = 4.5850410940170666E+05 +v_z[3][[0,0,0,8,0,2]] = -4.3781527173970398E+06 +v_z[3][[1,6,0,0,0,3]] = 3.8177517504548164E+00 +v_z[3][[0,7,0,0,0,3]] = -2.0113158438838855E+02 +v_z[3][[0,6,1,0,0,3]] = 4.6189159748570745E+01 +v_z[3][[1,5,0,1,0,3]] = 4.9390755961108695E+01 +v_z[3][[0,6,0,1,0,3]] = -1.3607735505425169E+03 +v_z[3][[0,5,1,1,0,3]] = 5.9755522786900542E+02 +v_z[3][[1,4,0,2,0,3]] = 1.0425329899784035E+02 +v_z[3][[0,5,0,2,0,3]] = -1.1341188795281643E+04 +v_z[3][[0,4,1,2,0,3]] = 1.2613110009452807E+03 +v_z[3][[1,3,0,3,0,3]] = 6.5356521048201876E+02 +v_z[3][[0,4,0,3,0,3]] = -1.4285547960031934E+04 +v_z[3][[0,3,1,3,0,3]] = 7.9071741397187016E+03 +v_z[3][[1,2,0,4,0,3]] = -1.6244764668231919E+03 +v_z[3][[0,3,0,4,0,3]] = -7.4291764351434336E+04 +v_z[3][[0,2,1,4,0,3]] = -1.9653766912673491E+04 +v_z[3][[1,1,0,5,0,3]] = -1.0026811160827765E+03 +v_z[3][[0,2,0,5,0,3]] = 3.3413972226183623E+05 +v_z[3][[0,1,1,5,0,3]] = -1.2130961171612958E+04 +v_z[3][[1,0,0,6,0,3]] = -2.0708966255869847E+04 +v_z[3][[0,1,0,6,0,3]] = 3.4862098136748734E+05 +v_z[3][[0,0,1,6,0,3]] = -2.5054791750306077E+05 +v_z[3][[0,0,0,7,0,3]] = 2.7911708251440637E+06 +v_z[3][[1,5,0,0,0,4]] = -7.0973387975549018E+00 +v_z[3][[0,6,0,0,0,4]] = 2.1088442690789492E+02 +v_z[3][[0,5,1,0,0,4]] = -8.5867321119278799E+01 +v_z[3][[1,4,0,1,0,4]] = -2.6815265602209301E+01 +v_z[3][[0,5,0,1,0,4]] = 2.7282395363096307E+03 +v_z[3][[0,4,1,1,0,4]] = -3.2442512440816648E+02 +v_z[3][[1,3,0,2,0,4]] = -2.1901198548413944E+02 +v_z[3][[0,4,0,2,0,4]] = 5.7587288670086482E+03 +v_z[3][[0,3,1,2,0,4]] = -2.6497216806130509E+03 +v_z[3][[1,2,0,3,0,4]] = 3.0493791032295871E+02 +v_z[3][[0,3,0,3,0,4]] = 3.6101541920063370E+04 +v_z[3][[0,2,1,3,0,4]] = 3.6892985123048929E+03 +v_z[3][[1,1,0,4,0,4]] = -1.9860852559577370E+02 +v_z[3][[0,2,0,4,0,4]] = -8.9732599478361590E+04 +v_z[3][[0,1,1,4,0,4]] = -2.4028699391147820E+03 +v_z[3][[1,0,0,5,0,4]] = 7.0729224647058609E+03 +v_z[3][[0,1,0,5,0,4]] = -5.5385956541385865E+04 +v_z[3][[0,0,1,5,0,4]] = 8.5571919539459297E+04 +v_z[3][[0,0,0,6,0,4]] = -1.1439189256356955E+06 +v_z[3][[1,4,0,0,0,5]] = 3.5196883392670104E+00 +v_z[3][[0,5,0,0,0,5]] = -3.1363343092493733E+02 +v_z[3][[0,4,1,0,0,5]] = 4.2583032526464855E+01 +v_z[3][[1,3,0,1,0,5]] = 3.8885498497667385E+01 +v_z[3][[0,4,0,1,0,5]] = -1.1849742546997636E+03 +v_z[3][[0,3,1,1,0,5]] = 4.7045712225725322E+02 +v_z[3][[1,2,0,2,0,5]] = -2.0813565819723976E+01 +v_z[3][[0,3,0,2,0,5]] = -9.6782022643103446E+03 +v_z[3][[0,2,1,2,0,5]] = -2.5181341779755348E+02 +v_z[3][[1,1,0,3,0,5]] = 1.6163060150768376E+02 +v_z[3][[0,2,0,3,0,5]] = 1.3475293453176981E+04 +v_z[3][[0,1,1,3,0,5]] = 1.9554916509190298E+03 +v_z[3][[1,0,0,4,0,5]] = -1.5459474061683202E+03 +v_z[3][[0,1,0,4,0,5]] = -8.7765675375386090E+03 +v_z[3][[0,0,1,4,0,5]] = -1.8703681217064423E+04 +v_z[3][[0,0,0,5,0,5]] = 3.1255446619457408E+05 +v_z[3][[1,3,0,0,0,6]] = -3.2597940799360661E+00 +v_z[3][[0,4,0,0,0,6]] = 1.2961336179638513E+02 +v_z[3][[0,3,1,0,0,6]] = -3.9438695689858463E+01 +v_z[3][[1,2,0,1,0,6]] = -1.8417471854071525E+00 +v_z[3][[0,3,0,1,0,6]] = 1.4319677481616418E+03 +v_z[3][[0,2,1,1,0,6]] = -2.2282421834556857E+01 +v_z[3][[1,1,0,2,0,6]] = -3.8313083748523347E+01 +v_z[3][[0,2,0,2,0,6]] = -7.6646452095434336E+02 +v_z[3][[0,1,1,2,0,6]] = -4.6353174889123886E+02 +v_z[3][[1,0,0,3,0,6]] = 2.1135355427754106E+02 +v_z[3][[0,1,0,3,0,6]] = 5.9520854153084065E+03 +v_z[3][[0,0,1,3,0,6]] = 2.5570659697269630E+03 +v_z[3][[0,0,0,4,0,6]] = -5.6929881614350321E+04 +v_z[3][[1,2,0,0,0,7]] = 4.6355651984728818E-01 +v_z[3][[0,3,0,0,0,7]] = -1.0289373751422039E+02 +v_z[3][[0,2,1,0,0,7]] = 5.6083495070540597E+00 +v_z[3][[1,1,0,1,0,7]] = 4.2456484508725474E+00 +v_z[3][[0,2,0,1,0,7]] = -5.8133810546263696E+01 +v_z[3][[0,1,1,1,0,7]] = 5.1366078087780437E+01 +v_z[3][[1,0,0,2,0,7]] = -1.6486670922491584E+01 +v_z[3][[0,1,0,2,0,7]] = -1.2093329473922688E+03 +v_z[3][[0,0,1,2,0,7]] = -1.9946437765901325E+02 +v_z[3][[0,0,0,3,0,7]] = 6.6712671424195878E+03 +v_z[3][[1,1,0,0,0,8]] = -1.9911797994806765E-01 +v_z[3][[0,2,0,0,0,8]] = 1.2802934477833471E+01 +v_z[3][[0,1,1,0,0,8]] = -2.4090335846321573E+00 +v_z[3][[1,0,0,1,0,8]] = 5.8534023352613507E-01 +v_z[3][[0,1,0,1,0,8]] = 1.1726026192090642E+02 +v_z[3][[0,0,1,1,0,8]] = 7.0817526441791214E+00 +v_z[3][[0,0,0,2,0,8]] = -4.5534418898435518E+02 +v_z[3][[1,0,0,0,0,9]] = -2.4478938005307911E-15 +v_z[3][[0,1,0,0,0,9]] = -4.8883780394696998E+00 +v_z[3][[0,0,0,1,0,9]] = 1.4370195719811958E+01 +v_z[3][[0,0,0,0,0,10]] = -9.2722592696757856E-14 +v_z[4][[0,0,0,0,0,0]] = 5.1056863393444984E-01 +v_z[4][[0,1,0,0,0,0]] = -8.3281830218258979E-01 +v_z[4][[0,0,0,1,0,0]] = 2.1385356109267489E-01 +v_z[4][[0,0,0,0,0,1]] = 5.1056863393444984E-01 +v_z[4][[0,2,0,0,0,0]] = -2.5528431696722492E-01 +v_z[4][[0,0,0,2,0,0]] = -2.5528431696722492E-01 +v_z[4][[0,0,0,1,0,1]] = 7.3515830342890819E-18 +v_z[4][[0,0,0,0,0,2]] = -1.6481295189900569E-17 +v_z[4][[0,2,0,1,0,0]] = -3.6757915171445410E-18 +v_z[4][[0,0,0,3,0,0]] = 1.7643799282293797E-16 +v_z[4][[0,2,0,0,0,1]] = 2.5528431696722492E-01 +v_z[4][[0,0,0,2,0,1]] = 2.5528431696722481E-01 +v_z[4][[0,0,0,1,0,2]] = 4.4109498205734491E-17 +v_z[4][[0,0,0,0,0,3]] = 1.8319190948472838E-17 +v_z[4][[0,4,0,0,0,0]] = -6.3821079241806231E-02 +v_z[4][[0,2,0,2,0,0]] = -1.2764215848361241E-01 +v_z[4][[0,0,0,4,0,0]] = -6.3821079241805440E-02 +v_z[4][[0,0,0,3,0,1]] = -7.0575197129175186E-16 +v_z[4][[0,2,0,0,0,2]] = -2.5528431696722492E-01 +v_z[4][[0,0,0,2,0,2]] = -2.5528431696722459E-01 +v_z[4][[0,0,0,1,0,3]] = -5.8812664274312655E-17 +v_z[4][[0,0,0,0,0,4]] = -6.4206818275529741E-17 +v_z[4][[0,2,0,3,0,0]] = 3.5287598564587593E-16 +v_z[4][[0,0,0,5,0,0]] = 1.8820052567780050E-15 +v_z[4][[0,4,0,0,0,1]] = 1.9146323772541871E-01 +v_z[4][[0,2,0,2,0,1]] = 3.8292647545083708E-01 +v_z[4][[0,0,0,4,0,1]] = 1.9146323772541538E-01 +v_z[4][[0,2,0,1,0,2]] = 2.9406332137156328E-17 +v_z[4][[0,0,0,3,0,2]] = 1.8820052567780050E-15 +v_z[4][[0,2,0,0,0,3]] = 2.5528431696722498E-01 +v_z[4][[0,0,0,2,0,3]] = 2.5528431696722464E-01 +v_z[4][[0,0,0,1,0,4]] = -5.8812664274312655E-17 +v_z[4][[0,0,0,0,0,5]] = -1.1027374551433623E-17 +v_z[4][[0,6,0,0,0,0]] = -3.1910539620903115E-02 +v_z[4][[0,4,0,2,0,0]] = -9.5731618862709339E-02 +v_z[4][[0,2,0,4,0,0]] = -9.5731618862708631E-02 +v_z[4][[0,0,0,6,0,0]] = -3.1910539620895663E-02 +v_z[4][[0,4,0,1,0,1]] = 5.8812664274312655E-17 +v_z[4][[0,4,0,0,0,2]] = -3.8292647545083741E-01 +v_z[4][[0,2,0,2,0,2]] = -7.6585295090167416E-01 +v_z[4][[0,0,0,4,0,2]] = -3.8292647545083075E-01 +v_z[4][[0,0,0,3,0,3]] = -3.7640105135560099E-15 +v_z[4][[0,2,0,0,0,4]] = -2.5528431696722503E-01 +v_z[4][[0,0,0,2,0,4]] = -2.5528431696722564E-01 +v_z[4][[0,0,0,1,0,5]] = 5.8812664274312655E-17 +v_z[4][[0,0,0,0,0,6]] = -1.5046838565392672E-16 +v_z[4][[0,0,0,7,0,0]] = 3.0112084108448080E-14 +v_z[4][[0,6,0,0,0,1]] = 1.5955269810451558E-01 +v_z[4][[0,4,0,2,0,1]] = 4.7865809431354689E-01 +v_z[4][[0,2,0,4,0,1]] = 4.7865809431354034E-01 +v_z[4][[0,0,0,6,0,1]] = 1.5955269810446326E-01 +v_z[4][[0,4,0,1,0,2]] = -1.1762532854862531E-16 +v_z[4][[0,2,0,3,0,2]] = -7.5280210271120199E-15 +v_z[4][[0,4,0,0,0,3]] = 6.3821079241806233E-01 +v_z[4][[0,2,0,2,0,3]] = 1.2764215848361238E+00 +v_z[4][[0,0,0,4,0,3]] = 6.3821079241797352E-01 +v_z[4][[0,2,0,1,0,4]] = -2.3525065709725062E-16 +v_z[4][[0,2,0,0,0,5]] = 2.5528431696722548E-01 +v_z[4][[0,0,0,2,0,5]] = 2.5528431696722975E-01 +v_z[4][[0,0,0,0,0,7]] = -3.6757915171445406E-17 +v_z[4][[0,8,0,0,0,0]] = -1.9944087263064448E-02 +v_z[4][[0,6,0,2,0,0]] = -7.9776349052257806E-02 +v_z[4][[0,4,0,4,0,0]] = -1.1966452357838696E-01 +v_z[4][[0,2,0,6,0,0]] = -7.9776349052231632E-02 +v_z[4][[0,0,0,8,0,0]] = -1.9944087262335215E-02 +v_z[4][[0,6,0,1,0,1]] = 8.8218996411468983E-17 +v_z[4][[0,4,0,3,0,1]] = 1.8820052567780050E-15 +v_z[4][[0,2,0,5,0,1]] = 1.2044833643379232E-13 +v_z[4][[0,0,0,7,0,1]] = 4.8179334573516927E-13 +v_z[4][[0,6,0,0,0,2]] = -4.7865809431354672E-01 +v_z[4][[0,4,0,2,0,2]] = -1.4359742829406397E+00 +v_z[4][[0,2,0,4,0,2]] = -1.4359742829406510E+00 +v_z[4][[0,0,0,6,0,2]] = -4.7865809431435336E-01 +v_z[4][[0,4,0,1,0,3]] = 2.3525065709725062E-16 +v_z[4][[0,2,0,3,0,3]] = 1.5056042054224040E-14 +v_z[4][[0,0,0,5,0,3]] = -9.6358669147033854E-13 +v_z[4][[0,4,0,0,0,4]] = -9.5731618862709378E-01 +v_z[4][[0,2,0,2,0,4]] = -1.9146323772541880E+00 +v_z[4][[0,0,0,4,0,4]] = -9.5731618862702061E-01 +v_z[4][[0,2,0,1,0,5]] = 4.7050131419450124E-16 +v_z[4][[0,2,0,0,0,6]] = -2.5528431696722476E-01 +v_z[4][[0,0,0,2,0,6]] = -2.5528431696722931E-01 +v_z[4][[0,0,0,1,0,7]] = -7.0575197129175186E-16 +v_z[4][[0,0,0,0,0,8]] = 6.3863145778715229E-16 +v_z[4][[0,8,0,1,0,0]] = -7.3515830342890819E-18 +v_z[4][[0,0,0,9,0,0]] = 5.7815201488220313E-12 +v_z[4][[0,8,0,0,0,1]] = 1.3960861084145115E-01 +v_z[4][[0,6,0,2,0,1]] = 5.5843444336580494E-01 +v_z[4][[0,4,0,4,0,1]] = 8.3765166504867306E-01 +v_z[4][[0,2,0,6,0,1]] = 5.5843444336706682E-01 +v_z[4][[0,0,0,8,0,1]] = 1.3960861085128212E-01 +v_z[4][[0,6,0,1,0,2]] = -1.1762532854862531E-16 +v_z[4][[0,2,0,5,0,2]] = 4.8179334573516927E-13 +v_z[4][[0,0,0,7,0,2]] = -1.9271733829406769E-11 +v_z[4][[0,6,0,0,0,3]] = 1.1168688867316092E+00 +v_z[4][[0,4,0,2,0,3]] = 3.3506066601948277E+00 +v_z[4][[0,2,0,4,0,3]] = 3.3506066601954148E+00 +v_z[4][[0,0,0,6,0,3]] = 1.1168688867235341E+00 +v_z[4][[0,4,0,1,0,4]] = 4.7050131419450124E-16 +v_z[4][[0,2,0,3,0,4]] = 6.0224168216896159E-14 +v_z[4][[0,0,0,5,0,4]] = 1.9271733829406771E-12 +v_z[4][[0,4,0,0,0,5]] = 1.3402426640779317E+00 +v_z[4][[0,2,0,2,0,5]] = 2.6804853281558767E+00 +v_z[4][[0,0,0,4,0,5]] = 1.3402426640778293E+00 +v_z[4][[0,2,0,1,0,6]] = 9.4100262838900248E-16 +v_z[4][[0,0,0,3,0,6]] = -6.0224168216896159E-14 +v_z[4][[0,2,0,0,0,7]] = 2.5528431696722470E-01 +v_z[4][[0,0,0,2,0,7]] = 2.5528431696723308E-01 +v_z[4][[0,0,0,1,0,8]] = 9.4100262838900248E-16 +v_z[4][[0,0,0,0,0,9]] = -7.3515830342890813E-17 +v_z[4][[0,10,0,0,0,0]] = -1.3960861084145113E-02 +v_z[4][[0,8,0,2,0,0]] = -6.9804305420725563E-02 +v_z[4][[0,6,0,4,0,0]] = -1.3960861084145054E-01 +v_z[4][[0,4,0,6,0,0]] = -1.3960861084152582E-01 +v_z[4][[0,2,0,8,0,0]] = -6.9804305425641061E-02 +v_z[4][[0,0,0,10,0,0]] = -1.3960861043886700E-02 +v_z[4][[0,8,0,1,0,1]] = 1.1762532854862531E-16 +v_z[4][[0,6,0,3,0,1]] = -7.5280210271120199E-15 +v_z[4][[0,4,0,5,0,1]] = -2.4089667286758464E-13 +v_z[4][[0,2,0,7,0,1]] = 1.1563040297644063E-11 +v_z[4][[0,0,0,9,0,1]] = 3.0834774127050833E-11 +v_z[4][[0,8,0,0,0,2]] = -5.5843444336580461E-01 +v_z[4][[0,6,0,2,0,2]] = -2.2337377734632198E+00 +v_z[4][[0,4,0,4,0,2]] = -3.3506066601952944E+00 +v_z[4][[0,2,0,6,0,2]] = -2.2337377734586314E+00 +v_z[4][[0,0,0,8,0,2]] = -5.5843444351305016E-01 +v_z[4][[0,6,0,1,0,3]] = 4.7050131419450124E-16 +v_z[4][[0,2,0,5,0,3]] = 3.8543467658813542E-12 +v_z[4][[0,6,0,0,0,4]] = -2.2337377734632189E+00 +v_z[4][[0,4,0,2,0,4]] = -6.7012133203896260E+00 +v_z[4][[0,2,0,4,0,4]] = -6.7012133203903490E+00 +v_z[4][[0,0,0,6,0,4]] = -2.2337377734509234E+00 +v_z[4][[0,0,0,5,0,5]] = -1.5417387063525417E-11 +v_z[4][[0,4,0,0,0,6]] = -1.7869902187705740E+00 +v_z[4][[0,2,0,2,0,6]] = -3.5739804375411270E+00 +v_z[4][[0,0,0,4,0,6]] = -1.7869902187688320E+00 +v_z[4][[0,2,0,1,0,7]] = 1.8820052567780050E-15 +v_z[4][[0,0,0,3,0,7]] = 2.4089667286758464E-13 +v_z[4][[0,2,0,0,0,8]] = -2.5528431696722725E-01 +v_z[4][[0,0,0,2,0,8]] = -2.5528431696724246E-01 +v_z[4][[0,0,0,1,0,9]] = -9.4100262838900248E-16 +v_z[4][[0,0,0,0,0,10]] = -8.8218996411468983E-17 +v_z[5][[0,0,0,0,0,0]] = 5.4978140034254439E+00 +v_z[5][[1,0,0,0,0,0]] = -2.9100619138474915E-01 +v_z[5][[0,1,0,0,0,0]] = 2.0790204670029593E+00 +v_z[5][[0,0,1,0,0,0]] = -3.5207452815893663E+00 +v_z[5][[0,0,0,1,0,0]] = 2.5153078237606248E+01 +v_z[5][[0,0,0,0,1,0]] = 1.0000000000000000E+00 +v_z[5][[0,0,0,0,0,1]] = -4.2879710302052843E-03 +v_z[5][[1,1,0,0,0,0]] = -8.4684603424257252E-02 +v_z[5][[0,2,0,0,0,0]] = 4.1771319416822728E+00 +v_z[5][[0,1,1,0,0,0]] = -1.0245586752311477E+00 +v_z[5][[1,0,0,1,0,0]] = -1.0245586752311482E+00 +v_z[5][[0,1,0,1,0,0]] = 1.4639402999056788E+01 +v_z[5][[0,0,1,1,0,0]] = -1.2395647337833786E+01 +v_z[5][[0,0,0,2,0,0]] = 9.2129705636269378E+01 +v_z[5][[1,0,0,0,0,1]] = -5.5511151231257827E-17 +v_z[5][[0,1,0,0,0,1]] = -2.0790204670029588E+00 +v_z[5][[0,0,1,0,0,1]] = 4.4408920985006262E-16 +v_z[5][[0,0,0,1,0,1]] = -2.5153078237606252E+01 +v_z[5][[0,0,0,0,1,1]] = 2.2204460492503131E-16 +v_z[5][[0,0,0,0,0,2]] = 6.4152051665264213E-03 +v_z[5][[1,2,0,0,0,0]] = -1.7014683960379556E-01 +v_z[5][[0,3,0,0,0,0]] = 2.2550814907620169E+00 +v_z[5][[0,2,1,0,0,0]] = -2.0585255587239035E+00 +v_z[5][[1,1,0,1,0,0]] = -5.9630583585844110E-01 +v_z[5][[0,2,0,1,0,0]] = 3.1543313603959199E+01 +v_z[5][[0,1,1,1,0,0]] = -7.2144202430630324E+00 +v_z[5][[1,0,0,2,0,0]] = -3.7527132172238939E+00 +v_z[5][[0,1,0,2,0,0]] = 7.9391434018324674E+01 +v_z[5][[0,0,1,2,0,0]] = -4.5402289517718778E+01 +v_z[5][[0,0,0,3,0,0]] = 3.3694176553191681E+02 +v_z[5][[1,1,0,0,0,1]] = 8.4684603424257293E-02 +v_z[5][[0,2,0,0,0,1]] = -8.3542638833645437E+00 +v_z[5][[0,1,1,0,0,1]] = 1.0245586752311477E+00 +v_z[5][[1,0,0,1,0,1]] = 1.0245586752311482E+00 +v_z[5][[0,1,0,1,0,1]] = -2.9278805998113565E+01 +v_z[5][[0,0,1,1,0,1]] = 1.2395647337833786E+01 +v_z[5][[0,0,0,2,0,1]] = -1.8425941127253878E+02 +v_z[5][[1,0,0,0,0,2]] = -2.6422006943471743E-16 +v_z[5][[0,1,0,0,0,2]] = 2.0790204670029628E+00 +v_z[5][[0,0,1,0,0,2]] = 3.1918911957973251E-16 +v_z[5][[0,0,0,1,0,2]] = 2.5153078237606298E+01 +v_z[5][[0,0,0,0,1,2]] = -1.1969591984239969E-16 +v_z[5][[0,0,0,0,0,3]] = -8.5257606361732411E-03 +v_z[5][[1,3,0,0,0,0]] = -9.1856085481380967E-02 +v_z[5][[0,4,0,0,0,0]] = 3.6378396751722311E+00 +v_z[5][[0,3,1,0,0,0]] = -1.1113230203279798E+00 +v_z[5][[1,2,0,1,0,0]] = -1.2848517105216446E+00 +v_z[5][[0,3,0,1,0,0]] = 2.4438568573271166E+01 +v_z[5][[0,2,1,1,0,0]] = -1.5544808774808001E+01 +v_z[5][[1,1,0,2,0,0]] = -3.2338460403984737E+00 +v_z[5][[0,2,0,2,0,0]] = 1.8409885222493961E+02 +v_z[5][[0,1,1,2,0,0]] = -3.9124762720481627E+01 +v_z[5][[1,0,0,3,0,0]] = -1.3724626690314659E+01 +v_z[5][[0,1,0,3,0,0]] = 3.8488885812405482E+02 +v_z[5][[0,0,1,3,0,0]] = -1.6604772026177963E+02 +v_z[5][[0,0,0,4,0,0]] = 1.2332440150134682E+03 +v_z[5][[1,2,0,0,0,1]] = 3.4029367920759113E-01 +v_z[5][[0,3,0,0,0,1]] = -6.7652444722860512E+00 +v_z[5][[0,2,1,0,0,1]] = 4.1170511174478062E+00 +v_z[5][[1,1,0,1,0,1]] = 1.1926116717168820E+00 +v_z[5][[0,2,0,1,0,1]] = -9.4629940811877589E+01 +v_z[5][[0,1,1,1,0,1]] = 1.4428840486126067E+01 +v_z[5][[1,0,0,2,0,1]] = 7.5054264344477852E+00 +v_z[5][[0,1,0,2,0,1]] = -2.3817430205497402E+02 +v_z[5][[0,0,1,2,0,1]] = 9.0804579035437570E+01 +v_z[5][[0,0,0,3,0,1]] = -1.0108252965957502E+03 +v_z[5][[1,1,0,0,0,2]] = -8.4684603424257390E-02 +v_z[5][[0,2,0,0,0,2]] = 1.2531395825046827E+01 +v_z[5][[0,1,1,0,0,2]] = -1.0245586752311484E+00 +v_z[5][[1,0,0,1,0,2]] = -1.0245586752311493E+00 +v_z[5][[0,1,0,1,0,2]] = 4.3918208997170396E+01 +v_z[5][[0,0,1,1,0,2]] = -1.2395647337833784E+01 +v_z[5][[0,0,0,2,0,2]] = 2.7638911690880843E+02 +v_z[5][[1,0,0,0,0,3]] = 2.2865823817719289E-16 +v_z[5][[0,1,0,0,0,3]] = -2.0790204670029686E+00 +v_z[5][[0,0,1,0,0,3]] = 1.8908485888147197E-16 +v_z[5][[0,0,0,1,0,3]] = -2.5153078237606376E+01 +v_z[5][[0,0,0,0,1,3]] = 2.7018318138338770E-16 +v_z[5][[0,0,0,0,0,4]] = 1.0615558331213077E-02 +v_z[5][[1,4,0,0,0,0]] = -1.4817988331644005E-01 +v_z[5][[0,5,0,0,0,0]] = 2.4460521724965796E+00 +v_z[5][[0,4,1,0,0,0]] = -1.7927578191044640E+00 +v_z[5][[1,3,0,1,0,0]] = -9.9545460024614640E-01 +v_z[5][[0,4,0,1,0,0]] = 3.8835473216624251E+01 +v_z[5][[0,3,1,1,0,0]] = -1.2043530999034003E+01 +v_z[5][[1,2,0,2,0,0]] = -7.4988863933621523E+00 +v_z[5][[0,3,0,2,0,0]] = 1.8095889368872000E+02 +v_z[5][[0,2,1,2,0,0]] = -9.0725454193852315E+01 +v_z[5][[1,1,0,3,0,0]] = -1.5677652447374554E+01 +v_z[5][[0,2,0,3,0,0]] = 9.5070101515342105E+02 +v_z[5][[0,1,1,3,0,0]] = -1.8967644852447160E+02 +v_z[5][[1,0,0,4,0,0]] = -5.0233647044035905E+01 +v_z[5][[0,1,0,4,0,0]] = 1.7539328696012308E+03 +v_z[5][[0,0,1,4,0,0]] = -6.0775296554938973E+02 +v_z[5][[0,0,0,5,0,0]] = 4.5135530644526725E+03 +v_z[5][[1,3,0,0,0,1]] = 2.7556825644414296E-01 +v_z[5][[0,4,0,0,0,1]] = -1.4551358700688930E+01 +v_z[5][[0,3,1,0,0,1]] = 3.3339690609839394E+00 +v_z[5][[1,2,0,1,0,1]] = 3.8545551315649336E+00 +v_z[5][[0,3,0,1,0,1]] = -9.7754274293084620E+01 +v_z[5][[0,2,1,1,0,1]] = 4.6634426324424005E+01 +v_z[5][[1,1,0,2,0,1]] = 9.7015381211954210E+00 +v_z[5][[0,2,0,2,0,1]] = -7.3639540889975831E+02 +v_z[5][[0,1,1,2,0,1]] = 1.1737428816144487E+02 +v_z[5][[1,0,0,3,0,1]] = 4.1173880070943980E+01 +v_z[5][[0,1,0,3,0,1]] = -1.5395554324962191E+03 +v_z[5][[0,0,1,3,0,1]] = 4.9814316078533869E+02 +v_z[5][[0,0,0,4,0,1]] = -4.9329760600538702E+03 +v_z[5][[1,2,0,0,0,2]] = -5.1044051881138730E-01 +v_z[5][[0,3,0,0,0,2]] = 1.3530488944572106E+01 +v_z[5][[0,2,1,0,0,2]] = -6.1755766761717101E+00 +v_z[5][[1,1,0,1,0,2]] = -1.7889175075753250E+00 +v_z[5][[0,2,0,1,0,2]] = 1.8925988162375532E+02 +v_z[5][[0,1,1,1,0,2]] = -2.1643260729189109E+01 +v_z[5][[1,0,0,2,0,2]] = -1.1258139651671700E+01 +v_z[5][[0,1,0,2,0,2]] = 4.7634860410994838E+02 +v_z[5][[0,0,1,2,0,2]] = -1.3620686855315631E+02 +v_z[5][[0,0,0,3,0,2]] = 2.0216505931915030E+03 +v_z[5][[1,1,0,0,0,3]] = 8.4684603424257571E-02 +v_z[5][[0,2,0,0,0,3]] = -1.6708527766729123E+01 +v_z[5][[0,1,1,0,0,3]] = 1.0245586752311504E+00 +v_z[5][[1,0,0,1,0,3]] = 1.0245586752311548E+00 +v_z[5][[0,1,0,1,0,3]] = -5.8557611996227308E+01 +v_z[5][[0,0,1,1,0,3]] = 1.2395647337833795E+01 +v_z[5][[0,0,0,2,0,3]] = -3.6851882254507893E+02 +v_z[5][[1,0,0,0,0,4]] = -2.0513105103425744E-16 +v_z[5][[0,1,0,0,0,4]] = 2.0790204670029744E+00 +v_z[5][[0,0,1,0,0,4]] = 5.7419347054832315E-16 +v_z[5][[0,0,0,1,0,4]] = 2.5153078237606479E+01 +v_z[5][[0,0,0,0,1,4]] = -3.8575913297034248E-16 +v_z[5][[0,0,0,0,0,5]] = -1.2680573016581917E-02 +v_z[5][[1,5,0,0,0,0]] = -9.9634881652476415E-02 +v_z[5][[0,6,0,0,0,0]] = 3.4993931711641166E+00 +v_z[5][[0,5,1,0,0,0]] = -1.2054349695807027E+00 +v_z[5][[1,4,0,1,0,0]] = -1.5818827665915940E+00 +v_z[5][[0,5,0,1,0,0]] = 3.3962499457750638E+01 +v_z[5][[0,4,1,1,0,0]] = -1.9138446024130758E+01 +v_z[5][[1,3,0,2,0,0]] = -7.3709866696082793E+00 +v_z[5][[0,4,0,2,0,0]] = 2.9715835621794565E+02 +v_z[5][[0,3,1,2,0,0]] = -8.9178056364341316E+01 +v_z[5][[1,2,0,3,0,0]] = -3.8724841684394718E+01 +v_z[5][[0,3,0,3,0,0]] = 1.1220936167800312E+03 +v_z[5][[0,2,1,3,0,0]] = -4.6851341200630185E+02 +v_z[5][[1,1,0,4,0,0]] = -7.1442831781769911E+01 +v_z[5][[0,2,0,4,0,0]] = 4.5911469856944595E+03 +v_z[5][[0,1,1,4,0,0]] = -8.6435278817312133E+02 +v_z[5][[1,0,0,5,0,0]] = -1.8385025898687647E+02 +v_z[5][[0,1,0,5,0,0]] = 7.6828971162092921E+03 +v_z[5][[0,0,1,5,0,0]] = -2.2243167018780773E+03 +v_z[5][[0,0,0,6,0,0]] = 1.6519655391100547E+04 +v_z[5][[1,4,0,0,0,1]] = 5.9271953326576021E-01 +v_z[5][[0,5,0,0,0,1]] = -1.2230260862482897E+01 +v_z[5][[0,4,1,0,0,1]] = 7.1710312764178576E+00 +v_z[5][[1,3,0,1,0,1]] = 3.9818184009845856E+00 +v_z[5][[0,4,0,1,0,1]] = -1.9417736608312123E+02 +v_z[5][[0,3,1,1,0,1]] = 4.8174123996136004E+01 +v_z[5][[1,2,0,2,0,1]] = 2.9995545573448613E+01 +v_z[5][[0,3,0,2,0,1]] = -9.0479446844359995E+02 +v_z[5][[0,2,1,2,0,1]] = 3.6290181677540926E+02 +v_z[5][[1,1,0,3,0,1]] = 6.2710609789498214E+01 +v_z[5][[0,2,0,3,0,1]] = -4.7535050757671042E+03 +v_z[5][[0,1,1,3,0,1]] = 7.5870579409788604E+02 +v_z[5][[1,0,0,4,0,1]] = 2.0093458817614368E+02 +v_z[5][[0,1,0,4,0,1]] = -8.7696643480061539E+03 +v_z[5][[0,0,1,4,0,1]] = 2.4310118621975580E+03 +v_z[5][[0,0,0,5,0,1]] = -2.2567765322263363E+04 +v_z[5][[1,3,0,0,0,2]] = -5.5113651288828613E-01 +v_z[5][[0,4,0,0,0,2]] = 3.6378396751722320E+01 +v_z[5][[0,3,1,0,0,2]] = -6.6679381219678788E+00 +v_z[5][[1,2,0,1,0,2]] = -7.7091102631298716E+00 +v_z[5][[0,3,0,1,0,2]] = 2.4438568573271178E+02 +v_z[5][[0,2,1,1,0,2]] = -9.3268852648847997E+01 +v_z[5][[1,1,0,2,0,2]] = -1.9403076242390856E+01 +v_z[5][[0,2,0,2,0,2]] = 1.8409885222493972E+03 +v_z[5][[0,1,1,2,0,2]] = -2.3474857632288990E+02 +v_z[5][[1,0,0,3,0,2]] = -8.2347760141888088E+01 +v_z[5][[0,1,0,3,0,2]] = 3.8488885812405488E+03 +v_z[5][[0,0,1,3,0,2]] = -9.9628632157067761E+02 +v_z[5][[0,0,0,4,0,2]] = 1.2332440150134691E+04 +v_z[5][[1,2,0,0,0,3]] = 6.8058735841518303E-01 +v_z[5][[0,3,0,0,0,3]] = -2.2550814907620200E+01 +v_z[5][[0,2,1,0,0,3]] = 8.2341022348956141E+00 +v_z[5][[1,1,0,1,0,3]] = 2.3852233434337702E+00 +v_z[5][[0,2,0,1,0,3]] = -3.1543313603959257E+02 +v_z[5][[0,1,1,1,0,3]] = 2.8857680972252162E+01 +v_z[5][[1,0,0,2,0,3]] = 1.5010852868895618E+01 +v_z[5][[0,1,0,2,0,3]] = -7.9391434018324912E+02 +v_z[5][[0,0,1,2,0,3]] = 1.8160915807087514E+02 +v_z[5][[0,0,0,3,0,3]] = -3.3694176553191792E+03 +v_z[5][[1,1,0,0,0,4]] = -8.4684603424257668E-02 +v_z[5][[0,2,0,0,0,4]] = 2.0885659708411431E+01 +v_z[5][[0,1,1,0,0,4]] = -1.0245586752311497E+00 +v_z[5][[1,0,0,1,0,4]] = -1.0245586752311531E+00 +v_z[5][[0,1,0,1,0,4]] = 7.3197014995284405E+01 +v_z[5][[0,0,1,1,0,4]] = -1.2395647337833781E+01 +v_z[5][[0,0,0,2,0,4]] = 4.6064852818135000E+02 +v_z[5][[1,0,0,0,0,5]] = 4.6420116014966872E-16 +v_z[5][[0,1,0,0,0,5]] = -2.0790204670029810E+00 +v_z[5][[0,0,1,0,0,5]] = -1.7087026238371550E-16 +v_z[5][[0,0,0,1,0,5]] = -2.5153078237606586E+01 +v_z[5][[0,0,0,0,1,5]] = 2.1250362580715887E-16 +v_z[5][[0,0,0,0,0,6]] = 1.4716841925778237E-02 +v_z[5][[1,6,0,0,0,0]] = -1.4254055100899868E-01 +v_z[5][[0,7,0,0,0,0]] = 2.6531951306794928E+00 +v_z[5][[0,6,1,0,0,0]] = -1.7245302239517266E+00 +v_z[5][[1,5,0,1,0,0]] = -1.3833922481880396E+00 +v_z[5][[0,6,0,1,0,0]] = 4.7136487811566120E+01 +v_z[5][[0,5,1,1,0,0]] = -1.6737003797818847E+01 +v_z[5][[1,4,0,2,0,0]] = -1.2104131705253224E+01 +v_z[5][[0,5,0,2,0,0]] = 3.0862822009114603E+02 +v_z[5][[0,4,1,2,0,0]] = -1.4644212340026482E+02 +v_z[5][[1,3,0,3,0,0]] = -4.5706165211009520E+01 +v_z[5][[0,4,0,3,0,0]] = 1.9222430657825325E+03 +v_z[5][[0,3,1,3,0,0]] = -5.5297711962921176E+02 +v_z[5][[1,2,0,4,0,0]] = -1.8701088705802235E+02 +v_z[5][[0,3,0,4,0,0]] = 6.2746234468478260E+03 +v_z[5][[0,2,1,4,0,0]] = -2.2625556352677609E+03 +v_z[5][[1,1,0,5,0,0]] = -3.1294694100508968E+02 +v_z[5][[0,2,0,5,0,0]] = 2.1225051313112064E+04 +v_z[5][[0,1,1,5,0,0]] = -3.7861959592287772E+03 +v_z[5][[1,0,0,6,0,0]] = -6.7289403240816171E+02 +v_z[5][[0,1,0,6,0,0]] = 3.2743866072015313E+04 +v_z[5][[0,0,1,6,0,0]] = -8.1410243484421708E+03 +v_z[5][[0,0,0,7,0,0]] = 6.0461965092007638E+04 +v_z[5][[1,5,0,0,0,1]] = 4.9817440826238185E-01 +v_z[5][[0,6,0,0,0,1]] = -2.0996359026984713E+01 +v_z[5][[0,5,1,0,0,1]] = 6.0271748479035132E+00 +v_z[5][[1,4,0,1,0,1]] = 7.9094138329579682E+00 +v_z[5][[0,5,0,1,0,1]] = -2.0377499674650386E+02 +v_z[5][[0,4,1,1,0,1]] = 9.5692230120653818E+01 +v_z[5][[1,3,0,2,0,1]] = 3.6854933348041392E+01 +v_z[5][[0,4,0,2,0,1]] = -1.7829501373076737E+03 +v_z[5][[0,3,1,2,0,1]] = 4.4589028182170671E+02 +v_z[5][[1,2,0,3,0,1]] = 1.9362420842197355E+02 +v_z[5][[0,3,0,3,0,1]] = -6.7325617006801858E+03 +v_z[5][[0,2,1,3,0,1]] = 2.3425670600315102E+03 +v_z[5][[1,1,0,4,0,1]] = 3.5721415890884947E+02 +v_z[5][[0,2,0,4,0,1]] = -2.7546881914166745E+04 +v_z[5][[0,1,1,4,0,1]] = 4.3217639408656059E+03 +v_z[5][[1,0,0,5,0,1]] = 9.1925129493438271E+02 +v_z[5][[0,1,0,5,0,1]] = -4.6097382697255744E+04 +v_z[5][[0,0,1,5,0,1]] = 1.1121583509390392E+04 +v_z[5][[0,0,0,6,0,1]] = -9.9117932346603193E+04 +v_z[5][[1,4,0,0,0,2]] = -1.4817988331644008E+00 +v_z[5][[0,5,0,0,0,2]] = 3.6690782587448695E+01 +v_z[5][[0,4,1,0,0,2]] = -1.7927578191044642E+01 +v_z[5][[1,3,0,1,0,2]] = -9.9545460024614627E+00 +v_z[5][[0,4,0,1,0,2]] = 5.8253209824936403E+02 +v_z[5][[0,3,1,1,0,2]] = -1.2043530999034000E+02 +v_z[5][[1,2,0,2,0,2]] = -7.4988863933621531E+01 +v_z[5][[0,3,0,2,0,2]] = 2.7143834053308005E+03 +v_z[5][[0,2,1,2,0,2]] = -9.0725454193852295E+02 +v_z[5][[1,1,0,3,0,2]] = -1.5677652447374567E+02 +v_z[5][[0,2,0,3,0,2]] = 1.4260515227301321E+04 +v_z[5][[0,1,1,3,0,2]] = -1.8967644852447165E+03 +v_z[5][[1,0,0,4,0,2]] = -5.0233647044035973E+02 +v_z[5][[0,1,0,4,0,2]] = 2.6308993044018502E+04 +v_z[5][[0,0,1,4,0,2]] = -6.0775296554938977E+03 +v_z[5][[0,0,0,5,0,2]] = 6.7703295966790116E+04 +v_z[5][[1,3,0,0,0,3]] = 9.1856085481381100E-01 +v_z[5][[0,4,0,0,0,3]] = -7.2756793503444726E+01 +v_z[5][[0,3,1,0,0,3]] = 1.1113230203279805E+01 +v_z[5][[1,2,0,1,0,3]] = 1.2848517105216466E+01 +v_z[5][[0,3,0,1,0,3]] = -4.8877137146542378E+02 +v_z[5][[0,2,1,1,0,3]] = 1.5544808774808001E+02 +v_z[5][[1,1,0,2,0,3]] = 3.2338460403984811E+01 +v_z[5][[0,2,0,2,0,3]] = -3.6819770444988003E+03 +v_z[5][[0,1,1,2,0,3]] = 3.9124762720481681E+02 +v_z[5][[1,0,0,3,0,3]] = 1.3724626690314713E+02 +v_z[5][[0,1,0,3,0,3]] = -7.6977771624811194E+03 +v_z[5][[0,0,1,3,0,3]] = 1.6604772026177966E+03 +v_z[5][[0,0,0,4,0,3]] = -2.4664880300269440E+04 +v_z[5][[1,2,0,0,0,4]] = -8.5073419801898031E-01 +v_z[5][[0,3,0,0,0,4]] = 3.3826222361430325E+01 +v_z[5][[0,2,1,0,0,4]] = -1.0292627793619518E+01 +v_z[5][[1,1,0,1,0,4]] = -2.9815291792922154E+00 +v_z[5][[0,2,0,1,0,4]] = 4.7314970405938942E+02 +v_z[5][[0,1,1,1,0,4]] = -3.6072101215315222E+01 +v_z[5][[1,0,0,2,0,4]] = -1.8763566086119539E+01 +v_z[5][[0,1,0,2,0,4]] = 1.1908715102748793E+03 +v_z[5][[0,0,1,2,0,4]] = -2.2701144758859397E+02 +v_z[5][[0,0,0,3,0,4]] = 5.0541264829787870E+03 +v_z[5][[1,1,0,0,0,5]] = 8.4684603424257959E-02 +v_z[5][[0,2,0,0,0,5]] = -2.5062791650093693E+01 +v_z[5][[0,1,1,0,0,5]] = 1.0245586752311540E+00 +v_z[5][[1,0,0,1,0,5]] = 1.0245586752311577E+00 +v_z[5][[0,1,0,1,0,5]] = -8.7836417994341843E+01 +v_z[5][[0,0,1,1,0,5]] = 1.2395647337833793E+01 +v_z[5][[0,0,0,2,0,5]] = -5.5277823381762244E+02 +v_z[5][[1,0,0,0,0,6]] = 1.5742615544489524E-16 +v_z[5][[0,1,0,0,0,6]] = 2.0790204670029784E+00 +v_z[5][[0,0,1,0,0,6]] = 7.1644079557842133E-16 +v_z[5][[0,0,0,1,0,6]] = 2.5153078237606888E+01 +v_z[5][[0,0,0,0,1,6]] = -9.4715901788333667E-16 +v_z[5][[0,0,0,0,0,7]] = -1.6720473194997081E-02 +v_z[5][[1,7,0,0,0,0]] = -1.0807242209243918E-01 +v_z[5][[0,8,0,0,0,0]] = 3.5166656977015154E+00 +v_z[5][[0,7,1,0,0,0]] = -1.3075167519333761E+00 +v_z[5][[1,6,0,1,0,0]] = -1.9200074460494170E+00 +v_z[5][[0,7,0,1,0,0]] = 4.4009267518748409E+01 +v_z[5][[0,6,1,1,0,0]] = -2.3229255446862631E+01 +v_z[5][[1,5,0,2,0,0]] = -1.2571332913153057E+01 +v_z[5][[0,6,0,2,0,0]] = 4.3767658870419461E+02 +v_z[5][[0,5,1,2,0,0]] = -1.5209456825182960E+02 +v_z[5][[1,4,0,3,0,0]] = -7.8298599890883324E+01 +v_z[5][[0,5,0,3,0,0]] = 2.2809796787303831E+03 +v_z[5][[0,4,1,3,0,0]] = -9.4729746061110063E+02 +v_z[5][[1,3,0,4,0,0]] = -2.5558382260606041E+02 +v_z[5][[0,4,0,4,0,0]] = 1.1258202056635084E+04 +v_z[5][[0,3,1,4,0,0]] = -3.0921869160547981E+03 +v_z[5][[1,2,0,5,0,0]] = -8.6455861384640912E+02 +v_z[5][[0,3,0,5,0,0]] = 3.2772489528973783E+04 +v_z[5][[0,2,1,5,0,0]] = -1.0459882815114224E+04 +v_z[5][[1,1,0,6,0,0]] = -1.3337537349417701E+03 +v_z[5][[0,2,0,6,0,0]] = 9.5162043246978981E+04 +v_z[5][[0,1,1,6,0,0]] = -1.6136451072581945E+04 +v_z[5][[1,0,0,7,0,0]] = -2.4627932323576110E+03 +v_z[5][[0,1,0,7,0,0]] = 1.3676809278716292E+05 +v_z[5][[0,0,1,7,0,0]] = -2.9796162106012292E+04 +v_z[5][[0,0,0,8,0,0]] = 2.2129119868953433E+05 +v_z[5][[1,6,0,0,0,1]] = 8.5524330605399168E-01 +v_z[5][[0,7,0,0,0,1]] = -1.8572365914756457E+01 +v_z[5][[0,6,1,0,0,1]] = 1.0347181343710361E+01 +v_z[5][[1,5,0,1,0,1]] = 8.3003534891282342E+00 +v_z[5][[0,6,0,1,0,1]] = -3.2995541468096286E+02 +v_z[5][[0,5,1,1,0,1]] = 1.0042202278691309E+02 +v_z[5][[1,4,0,2,0,1]] = 7.2624790231519370E+01 +v_z[5][[0,5,0,2,0,1]] = -2.1603975406380218E+03 +v_z[5][[0,4,1,2,0,1]] = 8.7865274040158897E+02 +v_z[5][[1,3,0,3,0,1]] = 2.7423699126605720E+02 +v_z[5][[0,4,0,3,0,1]] = -1.3455701460477732E+04 +v_z[5][[0,3,1,3,0,1]] = 3.3178627177752696E+03 +v_z[5][[1,2,0,4,0,1]] = 1.1220653223481338E+03 +v_z[5][[0,3,0,4,0,1]] = -4.3922364127934779E+04 +v_z[5][[0,2,1,4,0,1]] = 1.3575333811606566E+04 +v_z[5][[1,1,0,5,0,1]] = 1.8776816460305381E+03 +v_z[5][[0,2,0,5,0,1]] = -1.4857535919178449E+05 +v_z[5][[0,1,1,5,0,1]] = 2.2717175755372667E+04 +v_z[5][[1,0,0,6,0,1]] = 4.0373641944489723E+03 +v_z[5][[0,1,0,6,0,1]] = -2.2920706250410655E+05 +v_z[5][[0,0,1,6,0,1]] = 4.8846146090653026E+04 +v_z[5][[0,0,0,7,0,1]] = -4.2323375564405316E+05 +v_z[5][[1,5,0,0,0,2]] = -1.4945232247871465E+00 +v_z[5][[0,6,0,0,0,2]] = 7.3487256594446507E+01 +v_z[5][[0,5,1,0,0,2]] = -1.8081524543710533E+01 +v_z[5][[1,4,0,1,0,2]] = -2.3728241498873921E+01 +v_z[5][[0,5,0,1,0,2]] = 7.1321248861276376E+02 +v_z[5][[0,4,1,1,0,2]] = -2.8707669036196125E+02 +v_z[5][[1,3,0,2,0,2]] = -1.1056480004412420E+02 +v_z[5][[0,4,0,2,0,2]] = 6.2403254805768602E+03 +v_z[5][[0,3,1,2,0,2]] = -1.3376708454651198E+03 +v_z[5][[1,2,0,3,0,2]] = -5.8087262526592099E+02 +v_z[5][[0,3,0,3,0,2]] = 2.3563965952380662E+04 +v_z[5][[0,2,1,3,0,2]] = -7.0277011800945274E+03 +v_z[5][[1,1,0,4,0,2]] = -1.0716424767265498E+03 +v_z[5][[0,2,0,4,0,2]] = 9.6414086699583713E+04 +v_z[5][[0,1,1,4,0,2]] = -1.2965291822596826E+04 +v_z[5][[1,0,0,5,0,2]] = -2.7577538848031513E+03 +v_z[5][[0,1,0,5,0,2]] = 1.6134083944039536E+05 +v_z[5][[0,0,1,5,0,2]] = -3.3364750528171149E+04 +v_z[5][[0,0,0,6,0,2]] = 3.4691276321311126E+05 +v_z[5][[1,4,0,0,0,3]] = 2.9635976663288046E+00 +v_z[5][[0,5,0,0,0,3]] = -8.5611826037380382E+01 +v_z[5][[0,4,1,0,0,3]] = 3.5855156382089284E+01 +v_z[5][[1,3,0,1,0,3]] = 1.9909092004922954E+01 +v_z[5][[0,4,0,1,0,3]] = -1.3592415625818512E+03 +v_z[5][[0,3,1,1,0,3]] = 2.4087061998068015E+02 +v_z[5][[1,2,0,2,0,3]] = 1.4997772786724323E+02 +v_z[5][[0,3,0,2,0,3]] = -6.3335612791052108E+03 +v_z[5][[0,2,1,2,0,3]] = 1.8145090838770457E+03 +v_z[5][[1,1,0,3,0,3]] = 3.1355304894749167E+02 +v_z[5][[0,2,0,3,0,3]] = -3.3274535530369787E+04 +v_z[5][[0,1,1,3,0,3]] = 3.7935289704894367E+03 +v_z[5][[1,0,0,4,0,3]] = 1.0046729408807223E+03 +v_z[5][[0,1,0,4,0,3]] = -6.1387650436043266E+04 +v_z[5][[0,0,1,4,0,3]] = 1.2155059310987792E+04 +v_z[5][[0,0,0,5,0,3]] = -1.5797435725584379E+05 +v_z[5][[1,3,0,0,0,4]] = -1.3778412822207171E+00 +v_z[5][[0,4,0,0,0,4]] = 1.2732438863102827E+02 +v_z[5][[0,3,1,0,0,4]] = -1.6669845304919704E+01 +v_z[5][[1,2,0,1,0,4]] = -1.9272775657824710E+01 +v_z[5][[0,3,0,1,0,4]] = 8.5534990006449345E+02 +v_z[5][[0,2,1,1,0,4]] = -2.3317213162211999E+02 +v_z[5][[1,1,0,2,0,4]] = -4.8507690605977260E+01 +v_z[5][[0,2,0,2,0,4]] = 6.4434598278729109E+03 +v_z[5][[0,1,1,2,0,4]] = -5.8687144080722510E+02 +v_z[5][[1,0,0,3,0,4]] = -2.0586940035472068E+02 +v_z[5][[0,1,0,3,0,4]] = 1.3471110034342004E+04 +v_z[5][[0,0,1,3,0,4]] = -2.4907158039266947E+03 +v_z[5][[0,0,0,4,0,4]] = 4.3163540525471733E+04 +v_z[5][[1,2,0,0,0,5]] = 1.0208810376227742E+00 +v_z[5][[0,3,0,0,0,5]] = -4.7356711306002524E+01 +v_z[5][[0,2,1,0,0,5]] = 1.2351153352343424E+01 +v_z[5][[1,1,0,1,0,5]] = 3.5778350151506655E+00 +v_z[5][[0,2,0,1,0,5]] = -6.6240958568314704E+02 +v_z[5][[0,1,1,1,0,5]] = 4.3286521458378303E+01 +v_z[5][[1,0,0,2,0,5]] = 2.2516279303343417E+01 +v_z[5][[0,1,0,2,0,5]] = -1.6672201143848406E+03 +v_z[5][[0,0,1,2,0,5]] = 2.7241373710631274E+02 +v_z[5][[0,0,0,3,0,5]] = -7.0757770761703132E+03 +v_z[5][[1,1,0,0,0,6]] = -8.4684603424257876E-02 +v_z[5][[0,2,0,0,0,6]] = 2.9239923591776098E+01 +v_z[5][[0,1,1,0,0,6]] = -1.0245586752311520E+00 +v_z[5][[1,0,0,1,0,6]] = -1.0245586752311566E+00 +v_z[5][[0,1,0,1,0,6]] = 1.0247582099339952E+02 +v_z[5][[0,0,1,1,0,6]] = -1.2395647337833761E+01 +v_z[5][[0,0,0,2,0,6]] = 6.4490793945389532E+02 +v_z[5][[1,0,0,0,0,7]] = 6.4293188828390413E-16 +v_z[5][[0,1,0,0,0,7]] = -2.0790204670029850E+00 +v_z[5][[0,0,1,0,0,7]] = 1.1102230246251565E-15 +v_z[5][[0,0,0,1,0,7]] = -2.5153078237607343E+01 +v_z[5][[0,0,0,0,1,7]] = -4.2869353900076845E-16 +v_z[5][[0,0,0,0,0,8]] = 1.8687654116278180E-02 +v_z[5][[1,8,0,0,0,0]] = -1.4324411169210405E-01 +v_z[5][[0,9,0,0,0,0]] = 2.8778799081282531E+00 +v_z[5][[0,8,1,0,0,0]] = -1.7330422694981393E+00 +v_z[5][[1,7,0,1,0,0]] = -1.7926265883230306E+00 +v_z[5][[0,8,0,1,0,0]] = 5.6564930765138286E+01 +v_z[5][[0,7,1,1,0,0]] = -2.1688135130243538E+01 +v_z[5][[1,6,0,2,0,0]] = -1.7827851592017915E+01 +v_z[5][[0,7,0,2,0,0]] = 4.6689373981867334E+02 +v_z[5][[0,6,1,2,0,0]] = -2.1569068367513086E+02 +v_z[5][[1,5,0,3,0,0]] = -9.2910994662082643E+01 +v_z[5][[0,6,0,3,0,0]] = 3.3488666655922548E+03 +v_z[5][[0,5,1,3,0,0]] = -1.1240858639732894E+03 +v_z[5][[1,4,0,4,0,0]] = -4.5857960109968462E+02 +v_z[5][[0,5,0,4,0,0]] = 1.4879163857825844E+04 +v_z[5][[0,4,1,4,0,0]] = -5.5481361380047247E+03 +v_z[5][[1,3,0,5,0,0]] = -1.3349196523243306E+03 +v_z[5][[0,4,0,5,0,0]] = 6.1629616345595183E+04 +v_z[5][[0,3,1,5,0,0]] = -1.6150556951580058E+04 +v_z[5][[1,2,0,6,0,0]] = -3.8762292249241600E+03 +v_z[5][[0,3,0,6,0,0]] = 1.6306203116672821E+05 +v_z[5][[0,2,1,6,0,0]] = -4.6896650854988322E+04 +v_z[5][[1,1,0,7,0,0]] = -5.5709656939881670E+03 +v_z[5][[0,2,0,7,0,0]] = 4.1700148883533425E+05 +v_z[5][[0,1,1,7,0,0]] = -6.7400460064688959E+04 +v_z[5][[1,0,0,8,0,0]] = -9.0138397864433209E+03 +v_z[5][[0,1,0,8,0,0]] = 5.6251894409106125E+05 +v_z[5][[0,0,1,8,0,0]] = -1.0905415361133685E+05 +v_z[5][[0,0,0,9,0,0]] = 8.0992716172496649E+05 +v_z[5][[1,7,0,0,0,1]] = 7.5650695464707385E-01 +v_z[5][[0,8,0,0,0,1]] = -2.8133325581612130E+01 +v_z[5][[0,7,1,0,0,1]] = 9.1526172635336298E+00 +v_z[5][[1,6,0,1,0,1]] = 1.3440052122345909E+01 +v_z[5][[0,7,0,1,0,1]] = -3.5207414014998744E+02 +v_z[5][[0,6,1,1,0,1]] = 1.6260478812803842E+02 +v_z[5][[1,5,0,2,0,1]] = 8.7999330392071414E+01 +v_z[5][[0,6,0,2,0,1]] = -3.5014127096335578E+03 +v_z[5][[0,5,1,2,0,1]] = 1.0646619777628071E+03 +v_z[5][[1,4,0,3,0,1]] = 5.4809019923618303E+02 +v_z[5][[0,5,0,3,0,1]] = -1.8247837429843057E+04 +v_z[5][[0,4,1,3,0,1]] = 6.6310822242777031E+03 +v_z[5][[1,3,0,4,0,1]] = 1.7890867582424232E+03 +v_z[5][[0,4,0,4,0,1]] = -9.0065616453080700E+04 +v_z[5][[0,3,1,4,0,1]] = 2.1645308412383587E+04 +v_z[5][[1,2,0,5,0,1]] = 6.0519102969248615E+03 +v_z[5][[0,3,0,5,0,1]] = -2.6217991623179038E+05 +v_z[5][[0,2,1,5,0,1]] = 7.3219179705799572E+04 +v_z[5][[1,1,0,6,0,1]] = 9.3362761445923952E+03 +v_z[5][[0,2,0,6,0,1]] = -7.6129634597583138E+05 +v_z[5][[0,1,1,6,0,1]] = 1.1295515750807358E+05 +v_z[5][[1,0,0,7,0,1]] = 1.7239552626503275E+04 +v_z[5][[0,1,0,7,0,1]] = -1.0941447422972973E+06 +v_z[5][[0,0,1,7,0,1]] = 2.0857313474208614E+05 +v_z[5][[0,0,0,8,0,1]] = -1.7703295895162774E+06 +v_z[5][[1,6,0,0,0,2]] = -2.9933515711889704E+00 +v_z[5][[0,7,0,0,0,2]] = 7.4289463659025856E+01 +v_z[5][[0,6,1,0,0,2]] = -3.6215134702986269E+01 +v_z[5][[1,5,0,1,0,2]] = -2.9051237211948823E+01 +v_z[5][[0,6,0,1,0,2]] = 1.3198216587238519E+03 +v_z[5][[0,5,1,1,0,2]] = -3.5147707975419576E+02 +v_z[5][[1,4,0,2,0,2]] = -2.5418676581031784E+02 +v_z[5][[0,5,0,2,0,2]] = 8.6415901625520964E+03 +v_z[5][[0,4,1,2,0,2]] = -3.0752845914055611E+03 +v_z[5][[1,3,0,3,0,2]] = -9.5982946943120032E+02 +v_z[5][[0,4,0,3,0,2]] = 5.3822805841910966E+04 +v_z[5][[0,3,1,3,0,2]] = -1.1612519512213454E+04 +v_z[5][[1,2,0,4,0,2]] = -3.9272286282184705E+03 +v_z[5][[0,3,0,4,0,2]] = 1.7568945651173935E+05 +v_z[5][[0,2,1,4,0,2]] = -4.7513668340622957E+04 +v_z[5][[1,1,0,5,0,2]] = -6.5718857611068906E+03 +v_z[5][[0,2,0,5,0,2]] = 5.9430143676713866E+05 +v_z[5][[0,1,1,5,0,2]] = -7.9510115143804345E+04 +v_z[5][[1,0,0,6,0,2]] = -1.4130774680571401E+04 +v_z[5][[0,1,0,6,0,2]] = 9.1682825001642900E+05 +v_z[5][[0,0,1,6,0,2]] = -1.7096151131728559E+05 +v_z[5][[0,0,0,7,0,2]] = 1.6929350225762099E+06 +v_z[5][[1,5,0,0,0,3]] = 3.4872208578366766E+00 +v_z[5][[0,6,0,0,0,3]] = -1.9596601758519074E+02 +v_z[5][[0,5,1,0,0,3]] = 4.2190223935324610E+01 +v_z[5][[1,4,0,1,0,3]] = 5.5365896830705836E+01 +v_z[5][[0,5,0,1,0,3]] = -1.9018999696340388E+03 +v_z[5][[0,4,1,1,0,3]] = 6.6984561084457653E+02 +v_z[5][[1,3,0,2,0,3]] = 2.5798453343629012E+02 +v_z[5][[0,4,0,2,0,3]] = -1.6640867948204985E+04 +v_z[5][[0,3,1,2,0,3]] = 3.1212319727519462E+03 +v_z[5][[1,2,0,3,0,3]] = 1.3553694589538168E+03 +v_z[5][[0,3,0,3,0,3]] = -6.2837242539681822E+04 +v_z[5][[0,2,1,3,0,3]] = 1.6397969420220568E+04 +v_z[5][[1,1,0,4,0,3]] = 2.5004991123619520E+03 +v_z[5][[0,2,0,4,0,3]] = -2.5710423119889002E+05 +v_z[5][[0,1,1,4,0,3]] = 3.0252347586059288E+04 +v_z[5][[1,0,0,5,0,3]] = 6.4347590645407199E+03 +v_z[5][[0,1,0,5,0,3]] = -4.3024223850772006E+05 +v_z[5][[0,0,1,5,0,3]] = 7.7851084565732686E+04 +v_z[5][[0,0,0,6,0,3]] = -9.2510070190163504E+05 +v_z[5][[1,4,0,0,0,4]] = -5.1862959160754052E+00 +v_z[5][[0,5,0,0,0,4]] = 1.7122365207476082E+02 +v_z[5][[0,4,1,0,0,4]] = -6.2746523668656266E+01 +v_z[5][[1,3,0,1,0,4]] = -3.4840911008615201E+01 +v_z[5][[0,4,0,1,0,4]] = 2.7184831251637038E+03 +v_z[5][[0,3,1,1,0,4]] = -4.2152358496619041E+02 +v_z[5][[1,2,0,2,0,4]] = -2.6246102376767601E+02 +v_z[5][[0,3,0,2,0,4]] = 1.2667122558210453E+04 +v_z[5][[0,2,1,2,0,4]] = -3.1753908967848320E+03 +v_z[5][[1,1,0,3,0,4]] = -5.4871783565811120E+02 +v_z[5][[0,2,0,3,0,4]] = 6.6549071060739807E+04 +v_z[5][[0,1,1,3,0,4]] = -6.6386756983565156E+03 +v_z[5][[1,0,0,4,0,4]] = -1.7581776465412672E+03 +v_z[5][[0,1,0,4,0,4]] = 1.2277530087208727E+05 +v_z[5][[0,0,1,4,0,4]] = -2.1271353794228649E+04 +v_z[5][[0,0,0,5,0,4]] = 3.1594871451168787E+05 +v_z[5][[1,3,0,0,0,5]] = 1.9289777951090046E+00 +v_z[5][[0,4,0,0,0,5]] = -2.0371902180964531E+02 +v_z[5][[0,3,1,0,0,5]] = 2.3337783426887597E+01 +v_z[5][[1,2,0,1,0,5]] = 2.6981885920954600E+01 +v_z[5][[0,3,0,1,0,5]] = -1.3685598401031925E+03 +v_z[5][[0,2,1,1,0,5]] = 3.2644098427096816E+02 +v_z[5][[1,1,0,2,0,5]] = 6.7910766848368212E+01 +v_z[5][[0,2,0,2,0,5]] = -1.0309535724596695E+04 +v_z[5][[0,1,1,2,0,5]] = 8.2162001713011603E+02 +v_z[5][[1,0,0,3,0,5]] = 2.8821716049660881E+02 +v_z[5][[0,1,0,3,0,5]] = -2.1553776054947451E+04 +v_z[5][[0,0,1,3,0,5]] = 3.4870021254973708E+03 +v_z[5][[0,0,0,4,0,5]] = -6.9061664840755402E+04 +v_z[5][[1,2,0,0,0,6]] = -1.1910278772265745E+00 +v_z[5][[0,3,0,0,0,6]] = 6.3142281741336816E+01 +v_z[5][[0,2,1,0,0,6]] = -1.4409678911067328E+01 +v_z[5][[1,1,0,1,0,6]] = -4.1741408510091169E+00 +v_z[5][[0,2,0,1,0,6]] = 8.8321278091086617E+02 +v_z[5][[0,1,1,1,0,6]] = -5.0500941701441391E+01 +v_z[5][[1,0,0,2,0,6]] = -2.6268992520567281E+01 +v_z[5][[0,1,0,2,0,6]] = 2.2229601525131357E+03 +v_z[5][[0,0,1,2,0,6]] = -3.1781602662403157E+02 +v_z[5][[0,0,0,3,0,6]] = 9.4343694348937079E+03 +v_z[5][[1,1,0,0,0,7]] = 8.4684603424258320E-02 +v_z[5][[0,2,0,0,0,7]] = -3.3417055533458594E+01 +v_z[5][[0,1,1,0,0,7]] = 1.0245586752311533E+00 +v_z[5][[1,0,0,1,0,7]] = 1.0245586752311711E+00 +v_z[5][[0,1,0,1,0,7]] = -1.1711522399245857E+02 +v_z[5][[0,0,1,1,0,7]] = 1.2395647337833816E+01 +v_z[5][[0,0,0,2,0,7]] = -7.3703764509018333E+02 +v_z[5][[1,0,0,0,0,8]] = -3.7281918004172798E-15 +v_z[5][[0,1,0,0,0,8]] = 2.0790204670029779E+00 +v_z[5][[0,0,1,0,0,8]] = -4.6412526599759474E-15 +v_z[5][[0,0,0,1,0,8]] = 2.5153078237608710E+01 +v_z[5][[0,0,0,0,1,8]] = 1.1024167689832609E-15 +v_z[5][[0,0,0,0,0,9]] = -2.0614659191799459E-02 +v_z[5][[1,9,0,0,0,0]] = -1.1722449229843630E-01 +v_z[5][[0,10,0,0,0,0]] = 3.6191226002153227E+00 +v_z[5][[0,9,1,0,0,0]] = -1.4182432895414268E+00 +v_z[5][[1,8,0,1,0,0]] = -2.3040555904058344E+00 +v_z[5][[0,9,0,1,0,0]] = 5.4942235582501361E+01 +v_z[5][[0,8,1,1,0,0]] = -2.7875670994627747E+01 +v_z[5][[1,7,0,2,0,0]] = -1.9017951879430232E+01 +v_z[5][[0,8,0,2,0,0]] = 6.1105247150460241E+02 +v_z[5][[0,7,1,2,0,0]] = -2.3008914011891585E+02 +v_z[5][[1,6,0,3,0,0]] = -1.3640916479538996E+02 +v_z[5][[0,7,0,3,0,0]] = 3.9605268573249014E+03 +v_z[5][[0,6,1,3,0,0]] = -1.6503495029902799E+03 +v_z[5][[1,5,0,4,0,0]] = -6.0607199908952589E+02 +v_z[5][[0,6,0,4,0,0]] = 2.2746601193742510E+04 +v_z[5][[0,5,1,4,0,0]] = -7.3325763996432579E+03 +v_z[5][[1,4,0,5,0,0]] = -2.5103550937809996E+03 +v_z[5][[0,5,0,5,0,0]] = 8.9172391338259491E+04 +v_z[5][[0,4,1,5,0,0]] = -3.0371590410108565E+04 +v_z[5][[1,3,0,6,0,0]] = -6.6419949500615085E+03 +v_z[5][[0,4,0,6,0,0]] = 3.2118443095543981E+05 +v_z[5][[0,3,1,6,0,0]] = -8.0358332822725439E+04 +v_z[5][[1,2,0,7,0,0]] = -1.6985694114041777E+04 +v_z[5][[0,3,0,7,0,0]] = 7.8235715052174986E+05 +v_z[5][[0,2,1,7,0,0]] = -2.0550182153157677E+05 +v_z[5][[1,1,0,8,0,0]] = -2.2913047011823739E+04 +v_z[5][[0,2,0,8,0,0]] = 1.7950412225431991E+06 +v_z[5][[0,1,1,8,0,0]] = -2.7721404060113488E+05 +v_z[5][[1,0,0,9,0,0]] = -3.2990709606666569E+04 +v_z[5][[0,1,0,9,0,0]] = 2.2855487727843015E+06 +v_z[5][[0,0,1,9,0,0]] = -3.9913887959306751E+05 +v_z[5][[0,0,0,10,0,0]] = 2.9643386612610365E+06 +v_z[5][[1,8,0,0,0,1]] = 1.1459528935368319E+00 +v_z[5][[0,9,0,0,0,1]] = -2.5900919173154289E+01 +v_z[5][[0,8,1,0,0,1]] = 1.3864338155985115E+01 +v_z[5][[1,7,0,1,0,1]] = 1.4341012706584236E+01 +v_z[5][[0,8,0,1,0,1]] = -5.0908437688624468E+02 +v_z[5][[0,7,1,1,0,1]] = 1.7350508104194827E+02 +v_z[5][[1,6,0,2,0,1]] = 1.4262281273614326E+02 +v_z[5][[0,7,0,2,0,1]] = -4.2020436583680594E+03 +v_z[5][[0,6,1,2,0,1]] = 1.7255254694010466E+03 +v_z[5][[1,5,0,3,0,1]] = 7.4328795729666115E+02 +v_z[5][[0,6,0,3,0,1]] = -3.0139799990330321E+04 +v_z[5][[0,5,1,3,0,1]] = 8.9926869117863134E+03 +v_z[5][[1,4,0,4,0,1]] = 3.6686368087974779E+03 +v_z[5][[0,5,0,4,0,1]] = -1.3391247472043251E+05 +v_z[5][[0,4,1,4,0,1]] = 4.4385089104037797E+04 +v_z[5][[1,3,0,5,0,1]] = 1.0679357218594645E+04 +v_z[5][[0,4,0,5,0,1]] = -5.5466654711035662E+05 +v_z[5][[0,3,1,5,0,1]] = 1.2920445561264045E+05 +v_z[5][[1,2,0,6,0,1]] = 3.1009833799393251E+04 +v_z[5][[0,3,0,6,0,1]] = -1.4675582805005531E+06 +v_z[5][[0,2,1,6,0,1]] = 3.7517320683990652E+05 +v_z[5][[1,1,0,7,0,1]] = 4.4567725551905343E+04 +v_z[5][[0,2,0,7,0,1]] = -3.7530133995180000E+06 +v_z[5][[0,1,1,7,0,1]] = 5.3920368051751168E+05 +v_z[5][[1,0,0,8,0,1]] = 7.2110718291546291E+04 +v_z[5][[0,1,0,8,0,1]] = -5.0626704968195325E+06 +v_z[5][[0,0,1,8,0,1]] = 8.7243322889069468E+05 +v_z[5][[0,0,0,9,0,1]] = -7.2893444555247305E+06 +v_z[5][[1,7,0,0,0,2]] = -3.0260278185882958E+00 +v_z[5][[0,8,0,0,0,2]] = 1.2659996511725460E+02 +v_z[5][[0,7,1,0,0,2]] = -3.6610469054134519E+01 +v_z[5][[1,6,0,1,0,2]] = -5.3760208489383672E+01 +v_z[5][[0,7,0,1,0,2]] = 1.5843336306749445E+03 +v_z[5][[0,6,1,1,0,2]] = -6.5041915251215346E+02 +v_z[5][[1,5,0,2,0,2]] = -3.5199732156828577E+02 +v_z[5][[0,6,0,2,0,2]] = 1.5756357193351016E+04 +v_z[5][[0,5,1,2,0,2]] = -4.2586479110512300E+03 +v_z[5][[1,4,0,3,0,2]] = -2.1923607969447330E+03 +v_z[5][[0,5,0,3,0,2]] = 8.2115268434293801E+04 +v_z[5][[0,4,1,3,0,2]] = -2.6524328897110812E+04 +v_z[5][[1,3,0,4,0,2]] = -7.1563470329696966E+03 +v_z[5][[0,4,0,4,0,2]] = 4.0529527403886378E+05 +v_z[5][[0,3,1,4,0,2]] = -8.6581233649534392E+04 +v_z[5][[1,2,0,5,0,2]] = -2.4207641187699464E+04 +v_z[5][[0,3,0,5,0,2]] = 1.1798096230430561E+06 +v_z[5][[0,2,1,5,0,2]] = -2.9287671882319835E+05 +v_z[5][[1,1,0,6,0,2]] = -3.7345104578369581E+04 +v_z[5][[0,2,0,6,0,2]] = 3.4258335568912425E+06 +v_z[5][[0,1,1,6,0,2]] = -4.5182063003229455E+05 +v_z[5][[1,0,0,7,0,2]] = -6.8958210506012794E+04 +v_z[5][[0,1,0,7,0,2]] = 4.9236513403378557E+06 +v_z[5][[0,0,1,7,0,2]] = -8.3429253896834422E+05 +v_z[5][[0,0,0,8,0,2]] = 7.9664831528231949E+06 +v_z[5][[1,6,0,0,0,3]] = 7.9822708565039262E+00 +v_z[5][[0,7,0,0,0,3]] = -2.2286839097707767E+02 +v_z[5][[0,6,1,0,0,3]] = 9.6573692541296722E+01 +v_z[5][[1,5,0,1,0,3]] = 7.7469965898530276E+01 +v_z[5][[0,6,0,1,0,3]] = -3.9594649761715591E+03 +v_z[5][[0,5,1,1,0,3]] = 9.3727221267785569E+02 +v_z[5][[1,4,0,2,0,3]] = 6.7783137549418097E+02 +v_z[5][[0,5,0,2,0,3]] = -2.5924770487656315E+04 +v_z[5][[0,4,1,2,0,3]] = 8.2007589104148319E+03 +v_z[5][[1,3,0,3,0,3]] = 2.5595452518165366E+03 +v_z[5][[0,4,0,3,0,3]] = -1.6146841752573312E+05 +v_z[5][[0,3,1,3,0,3]] = 3.0966718699235873E+04 +v_z[5][[1,2,0,4,0,3]] = 1.0472609675249256E+04 +v_z[5][[0,3,0,4,0,3]] = -5.2706836953521869E+05 +v_z[5][[0,2,1,4,0,3]] = 1.2670311557499463E+05 +v_z[5][[1,1,0,5,0,3]] = 1.7525028696285077E+04 +v_z[5][[0,2,0,5,0,3]] = -1.7829043103014142E+06 +v_z[5][[0,1,1,5,0,3]] = 2.1202697371681177E+05 +v_z[5][[1,0,0,6,0,3]] = 3.7682065814857429E+04 +v_z[5][[0,1,0,6,0,3]] = -2.7504847500492707E+06 +v_z[5][[0,0,1,6,0,3]] = 4.5589736351276177E+05 +v_z[5][[0,0,0,7,0,3]] = -5.0788050677286722E+06 +v_z[5][[1,5,0,0,0,4]] = -6.9744417156733522E+00 +v_z[5][[0,6,0,0,0,4]] = 4.4092353956667932E+02 +v_z[5][[0,5,1,0,0,4]] = -8.4380447870649192E+01 +v_z[5][[1,4,0,1,0,4]] = -1.1073179366141173E+02 +v_z[5][[0,5,0,1,0,4]] = 4.2792749316765903E+03 +v_z[5][[0,4,1,1,0,4]] = -1.3396912216891533E+03 +v_z[5][[1,3,0,2,0,4]] = -5.1596906687258047E+02 +v_z[5][[0,4,0,2,0,4]] = 3.7441952883461272E+04 +v_z[5][[0,3,1,2,0,4]] = -6.2424639455038996E+03 +v_z[5][[1,2,0,3,0,4]] = -2.7107389179076386E+03 +v_z[5][[0,3,0,3,0,4]] = 1.4138379571428444E+05 +v_z[5][[0,2,1,3,0,4]] = -3.2795938840441144E+04 +v_z[5][[1,1,0,4,0,4]] = -5.0009982247239113E+03 +v_z[5][[0,2,0,4,0,4]] = 5.7848452019750490E+05 +v_z[5][[0,1,1,4,0,4]] = -6.0504695172118591E+04 +v_z[5][[1,0,0,5,0,4]] = -1.2869518129081482E+04 +v_z[5][[0,1,0,5,0,4]] = 9.6804503664237820E+05 +v_z[5][[0,0,1,5,0,4]] = -1.5570216913146549E+05 +v_z[5][[0,0,0,6,0,4]] = 2.0814765792786658E+06 +v_z[5][[1,4,0,0,0,5]] = 8.2980734657206554E+00 +v_z[5][[0,5,0,0,0,5]] = -3.0820257373456968E+02 +v_z[5][[0,4,1,0,0,5]] = 1.0039443786985001E+02 +v_z[5][[1,3,0,1,0,5]] = 5.5745457613784311E+01 +v_z[5][[0,4,0,1,0,5]] = -4.8932696252946753E+03 +v_z[5][[0,3,1,1,0,5]] = 6.7443773594590516E+02 +v_z[5][[1,2,0,2,0,5]] = 4.1993763802828141E+02 +v_z[5][[0,3,0,2,0,5]] = -2.2800820604778877E+04 +v_z[5][[0,2,1,2,0,5]] = 5.0806254348557304E+03 +v_z[5][[1,1,0,3,0,5]] = 8.7794853705297828E+02 +v_z[5][[0,2,0,3,0,5]] = -1.1978832790933197E+05 +v_z[5][[0,1,1,3,0,5]] = 1.0621881117370427E+04 +v_z[5][[1,0,0,4,0,5]] = 2.8130842344660255E+03 +v_z[5][[0,1,0,4,0,5]] = -2.2099554156976193E+05 +v_z[5][[0,0,1,4,0,5]] = 3.4034166070765801E+04 +v_z[5][[0,0,0,5,0,5]] = -5.6870768612104887E+05 +v_z[5][[1,3,0,0,0,6]] = -2.5719703934786748E+00 +v_z[5][[0,4,0,0,0,6]] = 3.0557853271446834E+02 +v_z[5][[0,3,1,0,0,6]] = -3.1117044569183498E+01 +v_z[5][[1,2,0,1,0,6]] = -3.5975847894606204E+01 +v_z[5][[0,3,0,1,0,6]] = 2.0528397601548004E+03 +v_z[5][[0,2,1,1,0,6]] = -4.3525464569462429E+02 +v_z[5][[1,1,0,2,0,6]] = -9.0547689131157512E+01 +v_z[5][[0,2,0,2,0,6]] = 1.5464303586895127E+04 +v_z[5][[0,1,1,2,0,6]] = -1.0954933561734879E+03 +v_z[5][[1,0,0,3,0,6]] = -3.8428954732881044E+02 +v_z[5][[0,1,0,3,0,6]] = 3.2330664082421325E+04 +v_z[5][[0,0,1,3,0,6]] = -4.6493361673298295E+03 +v_z[5][[0,0,0,4,0,6]] = 1.0359249726113217E+05 +v_z[5][[1,2,0,0,0,7]] = 1.3611747168303754E+00 +v_z[5][[0,3,0,0,0,7]] = -8.1182933667433332E+01 +v_z[5][[0,2,1,0,0,7]] = 1.6468204469791239E+01 +v_z[5][[1,1,0,1,0,7]] = 4.7704466868675670E+00 +v_z[5][[0,2,0,1,0,7]] = -1.1355592897425472E+03 +v_z[5][[0,1,1,1,0,7]] = 5.7715361944504536E+01 +v_z[5][[1,0,0,2,0,7]] = 3.0021705737791201E+01 +v_z[5][[0,1,0,2,0,7]] = -2.8580916246597503E+03 +v_z[5][[0,0,1,2,0,7]] = 3.6321831614175045E+02 +v_z[5][[0,0,0,3,0,7]] = -1.2129903559149261E+04 +v_z[5][[1,1,0,0,0,8]] = -8.4684603424260013E-02 +v_z[5][[0,2,0,0,0,8]] = 3.7594187475140821E+01 +v_z[5][[0,1,1,0,0,8]] = -1.0245586752311648E+00 +v_z[5][[1,0,0,1,0,8]] = -1.0245586752312092E+00 +v_z[5][[0,1,0,1,0,8]] = 1.3175462699151592E+02 +v_z[5][[0,0,1,1,0,8]] = -1.2395647337833829E+01 +v_z[5][[0,0,0,2,0,8]] = 8.2916735072647430E+02 +v_z[5][[1,0,0,0,0,9]] = 4.9923173234267537E-15 +v_z[5][[0,1,0,0,0,9]] = -2.0790204670028354E+00 +v_z[5][[0,0,1,0,0,9]] = 3.2213814948889308E-15 +v_z[5][[0,0,0,1,0,9]] = -2.5153078237610146E+01 +v_z[5][[0,0,0,0,1,9]] = -1.3769367590565906E-15 +v_z[5][[0,0,0,0,0,10]] = 2.2497857971639640E-02 +v_z[6][[0,0,0,0,0,1]] = 1.0000000000000000E+00 +v_z[6][[0,0,0,0,0,2]] = -1.1102230246251565E-16 +v_z[6][[0,0,0,0,0,3]] = 6.2450045135165055E-17 +v_z[6][[0,0,0,0,0,4]] = -6.9605779473569385E-17 +v_z[6][[0,0,0,0,0,5]] = 1.2305694657710475E-16 +v_z[6][[0,0,0,0,0,6]] = -1.3178477406561306E-16 +v_z[6][[0,0,0,0,0,7]] = 1.5761589082508021E-16 +v_z[6][[0,0,0,0,0,8]] = 4.9755392948075405E-16 +v_z[6][[0,0,0,0,0,9]] = -5.9377009602526454E-16 +v_z[6][[0,0,0,0,0,10]] = 4.0075161613674359E-16 using ReferenceFrameRotations -q_z = Quaternion{TPS64{d_z}}(0, 0, 0, 0) -q_z.q0[[0, 0, 0, 0, 0, 0]] = 7.1310241755793524E-01 -q_z.q1[[0, 0, 0, 0, 0, 0]] = -5.1517596645863317E-01 -q_z.q2[[0, 0, 0, 0, 0, 0]] = 3.1370642744350274E-01 -q_z.q3[[0, 0, 0, 0, 0, 0]] = -3.5730511196605608E-01 \ No newline at end of file +q_z = Quaternion{TPS64{d_z}}(0,0,0,0) +q_z.q0[[0,0,0,0,0,0]] = 7.1310241755793524E-01 +q_z.q1[[0,0,0,0,0,0]] = -5.1517596645863317E-01 +q_z.q2[[0,0,0,0,0,0]] = 3.1370642744350274E-01 +q_z.q3[[0,0,0,0,0,0]] = -3.5730511196605608E-01 \ No newline at end of file diff --git a/test/bmad_maps/patch_norot.jl b/test/bmad_maps/patch_norot.jl index 38de2fa4..a98ac3c8 100644 --- a/test/bmad_maps/patch_norot.jl +++ b/test/bmad_maps/patch_norot.jl @@ -11,242 +11,242 @@ using GTPSA d_z = Descriptor(6, 10) v_z = zeros(TPS64{d_z}, 6) -v_z[1][[0, 0, 0, 0, 0, 0]] = -1.0000000000000000E+00 -v_z[1][[1, 0, 0, 0, 0, 0]] = 1.0000000000000000E+00 -v_z[1][[0, 1, 0, 0, 0, 0]] = 3.0000000000000000E+00 -v_z[1][[0, 1, 0, 0, 0, 1]] = -3.0000000000000000E+00 -v_z[1][[0, 3, 0, 0, 0, 0]] = 1.5000000000000000E+00 -v_z[1][[0, 1, 0, 2, 0, 0]] = 1.5000000000000000E+00 -v_z[1][[0, 1, 0, 0, 0, 2]] = 3.0000000000000000E+00 -v_z[1][[0, 3, 0, 0, 0, 1]] = -4.5000000000000000E+00 -v_z[1][[0, 1, 0, 2, 0, 1]] = -4.5000000000000000E+00 -v_z[1][[0, 1, 0, 0, 0, 3]] = -3.0000000000000009E+00 -v_z[1][[0, 5, 0, 0, 0, 0]] = 1.1250000000000000E+00 -v_z[1][[0, 3, 0, 2, 0, 0]] = 2.2500000000000000E+00 -v_z[1][[0, 1, 0, 4, 0, 0]] = 1.1250000000000000E+00 -v_z[1][[0, 3, 0, 0, 0, 2]] = 9.0000000000000000E+00 -v_z[1][[0, 1, 0, 2, 0, 2]] = 9.0000000000000000E+00 -v_z[1][[0, 1, 0, 0, 0, 4]] = 3.0000000000000013E+00 -v_z[1][[0, 5, 0, 0, 0, 1]] = -5.6250000000000000E+00 -v_z[1][[0, 3, 0, 2, 0, 1]] = -1.1250000000000000E+01 -v_z[1][[0, 1, 0, 4, 0, 1]] = -5.6250000000000000E+00 -v_z[1][[0, 3, 0, 0, 0, 3]] = -1.5000000000000000E+01 -v_z[1][[0, 1, 0, 2, 0, 3]] = -1.5000000000000000E+01 -v_z[1][[0, 1, 0, 0, 0, 5]] = -3.0000000000000018E+00 -v_z[1][[0, 7, 0, 0, 0, 0]] = 9.3750000000000000E-01 -v_z[1][[0, 5, 0, 2, 0, 0]] = 2.8125000000000000E+00 -v_z[1][[0, 3, 0, 4, 0, 0]] = 2.8125000000000000E+00 -v_z[1][[0, 1, 0, 6, 0, 0]] = 9.3750000000000000E-01 -v_z[1][[0, 5, 0, 0, 0, 2]] = 1.6875000000000000E+01 -v_z[1][[0, 3, 0, 2, 0, 2]] = 3.3750000000000000E+01 -v_z[1][[0, 1, 0, 4, 0, 2]] = 1.6875000000000000E+01 -v_z[1][[0, 3, 0, 0, 0, 4]] = 2.2500000000000004E+01 -v_z[1][[0, 1, 0, 2, 0, 4]] = 2.2500000000000004E+01 -v_z[1][[0, 1, 0, 0, 0, 6]] = 3.0000000000000044E+00 -v_z[1][[0, 7, 0, 0, 0, 1]] = -6.5625000000000000E+00 -v_z[1][[0, 5, 0, 2, 0, 1]] = -1.9687500000000000E+01 -v_z[1][[0, 3, 0, 4, 0, 1]] = -1.9687500000000000E+01 -v_z[1][[0, 1, 0, 6, 0, 1]] = -6.5625000000000000E+00 -v_z[1][[0, 5, 0, 0, 0, 3]] = -3.9375000000000000E+01 -v_z[1][[0, 3, 0, 2, 0, 3]] = -7.8750000000000000E+01 -v_z[1][[0, 1, 0, 4, 0, 3]] = -3.9375000000000000E+01 -v_z[1][[0, 3, 0, 0, 0, 5]] = -3.1500000000000007E+01 -v_z[1][[0, 1, 0, 2, 0, 5]] = -3.1500000000000007E+01 -v_z[1][[0, 1, 0, 0, 0, 7]] = -3.0000000000000067E+00 -v_z[1][[0, 9, 0, 0, 0, 0]] = 8.2031250000000000E-01 -v_z[1][[0, 7, 0, 2, 0, 0]] = 3.2812500000000000E+00 -v_z[1][[0, 5, 0, 4, 0, 0]] = 4.9218750000000000E+00 -v_z[1][[0, 3, 0, 6, 0, 0]] = 3.2812500000000000E+00 -v_z[1][[0, 1, 0, 8, 0, 0]] = 8.2031250000000000E-01 -v_z[1][[0, 7, 0, 0, 0, 2]] = 2.6250000000000000E+01 -v_z[1][[0, 5, 0, 2, 0, 2]] = 7.8750000000000000E+01 -v_z[1][[0, 3, 0, 4, 0, 2]] = 7.8750000000000000E+01 -v_z[1][[0, 1, 0, 6, 0, 2]] = 2.6250000000000000E+01 -v_z[1][[0, 5, 0, 0, 0, 4]] = 7.8750000000000000E+01 -v_z[1][[0, 3, 0, 2, 0, 4]] = 1.5750000000000000E+02 -v_z[1][[0, 1, 0, 4, 0, 4]] = 7.8750000000000000E+01 -v_z[1][[0, 3, 0, 0, 0, 6]] = 4.2000000000000014E+01 -v_z[1][[0, 1, 0, 2, 0, 6]] = 4.2000000000000014E+01 -v_z[1][[0, 1, 0, 0, 0, 8]] = 3.0000000000000093E+00 -v_z[1][[0, 9, 0, 0, 0, 1]] = -7.3828125000000000E+00 -v_z[1][[0, 7, 0, 2, 0, 1]] = -2.9531250000000000E+01 -v_z[1][[0, 5, 0, 4, 0, 1]] = -4.4296875000000000E+01 -v_z[1][[0, 3, 0, 6, 0, 1]] = -2.9531250000000000E+01 -v_z[1][[0, 1, 0, 8, 0, 1]] = -7.3828125000000000E+00 -v_z[1][[0, 7, 0, 0, 0, 3]] = -7.8750000000000000E+01 -v_z[1][[0, 5, 0, 2, 0, 3]] = -2.3625000000000000E+02 -v_z[1][[0, 3, 0, 4, 0, 3]] = -2.3625000000000000E+02 -v_z[1][[0, 1, 0, 6, 0, 3]] = -7.8750000000000000E+01 -v_z[1][[0, 5, 0, 0, 0, 5]] = -1.4175000000000000E+02 -v_z[1][[0, 3, 0, 2, 0, 5]] = -2.8350000000000000E+02 -v_z[1][[0, 1, 0, 4, 0, 5]] = -1.4175000000000000E+02 -v_z[1][[0, 3, 0, 0, 0, 7]] = -5.4000000000000028E+01 -v_z[1][[0, 1, 0, 2, 0, 7]] = -5.4000000000000028E+01 -v_z[1][[0, 1, 0, 0, 0, 9]] = -3.0000000000000142E+00 -v_z[2][[0, 1, 0, 0, 0, 0]] = 1.0000000000000000E+00 -v_z[3][[0, 0, 0, 0, 0, 0]] = -2.0000000000000000E+00 -v_z[3][[0, 0, 1, 0, 0, 0]] = 1.0000000000000000E+00 -v_z[3][[0, 0, 0, 1, 0, 0]] = 3.0000000000000000E+00 -v_z[3][[0, 0, 0, 1, 0, 1]] = -3.0000000000000000E+00 -v_z[3][[0, 2, 0, 1, 0, 0]] = 1.5000000000000000E+00 -v_z[3][[0, 0, 0, 3, 0, 0]] = 1.5000000000000000E+00 -v_z[3][[0, 0, 0, 1, 0, 2]] = 3.0000000000000000E+00 -v_z[3][[0, 2, 0, 1, 0, 1]] = -4.5000000000000000E+00 -v_z[3][[0, 0, 0, 3, 0, 1]] = -4.5000000000000000E+00 -v_z[3][[0, 0, 0, 1, 0, 3]] = -3.0000000000000009E+00 -v_z[3][[0, 4, 0, 1, 0, 0]] = 1.1250000000000000E+00 -v_z[3][[0, 2, 0, 3, 0, 0]] = 2.2500000000000000E+00 -v_z[3][[0, 0, 0, 5, 0, 0]] = 1.1250000000000000E+00 -v_z[3][[0, 2, 0, 1, 0, 2]] = 9.0000000000000000E+00 -v_z[3][[0, 0, 0, 3, 0, 2]] = 9.0000000000000000E+00 -v_z[3][[0, 0, 0, 1, 0, 4]] = 3.0000000000000013E+00 -v_z[3][[0, 4, 0, 1, 0, 1]] = -5.6250000000000000E+00 -v_z[3][[0, 2, 0, 3, 0, 1]] = -1.1250000000000000E+01 -v_z[3][[0, 0, 0, 5, 0, 1]] = -5.6250000000000000E+00 -v_z[3][[0, 2, 0, 1, 0, 3]] = -1.5000000000000000E+01 -v_z[3][[0, 0, 0, 3, 0, 3]] = -1.5000000000000000E+01 -v_z[3][[0, 0, 0, 1, 0, 5]] = -3.0000000000000018E+00 -v_z[3][[0, 6, 0, 1, 0, 0]] = 9.3750000000000000E-01 -v_z[3][[0, 4, 0, 3, 0, 0]] = 2.8125000000000000E+00 -v_z[3][[0, 2, 0, 5, 0, 0]] = 2.8125000000000000E+00 -v_z[3][[0, 0, 0, 7, 0, 0]] = 9.3750000000000000E-01 -v_z[3][[0, 4, 0, 1, 0, 2]] = 1.6875000000000000E+01 -v_z[3][[0, 2, 0, 3, 0, 2]] = 3.3750000000000000E+01 -v_z[3][[0, 0, 0, 5, 0, 2]] = 1.6875000000000000E+01 -v_z[3][[0, 2, 0, 1, 0, 4]] = 2.2500000000000004E+01 -v_z[3][[0, 0, 0, 3, 0, 4]] = 2.2500000000000004E+01 -v_z[3][[0, 0, 0, 1, 0, 6]] = 3.0000000000000044E+00 -v_z[3][[0, 6, 0, 1, 0, 1]] = -6.5625000000000000E+00 -v_z[3][[0, 4, 0, 3, 0, 1]] = -1.9687500000000000E+01 -v_z[3][[0, 2, 0, 5, 0, 1]] = -1.9687500000000000E+01 -v_z[3][[0, 0, 0, 7, 0, 1]] = -6.5625000000000000E+00 -v_z[3][[0, 4, 0, 1, 0, 3]] = -3.9375000000000000E+01 -v_z[3][[0, 2, 0, 3, 0, 3]] = -7.8750000000000000E+01 -v_z[3][[0, 0, 0, 5, 0, 3]] = -3.9375000000000000E+01 -v_z[3][[0, 2, 0, 1, 0, 5]] = -3.1500000000000007E+01 -v_z[3][[0, 0, 0, 3, 0, 5]] = -3.1500000000000007E+01 -v_z[3][[0, 0, 0, 1, 0, 7]] = -3.0000000000000067E+00 -v_z[3][[0, 8, 0, 1, 0, 0]] = 8.2031250000000000E-01 -v_z[3][[0, 6, 0, 3, 0, 0]] = 3.2812500000000000E+00 -v_z[3][[0, 4, 0, 5, 0, 0]] = 4.9218750000000000E+00 -v_z[3][[0, 2, 0, 7, 0, 0]] = 3.2812500000000000E+00 -v_z[3][[0, 0, 0, 9, 0, 0]] = 8.2031250000000000E-01 -v_z[3][[0, 6, 0, 1, 0, 2]] = 2.6250000000000000E+01 -v_z[3][[0, 4, 0, 3, 0, 2]] = 7.8750000000000000E+01 -v_z[3][[0, 2, 0, 5, 0, 2]] = 7.8750000000000000E+01 -v_z[3][[0, 0, 0, 7, 0, 2]] = 2.6250000000000000E+01 -v_z[3][[0, 4, 0, 1, 0, 4]] = 7.8750000000000000E+01 -v_z[3][[0, 2, 0, 3, 0, 4]] = 1.5750000000000000E+02 -v_z[3][[0, 0, 0, 5, 0, 4]] = 7.8750000000000000E+01 -v_z[3][[0, 2, 0, 1, 0, 6]] = 4.2000000000000014E+01 -v_z[3][[0, 0, 0, 3, 0, 6]] = 4.2000000000000014E+01 -v_z[3][[0, 0, 0, 1, 0, 8]] = 3.0000000000000093E+00 -v_z[3][[0, 8, 0, 1, 0, 1]] = -7.3828125000000000E+00 -v_z[3][[0, 6, 0, 3, 0, 1]] = -2.9531250000000000E+01 -v_z[3][[0, 4, 0, 5, 0, 1]] = -4.4296875000000000E+01 -v_z[3][[0, 2, 0, 7, 0, 1]] = -2.9531250000000000E+01 -v_z[3][[0, 0, 0, 9, 0, 1]] = -7.3828125000000000E+00 -v_z[3][[0, 6, 0, 1, 0, 3]] = -7.8750000000000000E+01 -v_z[3][[0, 4, 0, 3, 0, 3]] = -2.3625000000000000E+02 -v_z[3][[0, 2, 0, 5, 0, 3]] = -2.3625000000000000E+02 -v_z[3][[0, 0, 0, 7, 0, 3]] = -7.8750000000000000E+01 -v_z[3][[0, 4, 0, 1, 0, 5]] = -1.4175000000000000E+02 -v_z[3][[0, 2, 0, 3, 0, 5]] = -2.8350000000000000E+02 -v_z[3][[0, 0, 0, 5, 0, 5]] = -1.4175000000000000E+02 -v_z[3][[0, 2, 0, 1, 0, 7]] = -5.4000000000000028E+01 -v_z[3][[0, 0, 0, 3, 0, 7]] = -5.4000000000000028E+01 -v_z[3][[0, 0, 0, 1, 0, 9]] = -3.0000000000000142E+00 -v_z[4][[0, 0, 0, 1, 0, 0]] = 1.0000000000000000E+00 -v_z[5][[0, 0, 0, 0, 0, 0]] = 1.1976072558829913E+00 -v_z[5][[0, 0, 0, 0, 1, 0]] = 1.0000000000000000E+00 -v_z[5][[0, 0, 0, 0, 0, 1]] = 1.0932242567484903E-02 -v_z[5][[0, 2, 0, 0, 0, 0]] = -1.4999999999999996E+00 -v_z[5][[0, 0, 0, 2, 0, 0]] = -1.4999999999999996E+00 -v_z[5][[0, 0, 0, 0, 0, 2]] = -1.6355655974952997E-02 -v_z[5][[0, 2, 0, 0, 0, 1]] = 2.9999999999999991E+00 -v_z[5][[0, 0, 0, 2, 0, 1]] = 2.9999999999999991E+00 -v_z[5][[0, 0, 0, 0, 0, 3]] = 2.1736546886705583E-02 -v_z[5][[0, 4, 0, 0, 0, 0]] = -1.1250000000000000E+00 -v_z[5][[0, 2, 0, 2, 0, 0]] = -2.2500000000000000E+00 -v_z[5][[0, 0, 0, 4, 0, 0]] = -1.1250000000000000E+00 -v_z[5][[0, 2, 0, 0, 0, 2]] = -4.4999999999999991E+00 -v_z[5][[0, 0, 0, 2, 0, 2]] = -4.4999999999999991E+00 -v_z[5][[0, 0, 0, 0, 0, 4]] = -2.7064515559598549E-02 -v_z[5][[0, 4, 0, 0, 0, 1]] = 4.4999999999999982E+00 -v_z[5][[0, 2, 0, 2, 0, 1]] = 8.9999999999999964E+00 -v_z[5][[0, 0, 0, 4, 0, 1]] = 4.4999999999999982E+00 -v_z[5][[0, 2, 0, 0, 0, 3]] = 5.9999999999999982E+00 -v_z[5][[0, 0, 0, 2, 0, 3]] = 5.9999999999999982E+00 -v_z[5][[0, 0, 0, 0, 0, 5]] = 3.2329299600053645E-02 -v_z[5][[0, 6, 0, 0, 0, 0]] = -9.3749999999999989E-01 -v_z[5][[0, 4, 0, 2, 0, 0]] = -2.8125000000000000E+00 -v_z[5][[0, 2, 0, 4, 0, 0]] = -2.8125000000000000E+00 -v_z[5][[0, 0, 0, 6, 0, 0]] = -9.3749999999999989E-01 -v_z[5][[0, 4, 0, 0, 0, 2]] = -1.1249999999999996E+01 -v_z[5][[0, 2, 0, 2, 0, 2]] = -2.2499999999999993E+01 -v_z[5][[0, 0, 0, 4, 0, 2]] = -1.1249999999999996E+01 -v_z[5][[0, 2, 0, 0, 0, 4]] = -7.5000000000000027E+00 -v_z[5][[0, 0, 0, 2, 0, 4]] = -7.5000000000000027E+00 -v_z[5][[0, 0, 0, 0, 0, 6]] = -3.7520795879145134E-02 -v_z[5][[0, 6, 0, 0, 0, 1]] = 5.6249999999999982E+00 -v_z[5][[0, 4, 0, 2, 0, 1]] = 1.6875000000000007E+01 -v_z[5][[0, 2, 0, 4, 0, 1]] = 1.6875000000000007E+01 -v_z[5][[0, 0, 0, 6, 0, 1]] = 5.6249999999999982E+00 -v_z[5][[0, 4, 0, 0, 0, 3]] = 2.2499999999999996E+01 -v_z[5][[0, 2, 0, 2, 0, 3]] = 4.4999999999999993E+01 -v_z[5][[0, 0, 0, 4, 0, 3]] = 2.2499999999999996E+01 -v_z[5][[0, 2, 0, 0, 0, 5]] = 9.0000000000000000E+00 -v_z[5][[0, 0, 0, 2, 0, 5]] = 9.0000000000000000E+00 -v_z[5][[0, 0, 0, 0, 0, 7]] = 4.2629082035072034E-02 -v_z[5][[0, 8, 0, 0, 0, 0]] = -8.2031249999999989E-01 -v_z[5][[0, 6, 0, 2, 0, 0]] = -3.2812499999999996E+00 -v_z[5][[0, 4, 0, 4, 0, 0]] = -4.9218750000000000E+00 -v_z[5][[0, 2, 0, 6, 0, 0]] = -3.2812499999999996E+00 -v_z[5][[0, 0, 0, 8, 0, 0]] = -8.2031249999999989E-01 -v_z[5][[0, 6, 0, 0, 0, 2]] = -1.9687500000000000E+01 -v_z[5][[0, 4, 0, 2, 0, 2]] = -5.9062500000000000E+01 -v_z[5][[0, 2, 0, 4, 0, 2]] = -5.9062500000000000E+01 -v_z[5][[0, 0, 0, 6, 0, 2]] = -1.9687500000000000E+01 -v_z[5][[0, 4, 0, 0, 0, 4]] = -3.9374999999999993E+01 -v_z[5][[0, 2, 0, 2, 0, 4]] = -7.8749999999999986E+01 -v_z[5][[0, 0, 0, 4, 0, 4]] = -3.9374999999999993E+01 -v_z[5][[0, 2, 0, 0, 0, 6]] = -1.0500000000000007E+01 -v_z[5][[0, 0, 0, 2, 0, 6]] = -1.0500000000000000E+01 -v_z[5][[0, 0, 0, 0, 0, 8]] = -4.7644437515125024E-02 -v_z[5][[0, 8, 0, 0, 0, 1]] = 6.5625000000000009E+00 -v_z[5][[0, 6, 0, 2, 0, 1]] = 2.6250000000000004E+01 -v_z[5][[0, 4, 0, 4, 0, 1]] = 3.9374999999999993E+01 -v_z[5][[0, 2, 0, 6, 0, 1]] = 2.6250000000000004E+01 -v_z[5][[0, 0, 0, 8, 0, 1]] = 6.5625000000000009E+00 -v_z[5][[0, 6, 0, 0, 0, 3]] = 5.2499999999999993E+01 -v_z[5][[0, 4, 0, 2, 0, 3]] = 1.5750000000000000E+02 -v_z[5][[0, 2, 0, 4, 0, 3]] = 1.5750000000000000E+02 -v_z[5][[0, 0, 0, 6, 0, 3]] = 5.2499999999999993E+01 -v_z[5][[0, 4, 0, 0, 0, 5]] = 6.2999999999999979E+01 -v_z[5][[0, 2, 0, 2, 0, 5]] = 1.2599999999999996E+02 -v_z[5][[0, 0, 0, 4, 0, 5]] = 6.2999999999999979E+01 -v_z[5][[0, 2, 0, 0, 0, 7]] = 1.2000000000000004E+01 -v_z[5][[0, 0, 0, 2, 0, 7]] = 1.2000000000000011E+01 -v_z[5][[0, 0, 0, 0, 0, 9]] = 5.2557364110342328E-02 -v_z[5][[0, 10, 0, 0, 0, 0]] = -7.3828124999999989E-01 -v_z[5][[0, 8, 0, 2, 0, 0]] = -3.6914062500000000E+00 -v_z[5][[0, 6, 0, 4, 0, 0]] = -7.3828125000000000E+00 -v_z[5][[0, 4, 0, 6, 0, 0]] = -7.3828125000000000E+00 -v_z[5][[0, 2, 0, 8, 0, 0]] = -3.6914062500000000E+00 -v_z[5][[0, 0, 0, 10, 0, 0]] = -7.3828124999999989E-01 -v_z[5][[0, 8, 0, 0, 0, 2]] = -2.9531250000000000E+01 -v_z[5][[0, 6, 0, 2, 0, 2]] = -1.1812500000000000E+02 -v_z[5][[0, 4, 0, 4, 0, 2]] = -1.7718750000000000E+02 -v_z[5][[0, 2, 0, 6, 0, 2]] = -1.1812500000000000E+02 -v_z[5][[0, 0, 0, 8, 0, 2]] = -2.9531250000000000E+01 -v_z[5][[0, 6, 0, 0, 0, 4]] = -1.1812500000000000E+02 -v_z[5][[0, 4, 0, 2, 0, 4]] = -3.5437500000000000E+02 -v_z[5][[0, 2, 0, 4, 0, 4]] = -3.5437500000000000E+02 -v_z[5][[0, 0, 0, 6, 0, 4]] = -1.1812500000000000E+02 -v_z[5][[0, 4, 0, 0, 0, 6]] = -9.4500000000000000E+01 -v_z[5][[0, 2, 0, 2, 0, 6]] = -1.8900000000000000E+02 -v_z[5][[0, 0, 0, 4, 0, 6]] = -9.4500000000000000E+01 -v_z[5][[0, 2, 0, 0, 0, 8]] = -1.3500000000000011E+01 -v_z[5][[0, 0, 0, 2, 0, 8]] = -1.3500000000000012E+01 -v_z[5][[0, 0, 0, 0, 0, 10]] = -5.7358605937493513E-02 -v_z[6][[0, 0, 0, 0, 0, 1]] = 1.0000000000000000E+00 \ No newline at end of file +v_z[1][[0,0,0,0,0,0]] = -1.0000000000000000E+00 +v_z[1][[1,0,0,0,0,0]] = 1.0000000000000000E+00 +v_z[1][[0,1,0,0,0,0]] = 3.0000000000000000E+00 +v_z[1][[0,1,0,0,0,1]] = -3.0000000000000000E+00 +v_z[1][[0,3,0,0,0,0]] = 1.5000000000000000E+00 +v_z[1][[0,1,0,2,0,0]] = 1.5000000000000000E+00 +v_z[1][[0,1,0,0,0,2]] = 3.0000000000000000E+00 +v_z[1][[0,3,0,0,0,1]] = -4.5000000000000000E+00 +v_z[1][[0,1,0,2,0,1]] = -4.5000000000000000E+00 +v_z[1][[0,1,0,0,0,3]] = -3.0000000000000009E+00 +v_z[1][[0,5,0,0,0,0]] = 1.1250000000000000E+00 +v_z[1][[0,3,0,2,0,0]] = 2.2500000000000000E+00 +v_z[1][[0,1,0,4,0,0]] = 1.1250000000000000E+00 +v_z[1][[0,3,0,0,0,2]] = 9.0000000000000000E+00 +v_z[1][[0,1,0,2,0,2]] = 9.0000000000000000E+00 +v_z[1][[0,1,0,0,0,4]] = 3.0000000000000013E+00 +v_z[1][[0,5,0,0,0,1]] = -5.6250000000000000E+00 +v_z[1][[0,3,0,2,0,1]] = -1.1250000000000000E+01 +v_z[1][[0,1,0,4,0,1]] = -5.6250000000000000E+00 +v_z[1][[0,3,0,0,0,3]] = -1.5000000000000000E+01 +v_z[1][[0,1,0,2,0,3]] = -1.5000000000000000E+01 +v_z[1][[0,1,0,0,0,5]] = -3.0000000000000018E+00 +v_z[1][[0,7,0,0,0,0]] = 9.3750000000000000E-01 +v_z[1][[0,5,0,2,0,0]] = 2.8125000000000000E+00 +v_z[1][[0,3,0,4,0,0]] = 2.8125000000000000E+00 +v_z[1][[0,1,0,6,0,0]] = 9.3750000000000000E-01 +v_z[1][[0,5,0,0,0,2]] = 1.6875000000000000E+01 +v_z[1][[0,3,0,2,0,2]] = 3.3750000000000000E+01 +v_z[1][[0,1,0,4,0,2]] = 1.6875000000000000E+01 +v_z[1][[0,3,0,0,0,4]] = 2.2500000000000004E+01 +v_z[1][[0,1,0,2,0,4]] = 2.2500000000000004E+01 +v_z[1][[0,1,0,0,0,6]] = 3.0000000000000044E+00 +v_z[1][[0,7,0,0,0,1]] = -6.5625000000000000E+00 +v_z[1][[0,5,0,2,0,1]] = -1.9687500000000000E+01 +v_z[1][[0,3,0,4,0,1]] = -1.9687500000000000E+01 +v_z[1][[0,1,0,6,0,1]] = -6.5625000000000000E+00 +v_z[1][[0,5,0,0,0,3]] = -3.9375000000000000E+01 +v_z[1][[0,3,0,2,0,3]] = -7.8750000000000000E+01 +v_z[1][[0,1,0,4,0,3]] = -3.9375000000000000E+01 +v_z[1][[0,3,0,0,0,5]] = -3.1500000000000007E+01 +v_z[1][[0,1,0,2,0,5]] = -3.1500000000000007E+01 +v_z[1][[0,1,0,0,0,7]] = -3.0000000000000067E+00 +v_z[1][[0,9,0,0,0,0]] = 8.2031250000000000E-01 +v_z[1][[0,7,0,2,0,0]] = 3.2812500000000000E+00 +v_z[1][[0,5,0,4,0,0]] = 4.9218750000000000E+00 +v_z[1][[0,3,0,6,0,0]] = 3.2812500000000000E+00 +v_z[1][[0,1,0,8,0,0]] = 8.2031250000000000E-01 +v_z[1][[0,7,0,0,0,2]] = 2.6250000000000000E+01 +v_z[1][[0,5,0,2,0,2]] = 7.8750000000000000E+01 +v_z[1][[0,3,0,4,0,2]] = 7.8750000000000000E+01 +v_z[1][[0,1,0,6,0,2]] = 2.6250000000000000E+01 +v_z[1][[0,5,0,0,0,4]] = 7.8750000000000000E+01 +v_z[1][[0,3,0,2,0,4]] = 1.5750000000000000E+02 +v_z[1][[0,1,0,4,0,4]] = 7.8750000000000000E+01 +v_z[1][[0,3,0,0,0,6]] = 4.2000000000000014E+01 +v_z[1][[0,1,0,2,0,6]] = 4.2000000000000014E+01 +v_z[1][[0,1,0,0,0,8]] = 3.0000000000000093E+00 +v_z[1][[0,9,0,0,0,1]] = -7.3828125000000000E+00 +v_z[1][[0,7,0,2,0,1]] = -2.9531250000000000E+01 +v_z[1][[0,5,0,4,0,1]] = -4.4296875000000000E+01 +v_z[1][[0,3,0,6,0,1]] = -2.9531250000000000E+01 +v_z[1][[0,1,0,8,0,1]] = -7.3828125000000000E+00 +v_z[1][[0,7,0,0,0,3]] = -7.8750000000000000E+01 +v_z[1][[0,5,0,2,0,3]] = -2.3625000000000000E+02 +v_z[1][[0,3,0,4,0,3]] = -2.3625000000000000E+02 +v_z[1][[0,1,0,6,0,3]] = -7.8750000000000000E+01 +v_z[1][[0,5,0,0,0,5]] = -1.4175000000000000E+02 +v_z[1][[0,3,0,2,0,5]] = -2.8350000000000000E+02 +v_z[1][[0,1,0,4,0,5]] = -1.4175000000000000E+02 +v_z[1][[0,3,0,0,0,7]] = -5.4000000000000028E+01 +v_z[1][[0,1,0,2,0,7]] = -5.4000000000000028E+01 +v_z[1][[0,1,0,0,0,9]] = -3.0000000000000142E+00 +v_z[2][[0,1,0,0,0,0]] = 1.0000000000000000E+00 +v_z[3][[0,0,0,0,0,0]] = -2.0000000000000000E+00 +v_z[3][[0,0,1,0,0,0]] = 1.0000000000000000E+00 +v_z[3][[0,0,0,1,0,0]] = 3.0000000000000000E+00 +v_z[3][[0,0,0,1,0,1]] = -3.0000000000000000E+00 +v_z[3][[0,2,0,1,0,0]] = 1.5000000000000000E+00 +v_z[3][[0,0,0,3,0,0]] = 1.5000000000000000E+00 +v_z[3][[0,0,0,1,0,2]] = 3.0000000000000000E+00 +v_z[3][[0,2,0,1,0,1]] = -4.5000000000000000E+00 +v_z[3][[0,0,0,3,0,1]] = -4.5000000000000000E+00 +v_z[3][[0,0,0,1,0,3]] = -3.0000000000000009E+00 +v_z[3][[0,4,0,1,0,0]] = 1.1250000000000000E+00 +v_z[3][[0,2,0,3,0,0]] = 2.2500000000000000E+00 +v_z[3][[0,0,0,5,0,0]] = 1.1250000000000000E+00 +v_z[3][[0,2,0,1,0,2]] = 9.0000000000000000E+00 +v_z[3][[0,0,0,3,0,2]] = 9.0000000000000000E+00 +v_z[3][[0,0,0,1,0,4]] = 3.0000000000000013E+00 +v_z[3][[0,4,0,1,0,1]] = -5.6250000000000000E+00 +v_z[3][[0,2,0,3,0,1]] = -1.1250000000000000E+01 +v_z[3][[0,0,0,5,0,1]] = -5.6250000000000000E+00 +v_z[3][[0,2,0,1,0,3]] = -1.5000000000000000E+01 +v_z[3][[0,0,0,3,0,3]] = -1.5000000000000000E+01 +v_z[3][[0,0,0,1,0,5]] = -3.0000000000000018E+00 +v_z[3][[0,6,0,1,0,0]] = 9.3750000000000000E-01 +v_z[3][[0,4,0,3,0,0]] = 2.8125000000000000E+00 +v_z[3][[0,2,0,5,0,0]] = 2.8125000000000000E+00 +v_z[3][[0,0,0,7,0,0]] = 9.3750000000000000E-01 +v_z[3][[0,4,0,1,0,2]] = 1.6875000000000000E+01 +v_z[3][[0,2,0,3,0,2]] = 3.3750000000000000E+01 +v_z[3][[0,0,0,5,0,2]] = 1.6875000000000000E+01 +v_z[3][[0,2,0,1,0,4]] = 2.2500000000000004E+01 +v_z[3][[0,0,0,3,0,4]] = 2.2500000000000004E+01 +v_z[3][[0,0,0,1,0,6]] = 3.0000000000000044E+00 +v_z[3][[0,6,0,1,0,1]] = -6.5625000000000000E+00 +v_z[3][[0,4,0,3,0,1]] = -1.9687500000000000E+01 +v_z[3][[0,2,0,5,0,1]] = -1.9687500000000000E+01 +v_z[3][[0,0,0,7,0,1]] = -6.5625000000000000E+00 +v_z[3][[0,4,0,1,0,3]] = -3.9375000000000000E+01 +v_z[3][[0,2,0,3,0,3]] = -7.8750000000000000E+01 +v_z[3][[0,0,0,5,0,3]] = -3.9375000000000000E+01 +v_z[3][[0,2,0,1,0,5]] = -3.1500000000000007E+01 +v_z[3][[0,0,0,3,0,5]] = -3.1500000000000007E+01 +v_z[3][[0,0,0,1,0,7]] = -3.0000000000000067E+00 +v_z[3][[0,8,0,1,0,0]] = 8.2031250000000000E-01 +v_z[3][[0,6,0,3,0,0]] = 3.2812500000000000E+00 +v_z[3][[0,4,0,5,0,0]] = 4.9218750000000000E+00 +v_z[3][[0,2,0,7,0,0]] = 3.2812500000000000E+00 +v_z[3][[0,0,0,9,0,0]] = 8.2031250000000000E-01 +v_z[3][[0,6,0,1,0,2]] = 2.6250000000000000E+01 +v_z[3][[0,4,0,3,0,2]] = 7.8750000000000000E+01 +v_z[3][[0,2,0,5,0,2]] = 7.8750000000000000E+01 +v_z[3][[0,0,0,7,0,2]] = 2.6250000000000000E+01 +v_z[3][[0,4,0,1,0,4]] = 7.8750000000000000E+01 +v_z[3][[0,2,0,3,0,4]] = 1.5750000000000000E+02 +v_z[3][[0,0,0,5,0,4]] = 7.8750000000000000E+01 +v_z[3][[0,2,0,1,0,6]] = 4.2000000000000014E+01 +v_z[3][[0,0,0,3,0,6]] = 4.2000000000000014E+01 +v_z[3][[0,0,0,1,0,8]] = 3.0000000000000093E+00 +v_z[3][[0,8,0,1,0,1]] = -7.3828125000000000E+00 +v_z[3][[0,6,0,3,0,1]] = -2.9531250000000000E+01 +v_z[3][[0,4,0,5,0,1]] = -4.4296875000000000E+01 +v_z[3][[0,2,0,7,0,1]] = -2.9531250000000000E+01 +v_z[3][[0,0,0,9,0,1]] = -7.3828125000000000E+00 +v_z[3][[0,6,0,1,0,3]] = -7.8750000000000000E+01 +v_z[3][[0,4,0,3,0,3]] = -2.3625000000000000E+02 +v_z[3][[0,2,0,5,0,3]] = -2.3625000000000000E+02 +v_z[3][[0,0,0,7,0,3]] = -7.8750000000000000E+01 +v_z[3][[0,4,0,1,0,5]] = -1.4175000000000000E+02 +v_z[3][[0,2,0,3,0,5]] = -2.8350000000000000E+02 +v_z[3][[0,0,0,5,0,5]] = -1.4175000000000000E+02 +v_z[3][[0,2,0,1,0,7]] = -5.4000000000000028E+01 +v_z[3][[0,0,0,3,0,7]] = -5.4000000000000028E+01 +v_z[3][[0,0,0,1,0,9]] = -3.0000000000000142E+00 +v_z[4][[0,0,0,1,0,0]] = 1.0000000000000000E+00 +v_z[5][[0,0,0,0,0,0]] = 1.1976072558829913E+00 +v_z[5][[0,0,0,0,1,0]] = 1.0000000000000000E+00 +v_z[5][[0,0,0,0,0,1]] = 1.0932242567484903E-02 +v_z[5][[0,2,0,0,0,0]] = -1.4999999999999996E+00 +v_z[5][[0,0,0,2,0,0]] = -1.4999999999999996E+00 +v_z[5][[0,0,0,0,0,2]] = -1.6355655974952997E-02 +v_z[5][[0,2,0,0,0,1]] = 2.9999999999999991E+00 +v_z[5][[0,0,0,2,0,1]] = 2.9999999999999991E+00 +v_z[5][[0,0,0,0,0,3]] = 2.1736546886705583E-02 +v_z[5][[0,4,0,0,0,0]] = -1.1250000000000000E+00 +v_z[5][[0,2,0,2,0,0]] = -2.2500000000000000E+00 +v_z[5][[0,0,0,4,0,0]] = -1.1250000000000000E+00 +v_z[5][[0,2,0,0,0,2]] = -4.4999999999999991E+00 +v_z[5][[0,0,0,2,0,2]] = -4.4999999999999991E+00 +v_z[5][[0,0,0,0,0,4]] = -2.7064515559598549E-02 +v_z[5][[0,4,0,0,0,1]] = 4.4999999999999982E+00 +v_z[5][[0,2,0,2,0,1]] = 8.9999999999999964E+00 +v_z[5][[0,0,0,4,0,1]] = 4.4999999999999982E+00 +v_z[5][[0,2,0,0,0,3]] = 5.9999999999999982E+00 +v_z[5][[0,0,0,2,0,3]] = 5.9999999999999982E+00 +v_z[5][[0,0,0,0,0,5]] = 3.2329299600053645E-02 +v_z[5][[0,6,0,0,0,0]] = -9.3749999999999989E-01 +v_z[5][[0,4,0,2,0,0]] = -2.8125000000000000E+00 +v_z[5][[0,2,0,4,0,0]] = -2.8125000000000000E+00 +v_z[5][[0,0,0,6,0,0]] = -9.3749999999999989E-01 +v_z[5][[0,4,0,0,0,2]] = -1.1249999999999996E+01 +v_z[5][[0,2,0,2,0,2]] = -2.2499999999999993E+01 +v_z[5][[0,0,0,4,0,2]] = -1.1249999999999996E+01 +v_z[5][[0,2,0,0,0,4]] = -7.5000000000000027E+00 +v_z[5][[0,0,0,2,0,4]] = -7.5000000000000027E+00 +v_z[5][[0,0,0,0,0,6]] = -3.7520795879145134E-02 +v_z[5][[0,6,0,0,0,1]] = 5.6249999999999982E+00 +v_z[5][[0,4,0,2,0,1]] = 1.6875000000000007E+01 +v_z[5][[0,2,0,4,0,1]] = 1.6875000000000007E+01 +v_z[5][[0,0,0,6,0,1]] = 5.6249999999999982E+00 +v_z[5][[0,4,0,0,0,3]] = 2.2499999999999996E+01 +v_z[5][[0,2,0,2,0,3]] = 4.4999999999999993E+01 +v_z[5][[0,0,0,4,0,3]] = 2.2499999999999996E+01 +v_z[5][[0,2,0,0,0,5]] = 9.0000000000000000E+00 +v_z[5][[0,0,0,2,0,5]] = 9.0000000000000000E+00 +v_z[5][[0,0,0,0,0,7]] = 4.2629082035072034E-02 +v_z[5][[0,8,0,0,0,0]] = -8.2031249999999989E-01 +v_z[5][[0,6,0,2,0,0]] = -3.2812499999999996E+00 +v_z[5][[0,4,0,4,0,0]] = -4.9218750000000000E+00 +v_z[5][[0,2,0,6,0,0]] = -3.2812499999999996E+00 +v_z[5][[0,0,0,8,0,0]] = -8.2031249999999989E-01 +v_z[5][[0,6,0,0,0,2]] = -1.9687500000000000E+01 +v_z[5][[0,4,0,2,0,2]] = -5.9062500000000000E+01 +v_z[5][[0,2,0,4,0,2]] = -5.9062500000000000E+01 +v_z[5][[0,0,0,6,0,2]] = -1.9687500000000000E+01 +v_z[5][[0,4,0,0,0,4]] = -3.9374999999999993E+01 +v_z[5][[0,2,0,2,0,4]] = -7.8749999999999986E+01 +v_z[5][[0,0,0,4,0,4]] = -3.9374999999999993E+01 +v_z[5][[0,2,0,0,0,6]] = -1.0500000000000007E+01 +v_z[5][[0,0,0,2,0,6]] = -1.0500000000000000E+01 +v_z[5][[0,0,0,0,0,8]] = -4.7644437515125024E-02 +v_z[5][[0,8,0,0,0,1]] = 6.5625000000000009E+00 +v_z[5][[0,6,0,2,0,1]] = 2.6250000000000004E+01 +v_z[5][[0,4,0,4,0,1]] = 3.9374999999999993E+01 +v_z[5][[0,2,0,6,0,1]] = 2.6250000000000004E+01 +v_z[5][[0,0,0,8,0,1]] = 6.5625000000000009E+00 +v_z[5][[0,6,0,0,0,3]] = 5.2499999999999993E+01 +v_z[5][[0,4,0,2,0,3]] = 1.5750000000000000E+02 +v_z[5][[0,2,0,4,0,3]] = 1.5750000000000000E+02 +v_z[5][[0,0,0,6,0,3]] = 5.2499999999999993E+01 +v_z[5][[0,4,0,0,0,5]] = 6.2999999999999979E+01 +v_z[5][[0,2,0,2,0,5]] = 1.2599999999999996E+02 +v_z[5][[0,0,0,4,0,5]] = 6.2999999999999979E+01 +v_z[5][[0,2,0,0,0,7]] = 1.2000000000000004E+01 +v_z[5][[0,0,0,2,0,7]] = 1.2000000000000011E+01 +v_z[5][[0,0,0,0,0,9]] = 5.2557364110342328E-02 +v_z[5][[0,10,0,0,0,0]] = -7.3828124999999989E-01 +v_z[5][[0,8,0,2,0,0]] = -3.6914062500000000E+00 +v_z[5][[0,6,0,4,0,0]] = -7.3828125000000000E+00 +v_z[5][[0,4,0,6,0,0]] = -7.3828125000000000E+00 +v_z[5][[0,2,0,8,0,0]] = -3.6914062500000000E+00 +v_z[5][[0,0,0,10,0,0]] = -7.3828124999999989E-01 +v_z[5][[0,8,0,0,0,2]] = -2.9531250000000000E+01 +v_z[5][[0,6,0,2,0,2]] = -1.1812500000000000E+02 +v_z[5][[0,4,0,4,0,2]] = -1.7718750000000000E+02 +v_z[5][[0,2,0,6,0,2]] = -1.1812500000000000E+02 +v_z[5][[0,0,0,8,0,2]] = -2.9531250000000000E+01 +v_z[5][[0,6,0,0,0,4]] = -1.1812500000000000E+02 +v_z[5][[0,4,0,2,0,4]] = -3.5437500000000000E+02 +v_z[5][[0,2,0,4,0,4]] = -3.5437500000000000E+02 +v_z[5][[0,0,0,6,0,4]] = -1.1812500000000000E+02 +v_z[5][[0,4,0,0,0,6]] = -9.4500000000000000E+01 +v_z[5][[0,2,0,2,0,6]] = -1.8900000000000000E+02 +v_z[5][[0,0,0,4,0,6]] = -9.4500000000000000E+01 +v_z[5][[0,2,0,0,0,8]] = -1.3500000000000011E+01 +v_z[5][[0,0,0,2,0,8]] = -1.3500000000000012E+01 +v_z[5][[0,0,0,0,0,10]] = -5.7358605937493513E-02 +v_z[6][[0,0,0,0,0,1]] = 1.0000000000000000E+00 \ No newline at end of file diff --git a/test/runtests.jl b/test/runtests.jl index 447b7df9..42068edb 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -23,9 +23,9 @@ const D10 = Descriptor(6, 10) # 6 variables 10th order function test_matrix( M_expected, # Expected matrix kernel_call; - type_stable=VERSION >= v"1.11", + type_stable=VERSION >= v"1.11", no_scalar_allocs=!(any(t->eltype(t) <: TPS, kernel_call.args)), # only for non-parametric - rtol=nothing, + rtol=nothing, atol=nothing ) # Initialize bunch without spin @@ -150,45 +150,45 @@ function coeffs_approx_equal(v_expected, v_calculated, ϵ) n = GTPSA.numcoefs(v_expected[1]) all_ok = true for i in 1:length(v_expected) - for j in 0:n-1 - c1, c2 = v_expected[i][j], v_calculated[i][j] - if abs(c1 - c2) > max(ϵ, ϵ * (abs(c1) + abs(c2))) - println("Coefficients not equal: v_expected[$i][$j] = $c1, v_calculated[$i][$j] = $c2") - println("Difference: $(abs(c1 - c2))") - println("Tolerance: $(max(ϵ, ϵ * (abs(c1) + abs(c2))))") - all_ok = false - break + for j in 0:n-1 + c1, c2 = v_expected[i][j], v_calculated[i][j] + if abs(c1 - c2) > max(ϵ, ϵ * (abs(c1) + abs(c2))) + println("Coefficients not equal: v_expected[$i][$j] = $c1, v_calculated[$i][$j] = $c2") + println("Difference: $(abs(c1 - c2))") + println("Tolerance: $(max(ϵ, ϵ * (abs(c1) + abs(c2))))") + all_ok = false + break + end + end + if !all_ok + break end - end - if !all_ok - break - end end return all_ok end function quaternion_coeffs_approx_equal(q_expected, q_calculated, ϵ) - sgn = ifelse(q_expected.q0[[0, 0, 0, 0, 0, 0]] * q_calculated.q0[[0, 0, 0, 0, 0, 0]] >= 0, 1, -1) + sgn = ifelse(q_expected.q0[[0,0,0,0,0,0]] * q_calculated.q0[[0,0,0,0,0,0]] >= 0, 1, -1) components = (:q0, :q1, :q2, :q3) n = GTPSA.numcoefs(q_expected.q0) all_ok = true - for cname in components - v_expected = getfield(q_expected, cname) - v_calculated = sgn * getfield(q_calculated, cname) - for j in 0:n-1 - c1, c2 = v_expected[j], v_calculated[j] - if abs(c1 - c2) > max(ϵ, ϵ * (abs(c1) + abs(c2))) - println("Coefficients not equal: expected $cname[$j] = $c1, got $cname[$j] = $c2") - println("Difference: $(abs(c1 - c2))") - println("Tolerance: $(max(ϵ, ϵ * (abs(c1) + abs(c2))))") - all_ok = false - break + for cname in components + v_expected = getfield(q_expected, cname) + v_calculated = sgn * getfield(q_calculated, cname) + for j in 0:n-1 + c1, c2 = v_expected[j], v_calculated[j] + if abs(c1 - c2) > max(ϵ, ϵ * (abs(c1) + abs(c2))) + println("Coefficients not equal: expected $cname[$j] = $c1, got $cname[$j] = $c2") + println("Difference: $(abs(c1 - c2))") + println("Tolerance: $(max(ϵ, ϵ * (abs(c1) + abs(c2))))") + all_ok = false + break + end + end + if !all_ok + break end - end - if !all_ok - break - end end return all_ok end From 1afde718964274005b52390e9ea53e586659a8c5 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 7 Nov 2025 03:10:08 -0500 Subject: [PATCH 45/76] Catch up on esr --- test/lattices/esr.jl | 15966 ++++++++++++++--------------------------- 1 file changed, 5537 insertions(+), 10429 deletions(-) diff --git a/test/lattices/esr.jl b/test/lattices/esr.jl index 56cbf7d1..2f0801c1 100644 --- a/test/lattices/esr.jl +++ b/test/lattices/esr.jl @@ -1,10435 +1,5543 @@ using BeamTracking, Beamlines @eles begin - IP6__1 = Marker() - D000001__1 = Drift(L=5.3) - Q1ER_6 = Quadrupole(L=1.8, Kn1=-0.2291420342) - D000002__1 = Drift(L=0.5) - Q2ER_6 = Quadrupole(L=1.4, Kn1=0.2267785688) - D000002__2 = Drift(L=0.5) - D2ER_6 = SBend(L=5.50007539103, g=-3.2977170394029E-3, e1=-9.0688461675E-3, e2=-9.0688461675E-3) - D000003__1 = Drift(L=22.7) - Q3ER_6 = Quadrupole(L=0.6, Kn1=0.2223634541) - D000004 = Drift(L=3.530758) - Q4ER_6 = Quadrupole(L=0.6, Kn1=-0.26505565,) - D000005__1 = Drift(L=4.6) - Q5ER_6 = Quadrupole(L=1.2, Kn1=-0.03480279635) - D000006__1 = Drift(L=0.4) - D3ER_6 = SBend(L=3.8000045358949, g=-1.4085135130897E-3, e1=-2.676178869305E-3, e2=-2.676178869305E-3) - D000006__2 = Drift(L=0.4) - Q6ER_6 = Quadrupole(L=1.2, Kn1=0.1490047164,) - D000005__2 = Drift(L=4.6) - Q7ER_6 = Quadrupole(L=1.2, Kn1=-0.1838758976,) - D000005__3 = Drift(L=4.6) - Q9ER_6 = Quadrupole(L=1.2, Kn1=0.06052528741,) - D000007__1 = Drift(L=0.3) - RF_CRAB__1 = Drift(L=4) - D000007__2 = Drift(L=0.3) - Q10ER_6 = Quadrupole(L=1.2, Kn1=0.1362226534) - D000005__4 = Drift(L=4.6) - Q11ER_6 = Quadrupole(L=1.2, Kn1=-0.1612034901) - D000006__3 = Drift(L=0.4) - D5ER_6__1 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) - D000006__4 = Drift(L=0.4) - Q12ER_6 = Quadrupole(L=1.2, Kn1=0.1776428377) - D000006__5 = Drift(L=0.4) - D5ER_6__2 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) - D000006__6 = Drift(L=0.4) - Q13ER_6 = Quadrupole(L=1.2, Kn1=0.108262799,) - D000006__7 = Drift(L=0.4) - D5ER_6__3 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) - D000006__8 = Drift(L=0.4) - Q14ER_6 = Quadrupole(L=1.2, Kn1=-0.1762142779,) - D000006__9 = Drift(L=0.4) - D5ER_6__4 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) - D000006__10 = Drift(L=0.4) - Q15ER_6 = Quadrupole(L=1.2, Kn1=0.2658297117,) - MLRR_6 = Marker() - D000008__1 = Drift(L=0.85) - MROT4__1 = Marker() - HSOL20_6__1 = Solenoid(L=5.5, Ksol=0.142634259959) - D000008__2 = Drift(L=0.85) - HQLS7_6 = Quadrupole(L=0.9819319, Kn1=0.4980048) - D000009__1 = Drift(L=0.25) - HQLS6_6 = Quadrupole(L=1.469939, Kn1=-0.4983425) - D000009__2 = Drift(L=0.25) - HQLS5_6 = Quadrupole(L=1.530059, Kn1=0.3253198) - D000009__3 = Drift(L=0.25) - HQLS4_6 = Quadrupole(L=0.5187944, Kn1=0.498934) - D000009__4 = Drift(L=0.25) - HQLS3_6 = Quadrupole(L=1.530059, Kn1=0.3253198) - D000009__5 = Drift(L=0.25) - HQLS2_6 = Quadrupole(L=1.469939, Kn1=-0.4983425) - D000009__6 = Drift(L=0.25) - HQLS1_6 = Quadrupole(L=0.9819319, Kn1=0.4980048) - D000008__3 = Drift(L=0.85) - HSOL20_6__2 = Solenoid(L=5.5, Ksol=0.142634259959) - MROT3__1 = Marker() - D000008__4 = Drift(L=0.85) - HQFF6_6 = Quadrupole(L=0.5, Kn1=0.05714467433,) - MFF_6 = Marker() - D000010__1 = Drift(L=0.753912) - DB23_6__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000010__2 = Drift(L=0.753912) - HQFF5_6 = Quadrupole(L=0.6, Kn1=0.2430267659,) - D000010__3 = Drift(L=0.753912) - DB23_6__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000010__4 = Drift(L=0.753912) - QFF4_6 = Quadrupole(L=1, Kn1=-0.1976684766,) - D000010__5 = Drift(L=0.753912) - DB23_6__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000010__6 = Drift(L=0.753912) - QFF3_6 = Quadrupole(L=1.2, Kn1=0.274784227) - D000010__7 = Drift(L=0.753912) - DB23_6__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000010__8 = Drift(L=0.753912) - QFF2_6 = Quadrupole(L=1.2, Kn1=-0.1372520109) - D000010__9 = Drift(L=0.753912) - DB23_6__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000010__10 = Drift(L=0.753912) - QFF1_6 = Quadrupole(L=1.6, Kn1=0.2242944837,) - D000008__5 = Drift(L=0.85) - MROT2__1 = Marker() - HSOL5_6__1 = Solenoid(L=1.8) - D000008__6 = Drift(L=0.85) - HQSS5_6 = Quadrupole(L=0.6861532, Kn1=-0.1709619063,) - D000009__7 = Drift(L=0.25) - HQSS4_6 = Quadrupole(L=1.020723, Kn1=-0.3178330623,) - D000009__8 = Drift(L=0.25) - HQSS3_6 = Quadrupole(L=1.634532, Kn1=0.1897683702,) - D000009__9 = Drift(L=0.25) - HQSS2_6 = Quadrupole(L=0.9550568, Kn1=0.3512480915) - D000009__10 = Drift(L=0.25) - HQSS1_6 = Quadrupole(L=0.6480402, Kn1=-0.4953496086,) - D000008__7 = Drift(L=0.85) - HSOL5_6__2 = Solenoid(L=1.8) - MROT1__1 = Marker() - D000008__8 = Drift(L=0.85) - HQD_6A = Quadrupole(L=0.5, Kn1=-0.06747722682,) - D000011__1 = Drift(L=1.1) - HQF_6A = Quadrupole(L=0.5, Kn1=0.3359722588) - D000012__1 = Drift(L=0.1559) - SF1_7__1 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__1 = Drift(L=0.1042) - SF1_7__2 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__1 = Drift(L=0.50037) - EDGE1_002__1 = Multipole(Kn1L=-5.17873518337E-5) - D01A_002__1 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE2_002__1 = Multipole(Kn1L=4.78133619569E-6) - D000015__1 = Drift(L=0.1193) - EDGE3_002__1 = Multipole(Kn1L=-4.78133619569E-6) - D23_002__1 = SBend(L=0.611400148943, g=3.9548203741204E-3) - EDGE3_002__2 = Multipole(Kn1L=-4.78133619569E-6) - D000015__2 = Drift(L=0.1193) - EDGE2_002__2 = Multipole(Kn1L=4.78133619569E-6) - D01B_002__1 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE1_002__2 = Multipole(Kn1L=-5.17873518337E-5) - D000016__1 = Drift(L=0.374508) - CV01_7 = VKicker(L=0.2) - D000017__1 = Drift(L=0.0638) - HQD_6B = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__2 = Drift(L=0.1559) - SD1_7__1 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__2 = Drift(L=0.1042) - SD1_7__2 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__2 = Drift(L=0.50037) - EDGE1_002__3 = Multipole(Kn1L=-5.17873518337E-5) - D01A_002__2 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE2_002__3 = Multipole(Kn1L=4.78133619569E-6) - D000015__3 = Drift(L=0.1193) - EDGE3_002__3 = Multipole(Kn1L=-4.78133619569E-6) - D23_002__2 = SBend(L=0.611400148943, g=3.9548203741204E-3) - EDGE3_002__4 = Multipole(Kn1L=-4.78133619569E-6) - D000015__4 = Drift(L=0.1193) - EDGE2_002__4 = Multipole(Kn1L=4.78133619569E-6) - D01B_002__2 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE1_002__4 = Multipole(Kn1L=-5.17873518337E-5) - D000016__2 = Drift(L=0.374508) - CH01_7 = HKicker(L=0.2) - D000017__2 = Drift(L=0.0638) - HQF_6B = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__3 = Drift(L=0.1559) - SF2_7__1 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__3 = Drift(L=0.1042) - SF2_7__2 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__3 = Drift(L=0.50037) - EDGE1_002__5 = Multipole(Kn1L=-5.17873518337E-5) - D01A_002__3 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE2_002__5 = Multipole(Kn1L=4.78133619569E-6) - D000015__5 = Drift(L=0.1193) - EDGE3_002__5 = Multipole(Kn1L=-4.78133619569E-6) - D23_002__3 = SBend(L=0.611400148943, g=3.9548203741204E-3) - EDGE3_002__6 = Multipole(Kn1L=-4.78133619569E-6) - D000015__6 = Drift(L=0.1193) - EDGE2_002__6 = Multipole(Kn1L=4.78133619569E-6) - D01B_002__3 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE1_002__6 = Multipole(Kn1L=-5.17873518337E-5) - D000016__3 = Drift(L=0.374508) - CV02_7 = VKicker(L=0.2) - D000017__3 = Drift(L=0.0638) - HQD_6C = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__4 = Drift(L=0.1559) - SD2_7__1 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__4 = Drift(L=0.1042) - SD2_7__2 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__4 = Drift(L=0.50037) - EDGE1_002__7 = Multipole(Kn1L=-5.17873518337E-5) - D01A_002__4 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE2_002__7 = Multipole(Kn1L=4.78133619569E-6) - D000015__7 = Drift(L=0.1193) - EDGE3_002__7 = Multipole(Kn1L=-4.78133619569E-6) - D23_002__4 = SBend(L=0.611400148943, g=3.9548203741204E-3) - EDGE3_002__8 = Multipole(Kn1L=-4.78133619569E-6) - D000015__8 = Drift(L=0.1193) - EDGE2_002__8 = Multipole(Kn1L=4.78133619569E-6) - D01B_002__4 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE1_002__8 = Multipole(Kn1L=-5.17873518337E-5) - D000016__4 = Drift(L=0.374508) - CH02_7 = HKicker(L=0.2) - D000017__4 = Drift(L=0.0638) - HQF_6C = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__5 = Drift(L=0.1559) - SF1_7__3 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__5 = Drift(L=0.1042) - SF1_7__4 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__5 = Drift(L=0.50037) - EDGE1_000__1 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__1 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__1 = Multipole(Kn1L=4.07894736378E-6) - D000018__1 = Drift(L=0.1193) - EDGE3_000__1 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__1 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__2 = Multipole(Kn1L=-4.07894736378E-6) - D000018__2 = Drift(L=0.1193) - EDGE2_000__2 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__1 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__2 = Multipole(Kn1L=-4.4179123956E-5) - D000016__5 = Drift(L=0.374508) - CV03_7 = VKicker(L=0.2) - D000017__5 = Drift(L=0.0638) - HQD_7__1 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__6 = Drift(L=0.1559) - SD1_7__3 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__6 = Drift(L=0.1042) - SD1_7__4 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__6 = Drift(L=0.50037) - EDGE1_000__3 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__2 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__3 = Multipole(Kn1L=4.07894736378E-6) - D000018__3 = Drift(L=0.1193) - EDGE3_000__3 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__2 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__4 = Multipole(Kn1L=-4.07894736378E-6) - D000018__4 = Drift(L=0.1193) - EDGE2_000__4 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__2 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__4 = Multipole(Kn1L=-4.4179123956E-5) - D000016__6 = Drift(L=0.374508) - CH03_7 = HKicker(L=0.2) - D000017__6 = Drift(L=0.0638) - HQF_7__1 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__7 = Drift(L=0.1559) - SF2_7__3 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__7 = Drift(L=0.1042) - SF2_7__4 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__7 = Drift(L=0.50037) - EDGE1_000__5 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__3 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__5 = Multipole(Kn1L=4.07894736378E-6) - D000018__5 = Drift(L=0.1193) - EDGE3_000__5 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__3 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__6 = Multipole(Kn1L=-4.07894736378E-6) - D000018__6 = Drift(L=0.1193) - EDGE2_000__6 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__3 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__6 = Multipole(Kn1L=-4.4179123956E-5) - D000016__7 = Drift(L=0.374508) - CV04_7 = VKicker(L=0.2) - D000017__7 = Drift(L=0.0638) - HQD_7__2 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__8 = Drift(L=0.1559) - SD2_7__3 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__8 = Drift(L=0.1042) - SD2_7__4 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__8 = Drift(L=0.50037) - EDGE1_000__7 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__4 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__7 = Multipole(Kn1L=4.07894736378E-6) - D000018__7 = Drift(L=0.1193) - EDGE3_000__7 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__4 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__8 = Multipole(Kn1L=-4.07894736378E-6) - D000018__8 = Drift(L=0.1193) - EDGE2_000__8 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__4 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__8 = Multipole(Kn1L=-4.4179123956E-5) - D000016__8 = Drift(L=0.374508) - CH04_7 = HKicker(L=0.2) - D000017__8 = Drift(L=0.0638) - HQF_7__2 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__9 = Drift(L=0.1559) - SF1_7__5 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__9 = Drift(L=0.1042) - SF1_7__6 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__9 = Drift(L=0.50037) - EDGE1_000__9 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__5 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__9 = Multipole(Kn1L=4.07894736378E-6) - D000018__9 = Drift(L=0.1193) - EDGE3_000__9 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__5 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__10 = Multipole(Kn1L=-4.07894736378E-6) - D000018__10 = Drift(L=0.1193) - EDGE2_000__10 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__5 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__10 = Multipole(Kn1L=-4.4179123956E-5) - D000016__9 = Drift(L=0.374508) - CV05_7 = VKicker(L=0.2) - D000017__9 = Drift(L=0.0638) - HQD_7__3 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__10 = Drift(L=0.1559) - SD1_7__5 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__10 = Drift(L=0.1042) - SD1_7__6 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__10 = Drift(L=0.50037) - EDGE1_000__11 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__6 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__11 = Multipole(Kn1L=4.07894736378E-6) - D000018__11 = Drift(L=0.1193) - EDGE3_000__11 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__6 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__12 = Multipole(Kn1L=-4.07894736378E-6) - D000018__12 = Drift(L=0.1193) - EDGE2_000__12 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__6 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__12 = Multipole(Kn1L=-4.4179123956E-5) - D000016__10 = Drift(L=0.374508) - CH05_7 = HKicker(L=0.2) - D000017__10 = Drift(L=0.0638) - HQF_7__3 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__11 = Drift(L=0.1559) - SF2_7__5 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__11 = Drift(L=0.1042) - SF2_7__6 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__11 = Drift(L=0.50037) - EDGE1_000__13 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__7 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__13 = Multipole(Kn1L=4.07894736378E-6) - D000018__13 = Drift(L=0.1193) - EDGE3_000__13 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__7 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__14 = Multipole(Kn1L=-4.07894736378E-6) - D000018__14 = Drift(L=0.1193) - EDGE2_000__14 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__7 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__14 = Multipole(Kn1L=-4.4179123956E-5) - D000016__11 = Drift(L=0.374508) - CV06_7 = VKicker(L=0.2) - D000017__11 = Drift(L=0.0638) - HQD_7__4 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__12 = Drift(L=0.1559) - SD2_7__5 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__12 = Drift(L=0.1042) - SD2_7__6 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__12 = Drift(L=0.50037) - EDGE1_000__15 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__8 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__15 = Multipole(Kn1L=4.07894736378E-6) - D000018__15 = Drift(L=0.1193) - EDGE3_000__15 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__8 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__16 = Multipole(Kn1L=-4.07894736378E-6) - D000018__16 = Drift(L=0.1193) - EDGE2_000__16 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__8 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__16 = Multipole(Kn1L=-4.4179123956E-5) - D000016__12 = Drift(L=0.374508) - CH06_7 = HKicker(L=0.2) - D000017__12 = Drift(L=0.0638) - HQF_7__4 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__13 = Drift(L=0.1559) - SF1_7__7 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__13 = Drift(L=0.1042) - SF1_7__8 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__13 = Drift(L=0.50037) - EDGE1_000__17 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__9 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__17 = Multipole(Kn1L=4.07894736378E-6) - D000018__17 = Drift(L=0.1193) - EDGE3_000__17 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__9 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__18 = Multipole(Kn1L=-4.07894736378E-6) - D000018__18 = Drift(L=0.1193) - EDGE2_000__18 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__9 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__18 = Multipole(Kn1L=-4.4179123956E-5) - D000016__13 = Drift(L=0.374508) - CV07_7 = VKicker(L=0.2) - D000017__13 = Drift(L=0.0638) - HQD_7__5 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__14 = Drift(L=0.1559) - SD1_7__7 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__14 = Drift(L=0.1042) - SD1_7__8 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__14 = Drift(L=0.50037) - EDGE1_000__19 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__10 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__19 = Multipole(Kn1L=4.07894736378E-6) - D000018__19 = Drift(L=0.1193) - EDGE3_000__19 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__10 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__20 = Multipole(Kn1L=-4.07894736378E-6) - D000018__20 = Drift(L=0.1193) - EDGE2_000__20 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__10 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__20 = Multipole(Kn1L=-4.4179123956E-5) - D000016__14 = Drift(L=0.374508) - CH07_7 = HKicker(L=0.2) - D000017__14 = Drift(L=0.0638) - HQF_7__5 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__15 = Drift(L=0.1559) - SF2_7__7 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__15 = Drift(L=0.1042) - SF2_7__8 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__15 = Drift(L=0.50037) - EDGE1_000__21 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__11 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__21 = Multipole(Kn1L=4.07894736378E-6) - D000018__21 = Drift(L=0.1193) - EDGE3_000__21 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__11 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__22 = Multipole(Kn1L=-4.07894736378E-6) - D000018__22 = Drift(L=0.1193) - EDGE2_000__22 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__11 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__22 = Multipole(Kn1L=-4.4179123956E-5) - D000016__15 = Drift(L=0.374508) - CV08_7 = VKicker(L=0.2) - D000017__15 = Drift(L=0.0638) - HQD_7__6 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__16 = Drift(L=0.1559) - SD2_7__7 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__16 = Drift(L=0.1042) - SD2_7__8 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__16 = Drift(L=0.50037) - EDGE1_000__23 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__12 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__23 = Multipole(Kn1L=4.07894736378E-6) - D000018__23 = Drift(L=0.1193) - EDGE3_000__23 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__12 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__24 = Multipole(Kn1L=-4.07894736378E-6) - D000018__24 = Drift(L=0.1193) - EDGE2_000__24 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__12 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__24 = Multipole(Kn1L=-4.4179123956E-5) - D000016__16 = Drift(L=0.374508) - CH08_7 = HKicker(L=0.2) - D000017__16 = Drift(L=0.0638) - HQF_7__6 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__17 = Drift(L=0.1559) - SF1_7__9 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__17 = Drift(L=0.1042) - SF1_7__10 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__17 = Drift(L=0.50037) - EDGE1_000__25 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__13 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__25 = Multipole(Kn1L=4.07894736378E-6) - D000018__25 = Drift(L=0.1193) - EDGE3_000__25 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__13 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__26 = Multipole(Kn1L=-4.07894736378E-6) - D000018__26 = Drift(L=0.1193) - EDGE2_000__26 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__13 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__26 = Multipole(Kn1L=-4.4179123956E-5) - D000016__17 = Drift(L=0.374508) - CV09_7 = VKicker(L=0.2) - D000017__17 = Drift(L=0.0638) - HQD_7__7 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__18 = Drift(L=0.1559) - SD1_7__9 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__18 = Drift(L=0.1042) - SD1_7__10 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__18 = Drift(L=0.50037) - EDGE1_000__27 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__14 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__27 = Multipole(Kn1L=4.07894736378E-6) - D000018__27 = Drift(L=0.1193) - EDGE3_000__27 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__14 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__28 = Multipole(Kn1L=-4.07894736378E-6) - D000018__28 = Drift(L=0.1193) - EDGE2_000__28 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__14 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__28 = Multipole(Kn1L=-4.4179123956E-5) - D000016__18 = Drift(L=0.374508) - CH09_7 = HKicker(L=0.2) - D000017__18 = Drift(L=0.0638) - HQF_7__7 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__19 = Drift(L=0.1559) - SF2_7__9 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__19 = Drift(L=0.1042) - SF2_7__10 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__19 = Drift(L=0.50037) - EDGE1_000__29 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__15 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__29 = Multipole(Kn1L=4.07894736378E-6) - D000018__29 = Drift(L=0.1193) - EDGE3_000__29 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__15 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__30 = Multipole(Kn1L=-4.07894736378E-6) - D000018__30 = Drift(L=0.1193) - EDGE2_000__30 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__15 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__30 = Multipole(Kn1L=-4.4179123956E-5) - D000016__19 = Drift(L=0.374508) - CV10_7 = VKicker(L=0.2) - D000017__19 = Drift(L=0.0638) - HQD_7__8 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__20 = Drift(L=0.1559) - SD2_7__9 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__20 = Drift(L=0.1042) - SD2_7__10 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__20 = Drift(L=0.50037) - EDGE1_000__31 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__16 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__31 = Multipole(Kn1L=4.07894736378E-6) - D000018__31 = Drift(L=0.1193) - EDGE3_000__31 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__16 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__32 = Multipole(Kn1L=-4.07894736378E-6) - D000018__32 = Drift(L=0.1193) - EDGE2_000__32 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__16 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__32 = Multipole(Kn1L=-4.4179123956E-5) - D000016__20 = Drift(L=0.374508) - CH10_7 = HKicker(L=0.2) - D000017__20 = Drift(L=0.0638) - HQF_7__8 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__21 = Drift(L=0.1559) - SF1_7__11 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__21 = Drift(L=0.1042) - SF1_7__12 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__21 = Drift(L=0.50037) - EDGE1_000__33 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__17 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__33 = Multipole(Kn1L=4.07894736378E-6) - D000018__33 = Drift(L=0.1193) - EDGE3_000__33 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__17 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__34 = Multipole(Kn1L=-4.07894736378E-6) - D000018__34 = Drift(L=0.1193) - EDGE2_000__34 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__17 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__34 = Multipole(Kn1L=-4.4179123956E-5) - D000016__21 = Drift(L=0.374508) - CV11_7 = VKicker(L=0.2) - D000017__21 = Drift(L=0.0638) - HQD_7__9 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__22 = Drift(L=0.1559) - SD1_7__11 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__22 = Drift(L=0.1042) - SD1_7__12 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__22 = Drift(L=0.50037) - EDGE1_000__35 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__18 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__35 = Multipole(Kn1L=4.07894736378E-6) - D000018__35 = Drift(L=0.1193) - EDGE3_000__35 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__18 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__36 = Multipole(Kn1L=-4.07894736378E-6) - D000018__36 = Drift(L=0.1193) - EDGE2_000__36 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__18 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__36 = Multipole(Kn1L=-4.4179123956E-5) - D000016__22 = Drift(L=0.374508) - CH11_7 = HKicker(L=0.2) - D000017__22 = Drift(L=0.0638) - HQF_7__9 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__23 = Drift(L=0.1559) - SF2_7__11 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__23 = Drift(L=0.1042) - SF2_7__12 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__23 = Drift(L=0.50037) - EDGE1_000__37 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__19 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__37 = Multipole(Kn1L=4.07894736378E-6) - D000018__37 = Drift(L=0.1193) - EDGE3_000__37 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__19 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__38 = Multipole(Kn1L=-4.07894736378E-6) - D000018__38 = Drift(L=0.1193) - EDGE2_000__38 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__19 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__38 = Multipole(Kn1L=-4.4179123956E-5) - D000016__23 = Drift(L=0.374508) - CV12_7 = VKicker(L=0.2) - D000017__23 = Drift(L=0.0638) - HQD_7__10 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__24 = Drift(L=0.1559) - SD2_7__11 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__24 = Drift(L=0.1042) - SD2_7__12 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__24 = Drift(L=0.50037) - EDGE1_000__39 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__20 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__39 = Multipole(Kn1L=4.07894736378E-6) - D000018__39 = Drift(L=0.1193) - EDGE3_000__39 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__20 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__40 = Multipole(Kn1L=-4.07894736378E-6) - D000018__40 = Drift(L=0.1193) - EDGE2_000__40 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__20 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__40 = Multipole(Kn1L=-4.4179123956E-5) - D000016__24 = Drift(L=0.374508) - CH12_7 = HKicker(L=0.2) - D000017__24 = Drift(L=0.0638) - HQF_7__10 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__25 = Drift(L=0.1559) - SF1_7__13 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__25 = Drift(L=0.1042) - SF1_7__14 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__25 = Drift(L=0.50037) - EDGE1_000__41 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__21 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__41 = Multipole(Kn1L=4.07894736378E-6) - D000018__41 = Drift(L=0.1193) - EDGE3_000__41 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__21 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__42 = Multipole(Kn1L=-4.07894736378E-6) - D000018__42 = Drift(L=0.1193) - EDGE2_000__42 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__21 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__42 = Multipole(Kn1L=-4.4179123956E-5) - D000016__25 = Drift(L=0.374508) - CV13_7 = VKicker(L=0.2) - D000017__25 = Drift(L=0.0638) - HQD_7__11 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__26 = Drift(L=0.1559) - SD1_7__13 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__26 = Drift(L=0.1042) - SD1_7__14 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__26 = Drift(L=0.50037) - EDGE1_000__43 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__22 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__43 = Multipole(Kn1L=4.07894736378E-6) - D000018__43 = Drift(L=0.1193) - EDGE3_000__43 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__22 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__44 = Multipole(Kn1L=-4.07894736378E-6) - D000018__44 = Drift(L=0.1193) - EDGE2_000__44 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__22 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__44 = Multipole(Kn1L=-4.4179123956E-5) - D000016__26 = Drift(L=0.374508) - CH13_7 = HKicker(L=0.2) - D000017__26 = Drift(L=0.0638) - HQF_7__11 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__27 = Drift(L=0.1559) - SF2_7__13 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__27 = Drift(L=0.1042) - SF2_7__14 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__27 = Drift(L=0.50037) - EDGE1_000__45 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__23 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__45 = Multipole(Kn1L=4.07894736378E-6) - D000018__45 = Drift(L=0.1193) - EDGE3_000__45 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__23 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__46 = Multipole(Kn1L=-4.07894736378E-6) - D000018__46 = Drift(L=0.1193) - EDGE2_000__46 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__23 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__46 = Multipole(Kn1L=-4.4179123956E-5) - D000016__27 = Drift(L=0.374508) - CV14_7 = VKicker(L=0.2) - D000017__27 = Drift(L=0.0638) - HQD_7__12 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__28 = Drift(L=0.1559) - SD2_7__13 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__28 = Drift(L=0.1042) - SD2_7__14 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__28 = Drift(L=0.50037) - EDGE1_000__47 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__24 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__47 = Multipole(Kn1L=4.07894736378E-6) - D000018__47 = Drift(L=0.1193) - EDGE3_000__47 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__24 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__48 = Multipole(Kn1L=-4.07894736378E-6) - D000018__48 = Drift(L=0.1193) - EDGE2_000__48 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__24 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__48 = Multipole(Kn1L=-4.4179123956E-5) - D000016__28 = Drift(L=0.374508) - CH14_7 = HKicker(L=0.2) - D000017__28 = Drift(L=0.0638) - HQF_7C = Quadrupole(L=0.5, Kn1=0.3127956769,) - D000012__29 = Drift(L=0.1559) - SF1_7__15 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__29 = Drift(L=0.1042) - SF1_7__16 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__29 = Drift(L=0.50037) - EDGE1_003__1 = Multipole(Kn1L=-5.47962034702E-5) - D01A_003__1 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE2_003__1 = Multipole(Kn1L=5.05910744438E-6) - D000015__9 = Drift(L=0.1193) - EDGE3_003__1 = Multipole(Kn1L=-5.05910744438E-6) - D23_003__1 = SBend(L=0.611400157595, g=4.0680760596525E-3) - EDGE3_003__2 = Multipole(Kn1L=-5.05910744438E-6) - D000015__10 = Drift(L=0.1193) - EDGE2_003__2 = Multipole(Kn1L=5.05910744438E-6) - D01B_003__1 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE1_003__2 = Multipole(Kn1L=-5.47962034702E-5) - D000016__29 = Drift(L=0.374508) - CV15_7 = VKicker(L=0.2) - D000017__29 = Drift(L=0.0638) - HQD_7C = Quadrupole(L=0.5, Kn1=-0.3108838126,) - D000012__30 = Drift(L=0.1559) - SD1_7__15 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__30 = Drift(L=0.1042) - SD1_7__16 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__30 = Drift(L=0.50037) - EDGE1_003__3 = Multipole(Kn1L=-5.47962034702E-5) - D01A_003__2 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE2_003__3 = Multipole(Kn1L=5.05910744438E-6) - D000015__11 = Drift(L=0.1193) - EDGE3_003__3 = Multipole(Kn1L=-5.05910744438E-6) - D23_003__2 = SBend(L=0.611400157595, g=4.0680760596525E-3) - EDGE3_003__4 = Multipole(Kn1L=-5.05910744438E-6) - D000015__12 = Drift(L=0.1193) - EDGE2_003__4 = Multipole(Kn1L=5.05910744438E-6) - D01B_003__2 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE1_003__4 = Multipole(Kn1L=-5.47962034702E-5) - D000016__30 = Drift(L=0.374508) - CH15_7 = HKicker(L=0.2) - D000017__30 = Drift(L=0.0638) - HQF_7B = Quadrupole(L=0.5, Kn1=0.3194594174,) - D000012__31 = Drift(L=0.1559) - SF2_7__15 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__31 = Drift(L=0.1042) - SF2_7__16 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__31 = Drift(L=0.50037) - EDGE1_003__5 = Multipole(Kn1L=-5.47962034702E-5) - D01A_003__3 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE2_003__5 = Multipole(Kn1L=5.05910744438E-6) - D000015__13 = Drift(L=0.1193) - EDGE3_003__5 = Multipole(Kn1L=-5.05910744438E-6) - D23_003__3 = SBend(L=0.611400157595, g=4.0680760596525E-3) - EDGE3_003__6 = Multipole(Kn1L=-5.05910744438E-6) - D000015__14 = Drift(L=0.1193) - EDGE2_003__6 = Multipole(Kn1L=5.05910744438E-6) - D01B_003__3 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE1_003__6 = Multipole(Kn1L=-5.47962034702E-5) - D000016__31 = Drift(L=0.374508) - CV16_7 = VKicker(L=0.2) - D000017__31 = Drift(L=0.0638) - HQD_7B = Quadrupole(L=0.5, Kn1=-0.3105982322,) - D000012__32 = Drift(L=0.1559) - SD2_7__15 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__32 = Drift(L=0.1042) - SD2_7__16 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__32 = Drift(L=0.50037) - EDGE1_003__7 = Multipole(Kn1L=-5.47962034702E-5) - D01A_003__4 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE2_003__7 = Multipole(Kn1L=5.05910744438E-6) - D000015__15 = Drift(L=0.1193) - EDGE3_003__7 = Multipole(Kn1L=-5.05910744438E-6) - D23_003__4 = SBend(L=0.611400157595, g=4.0680760596525E-3) - EDGE3_003__8 = Multipole(Kn1L=-5.05910744438E-6) - D000015__16 = Drift(L=0.1193) - EDGE2_003__8 = Multipole(Kn1L=5.05910744438E-6) - D01B_003__4 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE1_003__8 = Multipole(Kn1L=-5.47962034702E-5) - D000016__32 = Drift(L=0.374508) - CH16_7 = HKicker(L=0.2) - D000017__32 = Drift(L=0.0638) - HQF_7A = Quadrupole(L=0.5, Kn1=0.3259712517) - D000011__2 = Drift(L=1.1) - HQD_7A = Quadrupole(L=0.5, Kn1=-0.071909135,) - D000008__9 = Drift(L=0.85) - MROT1__2 = Marker() - HSOL5_8__1 = Solenoid(L=1.8) - D000008__10 = Drift(L=0.85) - HQSS1_7 = Quadrupole(L=0.6480402, Kn1=-0.1976628965) - D000009__11 = Drift(L=0.25) - HQSS2_7 = Quadrupole(L=0.9550568, Kn1=-0.1370256837) - D000009__12 = Drift(L=0.25) - HQSS3_7 = Quadrupole(L=1.634532, Kn1=3.239613906E-3,) - D000009__13 = Drift(L=0.25) - HQSS4_7 = Quadrupole(L=1.020723, Kn1=0.255335572,) - D000009__14 = Drift(L=0.25) - HQSS5_7 = Quadrupole(L=0.6861532, Kn1=-0.1505457051,) - D000008__11 = Drift(L=0.85) - HSOL5_8__2 = Solenoid(L=1.8) - MROT2__2 = Marker() - D000008__12 = Drift(L=0.85) - HQFF1_7 = Quadrupole(L=0.8, Kn1=-0.1943356792,) - D000019__1 = Drift(L=0.372681) - DB23_7__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000019__2 = Drift(L=0.372681) - QFF2_7 = Quadrupole(L=1.2, Kn1=0.1909728817,) - D000019__3 = Drift(L=0.372681) - DB23_7__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000019__4 = Drift(L=0.372681) - QFF3_7 = Quadrupole(L=1.2, Kn1=-0.1633145219,) - D000019__5 = Drift(L=0.372681) - DB23_7__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000019__6 = Drift(L=0.372681) - QFF4_7 = Quadrupole(L=1, Kn1=0.2524257334) - D000019__7 = Drift(L=0.372681) - DB23_7__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000019__8 = Drift(L=0.372681) - HQFF5_7 = Quadrupole(L=0.6, Kn1=-0.2773213506) - D000019__9 = Drift(L=0.372681) - DB23_7__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000019__10 = Drift(L=0.372681) - MFF_7 = Marker() - HQFF6_7 = Quadrupole(L=0.5, Kn1=0.3016541182,) - D000008__13 = Drift(L=0.85) - MROT3__2 = Marker() - HSOL20_8__1 = Solenoid(L=5.5) - D000008__14 = Drift(L=0.85) - HQLS1_7 = Quadrupole(L=0.9819319, Kn1=0.3525126074,) - D000009__15 = Drift(L=0.25) - HQLS2_7 = Quadrupole(L=1.469939, Kn1=-0.3544489077,) - D000009__16 = Drift(L=0.25) - HQLS3_7 = Quadrupole(L=1.530059, Kn1=0.1497450638,) - D000009__17 = Drift(L=0.25) - HQLS4_7 = Quadrupole(L=0.5187944, Kn1=0.2705914324,) - D000009__18 = Drift(L=0.25) - HQLS5_7 = Quadrupole(L=1.530059, Kn1=0.2008969574,) - D000009__19 = Drift(L=0.25) - HQLS6_7 = Quadrupole(L=1.469939, Kn1=-0.3524613373,) - D000009__20 = Drift(L=0.25) - HQLS7_7 = Quadrupole(L=0.9819319, Kn1=0.3516668168,) - D000008__15 = Drift(L=0.85) - HSOL20_8__2 = Solenoid(L=5.5) - MROT4__2 = Marker() - D000008__16 = Drift(L=0.85) - MLRF_8 = Marker() - Q14EF_8 = Quadrupole(L=1.2, Kn1=-0.0805622429) - D000006__11 = Drift(L=0.4) - D3EF_8__1 = SBend(L=3.8000531337057, g=4.8206664263497E-3, e1=9.15939428E-3, e2=9.15939428E-3) - D000006__12 = Drift(L=0.4) - Q13EF_8 = Quadrupole(L=1.2, Kn1=0.2147150407,) - D000006__13 = Drift(L=0.4) - D3EF_8__2 = SBend(L=3.8000531337057, g=4.8206664263497E-3, e1=9.15939428E-3, e2=9.15939428E-3) - D000006__14 = Drift(L=0.4) - Q12EF_8 = Quadrupole(L=1.2, Kn1=-0.1875116872) - D000006__15 = Drift(L=0.4) - D3EF_8__3 = SBend(L=3.8000531337057, g=4.8206664263497E-3, e1=9.15939428E-3, e2=9.15939428E-3) - D000006__16 = Drift(L=0.4) - Q11EF_8 = Quadrupole(L=1.2, Kn1=0.319522109) - D000006__17 = Drift(L=0.4) - D2EF_8 = SBend(L=3.0051217587267, g=-4.3866170409633E-3, e1=-6.5911591585E-3, e2=-6.5911591585E-3) - D000006__18 = Drift(L=0.4) - Q10EF_8 = Quadrupole(L=1.2, Kn1=-0.2329008389,) - D000005__5 = Drift(L=4.6) - Q9EF_8 = Quadrupole(L=1.2, Kn1=0.2677564554) - D000005__6 = Drift(L=4.6) - Q8EF_8 = Quadrupole(L=1.2, Kn1=-0.1860583032) - D000005__7 = Drift(L=4.6) - Q7EF_8 = Quadrupole(L=1.2, Kn1=0.05181069896) - D000005__8 = Drift(L=4.6) - Q6EF_8 = Quadrupole(L=1.2, Kn1=0.01106416249) - D000005__9 = Drift(L=4.6) - Q5EF_8 = Quadrupole(L=1.2, Kn1=0.1111051943) - D000005__10 = Drift(L=4.6) - Q4EF_8 = Quadrupole(L=1.2, Kn1=-0.1192696818) - D000020 = Drift(L=5.367456) - Q3EF_8 = Quadrupole(L=0.6, Kn1=0.1942090498) - D000007__3 = Drift(L=0.3) - RF_CRAB__2 = Drift(L=4) - D000007__4 = Drift(L=0.3) - Q2EF_8 = Quadrupole(L=0.6, Kn1=-0.1340200446) - D000006__19 = Drift(L=0.4) - D1EF_8__1 = SBend(L=3.0051002796571, g=-4.9731333334425E-4, e1=-7.47238218555E-4, e2=-7.47238218555E-4) - D000006__20 = Drift(L=0.4) - D1EF_8__2 = SBend(L=3.0051002796571, g=-4.9731333334425E-4, e1=-7.47238218555E-4, e2=-7.47238218555E-4) - D000021 = Drift(L=16.9) - Q1EF_8 = Quadrupole(L=1.61, Kn1=0.1016217263) - D000022__1 = Drift(L=3.76) - Q0EF_8 = Quadrupole(L=1.2, Kn1=-0.2159418046) - D000023__1 = Drift(L=5.8) - IP8 = Marker() - D000001__2 = Drift(L=5.3) - Q1ER_8 = Quadrupole(L=1.8, Kn1=-0.2143949606) - D000002__3 = Drift(L=0.5) - Q2ER_8 = Quadrupole(L=1.4, Kn1=0.2031685787) - D000002__4 = Drift(L=0.5) - D2ER_8 = SBend(L=5.50007539103, g=-3.2977170394029E-3, e1=-9.0688461675E-3, e2=-9.0688461675E-3) - D000003__2 = Drift(L=22.7) - Q3ER_8 = Quadrupole(L=0.6, Kn1=-0.1022387522) - D000006__21 = Drift(L=0.4) - D3ER_8 = SBend(L=3.0051041632592, g=1.9188151700459E-3, e1=2.883119728015E-3, e2=2.883119728015E-3) - D000024 = Drift(L=3.522083) - Q4ER_8 = Quadrupole(L=0.6, Kn1=0.1693940448) - D000025 = Drift(L=4.8) - Q5ER_8 = Quadrupole(L=1.2, Kn1=-0.1475150732) - D000026 = Drift(L=2.8) - Q6ER_8 = Quadrupole(L=1.2, Kn1=0.07294971889) - D000005__11 = Drift(L=4.6) - Q7ER_8 = Quadrupole(L=1.2, Kn1=0.07596588916) - D000005__12 = Drift(L=4.6) - Q8ER_8 = Quadrupole(L=1.2, Kn1=-0.202860792) - D000005__13 = Drift(L=4.6) - Q9ER_8 = Quadrupole(L=1.2, Kn1=0.09499816132) - D000007__5 = Drift(L=0.3) - RF_CRAB__3 = Drift(L=4) - D000007__6 = Drift(L=0.3) - Q10ER_8 = Quadrupole(L=1.2, Kn1=0.1322610543) - D000005__14 = Drift(L=4.6) - Q11ER_8 = Quadrupole(L=1.2, Kn1=-0.221468388) - D000006__22 = Drift(L=0.4) - D4ER_8 = SBend(L=3.0051224305305, g=4.453819619468E-3, e1=6.69213662E-3, e2=6.69213662E-3) - D000006__23 = Drift(L=0.4) - Q12ER_8 = Quadrupole(L=1.2, Kn1=0.1585832349) - D000006__24 = Drift(L=0.4) - D5ER_8__1 = SBend(L=3.0051198496773, g=4.1897690181481E-3, e1=6.295379021E-3, e2=6.295379021E-3) - D000006__25 = Drift(L=0.4) - Q13ER_8 = Quadrupole(L=1.2, Kn1=0.1446740057) - D000006__26 = Drift(L=0.4) - D5ER_8__2 = SBend(L=3.0051198496773, g=4.1897690181481E-3, e1=6.295379021E-3, e2=6.295379021E-3) - D000006__27 = Drift(L=0.4) - Q14ER_8 = Quadrupole(L=1.2, Kn1=-0.2212744801) - D000006__28 = Drift(L=0.4) - D5ER_8__3 = SBend(L=3.0051198496773, g=4.1897690181481E-3, e1=6.295379021E-3, e2=6.295379021E-3) - D000006__29 = Drift(L=0.4) - Q15ER_8 = Quadrupole(L=1.2, Kn1=0.2116494718,) - MLRR_8 = Marker() - D000008__17 = Drift(L=0.85) - MROT4__3 = Marker() - HSOL20_8__3 = Solenoid(L=5.5) - D000008__18 = Drift(L=0.85) - HQLS7_8 = Quadrupole(L=0.9819319, Kn1=0.3360574653) - D000009__21 = Drift(L=0.25) - HQLS6_8 = Quadrupole(L=1.469939, Kn1=-0.3470868863,) - D000009__22 = Drift(L=0.25) - HQLS5_8 = Quadrupole(L=1.530059, Kn1=0.1626287734) - D000009__23 = Drift(L=0.25) - HQLS4_8 = Quadrupole(L=0.5187944, Kn1=0.2546260677) - D000009__24 = Drift(L=0.25) - HQLS3_8 = Quadrupole(L=1.530059, Kn1=0.158055864) - D000009__25 = Drift(L=0.25) - HQLS2_8 = Quadrupole(L=1.469939, Kn1=-0.3498818893,) - D000009__26 = Drift(L=0.25) - HQLS1_8 = Quadrupole(L=0.9819319, Kn1=0.3342207154) - D000008__19 = Drift(L=0.85) - HSOL20_8__4 = Solenoid(L=5.5) - MROT3__3 = Marker() - D000008__20 = Drift(L=0.85) - HQFF6_8 = Quadrupole(L=0.5, Kn1=0.3107342787,) - MFF_8 = Marker() - D000027__1 = Drift(L=0.354127) - DB23_8__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000027__2 = Drift(L=0.354127) - HQFF5_8 = Quadrupole(L=0.6, Kn1=-0.3351061032) - D000027__3 = Drift(L=0.354127) - DB23_8__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000027__4 = Drift(L=0.354127) - QFF4_8 = Quadrupole(L=1, Kn1=0.2878909144) - D000027__5 = Drift(L=0.354127) - DB23_8__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000027__6 = Drift(L=0.354127) - QFF3_8 = Quadrupole(L=1.2, Kn1=-0.2004078496) - D000027__7 = Drift(L=0.354127) - DB23_8__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000027__8 = Drift(L=0.354127) - QFF2_8 = Quadrupole(L=1.2, Kn1=0.2051948078) - D000027__9 = Drift(L=0.354127) - DB23_8__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000027__10 = Drift(L=0.354127) - QFF1_8 = Quadrupole(L=1.6, Kn1=-0.137612492,) - D000008__21 = Drift(L=0.85) - MROT2__3 = Marker() - HSOL5_8__3 = Solenoid(L=1.8) - D000008__22 = Drift(L=0.85) - HQSS5_8 = Quadrupole(L=0.6861532, Kn1=0.02610418854,) - D000009__27 = Drift(L=0.25) - HQSS4_8 = Quadrupole(L=1.020723, Kn1=0.02642026735,) - D000009__28 = Drift(L=0.25) - HQSS3_8 = Quadrupole(L=1.634532, Kn1=0.07061989633,) - D000009__29 = Drift(L=0.25) - HQSS2_8 = Quadrupole(L=0.9550568, Kn1=-0.099348953) - D000009__30 = Drift(L=0.25) - HQSS1_8 = Quadrupole(L=0.6480402, Kn1=-0.1036476643,) - D000008__23 = Drift(L=0.85) - HSOL5_8__4 = Solenoid(L=1.8) - MROT1__3 = Marker() - D000008__24 = Drift(L=0.85) - HQD_8A = Quadrupole(L=0.5, Kn1=-0.08760720367) - D000011__3 = Drift(L=1.1) - HQF_8A = Quadrupole(L=0.5, Kn1=0.3426857894) - D000017__33 = Drift(L=0.0638) - CH01_9 = HKicker(L=0.2) - D000028__1 = Drift(L=0.29394) - EDGE1_004__1 = Multipole(Kn1L=-3.4704307448E-5) - D01A_004__1 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE2_004__1 = Multipole(Kn1L=3.20421122147E-6) - D000029__1 = Drift(L=0.1193) - EDGE3_004__1 = Multipole(Kn1L=-3.20421122147E-6) - D23_004__1 = SBend(L=0.611400099814, g=3.2375221083251E-3) - EDGE3_004__2 = Multipole(Kn1L=-3.20421122147E-6) - D000029__2 = Drift(L=0.1193) - EDGE2_004__2 = Multipole(Kn1L=3.20421122147E-6) - D01B_004__1 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE1_004__2 = Multipole(Kn1L=-3.4704307448E-5) - D000014__33 = Drift(L=0.50037) - SD1_9__1 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__33 = Drift(L=0.1042) - SD1_9__2 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__33 = Drift(L=0.1559) - HQD_8B = Quadrupole(L=0.5, Kn1=-0.3126076902,) - D000017__34 = Drift(L=0.0638) - CV01_9 = VKicker(L=0.2) - D000028__2 = Drift(L=0.29394) - EDGE1_004__3 = Multipole(Kn1L=-3.4704307448E-5) - D01A_004__2 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE2_004__3 = Multipole(Kn1L=3.20421122147E-6) - D000029__3 = Drift(L=0.1193) - EDGE3_004__3 = Multipole(Kn1L=-3.20421122147E-6) - D23_004__2 = SBend(L=0.611400099814, g=3.2375221083251E-3) - EDGE3_004__4 = Multipole(Kn1L=-3.20421122147E-6) - D000029__4 = Drift(L=0.1193) - EDGE2_004__4 = Multipole(Kn1L=3.20421122147E-6) - D01B_004__2 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE1_004__4 = Multipole(Kn1L=-3.4704307448E-5) - D000014__34 = Drift(L=0.50037) - SF1_9__1 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__34 = Drift(L=0.1042) - SF1_9__2 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__34 = Drift(L=0.1559) - HQF_8B = Quadrupole(L=0.5, Kn1=0.3285018589,) - D000017__35 = Drift(L=0.0638) - CH02_9 = HKicker(L=0.2) - D000028__3 = Drift(L=0.29394) - EDGE1_004__5 = Multipole(Kn1L=-3.4704307448E-5) - D01A_004__3 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE2_004__5 = Multipole(Kn1L=3.20421122147E-6) - D000029__5 = Drift(L=0.1193) - EDGE3_004__5 = Multipole(Kn1L=-3.20421122147E-6) - D23_004__3 = SBend(L=0.611400099814, g=3.2375221083251E-3) - EDGE3_004__6 = Multipole(Kn1L=-3.20421122147E-6) - D000029__6 = Drift(L=0.1193) - EDGE2_004__6 = Multipole(Kn1L=3.20421122147E-6) - D01B_004__3 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE1_004__6 = Multipole(Kn1L=-3.4704307448E-5) - D000014__35 = Drift(L=0.50037) - SD2_9__1 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__35 = Drift(L=0.1042) - SD2_9__2 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__35 = Drift(L=0.1559) - HQD_8C = Quadrupole(L=0.5, Kn1=-0.3136673336,) - D000017__36 = Drift(L=0.0638) - CV02_9 = VKicker(L=0.2) - D000028__4 = Drift(L=0.29394) - EDGE1_004__7 = Multipole(Kn1L=-3.4704307448E-5) - D01A_004__4 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE2_004__7 = Multipole(Kn1L=3.20421122147E-6) - D000029__7 = Drift(L=0.1193) - EDGE3_004__7 = Multipole(Kn1L=-3.20421122147E-6) - D23_004__4 = SBend(L=0.611400099814, g=3.2375221083251E-3) - EDGE3_004__8 = Multipole(Kn1L=-3.20421122147E-6) - D000029__8 = Drift(L=0.1193) - EDGE2_004__8 = Multipole(Kn1L=3.20421122147E-6) - D01B_004__4 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE1_004__8 = Multipole(Kn1L=-3.4704307448E-5) - D000014__36 = Drift(L=0.50037) - SF2_9__1 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__36 = Drift(L=0.1042) - SF2_9__2 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__36 = Drift(L=0.1559) - HQF_8C = Quadrupole(L=0.5, Kn1=0.3021376478,) - D000017__37 = Drift(L=0.0638) - CH03_9 = HKicker(L=0.2) - D000028__5 = Drift(L=0.29394) - EDGE1_000__49 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__25 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__49 = Multipole(Kn1L=4.07894736378E-6) - D000018__49 = Drift(L=0.1193) - EDGE3_000__49 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__25 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__50 = Multipole(Kn1L=-4.07894736378E-6) - D000018__50 = Drift(L=0.1193) - EDGE2_000__50 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__25 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__50 = Multipole(Kn1L=-4.4179123956E-5) - D000014__37 = Drift(L=0.50037) - SD1_9__3 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__37 = Drift(L=0.1042) - SD1_9__4 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__37 = Drift(L=0.1559) - HQD_9__1 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__38 = Drift(L=0.0638) - CV03_9 = VKicker(L=0.2) - D000028__6 = Drift(L=0.29394) - EDGE1_000__51 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__26 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__51 = Multipole(Kn1L=4.07894736378E-6) - D000018__51 = Drift(L=0.1193) - EDGE3_000__51 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__26 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__52 = Multipole(Kn1L=-4.07894736378E-6) - D000018__52 = Drift(L=0.1193) - EDGE2_000__52 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__26 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__52 = Multipole(Kn1L=-4.4179123956E-5) - D000014__38 = Drift(L=0.50037) - SF1_9__3 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__38 = Drift(L=0.1042) - SF1_9__4 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__38 = Drift(L=0.1559) - HQF_9__1 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__39 = Drift(L=0.0638) - CH04_9 = HKicker(L=0.2) - D000028__7 = Drift(L=0.29394) - EDGE1_000__53 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__27 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__53 = Multipole(Kn1L=4.07894736378E-6) - D000018__53 = Drift(L=0.1193) - EDGE3_000__53 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__27 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__54 = Multipole(Kn1L=-4.07894736378E-6) - D000018__54 = Drift(L=0.1193) - EDGE2_000__54 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__27 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__54 = Multipole(Kn1L=-4.4179123956E-5) - D000014__39 = Drift(L=0.50037) - SD2_9__3 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__39 = Drift(L=0.1042) - SD2_9__4 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__39 = Drift(L=0.1559) - HQD_9__2 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__40 = Drift(L=0.0638) - CV04_9 = VKicker(L=0.2) - D000028__8 = Drift(L=0.29394) - EDGE1_000__55 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__28 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__55 = Multipole(Kn1L=4.07894736378E-6) - D000018__55 = Drift(L=0.1193) - EDGE3_000__55 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__28 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__56 = Multipole(Kn1L=-4.07894736378E-6) - D000018__56 = Drift(L=0.1193) - EDGE2_000__56 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__28 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__56 = Multipole(Kn1L=-4.4179123956E-5) - D000014__40 = Drift(L=0.50037) - SF2_9__3 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__40 = Drift(L=0.1042) - SF2_9__4 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__40 = Drift(L=0.1559) - HQF_9__2 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__41 = Drift(L=0.0638) - CH05_9 = HKicker(L=0.2) - D000028__9 = Drift(L=0.29394) - EDGE1_000__57 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__29 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__57 = Multipole(Kn1L=4.07894736378E-6) - D000018__57 = Drift(L=0.1193) - EDGE3_000__57 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__29 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__58 = Multipole(Kn1L=-4.07894736378E-6) - D000018__58 = Drift(L=0.1193) - EDGE2_000__58 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__29 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__58 = Multipole(Kn1L=-4.4179123956E-5) - D000014__41 = Drift(L=0.50037) - SD1_9__5 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__41 = Drift(L=0.1042) - SD1_9__6 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__41 = Drift(L=0.1559) - HQD_9__3 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__42 = Drift(L=0.0638) - CV05_9 = VKicker(L=0.2) - D000028__10 = Drift(L=0.29394) - EDGE1_000__59 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__30 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__59 = Multipole(Kn1L=4.07894736378E-6) - D000018__59 = Drift(L=0.1193) - EDGE3_000__59 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__30 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__60 = Multipole(Kn1L=-4.07894736378E-6) - D000018__60 = Drift(L=0.1193) - EDGE2_000__60 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__30 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__60 = Multipole(Kn1L=-4.4179123956E-5) - D000014__42 = Drift(L=0.50037) - SF1_9__5 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__42 = Drift(L=0.1042) - SF1_9__6 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__42 = Drift(L=0.1559) - HQF_9__3 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__43 = Drift(L=0.0638) - CH06_9 = HKicker(L=0.2) - D000028__11 = Drift(L=0.29394) - EDGE1_000__61 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__31 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__61 = Multipole(Kn1L=4.07894736378E-6) - D000018__61 = Drift(L=0.1193) - EDGE3_000__61 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__31 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__62 = Multipole(Kn1L=-4.07894736378E-6) - D000018__62 = Drift(L=0.1193) - EDGE2_000__62 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__31 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__62 = Multipole(Kn1L=-4.4179123956E-5) - D000014__43 = Drift(L=0.50037) - SD2_9__5 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__43 = Drift(L=0.1042) - SD2_9__6 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__43 = Drift(L=0.1559) - HQD_9__4 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__44 = Drift(L=0.0638) - CV06_9 = VKicker(L=0.2) - D000028__12 = Drift(L=0.29394) - EDGE1_000__63 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__32 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__63 = Multipole(Kn1L=4.07894736378E-6) - D000018__63 = Drift(L=0.1193) - EDGE3_000__63 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__32 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__64 = Multipole(Kn1L=-4.07894736378E-6) - D000018__64 = Drift(L=0.1193) - EDGE2_000__64 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__32 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__64 = Multipole(Kn1L=-4.4179123956E-5) - D000014__44 = Drift(L=0.50037) - SF2_9__5 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__44 = Drift(L=0.1042) - SF2_9__6 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__44 = Drift(L=0.1559) - HQF_9__4 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__45 = Drift(L=0.0638) - CH07_9 = HKicker(L=0.2) - D000028__13 = Drift(L=0.29394) - EDGE1_000__65 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__33 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__65 = Multipole(Kn1L=4.07894736378E-6) - D000018__65 = Drift(L=0.1193) - EDGE3_000__65 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__33 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__66 = Multipole(Kn1L=-4.07894736378E-6) - D000018__66 = Drift(L=0.1193) - EDGE2_000__66 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__33 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__66 = Multipole(Kn1L=-4.4179123956E-5) - D000014__45 = Drift(L=0.50037) - SD1_9__7 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__45 = Drift(L=0.1042) - SD1_9__8 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__45 = Drift(L=0.1559) - HQD_9__5 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__46 = Drift(L=0.0638) - CV07_9 = VKicker(L=0.2) - D000028__14 = Drift(L=0.29394) - EDGE1_000__67 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__34 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__67 = Multipole(Kn1L=4.07894736378E-6) - D000018__67 = Drift(L=0.1193) - EDGE3_000__67 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__34 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__68 = Multipole(Kn1L=-4.07894736378E-6) - D000018__68 = Drift(L=0.1193) - EDGE2_000__68 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__34 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__68 = Multipole(Kn1L=-4.4179123956E-5) - D000014__46 = Drift(L=0.50037) - SF1_9__7 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__46 = Drift(L=0.1042) - SF1_9__8 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__46 = Drift(L=0.1559) - HQF_9__5 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__47 = Drift(L=0.0638) - CH08_9 = HKicker(L=0.2) - D000028__15 = Drift(L=0.29394) - EDGE1_000__69 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__35 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__69 = Multipole(Kn1L=4.07894736378E-6) - D000018__69 = Drift(L=0.1193) - EDGE3_000__69 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__35 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__70 = Multipole(Kn1L=-4.07894736378E-6) - D000018__70 = Drift(L=0.1193) - EDGE2_000__70 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__35 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__70 = Multipole(Kn1L=-4.4179123956E-5) - D000014__47 = Drift(L=0.50037) - SD2_9__7 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__47 = Drift(L=0.1042) - SD2_9__8 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__47 = Drift(L=0.1559) - HQD_9__6 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__48 = Drift(L=0.0638) - CV08_9 = VKicker(L=0.2) - D000028__16 = Drift(L=0.29394) - EDGE1_000__71 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__36 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__71 = Multipole(Kn1L=4.07894736378E-6) - D000018__71 = Drift(L=0.1193) - EDGE3_000__71 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__36 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__72 = Multipole(Kn1L=-4.07894736378E-6) - D000018__72 = Drift(L=0.1193) - EDGE2_000__72 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__36 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__72 = Multipole(Kn1L=-4.4179123956E-5) - D000014__48 = Drift(L=0.50037) - SF2_9__7 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__48 = Drift(L=0.1042) - SF2_9__8 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__48 = Drift(L=0.1559) - HQF_9__6 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__49 = Drift(L=0.0638) - CH09_9 = HKicker(L=0.2) - D000028__17 = Drift(L=0.29394) - EDGE1_000__73 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__37 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__73 = Multipole(Kn1L=4.07894736378E-6) - D000018__73 = Drift(L=0.1193) - EDGE3_000__73 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__37 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__74 = Multipole(Kn1L=-4.07894736378E-6) - D000018__74 = Drift(L=0.1193) - EDGE2_000__74 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__37 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__74 = Multipole(Kn1L=-4.4179123956E-5) - D000014__49 = Drift(L=0.50037) - SD1_9__9 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__49 = Drift(L=0.1042) - SD1_9__10 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__49 = Drift(L=0.1559) - HQD_9__7 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__50 = Drift(L=0.0638) - CV09_9 = VKicker(L=0.2) - D000028__18 = Drift(L=0.29394) - EDGE1_000__75 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__38 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__75 = Multipole(Kn1L=4.07894736378E-6) - D000018__75 = Drift(L=0.1193) - EDGE3_000__75 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__38 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__76 = Multipole(Kn1L=-4.07894736378E-6) - D000018__76 = Drift(L=0.1193) - EDGE2_000__76 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__38 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__76 = Multipole(Kn1L=-4.4179123956E-5) - D000014__50 = Drift(L=0.50037) - SF1_9__9 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__50 = Drift(L=0.1042) - SF1_9__10 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__50 = Drift(L=0.1559) - HQF_9__7 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__51 = Drift(L=0.0638) - CH10_9 = HKicker(L=0.2) - D000028__19 = Drift(L=0.29394) - EDGE1_000__77 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__39 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__77 = Multipole(Kn1L=4.07894736378E-6) - D000018__77 = Drift(L=0.1193) - EDGE3_000__77 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__39 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__78 = Multipole(Kn1L=-4.07894736378E-6) - D000018__78 = Drift(L=0.1193) - EDGE2_000__78 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__39 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__78 = Multipole(Kn1L=-4.4179123956E-5) - D000014__51 = Drift(L=0.50037) - SD2_9__9 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__51 = Drift(L=0.1042) - SD2_9__10 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__51 = Drift(L=0.1559) - HQD_9__8 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__52 = Drift(L=0.0638) - CV10_9 = VKicker(L=0.2) - D000028__20 = Drift(L=0.29394) - EDGE1_000__79 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__40 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__79 = Multipole(Kn1L=4.07894736378E-6) - D000018__79 = Drift(L=0.1193) - EDGE3_000__79 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__40 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__80 = Multipole(Kn1L=-4.07894736378E-6) - D000018__80 = Drift(L=0.1193) - EDGE2_000__80 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__40 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__80 = Multipole(Kn1L=-4.4179123956E-5) - D000014__52 = Drift(L=0.50037) - SF2_9__9 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__52 = Drift(L=0.1042) - SF2_9__10 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__52 = Drift(L=0.1559) - HQF_9__8 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__53 = Drift(L=0.0638) - CH11_9 = HKicker(L=0.2) - D000028__21 = Drift(L=0.29394) - EDGE1_000__81 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__41 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__81 = Multipole(Kn1L=4.07894736378E-6) - D000018__81 = Drift(L=0.1193) - EDGE3_000__81 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__41 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__82 = Multipole(Kn1L=-4.07894736378E-6) - D000018__82 = Drift(L=0.1193) - EDGE2_000__82 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__41 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__82 = Multipole(Kn1L=-4.4179123956E-5) - D000014__53 = Drift(L=0.50037) - SD1_9__11 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__53 = Drift(L=0.1042) - SD1_9__12 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__53 = Drift(L=0.1559) - HQD_9__9 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__54 = Drift(L=0.0638) - CV11_9 = VKicker(L=0.2) - D000028__22 = Drift(L=0.29394) - EDGE1_000__83 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__42 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__83 = Multipole(Kn1L=4.07894736378E-6) - D000018__83 = Drift(L=0.1193) - EDGE3_000__83 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__42 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__84 = Multipole(Kn1L=-4.07894736378E-6) - D000018__84 = Drift(L=0.1193) - EDGE2_000__84 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__42 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__84 = Multipole(Kn1L=-4.4179123956E-5) - D000014__54 = Drift(L=0.50037) - SF1_9__11 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__54 = Drift(L=0.1042) - SF1_9__12 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__54 = Drift(L=0.1559) - HQF_9__9 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__55 = Drift(L=0.0638) - CH12_9 = HKicker(L=0.2) - D000028__23 = Drift(L=0.29394) - EDGE1_000__85 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__43 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__85 = Multipole(Kn1L=4.07894736378E-6) - D000018__85 = Drift(L=0.1193) - EDGE3_000__85 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__43 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__86 = Multipole(Kn1L=-4.07894736378E-6) - D000018__86 = Drift(L=0.1193) - EDGE2_000__86 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__43 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__86 = Multipole(Kn1L=-4.4179123956E-5) - D000014__55 = Drift(L=0.50037) - SD2_9__11 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__55 = Drift(L=0.1042) - SD2_9__12 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__55 = Drift(L=0.1559) - HQD_9__10 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__56 = Drift(L=0.0638) - CV12_9 = VKicker(L=0.2) - D000028__24 = Drift(L=0.29394) - EDGE1_000__87 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__44 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__87 = Multipole(Kn1L=4.07894736378E-6) - D000018__87 = Drift(L=0.1193) - EDGE3_000__87 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__44 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__88 = Multipole(Kn1L=-4.07894736378E-6) - D000018__88 = Drift(L=0.1193) - EDGE2_000__88 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__44 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__88 = Multipole(Kn1L=-4.4179123956E-5) - D000014__56 = Drift(L=0.50037) - SF2_9__11 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__56 = Drift(L=0.1042) - SF2_9__12 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__56 = Drift(L=0.1559) - HQF_9__10 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__57 = Drift(L=0.0638) - CH13_9 = HKicker(L=0.2) - D000028__25 = Drift(L=0.29394) - EDGE1_000__89 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__45 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__89 = Multipole(Kn1L=4.07894736378E-6) - D000018__89 = Drift(L=0.1193) - EDGE3_000__89 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__45 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__90 = Multipole(Kn1L=-4.07894736378E-6) - D000018__90 = Drift(L=0.1193) - EDGE2_000__90 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__45 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__90 = Multipole(Kn1L=-4.4179123956E-5) - D000014__57 = Drift(L=0.50037) - SD1_9__13 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__57 = Drift(L=0.1042) - SD1_9__14 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__57 = Drift(L=0.1559) - HQD_9__11 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__58 = Drift(L=0.0638) - CV13_9 = VKicker(L=0.2) - D000028__26 = Drift(L=0.29394) - EDGE1_000__91 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__46 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__91 = Multipole(Kn1L=4.07894736378E-6) - D000018__91 = Drift(L=0.1193) - EDGE3_000__91 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__46 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__92 = Multipole(Kn1L=-4.07894736378E-6) - D000018__92 = Drift(L=0.1193) - EDGE2_000__92 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__46 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__92 = Multipole(Kn1L=-4.4179123956E-5) - D000014__58 = Drift(L=0.50037) - SF1_9__13 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__58 = Drift(L=0.1042) - SF1_9__14 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__58 = Drift(L=0.1559) - HQF_9__11 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__59 = Drift(L=0.0638) - CH14_9 = HKicker(L=0.2) - D000028__27 = Drift(L=0.29394) - EDGE1_000__93 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__47 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__93 = Multipole(Kn1L=4.07894736378E-6) - D000018__93 = Drift(L=0.1193) - EDGE3_000__93 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__47 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__94 = Multipole(Kn1L=-4.07894736378E-6) - D000018__94 = Drift(L=0.1193) - EDGE2_000__94 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__47 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__94 = Multipole(Kn1L=-4.4179123956E-5) - D000014__59 = Drift(L=0.50037) - SD2_9__13 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__59 = Drift(L=0.1042) - SD2_9__14 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__59 = Drift(L=0.1559) - HQD_9__12 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__60 = Drift(L=0.0638) - CV14_9 = VKicker(L=0.2) - D000028__28 = Drift(L=0.29394) - EDGE1_000__95 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__48 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__95 = Multipole(Kn1L=4.07894736378E-6) - D000018__95 = Drift(L=0.1193) - EDGE3_000__95 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__48 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__96 = Multipole(Kn1L=-4.07894736378E-6) - D000018__96 = Drift(L=0.1193) - EDGE2_000__96 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__48 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__96 = Multipole(Kn1L=-4.4179123956E-5) - D000014__60 = Drift(L=0.50037) - SF2_9__13 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__60 = Drift(L=0.1042) - SF2_9__14 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__60 = Drift(L=0.1559) - HQF_9__12 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__61 = Drift(L=0.0638) - CH15_9 = HKicker(L=0.2) - D000028__29 = Drift(L=0.29394) - EDGE1_000__97 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__49 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__97 = Multipole(Kn1L=4.07894736378E-6) - D000018__97 = Drift(L=0.1193) - EDGE3_000__97 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__49 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__98 = Multipole(Kn1L=-4.07894736378E-6) - D000018__98 = Drift(L=0.1193) - EDGE2_000__98 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__49 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__98 = Multipole(Kn1L=-4.4179123956E-5) - D000014__61 = Drift(L=0.50037) - SD1_9__15 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__61 = Drift(L=0.1042) - SD1_9__16 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__61 = Drift(L=0.1559) - HQD_9__13 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__62 = Drift(L=0.0638) - CV15_9 = VKicker(L=0.2) - D000028__30 = Drift(L=0.29394) - EDGE1_000__99 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__50 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__99 = Multipole(Kn1L=4.07894736378E-6) - D000018__99 = Drift(L=0.1193) - EDGE3_000__99 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__50 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__100 = Multipole(Kn1L=-4.07894736378E-6) - D000018__100 = Drift(L=0.1193) - EDGE2_000__100 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__50 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__100 = Multipole(Kn1L=-4.4179123956E-5) - D000014__62 = Drift(L=0.50037) - SF1_9__15 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__62 = Drift(L=0.1042) - SF1_9__16 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__62 = Drift(L=0.1559) - HQF_9__13 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__63 = Drift(L=0.0638) - CH16_9 = HKicker(L=0.2) - D000028__31 = Drift(L=0.29394) - EDGE1_000__101 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__51 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__101 = Multipole(Kn1L=4.07894736378E-6) - D000018__101 = Drift(L=0.1193) - EDGE3_000__101 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__51 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__102 = Multipole(Kn1L=-4.07894736378E-6) - D000018__102 = Drift(L=0.1193) - EDGE2_000__102 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__51 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__102 = Multipole(Kn1L=-4.4179123956E-5) - D000014__63 = Drift(L=0.50037) - SD2_9__15 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__63 = Drift(L=0.1042) - SD2_9__16 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__63 = Drift(L=0.1559) - HQD_9__14 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__64 = Drift(L=0.0638) - CV16_9 = VKicker(L=0.2) - D000028__32 = Drift(L=0.29394) - EDGE1_000__103 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__52 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__103 = Multipole(Kn1L=4.07894736378E-6) - D000018__103 = Drift(L=0.1193) - EDGE3_000__103 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__52 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__104 = Multipole(Kn1L=-4.07894736378E-6) - D000018__104 = Drift(L=0.1193) - EDGE2_000__104 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__52 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__104 = Multipole(Kn1L=-4.4179123956E-5) - D000014__64 = Drift(L=0.50037) - SF2_9__15 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__64 = Drift(L=0.1042) - SF2_9__16 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__64 = Drift(L=0.1559) - HQF_9__14 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__65 = Drift(L=0.0638) - CH17_9 = HKicker(L=0.2) - D000030__1 = Drift(L=1.507746) - DB23_9__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__65 = Drift(L=0.50037) - SD17_9 = Sextupole(L=0.24) - D000012__65 = Drift(L=0.1559) - HQD_9__15 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__66 = Drift(L=0.0638) - CV17_9 = VKicker(L=0.2) - D000030__2 = Drift(L=1.507746) - DB23_9__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__66 = Drift(L=0.50037) - SF17_9 = Sextupole(L=0.24) - D000012__66 = Drift(L=0.1559) - HQF_9__15 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000031__1 = Drift(L=4.09917) - HQM22_9 = Quadrupole(L=0.6, Kn1=-0.1685397554,) - D000031__2 = Drift(L=4.09917) - HQM21_9 = Quadrupole(L=0.6, Kn1=-0.1480298273) - D000032__1 = Drift(L=0.535) - DB23_9__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__2 = Drift(L=0.535) - HQM20_9 = Quadrupole(L=0.6, Kn1=0.277981004) - D000032__3 = Drift(L=0.535) - DB23_9__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__4 = Drift(L=0.535) - HQM19_9 = Quadrupole(L=0.6, Kn1=-0.2250375129) - D000033__1 = Drift(L=2.888539) - HQM18_9 = Quadrupole(L=0.6, Kn1=0.02025658815,) - D000033__2 = Drift(L=2.888539) - HQM17_9 = Quadrupole(L=0.6, Kn1=0.03151369613,) - D000033__3 = Drift(L=2.888539) - HQM16_9 = Quadrupole(L=0.6, Kn1=-0.1023890903,) - D000033__4 = Drift(L=2.888539) - HQM15_9 = Quadrupole(L=0.6, Kn1=0.1915717998,) - D000033__5 = Drift(L=2.888539) - HQM14_9 = Quadrupole(L=0.6, Kn1=-0.1029612912,) - D000033__6 = Drift(L=2.888539) - HQM13_9 = Quadrupole(L=0.6, Kn1=0.2169016275) - D000032__5 = Drift(L=0.535) - DB23_9__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__6 = Drift(L=0.535) - HQM12_9 = Quadrupole(L=0.6, Kn1=-0.1792559115,) - D000032__7 = Drift(L=0.535) - DB23_9__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000034 = Drift(L=14.482069) - HQFSS_10__1 = Quadrupole(L=0.6, Kn1=0.2106851444) - D000035__1 = Drift(L=8.25) - HQDSS_10__1 = Quadrupole(L=0.6, Kn1=-0.2091039051) - D000035__2 = Drift(L=8.25) - HQFSS_10__2 = Quadrupole(L=0.6, Kn1=0.2106851444) - D000035__3 = Drift(L=8.25) - HQDSS_10__2 = Quadrupole(L=0.6, Kn1=-0.2091039051) - D000036 = Drift(L=6.11312) - HQFLSS_10__1 = Quadrupole(L=1.2, Kn1=0.1407178134) - D000007__7 = Drift(L=0.3) - RF0__1 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__8 = Drift(L=0.3) - RF0__2 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__9 = Drift(L=0.3) - HQDLSS_10__1 = Quadrupole(L=1.2, Kn1=-0.1176261853,) - D000007__10 = Drift(L=0.3) - RF0__3 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__11 = Drift(L=0.3) - RF0__4 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__12 = Drift(L=0.3) - HQFLSS_10__2 = Quadrupole(L=1.2, Kn1=0.1407178134) - D000007__13 = Drift(L=0.3) - RF0__5 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__14 = Drift(L=0.3) - RF0__6 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__15 = Drift(L=0.3) - HQDLSS_10__2 = Quadrupole(L=1.2, Kn1=-0.1176261853,) - D000007__16 = Drift(L=0.3) - RF0__7 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__17 = Drift(L=0.3) - RF0__8 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__18 = Drift(L=0.3) - HQFLSS_10__3 = Quadrupole(L=1.2, Kn1=0.1407178134) - D000007__19 = Drift(L=0.3) - RF0__9 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000037 = Drift(L=0.3,) - RF0__10 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__20 = Drift(L=0.3) - HQDLSS_10__3 = Quadrupole(L=1.2, Kn1=-0.1176261853,) - D000007__21 = Drift(L=0.3) - RF0__11 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__22 = Drift(L=0.3) - RF0__12 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__23 = Drift(L=0.3) - HQFLSS_10__4 = Quadrupole(L=1.2, Kn1=0.1407178134) - D000007__24 = Drift(L=0.3) - RF0__13 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__25 = Drift(L=0.3) - RF0__14 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__26 = Drift(L=0.3) - HQDLSS_10__4 = Quadrupole(L=1.2, Kn1=-0.1176261853,) - D000007__27 = Drift(L=0.3) - RF0__15 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__28 = Drift(L=0.3) - RF0__16 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__29 = Drift(L=0.3) - HQFLSS_10__5 = Quadrupole(L=1.2, Kn1=0.1407178134) - D000007__30 = Drift(L=0.3) - RF0__17 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__31 = Drift(L=0.3) - RF0__18 = RFCavity(L=4.01667) #, VOLTAGE = 3.3210942126011E6, RF_FREQUENCY = 5.9114268014977E8 - D000007__32 = Drift(L=0.3) - HQDLSS_10__5 = Quadrupole(L=1.2, Kn1=-0.1176261853,) - D000035__4 = Drift(L=8.25) - HQFSS_10__3 = Quadrupole(L=0.6, Kn1=0.2106851444) - D000035__5 = Drift(L=8.25) - HQDSS_10__3 = Quadrupole(L=0.6, Kn1=-0.2091039051) - D000035__6 = Drift(L=8.25) - HQFSS_10__4 = Quadrupole(L=0.6, Kn1=0.2106851444) - D000035__7 = Drift(L=8.25) - HQDSS_10__4 = Quadrupole(L=0.6, Kn1=-0.2091039051) - D000038 = Drift(L=12.120511) - DB23_10__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__8 = Drift(L=0.535) - HQM12_10 = Quadrupole(L=0.6, Kn1=0.2083558853) - D000032__9 = Drift(L=0.535) - DB23_10__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__10 = Drift(L=0.535) - HQM13_10 = Quadrupole(L=0.6, Kn1=-0.3339548025) - D000039__1 = Drift(L=3.311504) - HQM14_10 = Quadrupole(L=0.6, Kn1=0.260187069,) - D000039__2 = Drift(L=3.311504) - HQM15_10 = Quadrupole(L=0.6, Kn1=-0.3169977879,) - D000039__3 = Drift(L=3.311504) - HQM16_10 = Quadrupole(L=0.6, Kn1=0.2834385625) - D000039__4 = Drift(L=3.311504) - HQM17_10 = Quadrupole(L=0.6, Kn1=-0.04877659888,) - D000039__5 = Drift(L=3.311504) - HQM18_10 = Quadrupole(L=0.6, Kn1=-0.3358614339) - D000039__6 = Drift(L=3.311504) - HQM19_10 = Quadrupole(L=0.6, Kn1=0.3254555367,) - D000039__7 = Drift(L=3.311504) - HQM20_10 = Quadrupole(L=0.6, Kn1=-0.2765818098) - D000032__11 = Drift(L=0.535) - DB23_10__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__12 = Drift(L=0.535) - HQM21_10 = Quadrupole(L=0.6, Kn1=0.1976841058,) - D000032__13 = Drift(L=0.535) - DB23_10__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__14 = Drift(L=0.535) - HQM22_10 = Quadrupole(L=0.6, Kn1=-0.3313145061,) - D000040 = Drift(L=3.425026) - HQF_11__1 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__67 = Drift(L=0.1559) - SF00_11 = Sextupole(L=0.24) - D000014__67 = Drift(L=0.50037) - DB23_10__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000041__1 = Drift(L=1.201799) - CV00_11 = VKicker(L=0.2) - D000017__67 = Drift(L=0.0638) - HQD_11__1 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__68 = Drift(L=0.1559) - SD00_11 = Sextupole(L=0.24) - D000014__68 = Drift(L=0.50037) - DB23_10__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000041__2 = Drift(L=1.201799) - CH00_11 = HKicker(L=0.2) - D000017__68 = Drift(L=0.0638) - HQF_11__2 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__69 = Drift(L=0.1559) - SF1_1__1 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__65 = Drift(L=0.1042) - SF1_1__2 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__69 = Drift(L=0.50037) - EDGE1_000__105 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__53 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__105 = Multipole(Kn1L=4.07894736378E-6) - D000018__105 = Drift(L=0.1193) - EDGE3_000__105 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__53 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__106 = Multipole(Kn1L=-4.07894736378E-6) - D000018__106 = Drift(L=0.1193) - EDGE2_000__106 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__53 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__106 = Multipole(Kn1L=-4.4179123956E-5) - D000042__1 = Drift(L=0.319264) - CV01_11 = VKicker(L=0.2) - D000017__69 = Drift(L=0.0638) - HQD_11__2 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__70 = Drift(L=0.1559) - SD1_1__1 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__66 = Drift(L=0.1042) - SD1_1__2 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__70 = Drift(L=0.50037) - EDGE1_000__107 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__54 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__107 = Multipole(Kn1L=4.07894736378E-6) - D000018__107 = Drift(L=0.1193) - EDGE3_000__107 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__54 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__108 = Multipole(Kn1L=-4.07894736378E-6) - D000018__108 = Drift(L=0.1193) - EDGE2_000__108 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__54 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__108 = Multipole(Kn1L=-4.4179123956E-5) - D000042__2 = Drift(L=0.319264) - CH01_11 = HKicker(L=0.2) - D000017__70 = Drift(L=0.0638) - HQF_11__3 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__71 = Drift(L=0.1559) - SF2_1__1 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__67 = Drift(L=0.1042) - SF2_1__2 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__71 = Drift(L=0.50037) - EDGE1_000__109 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__55 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__109 = Multipole(Kn1L=4.07894736378E-6) - D000018__109 = Drift(L=0.1193) - EDGE3_000__109 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__55 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__110 = Multipole(Kn1L=-4.07894736378E-6) - D000018__110 = Drift(L=0.1193) - EDGE2_000__110 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__55 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__110 = Multipole(Kn1L=-4.4179123956E-5) - D000042__3 = Drift(L=0.319264) - CV02_11 = VKicker(L=0.2) - D000017__71 = Drift(L=0.0638) - HQD_11__3 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__72 = Drift(L=0.1559) - SD2_1__1 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__68 = Drift(L=0.1042) - SD2_1__2 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__72 = Drift(L=0.50037) - EDGE1_000__111 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__56 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__111 = Multipole(Kn1L=4.07894736378E-6) - D000018__111 = Drift(L=0.1193) - EDGE3_000__111 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__56 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__112 = Multipole(Kn1L=-4.07894736378E-6) - D000018__112 = Drift(L=0.1193) - EDGE2_000__112 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__56 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__112 = Multipole(Kn1L=-4.4179123956E-5) - D000042__4 = Drift(L=0.319264) - CH02_11 = HKicker(L=0.2) - D000017__72 = Drift(L=0.0638) - HQF_11__4 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__73 = Drift(L=0.1559) - SF1_1__3 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__69 = Drift(L=0.1042) - SF1_1__4 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__73 = Drift(L=0.50037) - EDGE1_000__113 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__57 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__113 = Multipole(Kn1L=4.07894736378E-6) - D000018__113 = Drift(L=0.1193) - EDGE3_000__113 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__57 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__114 = Multipole(Kn1L=-4.07894736378E-6) - D000018__114 = Drift(L=0.1193) - EDGE2_000__114 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__57 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__114 = Multipole(Kn1L=-4.4179123956E-5) - D000042__5 = Drift(L=0.319264) - CV03_11 = VKicker(L=0.2) - D000017__73 = Drift(L=0.0638) - HQD_11__4 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__74 = Drift(L=0.1559) - SD1_1__3 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__70 = Drift(L=0.1042) - SD1_1__4 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__74 = Drift(L=0.50037) - EDGE1_000__115 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__58 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__115 = Multipole(Kn1L=4.07894736378E-6) - D000018__115 = Drift(L=0.1193) - EDGE3_000__115 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__58 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__116 = Multipole(Kn1L=-4.07894736378E-6) - D000018__116 = Drift(L=0.1193) - EDGE2_000__116 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__58 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__116 = Multipole(Kn1L=-4.4179123956E-5) - D000042__6 = Drift(L=0.319264) - CH03_11 = HKicker(L=0.2) - D000017__74 = Drift(L=0.0638) - HQF_11__5 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__75 = Drift(L=0.1559) - SF2_1__3 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__71 = Drift(L=0.1042) - SF2_1__4 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__75 = Drift(L=0.50037) - EDGE1_000__117 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__59 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__117 = Multipole(Kn1L=4.07894736378E-6) - D000018__117 = Drift(L=0.1193) - EDGE3_000__117 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__59 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__118 = Multipole(Kn1L=-4.07894736378E-6) - D000018__118 = Drift(L=0.1193) - EDGE2_000__118 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__59 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__118 = Multipole(Kn1L=-4.4179123956E-5) - D000042__7 = Drift(L=0.319264) - CV04_11 = VKicker(L=0.2) - D000017__75 = Drift(L=0.0638) - HQD_11__5 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__76 = Drift(L=0.1559) - SD2_1__3 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__72 = Drift(L=0.1042) - SD2_1__4 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__76 = Drift(L=0.50037) - EDGE1_000__119 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__60 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__119 = Multipole(Kn1L=4.07894736378E-6) - D000018__119 = Drift(L=0.1193) - EDGE3_000__119 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__60 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__120 = Multipole(Kn1L=-4.07894736378E-6) - D000018__120 = Drift(L=0.1193) - EDGE2_000__120 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__60 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__120 = Multipole(Kn1L=-4.4179123956E-5) - D000042__8 = Drift(L=0.319264) - CH04_11 = HKicker(L=0.2) - D000017__76 = Drift(L=0.0638) - HQF_11__6 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__77 = Drift(L=0.1559) - SF1_1__5 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__73 = Drift(L=0.1042) - SF1_1__6 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__77 = Drift(L=0.50037) - EDGE1_000__121 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__61 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__121 = Multipole(Kn1L=4.07894736378E-6) - D000018__121 = Drift(L=0.1193) - EDGE3_000__121 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__61 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__122 = Multipole(Kn1L=-4.07894736378E-6) - D000018__122 = Drift(L=0.1193) - EDGE2_000__122 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__61 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__122 = Multipole(Kn1L=-4.4179123956E-5) - D000042__9 = Drift(L=0.319264) - CV05_11 = VKicker(L=0.2) - D000017__77 = Drift(L=0.0638) - HQD_11__6 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__78 = Drift(L=0.1559) - SD1_1__5 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__74 = Drift(L=0.1042) - SD1_1__6 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__78 = Drift(L=0.50037) - EDGE1_000__123 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__62 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__123 = Multipole(Kn1L=4.07894736378E-6) - D000018__123 = Drift(L=0.1193) - EDGE3_000__123 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__62 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__124 = Multipole(Kn1L=-4.07894736378E-6) - D000018__124 = Drift(L=0.1193) - EDGE2_000__124 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__62 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__124 = Multipole(Kn1L=-4.4179123956E-5) - D000042__10 = Drift(L=0.319264) - CH05_11 = HKicker(L=0.2) - D000017__78 = Drift(L=0.0638) - HQF_11__7 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__79 = Drift(L=0.1559) - SF2_1__5 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__75 = Drift(L=0.1042) - SF2_1__6 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__79 = Drift(L=0.50037) - EDGE1_000__125 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__63 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__125 = Multipole(Kn1L=4.07894736378E-6) - D000018__125 = Drift(L=0.1193) - EDGE3_000__125 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__63 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__126 = Multipole(Kn1L=-4.07894736378E-6) - D000018__126 = Drift(L=0.1193) - EDGE2_000__126 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__63 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__126 = Multipole(Kn1L=-4.4179123956E-5) - D000042__11 = Drift(L=0.319264) - CV06_11 = VKicker(L=0.2) - D000017__79 = Drift(L=0.0638) - HQD_11__7 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__80 = Drift(L=0.1559) - SD2_1__5 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__76 = Drift(L=0.1042) - SD2_1__6 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__80 = Drift(L=0.50037) - EDGE1_000__127 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__64 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__127 = Multipole(Kn1L=4.07894736378E-6) - D000018__127 = Drift(L=0.1193) - EDGE3_000__127 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__64 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__128 = Multipole(Kn1L=-4.07894736378E-6) - D000018__128 = Drift(L=0.1193) - EDGE2_000__128 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__64 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__128 = Multipole(Kn1L=-4.4179123956E-5) - D000042__12 = Drift(L=0.319264) - CH06_11 = HKicker(L=0.2) - D000017__80 = Drift(L=0.0638) - HQF_11__8 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__81 = Drift(L=0.1559) - SF1_1__7 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__77 = Drift(L=0.1042) - SF1_1__8 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__81 = Drift(L=0.50037) - EDGE1_000__129 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__65 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__129 = Multipole(Kn1L=4.07894736378E-6) - D000018__129 = Drift(L=0.1193) - EDGE3_000__129 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__65 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__130 = Multipole(Kn1L=-4.07894736378E-6) - D000018__130 = Drift(L=0.1193) - EDGE2_000__130 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__65 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__130 = Multipole(Kn1L=-4.4179123956E-5) - D000042__13 = Drift(L=0.319264) - CV07_11 = VKicker(L=0.2) - D000017__81 = Drift(L=0.0638) - HQD_11__8 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__82 = Drift(L=0.1559) - SD1_1__7 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__78 = Drift(L=0.1042) - SD1_1__8 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__82 = Drift(L=0.50037) - EDGE1_000__131 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__66 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__131 = Multipole(Kn1L=4.07894736378E-6) - D000018__131 = Drift(L=0.1193) - EDGE3_000__131 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__66 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__132 = Multipole(Kn1L=-4.07894736378E-6) - D000018__132 = Drift(L=0.1193) - EDGE2_000__132 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__66 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__132 = Multipole(Kn1L=-4.4179123956E-5) - D000042__14 = Drift(L=0.319264) - CH07_11 = HKicker(L=0.2) - D000017__82 = Drift(L=0.0638) - HQF_11__9 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__83 = Drift(L=0.1559) - SF2_1__7 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__79 = Drift(L=0.1042) - SF2_1__8 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__83 = Drift(L=0.50037) - EDGE1_000__133 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__67 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__133 = Multipole(Kn1L=4.07894736378E-6) - D000018__133 = Drift(L=0.1193) - EDGE3_000__133 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__67 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__134 = Multipole(Kn1L=-4.07894736378E-6) - D000018__134 = Drift(L=0.1193) - EDGE2_000__134 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__67 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__134 = Multipole(Kn1L=-4.4179123956E-5) - D000042__15 = Drift(L=0.319264) - CV08_11 = VKicker(L=0.2) - D000017__83 = Drift(L=0.0638) - HQD_11__9 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__84 = Drift(L=0.1559) - SD2_1__7 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__80 = Drift(L=0.1042) - SD2_1__8 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__84 = Drift(L=0.50037) - EDGE1_000__135 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__68 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__135 = Multipole(Kn1L=4.07894736378E-6) - D000018__135 = Drift(L=0.1193) - EDGE3_000__135 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__68 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__136 = Multipole(Kn1L=-4.07894736378E-6) - D000018__136 = Drift(L=0.1193) - EDGE2_000__136 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__68 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__136 = Multipole(Kn1L=-4.4179123956E-5) - D000042__16 = Drift(L=0.319264) - CH08_11 = HKicker(L=0.2) - D000017__84 = Drift(L=0.0638) - HQF_11__10 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__85 = Drift(L=0.1559) - SF1_1__9 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__81 = Drift(L=0.1042) - SF1_1__10 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__85 = Drift(L=0.50037) - EDGE1_000__137 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__69 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__137 = Multipole(Kn1L=4.07894736378E-6) - D000018__137 = Drift(L=0.1193) - EDGE3_000__137 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__69 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__138 = Multipole(Kn1L=-4.07894736378E-6) - D000018__138 = Drift(L=0.1193) - EDGE2_000__138 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__69 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__138 = Multipole(Kn1L=-4.4179123956E-5) - D000042__17 = Drift(L=0.319264) - CV09_11 = VKicker(L=0.2) - D000017__85 = Drift(L=0.0638) - HQD_11__10 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__86 = Drift(L=0.1559) - SD1_1__9 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__82 = Drift(L=0.1042) - SD1_1__10 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__86 = Drift(L=0.50037) - EDGE1_000__139 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__70 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__139 = Multipole(Kn1L=4.07894736378E-6) - D000018__139 = Drift(L=0.1193) - EDGE3_000__139 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__70 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__140 = Multipole(Kn1L=-4.07894736378E-6) - D000018__140 = Drift(L=0.1193) - EDGE2_000__140 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__70 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__140 = Multipole(Kn1L=-4.4179123956E-5) - D000042__18 = Drift(L=0.319264) - CH09_11 = HKicker(L=0.2) - D000017__86 = Drift(L=0.0638) - HQF_11__11 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__87 = Drift(L=0.1559) - SF2_1__9 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__83 = Drift(L=0.1042) - SF2_1__10 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__87 = Drift(L=0.50037) - EDGE1_000__141 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__71 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__141 = Multipole(Kn1L=4.07894736378E-6) - D000018__141 = Drift(L=0.1193) - EDGE3_000__141 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__71 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__142 = Multipole(Kn1L=-4.07894736378E-6) - D000018__142 = Drift(L=0.1193) - EDGE2_000__142 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__71 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__142 = Multipole(Kn1L=-4.4179123956E-5) - D000042__19 = Drift(L=0.319264) - CV10_11 = VKicker(L=0.2) - D000017__87 = Drift(L=0.0638) - HQD_11__11 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__88 = Drift(L=0.1559) - SD2_1__9 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__84 = Drift(L=0.1042) - SD2_1__10 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__88 = Drift(L=0.50037) - EDGE1_000__143 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__72 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__143 = Multipole(Kn1L=4.07894736378E-6) - D000018__143 = Drift(L=0.1193) - EDGE3_000__143 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__72 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__144 = Multipole(Kn1L=-4.07894736378E-6) - D000018__144 = Drift(L=0.1193) - EDGE2_000__144 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__72 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__144 = Multipole(Kn1L=-4.4179123956E-5) - D000042__20 = Drift(L=0.319264) - CH10_11 = HKicker(L=0.2) - D000017__88 = Drift(L=0.0638) - HQF_11__12 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__89 = Drift(L=0.1559) - SF1_1__11 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__85 = Drift(L=0.1042) - SF1_1__12 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__89 = Drift(L=0.50037) - EDGE1_000__145 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__73 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__145 = Multipole(Kn1L=4.07894736378E-6) - D000018__145 = Drift(L=0.1193) - EDGE3_000__145 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__73 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__146 = Multipole(Kn1L=-4.07894736378E-6) - D000018__146 = Drift(L=0.1193) - EDGE2_000__146 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__73 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__146 = Multipole(Kn1L=-4.4179123956E-5) - D000042__21 = Drift(L=0.319264) - CV11_11 = VKicker(L=0.2) - D000017__89 = Drift(L=0.0638) - HQD_11__12 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__90 = Drift(L=0.1559) - SD1_1__11 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__86 = Drift(L=0.1042) - SD1_1__12 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__90 = Drift(L=0.50037) - EDGE1_000__147 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__74 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__147 = Multipole(Kn1L=4.07894736378E-6) - D000018__147 = Drift(L=0.1193) - EDGE3_000__147 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__74 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__148 = Multipole(Kn1L=-4.07894736378E-6) - D000018__148 = Drift(L=0.1193) - EDGE2_000__148 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__74 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__148 = Multipole(Kn1L=-4.4179123956E-5) - D000042__22 = Drift(L=0.319264) - CH11_11 = HKicker(L=0.2) - D000017__90 = Drift(L=0.0638) - HQF_11__13 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__91 = Drift(L=0.1559) - SF2_1__11 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__87 = Drift(L=0.1042) - SF2_1__12 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__91 = Drift(L=0.50037) - EDGE1_000__149 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__75 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__149 = Multipole(Kn1L=4.07894736378E-6) - D000018__149 = Drift(L=0.1193) - EDGE3_000__149 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__75 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__150 = Multipole(Kn1L=-4.07894736378E-6) - D000018__150 = Drift(L=0.1193) - EDGE2_000__150 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__75 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__150 = Multipole(Kn1L=-4.4179123956E-5) - D000042__23 = Drift(L=0.319264) - CV12_11 = VKicker(L=0.2) - D000017__91 = Drift(L=0.0638) - HQD_11__13 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__92 = Drift(L=0.1559) - SD2_1__11 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__88 = Drift(L=0.1042) - SD2_1__12 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__92 = Drift(L=0.50037) - EDGE1_000__151 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__76 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__151 = Multipole(Kn1L=4.07894736378E-6) - D000018__151 = Drift(L=0.1193) - EDGE3_000__151 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__76 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__152 = Multipole(Kn1L=-4.07894736378E-6) - D000018__152 = Drift(L=0.1193) - EDGE2_000__152 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__76 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__152 = Multipole(Kn1L=-4.4179123956E-5) - D000042__24 = Drift(L=0.319264) - CH12_11 = HKicker(L=0.2) - D000017__92 = Drift(L=0.0638) - HQF_11__14 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__93 = Drift(L=0.1559) - SF1_1__13 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__89 = Drift(L=0.1042) - SF1_1__14 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__93 = Drift(L=0.50037) - EDGE1_000__153 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__77 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__153 = Multipole(Kn1L=4.07894736378E-6) - D000018__153 = Drift(L=0.1193) - EDGE3_000__153 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__77 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__154 = Multipole(Kn1L=-4.07894736378E-6) - D000018__154 = Drift(L=0.1193) - EDGE2_000__154 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__77 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__154 = Multipole(Kn1L=-4.4179123956E-5) - D000042__25 = Drift(L=0.319264) - CV13_11 = VKicker(L=0.2) - D000017__93 = Drift(L=0.0638) - HQD_11__14 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__94 = Drift(L=0.1559) - SD1_1__13 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__90 = Drift(L=0.1042) - SD1_1__14 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__94 = Drift(L=0.50037) - EDGE1_000__155 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__78 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__155 = Multipole(Kn1L=4.07894736378E-6) - D000018__155 = Drift(L=0.1193) - EDGE3_000__155 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__78 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__156 = Multipole(Kn1L=-4.07894736378E-6) - D000018__156 = Drift(L=0.1193) - EDGE2_000__156 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__78 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__156 = Multipole(Kn1L=-4.4179123956E-5) - D000042__26 = Drift(L=0.319264) - CH13_11 = HKicker(L=0.2) - D000017__94 = Drift(L=0.0638) - HQF_11__15 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__95 = Drift(L=0.1559) - SF2_1__13 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__91 = Drift(L=0.1042) - SF2_1__14 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__95 = Drift(L=0.50037) - EDGE1_000__157 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__79 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__157 = Multipole(Kn1L=4.07894736378E-6) - D000018__157 = Drift(L=0.1193) - EDGE3_000__157 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__79 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__158 = Multipole(Kn1L=-4.07894736378E-6) - D000018__158 = Drift(L=0.1193) - EDGE2_000__158 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__79 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__158 = Multipole(Kn1L=-4.4179123956E-5) - D000042__27 = Drift(L=0.319264) - CV14_11 = VKicker(L=0.2) - D000017__95 = Drift(L=0.0638) - HQD_11__15 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__96 = Drift(L=0.1559) - SD2_1__13 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__92 = Drift(L=0.1042) - SD2_1__14 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__96 = Drift(L=0.50037) - EDGE1_000__159 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__80 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__159 = Multipole(Kn1L=4.07894736378E-6) - D000018__159 = Drift(L=0.1193) - EDGE3_000__159 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__80 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__160 = Multipole(Kn1L=-4.07894736378E-6) - D000018__160 = Drift(L=0.1193) - EDGE2_000__160 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__80 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__160 = Multipole(Kn1L=-4.4179123956E-5) - D000042__28 = Drift(L=0.319264) - CH14_11 = HKicker(L=0.2) - D000017__96 = Drift(L=0.0638) - HQF_11__16 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__97 = Drift(L=0.1559) - SF1_1__15 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__93 = Drift(L=0.1042) - SF1_1__16 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__97 = Drift(L=0.50037) - EDGE1_000__161 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__81 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__161 = Multipole(Kn1L=4.07894736378E-6) - D000018__161 = Drift(L=0.1193) - EDGE3_000__161 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__81 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__162 = Multipole(Kn1L=-4.07894736378E-6) - D000018__162 = Drift(L=0.1193) - EDGE2_000__162 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__81 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__162 = Multipole(Kn1L=-4.4179123956E-5) - D000042__29 = Drift(L=0.319264) - CV15_11 = VKicker(L=0.2) - D000017__97 = Drift(L=0.0638) - HQD_11__16 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__98 = Drift(L=0.1559) - SD1_1__15 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__94 = Drift(L=0.1042) - SD1_1__16 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__98 = Drift(L=0.50037) - EDGE1_000__163 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__82 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__163 = Multipole(Kn1L=4.07894736378E-6) - D000018__163 = Drift(L=0.1193) - EDGE3_000__163 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__82 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__164 = Multipole(Kn1L=-4.07894736378E-6) - D000018__164 = Drift(L=0.1193) - EDGE2_000__164 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__82 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__164 = Multipole(Kn1L=-4.4179123956E-5) - D000042__30 = Drift(L=0.319264) - CH15_11 = HKicker(L=0.2) - D000017__98 = Drift(L=0.0638) - HQF_11__17 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__99 = Drift(L=0.1559) - SF2_1__15 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__95 = Drift(L=0.1042) - SF2_1__16 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__99 = Drift(L=0.50037) - EDGE1_000__165 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__83 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__165 = Multipole(Kn1L=4.07894736378E-6) - D000018__165 = Drift(L=0.1193) - EDGE3_000__165 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__83 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__166 = Multipole(Kn1L=-4.07894736378E-6) - D000018__166 = Drift(L=0.1193) - EDGE2_000__166 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__83 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__166 = Multipole(Kn1L=-4.4179123956E-5) - D000042__31 = Drift(L=0.319264) - CV16_11 = VKicker(L=0.2) - D000017__99 = Drift(L=0.0638) - HQD_11__17 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__100 = Drift(L=0.1559) - SD2_1__15 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__96 = Drift(L=0.1042) - SD2_1__16 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__100 = Drift(L=0.50037) - EDGE1_000__167 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__84 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__167 = Multipole(Kn1L=4.07894736378E-6) - D000018__167 = Drift(L=0.1193) - EDGE3_000__167 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__84 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__168 = Multipole(Kn1L=-4.07894736378E-6) - D000018__168 = Drift(L=0.1193) - EDGE2_000__168 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__84 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__168 = Multipole(Kn1L=-4.4179123956E-5) - D000042__32 = Drift(L=0.319264) - CH16_11 = HKicker(L=0.2) - D000017__100 = Drift(L=0.0638) - HQF_11__18 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__101 = Drift(L=0.1559) - SF17_11 = Sextupole(L=0.24) - D000014__101 = Drift(L=0.50037) - DB23_11__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000043__1 = Drift(L=1.374861) - CV17_11 = VKicker(L=0.2) - D000017__101 = Drift(L=0.0638) - HQD_11__18 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__102 = Drift(L=0.1559) - SD17_11 = Sextupole(L=0.24) - D000014__102 = Drift(L=0.50037) - DB23_11__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000043__2 = Drift(L=1.374861) - CH17_11 = HKicker(L=0.2) - D000017__102 = Drift(L=0.0638) - HQF_11__19 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__103 = Drift(L=0.1559) - SF18_11 = Sextupole(L=0.24) - D000044__1 = Drift(L=4.055463) - HQM22_11 = Quadrupole(L=0.6, Kn1=-0.3288030901,) - D000044__2 = Drift(L=4.055463) - HQM21_11 = Quadrupole(L=0.6, Kn1=0.1805100149,) - D000032__15 = Drift(L=0.535) - DB23_11__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__16 = Drift(L=0.535) - HQM20_11 = Quadrupole(L=0.6, Kn1=-0.14458509) - D000032__17 = Drift(L=0.535) - DB23_11__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__18 = Drift(L=0.535) - HQM19_11 = Quadrupole(L=0.6, Kn1=0.2557330047,) - D000045__1 = Drift(L=3.035675) - HQM18_11 = Quadrupole(L=0.6, Kn1=-0.1001891766,) - D000045__2 = Drift(L=3.035675) - HQM17_11 = Quadrupole(L=0.6, Kn1=-0.08890632892) - D000045__3 = Drift(L=3.035675) - HQM16_11 = Quadrupole(L=0.6, Kn1=-0.1156289813,) - D000045__4 = Drift(L=3.035675) - HQM15_11 = Quadrupole(L=0.6, Kn1=0.1167136133,) - D000045__5 = Drift(L=3.035675) - HQM14_11 = Quadrupole(L=0.6, Kn1=0.01649413513,) - D000045__6 = Drift(L=3.035675) - HQM13_11 = Quadrupole(L=0.6, Kn1=0.1479132215,) - D000032__19 = Drift(L=0.535) - DB23_11__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__20 = Drift(L=0.535) - HQM12_11 = Quadrupole(L=0.6, Kn1=-0.1783631142,) - D000032__21 = Drift(L=0.535) - DB23_11__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000046__1 = Drift(L=2.526471) - HQFSS_12__1 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000047__1 = Drift(L=11.5) - HQDSS_12__1 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000047__2 = Drift(L=11.5) - HQFSS_12__2 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000047__3 = Drift(L=11.5) - HQDSS_12__2 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000046__2 = Drift(L=2.526471) - DB12_4M__1 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000048__1 = Drift(L=0.0975) - DB12_4M__2 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000048__2 = Drift(L=0.0975) - DB12_4M__3 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000049 = Drift(L=5.21429) - HQFSS_12__3 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000047__4 = Drift(L=11.5) - HQDSS_12__3 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000047__5 = Drift(L=11.5) - HQFSS_12__4 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000050 = Drift(L=12.836707) - IP12 = Marker() - D000051 = Drift(L=6.263293) - HQDSS_12__4 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000047__6 = Drift(L=11.5) - HQFSS_12__5 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000047__7 = Drift(L=11.5) - HQDSS_12__5 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000047__8 = Drift(L=11.5) - HQFSS_12__6 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000052 = Drift(L=0.714288) - DB12_4P__1 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000048__3 = Drift(L=0.0975) - DB12_4P__2 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000048__4 = Drift(L=0.0975) - DB12_4P__3 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000053__1 = Drift(L=1.590529) - HQDSS_12__6 = Quadrupole(L=0.6, Kn1=-0.1399369071) - MKICK_INJ = Marker() - D000047__9 = Drift(L=11.5) - HQFSS_12__7 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000047__10 = Drift(L=11.5) - HQDSS_12__7 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000047__11 = Drift(L=11.5) - MCOLL_INJ = Marker() - HQFSS_12__8 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000053__2 = Drift(L=1.590529) - DB23_12__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__22 = Drift(L=0.535) - HQM14_12 = Quadrupole(L=0.6, Kn1=-0.1363018832,) - D000032__23 = Drift(L=0.535) - DB23_12__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__24 = Drift(L=0.535) - HQM15_12 = Quadrupole(L=0.6, Kn1=0.1895913536,) - D000054__1 = Drift(L=4.706452) - HQM16_12 = Quadrupole(L=0.6, Kn1=-0.2272414187) - D000054__2 = Drift(L=4.706452) - HQM17_12 = Quadrupole(L=0.6, Kn1=0.3038863874,) - D000054__3 = Drift(L=4.706452) - HQM18_12 = Quadrupole(L=0.6, Kn1=-0.3056640346,) - D000054__4 = Drift(L=4.706452) - HQM19_12 = Quadrupole(L=0.6, Kn1=0.33500458,) - D000032__25 = Drift(L=0.535) - DB23_12__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__26 = Drift(L=0.535) - HQM20_12 = Quadrupole(L=0.6, Kn1=-0.2490023496,) - D000032__27 = Drift(L=0.535) - DB23_12__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__28 = Drift(L=0.535) - HQM21_12 = Quadrupole(L=0.6, Kn1=0.26081512,) - D000055__1 = Drift(L=4.809451) - HQM22_12 = Quadrupole(L=0.6, Kn1=-0.3351370008) - D000055__2 = Drift(L=4.809451) - SFM1_1 = Sextupole(L=0.24) - D000056__1 = Drift(L=0.2) - HQF_1__1 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__103 = Drift(L=0.0638) - CH00_1 = HKicker(L=0.2) - D000057__1 = Drift(L=1.442045) - DB23_12__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__103 = Drift(L=0.50037) - SD00_1 = Sextupole(L=0.24) - D000012__104 = Drift(L=0.1559) - HQD_1__1 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__104 = Drift(L=0.0638) - CV00_1 = VKicker(L=0.2) - D000057__2 = Drift(L=1.442045) - DB23_12__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__104 = Drift(L=0.50037) - SF00_1 = Sextupole(L=0.24) - D000012__105 = Drift(L=0.1559) - HQF_1__2 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__105 = Drift(L=0.0638) - CH01_1 = HKicker(L=0.2) - D000058__1 = Drift(L=0.386448) - EDGE1_000__169 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__85 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__169 = Multipole(Kn1L=4.07894736378E-6) - D000018__169 = Drift(L=0.1193) - EDGE3_000__169 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__85 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__170 = Multipole(Kn1L=-4.07894736378E-6) - D000018__170 = Drift(L=0.1193) - EDGE2_000__170 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__85 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__170 = Multipole(Kn1L=-4.4179123956E-5) - D000014__105 = Drift(L=0.50037) - SD1_1__17 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__97 = Drift(L=0.1042) - SD1_1__18 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__106 = Drift(L=0.1559) - HQD_1__2 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__106 = Drift(L=0.0638) - CV01_1 = VKicker(L=0.2) - D000058__2 = Drift(L=0.386448) - EDGE1_000__171 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__86 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__171 = Multipole(Kn1L=4.07894736378E-6) - D000018__171 = Drift(L=0.1193) - EDGE3_000__171 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__86 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__172 = Multipole(Kn1L=-4.07894736378E-6) - D000018__172 = Drift(L=0.1193) - EDGE2_000__172 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__86 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__172 = Multipole(Kn1L=-4.4179123956E-5) - D000014__106 = Drift(L=0.50037) - SF1_1__17 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__98 = Drift(L=0.1042) - SF1_1__18 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__107 = Drift(L=0.1559) - HQF_1__3 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__107 = Drift(L=0.0638) - CH02_1 = HKicker(L=0.2) - D000058__3 = Drift(L=0.386448) - EDGE1_000__173 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__87 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__173 = Multipole(Kn1L=4.07894736378E-6) - D000018__173 = Drift(L=0.1193) - EDGE3_000__173 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__87 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__174 = Multipole(Kn1L=-4.07894736378E-6) - D000018__174 = Drift(L=0.1193) - EDGE2_000__174 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__87 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__174 = Multipole(Kn1L=-4.4179123956E-5) - D000014__107 = Drift(L=0.50037) - SD2_1__17 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__99 = Drift(L=0.1042) - SD2_1__18 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__108 = Drift(L=0.1559) - HQD_1__3 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__108 = Drift(L=0.0638) - CV02_1 = VKicker(L=0.2) - D000058__4 = Drift(L=0.386448) - EDGE1_000__175 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__88 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__175 = Multipole(Kn1L=4.07894736378E-6) - D000018__175 = Drift(L=0.1193) - EDGE3_000__175 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__88 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__176 = Multipole(Kn1L=-4.07894736378E-6) - D000018__176 = Drift(L=0.1193) - EDGE2_000__176 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__88 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__176 = Multipole(Kn1L=-4.4179123956E-5) - D000014__108 = Drift(L=0.50037) - SF2_1__17 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__100 = Drift(L=0.1042) - SF2_1__18 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__109 = Drift(L=0.1559) - HQF_1__4 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__109 = Drift(L=0.0638) - CH03_1 = HKicker(L=0.2) - D000058__5 = Drift(L=0.386448) - EDGE1_000__177 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__89 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__177 = Multipole(Kn1L=4.07894736378E-6) - D000018__177 = Drift(L=0.1193) - EDGE3_000__177 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__89 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__178 = Multipole(Kn1L=-4.07894736378E-6) - D000018__178 = Drift(L=0.1193) - EDGE2_000__178 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__89 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__178 = Multipole(Kn1L=-4.4179123956E-5) - D000014__109 = Drift(L=0.50037) - SD1_1__19 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__101 = Drift(L=0.1042) - SD1_1__20 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__110 = Drift(L=0.1559) - HQD_1__4 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__110 = Drift(L=0.0638) - CV03_1 = VKicker(L=0.2) - D000058__6 = Drift(L=0.386448) - EDGE1_000__179 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__90 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__179 = Multipole(Kn1L=4.07894736378E-6) - D000018__179 = Drift(L=0.1193) - EDGE3_000__179 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__90 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__180 = Multipole(Kn1L=-4.07894736378E-6) - D000018__180 = Drift(L=0.1193) - EDGE2_000__180 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__90 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__180 = Multipole(Kn1L=-4.4179123956E-5) - D000014__110 = Drift(L=0.50037) - SF1_1__19 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__102 = Drift(L=0.1042) - SF1_1__20 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__111 = Drift(L=0.1559) - HQF_1__5 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__111 = Drift(L=0.0638) - CH04_1 = HKicker(L=0.2) - D000058__7 = Drift(L=0.386448) - EDGE1_000__181 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__91 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__181 = Multipole(Kn1L=4.07894736378E-6) - D000018__181 = Drift(L=0.1193) - EDGE3_000__181 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__91 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__182 = Multipole(Kn1L=-4.07894736378E-6) - D000018__182 = Drift(L=0.1193) - EDGE2_000__182 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__91 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__182 = Multipole(Kn1L=-4.4179123956E-5) - D000014__111 = Drift(L=0.50037) - SD2_1__19 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__103 = Drift(L=0.1042) - SD2_1__20 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__112 = Drift(L=0.1559) - HQD_1__5 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__112 = Drift(L=0.0638) - CV04_1 = VKicker(L=0.2) - D000058__8 = Drift(L=0.386448) - EDGE1_000__183 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__92 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__183 = Multipole(Kn1L=4.07894736378E-6) - D000018__183 = Drift(L=0.1193) - EDGE3_000__183 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__92 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__184 = Multipole(Kn1L=-4.07894736378E-6) - D000018__184 = Drift(L=0.1193) - EDGE2_000__184 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__92 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__184 = Multipole(Kn1L=-4.4179123956E-5) - D000014__112 = Drift(L=0.50037) - SF2_1__19 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__104 = Drift(L=0.1042) - SF2_1__20 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__113 = Drift(L=0.1559) - HQF_1__6 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__113 = Drift(L=0.0638) - CH05_1 = HKicker(L=0.2) - D000058__9 = Drift(L=0.386448) - EDGE1_000__185 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__93 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__185 = Multipole(Kn1L=4.07894736378E-6) - D000018__185 = Drift(L=0.1193) - EDGE3_000__185 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__93 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__186 = Multipole(Kn1L=-4.07894736378E-6) - D000018__186 = Drift(L=0.1193) - EDGE2_000__186 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__93 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__186 = Multipole(Kn1L=-4.4179123956E-5) - D000014__113 = Drift(L=0.50037) - SD1_1__21 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__105 = Drift(L=0.1042) - SD1_1__22 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__114 = Drift(L=0.1559) - HQD_1__6 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__114 = Drift(L=0.0638) - CV05_1 = VKicker(L=0.2) - D000058__10 = Drift(L=0.386448) - EDGE1_000__187 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__94 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__187 = Multipole(Kn1L=4.07894736378E-6) - D000018__187 = Drift(L=0.1193) - EDGE3_000__187 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__94 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__188 = Multipole(Kn1L=-4.07894736378E-6) - D000018__188 = Drift(L=0.1193) - EDGE2_000__188 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__94 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__188 = Multipole(Kn1L=-4.4179123956E-5) - D000014__114 = Drift(L=0.50037) - SF1_1__21 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__106 = Drift(L=0.1042) - SF1_1__22 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__115 = Drift(L=0.1559) - HQF_1__7 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__115 = Drift(L=0.0638) - CH06_1 = HKicker(L=0.2) - D000058__11 = Drift(L=0.386448) - EDGE1_000__189 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__95 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__189 = Multipole(Kn1L=4.07894736378E-6) - D000018__189 = Drift(L=0.1193) - EDGE3_000__189 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__95 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__190 = Multipole(Kn1L=-4.07894736378E-6) - D000018__190 = Drift(L=0.1193) - EDGE2_000__190 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__95 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__190 = Multipole(Kn1L=-4.4179123956E-5) - D000014__115 = Drift(L=0.50037) - SD2_1__21 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__107 = Drift(L=0.1042) - SD2_1__22 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__116 = Drift(L=0.1559) - HQD_1__7 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__116 = Drift(L=0.0638) - CV06_1 = VKicker(L=0.2) - D000058__12 = Drift(L=0.386448) - EDGE1_000__191 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__96 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__191 = Multipole(Kn1L=4.07894736378E-6) - D000018__191 = Drift(L=0.1193) - EDGE3_000__191 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__96 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__192 = Multipole(Kn1L=-4.07894736378E-6) - D000018__192 = Drift(L=0.1193) - EDGE2_000__192 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__96 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__192 = Multipole(Kn1L=-4.4179123956E-5) - D000014__116 = Drift(L=0.50037) - SF2_1__21 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__108 = Drift(L=0.1042) - SF2_1__22 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__117 = Drift(L=0.1559) - HQF_1__8 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__117 = Drift(L=0.0638) - CH07_1 = HKicker(L=0.2) - D000058__13 = Drift(L=0.386448) - EDGE1_000__193 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__97 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__193 = Multipole(Kn1L=4.07894736378E-6) - D000018__193 = Drift(L=0.1193) - EDGE3_000__193 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__97 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__194 = Multipole(Kn1L=-4.07894736378E-6) - D000018__194 = Drift(L=0.1193) - EDGE2_000__194 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__97 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__194 = Multipole(Kn1L=-4.4179123956E-5) - D000014__117 = Drift(L=0.50037) - SD1_1__23 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__109 = Drift(L=0.1042) - SD1_1__24 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__118 = Drift(L=0.1559) - HQD_1__8 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__118 = Drift(L=0.0638) - CV07_1 = VKicker(L=0.2) - D000058__14 = Drift(L=0.386448) - EDGE1_000__195 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__98 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__195 = Multipole(Kn1L=4.07894736378E-6) - D000018__195 = Drift(L=0.1193) - EDGE3_000__195 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__98 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__196 = Multipole(Kn1L=-4.07894736378E-6) - D000018__196 = Drift(L=0.1193) - EDGE2_000__196 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__98 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__196 = Multipole(Kn1L=-4.4179123956E-5) - D000014__118 = Drift(L=0.50037) - SF1_1__23 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__110 = Drift(L=0.1042) - SF1_1__24 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__119 = Drift(L=0.1559) - HQF_1__9 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__119 = Drift(L=0.0638) - CH08_1 = HKicker(L=0.2) - D000058__15 = Drift(L=0.386448) - EDGE1_000__197 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__99 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__197 = Multipole(Kn1L=4.07894736378E-6) - D000018__197 = Drift(L=0.1193) - EDGE3_000__197 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__99 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__198 = Multipole(Kn1L=-4.07894736378E-6) - D000018__198 = Drift(L=0.1193) - EDGE2_000__198 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__99 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__198 = Multipole(Kn1L=-4.4179123956E-5) - D000014__119 = Drift(L=0.50037) - SD2_1__23 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__111 = Drift(L=0.1042) - SD2_1__24 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__120 = Drift(L=0.1559) - HQD_1__9 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__120 = Drift(L=0.0638) - CV08_1 = VKicker(L=0.2) - D000058__16 = Drift(L=0.386448) - EDGE1_000__199 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__100 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__199 = Multipole(Kn1L=4.07894736378E-6) - D000018__199 = Drift(L=0.1193) - EDGE3_000__199 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__100 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__200 = Multipole(Kn1L=-4.07894736378E-6) - D000018__200 = Drift(L=0.1193) - EDGE2_000__200 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__100 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__200 = Multipole(Kn1L=-4.4179123956E-5) - D000014__120 = Drift(L=0.50037) - SF2_1__23 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__112 = Drift(L=0.1042) - SF2_1__24 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__121 = Drift(L=0.1559) - HQF_1__10 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__121 = Drift(L=0.0638) - CH09_1 = HKicker(L=0.2) - D000058__17 = Drift(L=0.386448) - EDGE1_000__201 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__101 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__201 = Multipole(Kn1L=4.07894736378E-6) - D000018__201 = Drift(L=0.1193) - EDGE3_000__201 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__101 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__202 = Multipole(Kn1L=-4.07894736378E-6) - D000018__202 = Drift(L=0.1193) - EDGE2_000__202 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__101 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__202 = Multipole(Kn1L=-4.4179123956E-5) - D000014__121 = Drift(L=0.50037) - SD1_1__25 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__113 = Drift(L=0.1042) - SD1_1__26 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__122 = Drift(L=0.1559) - HQD_1__10 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__122 = Drift(L=0.0638) - CV09_1 = VKicker(L=0.2) - D000058__18 = Drift(L=0.386448) - EDGE1_000__203 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__102 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__203 = Multipole(Kn1L=4.07894736378E-6) - D000018__203 = Drift(L=0.1193) - EDGE3_000__203 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__102 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__204 = Multipole(Kn1L=-4.07894736378E-6) - D000018__204 = Drift(L=0.1193) - EDGE2_000__204 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__102 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__204 = Multipole(Kn1L=-4.4179123956E-5) - D000014__122 = Drift(L=0.50037) - SF1_1__25 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__114 = Drift(L=0.1042) - SF1_1__26 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__123 = Drift(L=0.1559) - HQF_1__11 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__123 = Drift(L=0.0638) - CH10_1 = HKicker(L=0.2) - D000058__19 = Drift(L=0.386448) - EDGE1_000__205 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__103 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__205 = Multipole(Kn1L=4.07894736378E-6) - D000018__205 = Drift(L=0.1193) - EDGE3_000__205 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__103 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__206 = Multipole(Kn1L=-4.07894736378E-6) - D000018__206 = Drift(L=0.1193) - EDGE2_000__206 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__103 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__206 = Multipole(Kn1L=-4.4179123956E-5) - D000014__123 = Drift(L=0.50037) - SD2_1__25 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__115 = Drift(L=0.1042) - SD2_1__26 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__124 = Drift(L=0.1559) - HQD_1__11 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__124 = Drift(L=0.0638) - CV10_1 = VKicker(L=0.2) - D000058__20 = Drift(L=0.386448) - EDGE1_000__207 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__104 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__207 = Multipole(Kn1L=4.07894736378E-6) - D000018__207 = Drift(L=0.1193) - EDGE3_000__207 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__104 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__208 = Multipole(Kn1L=-4.07894736378E-6) - D000018__208 = Drift(L=0.1193) - EDGE2_000__208 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__104 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__208 = Multipole(Kn1L=-4.4179123956E-5) - D000014__124 = Drift(L=0.50037) - SF2_1__25 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__116 = Drift(L=0.1042) - SF2_1__26 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__125 = Drift(L=0.1559) - HQF_1__12 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__125 = Drift(L=0.0638) - CH11_1 = HKicker(L=0.2) - D000058__21 = Drift(L=0.386448) - EDGE1_000__209 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__105 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__209 = Multipole(Kn1L=4.07894736378E-6) - D000018__209 = Drift(L=0.1193) - EDGE3_000__209 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__105 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__210 = Multipole(Kn1L=-4.07894736378E-6) - D000018__210 = Drift(L=0.1193) - EDGE2_000__210 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__105 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__210 = Multipole(Kn1L=-4.4179123956E-5) - D000014__125 = Drift(L=0.50037) - SD1_1__27 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__117 = Drift(L=0.1042) - SD1_1__28 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__126 = Drift(L=0.1559) - HQD_1__12 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__126 = Drift(L=0.0638) - CV11_1 = VKicker(L=0.2) - D000058__22 = Drift(L=0.386448) - EDGE1_000__211 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__106 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__211 = Multipole(Kn1L=4.07894736378E-6) - D000018__211 = Drift(L=0.1193) - EDGE3_000__211 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__106 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__212 = Multipole(Kn1L=-4.07894736378E-6) - D000018__212 = Drift(L=0.1193) - EDGE2_000__212 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__106 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__212 = Multipole(Kn1L=-4.4179123956E-5) - D000014__126 = Drift(L=0.50037) - SF1_1__27 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__118 = Drift(L=0.1042) - SF1_1__28 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__127 = Drift(L=0.1559) - HQF_1__13 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__127 = Drift(L=0.0638) - CH12_1 = HKicker(L=0.2) - D000058__23 = Drift(L=0.386448) - EDGE1_000__213 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__107 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__213 = Multipole(Kn1L=4.07894736378E-6) - D000018__213 = Drift(L=0.1193) - EDGE3_000__213 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__107 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__214 = Multipole(Kn1L=-4.07894736378E-6) - D000018__214 = Drift(L=0.1193) - EDGE2_000__214 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__107 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__214 = Multipole(Kn1L=-4.4179123956E-5) - D000014__127 = Drift(L=0.50037) - SD2_1__27 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__119 = Drift(L=0.1042) - SD2_1__28 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__128 = Drift(L=0.1559) - HQD_1__13 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__128 = Drift(L=0.0638) - CV12_1 = VKicker(L=0.2) - D000058__24 = Drift(L=0.386448) - EDGE1_000__215 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__108 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__215 = Multipole(Kn1L=4.07894736378E-6) - D000018__215 = Drift(L=0.1193) - EDGE3_000__215 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__108 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__216 = Multipole(Kn1L=-4.07894736378E-6) - D000018__216 = Drift(L=0.1193) - EDGE2_000__216 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__108 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__216 = Multipole(Kn1L=-4.4179123956E-5) - D000014__128 = Drift(L=0.50037) - SF2_1__27 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__120 = Drift(L=0.1042) - SF2_1__28 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__129 = Drift(L=0.1559) - HQF_1__14 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__129 = Drift(L=0.0638) - CH13_1 = HKicker(L=0.2) - D000058__25 = Drift(L=0.386448) - EDGE1_000__217 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__109 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__217 = Multipole(Kn1L=4.07894736378E-6) - D000018__217 = Drift(L=0.1193) - EDGE3_000__217 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__109 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__218 = Multipole(Kn1L=-4.07894736378E-6) - D000018__218 = Drift(L=0.1193) - EDGE2_000__218 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__109 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__218 = Multipole(Kn1L=-4.4179123956E-5) - D000014__129 = Drift(L=0.50037) - SD1_1__29 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__121 = Drift(L=0.1042) - SD1_1__30 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__130 = Drift(L=0.1559) - HQD_1__14 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__130 = Drift(L=0.0638) - CV13_1 = VKicker(L=0.2) - D000058__26 = Drift(L=0.386448) - EDGE1_000__219 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__110 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__219 = Multipole(Kn1L=4.07894736378E-6) - D000018__219 = Drift(L=0.1193) - EDGE3_000__219 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__110 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__220 = Multipole(Kn1L=-4.07894736378E-6) - D000018__220 = Drift(L=0.1193) - EDGE2_000__220 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__110 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__220 = Multipole(Kn1L=-4.4179123956E-5) - D000014__130 = Drift(L=0.50037) - SF1_1__29 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__122 = Drift(L=0.1042) - SF1_1__30 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__131 = Drift(L=0.1559) - HQF_1__15 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__131 = Drift(L=0.0638) - CH14_1 = HKicker(L=0.2) - D000058__27 = Drift(L=0.386448) - EDGE1_000__221 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__111 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__221 = Multipole(Kn1L=4.07894736378E-6) - D000018__221 = Drift(L=0.1193) - EDGE3_000__221 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__111 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__222 = Multipole(Kn1L=-4.07894736378E-6) - D000018__222 = Drift(L=0.1193) - EDGE2_000__222 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__111 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__222 = Multipole(Kn1L=-4.4179123956E-5) - D000014__131 = Drift(L=0.50037) - SD2_1__29 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__123 = Drift(L=0.1042) - SD2_1__30 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__132 = Drift(L=0.1559) - HQD_1__15 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__132 = Drift(L=0.0638) - CV14_1 = VKicker(L=0.2) - D000058__28 = Drift(L=0.386448) - EDGE1_000__223 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__112 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__223 = Multipole(Kn1L=4.07894736378E-6) - D000018__223 = Drift(L=0.1193) - EDGE3_000__223 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__112 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__224 = Multipole(Kn1L=-4.07894736378E-6) - D000018__224 = Drift(L=0.1193) - EDGE2_000__224 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__112 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__224 = Multipole(Kn1L=-4.4179123956E-5) - D000014__132 = Drift(L=0.50037) - SF2_1__29 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__124 = Drift(L=0.1042) - SF2_1__30 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__133 = Drift(L=0.1559) - HQF_1__16 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__133 = Drift(L=0.0638) - CH15_1 = HKicker(L=0.2) - D000058__29 = Drift(L=0.386448) - EDGE1_000__225 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__113 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__225 = Multipole(Kn1L=4.07894736378E-6) - D000018__225 = Drift(L=0.1193) - EDGE3_000__225 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__113 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__226 = Multipole(Kn1L=-4.07894736378E-6) - D000018__226 = Drift(L=0.1193) - EDGE2_000__226 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__113 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__226 = Multipole(Kn1L=-4.4179123956E-5) - D000014__133 = Drift(L=0.50037) - SD1_1__31 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__125 = Drift(L=0.1042) - SD1_1__32 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__134 = Drift(L=0.1559) - HQD_1__16 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__134 = Drift(L=0.0638) - CV15_1 = VKicker(L=0.2) - D000058__30 = Drift(L=0.386448) - EDGE1_000__227 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__114 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__227 = Multipole(Kn1L=4.07894736378E-6) - D000018__227 = Drift(L=0.1193) - EDGE3_000__227 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__114 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__228 = Multipole(Kn1L=-4.07894736378E-6) - D000018__228 = Drift(L=0.1193) - EDGE2_000__228 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__114 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__228 = Multipole(Kn1L=-4.4179123956E-5) - D000014__134 = Drift(L=0.50037) - SF1_1__31 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__126 = Drift(L=0.1042) - SF1_1__32 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__135 = Drift(L=0.1559) - HQF_1__17 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__135 = Drift(L=0.0638) - CH16_1 = HKicker(L=0.2) - D000058__31 = Drift(L=0.386448) - EDGE1_000__229 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__115 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__229 = Multipole(Kn1L=4.07894736378E-6) - D000018__229 = Drift(L=0.1193) - EDGE3_000__229 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__115 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__230 = Multipole(Kn1L=-4.07894736378E-6) - D000018__230 = Drift(L=0.1193) - EDGE2_000__230 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__115 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__230 = Multipole(Kn1L=-4.4179123956E-5) - D000014__135 = Drift(L=0.50037) - SD2_1__31 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__127 = Drift(L=0.1042) - SD2_1__32 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__136 = Drift(L=0.1559) - HQD_1__17 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__136 = Drift(L=0.0638) - CV16_1 = VKicker(L=0.2) - D000058__32 = Drift(L=0.386448) - EDGE1_000__231 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__116 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__231 = Multipole(Kn1L=4.07894736378E-6) - D000018__231 = Drift(L=0.1193) - EDGE3_000__231 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__116 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__232 = Multipole(Kn1L=-4.07894736378E-6) - D000018__232 = Drift(L=0.1193) - EDGE2_000__232 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__116 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__232 = Multipole(Kn1L=-4.4179123956E-5) - D000014__136 = Drift(L=0.50037) - SF2_1__31 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__128 = Drift(L=0.1042) - SF2_1__32 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__137 = Drift(L=0.1559) - HQF_1__18 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__137 = Drift(L=0.0638) - CH17_1 = HKicker(L=0.2) - D000057__3 = Drift(L=1.442045) - DB23_1__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__137 = Drift(L=0.50037) - SD17_1 = Sextupole(L=0.24) - D000012__138 = Drift(L=0.1559) - HQD_1__18 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__138 = Drift(L=0.0638) - CV17_1 = VKicker(L=0.2) - D000057__4 = Drift(L=1.442045) - DB23_1__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__138 = Drift(L=0.50037) - SF17_1 = Sextupole(L=0.24) - D000012__139 = Drift(L=0.1559) - HQF_1__19 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000059__1 = Drift(L=2.551335) - HQM22_1 = Quadrupole(L=0.6, Kn1=0.01722745969,) - D000059__2 = Drift(L=2.551335) - HQM21_1 = Quadrupole(L=0.6, Kn1=-0.07374323012) - D000059__3 = Drift(L=2.551335) - HQM20_1 = Quadrupole(L=0.6, Kn1=-0.01932000017,) - D000059__4 = Drift(L=2.551335) - HQM19_1 = Quadrupole(L=0.6, Kn1=-0.08634709755) - D000059__5 = Drift(L=2.551335) - HQM18_1 = Quadrupole(L=0.6, Kn1=-0.08439397155) - D000032__29 = Drift(L=0.535) - DB23_1__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__30 = Drift(L=0.535) - HQM17_1 = Quadrupole(L=0.6, Kn1=0.215697629) - D000032__31 = Drift(L=0.535) - DB23_1__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__32 = Drift(L=0.535) - HQM16_1 = Quadrupole(L=0.6, Kn1=0.09620701749) - D000060__1 = Drift(L=6.217138) - HQM15_1 = Quadrupole(L=0.6, Kn1=-0.2153529094) - D000060__2 = Drift(L=6.217138) - HQM14_1 = Quadrupole(L=0.6, Kn1=0.312179911,) - D000060__3 = Drift(L=6.217138) - HQM13_1 = Quadrupole(L=0.6, Kn1=-0.1606496122) - D000032__33 = Drift(L=0.535) - DB23_1__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__34 = Drift(L=0.535) - HQM12_1 = Quadrupole(L=0.6, Kn1=0.1379574645) - D000032__35 = Drift(L=0.535) - DB23_1__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000061__1 = Drift(L=1.995182) - HQDSS_2__1 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000062__1 = Drift(L=12.36) - SX41_2 = Sextupole(L=0.24) - D000056__2 = Drift(L=0.2) - HQFSS_2__1 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000062__2 = Drift(L=12.36) - SX42_2 = Sextupole(L=0.24) - D000056__3 = Drift(L=0.2) - HQDSS_2__2 = Quadrupole(L=0.6, Kn1=-0.0980096273) - MCOLL_H1 = Marker() - D000062__3 = Drift(L=12.36) - SX43_2 = Sextupole(L=0.24) - D000056__4 = Drift(L=0.2) - HQFSS_2__2 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000062__4 = Drift(L=12.36) - MCOLL_H2 = Marker() - SX44_2 = Sextupole(L=0.24) - D000056__5 = Drift(L=0.2) - HQDSS_2__3 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000062__5 = Drift(L=12.36) - SX45_2 = Sextupole(L=0.24) - D000056__6 = Drift(L=0.2) - HQFSS_2__3 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000062__6 = Drift(L=12.36) - MCOLL_H3 = Marker() - SX46_2 = Sextupole(L=0.24) - D000056__7 = Drift(L=0.2) - HQDSS_2__4 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000063 = Drift(L=6.169233) - IP2 = Marker() - D000064 = Drift(L=6.630767) - HQFSS_2__4 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000056__8 = Drift(L=0.2) - SX47_2 = Sextupole(L=0.24) - D000062__7 = Drift(L=12.36) - HQDSS_2__5 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000056__9 = Drift(L=0.2) - SX48_2 = Sextupole(L=0.24) - D000062__8 = Drift(L=12.36) - HQFSS_2__5 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000056__10 = Drift(L=0.2) - SX49_2 = Sextupole(L=0.24) - D000062__9 = Drift(L=12.36) - HQDSS_2__6 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000056__11 = Drift(L=0.2) - SX50_2 = Sextupole(L=0.24) - MLAMB = Marker() - D000062__10 = Drift(L=12.36) - HQFSS_2__6 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000056__12 = Drift(L=0.2) - SX51_2 = Sextupole(L=0.24) - D000062__11 = Drift(L=12.36) - HQDSS_2__7 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000056__13 = Drift(L=0.2) - SX52_2 = Sextupole(L=0.24) - D000062__12 = Drift(L=12.36) - HQFSS_2__7 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000061__2 = Drift(L=1.995182) - DB23_2__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__36 = Drift(L=0.535) - HQM12_2 = Quadrupole(L=0.6, Kn1=-0.08415385784) - D000032__37 = Drift(L=0.535) - DB23_2__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__38 = Drift(L=0.535) - HQM13_2 = Quadrupole(L=0.6, Kn1=-7.038584918E-4,) - D000065__1 = Drift(L=5.927225) - HQM14_2 = Quadrupole(L=0.6, Kn1=-0.07676463633) - D000065__2 = Drift(L=5.927225) - HQM15_2 = Quadrupole(L=0.6, Kn1=0.3290445086,) - D000065__3 = Drift(L=5.927225) - HQM16_2 = Quadrupole(L=0.6, Kn1=-0.2520023905,) - D000032__39 = Drift(L=0.535) - DB23_2__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__40 = Drift(L=0.535) - HQM17_2 = Quadrupole(L=0.6, Kn1=0.2982328613) - D000032__41 = Drift(L=0.535) - DB23_2__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__42 = Drift(L=0.535) - HQM18_2 = Quadrupole(L=0.6, Kn1=0.2057910441) - D000066__1 = Drift(L=2.623669) - HQM19_2 = Quadrupole(L=0.6, Kn1=-0.2632180047,) - D000066__2 = Drift(L=2.623669) - HQM20_2 = Quadrupole(L=0.6, Kn1=-0.06371765756,) - D000066__3 = Drift(L=2.623669) - HQM21_2 = Quadrupole(L=0.6, Kn1=-2.457652622E-3,) - D000066__4 = Drift(L=2.623669) - HQM22_2 = Quadrupole(L=0.6, Kn1=0.08440660021) - D000066__5 = Drift(L=2.623669) - HQF_3__1 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__140 = Drift(L=0.1559) - SF00_3 = Sextupole(L=0.24) - D000014__139 = Drift(L=0.50037) - DB23_2__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000067__1 = Drift(L=1.442004) - CV00_3 = HKicker(L=0.2) - D000017__139 = Drift(L=0.0638) - HQD_3__1 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__141 = Drift(L=0.1559) - SD00_3 = Sextupole(L=0.24) - D000014__140 = Drift(L=0.50037) - DB23_2__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000067__2 = Drift(L=1.442004) - CH00_3 = HKicker(L=0.2) - D000017__140 = Drift(L=0.0638) - HQF_3__2 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__142 = Drift(L=0.1559) - SF1_1__33 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__129 = Drift(L=0.1042) - SF1_1__34 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__141 = Drift(L=0.50037) - EDGE1_000__233 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__117 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__233 = Multipole(Kn1L=4.07894736378E-6) - D000018__233 = Drift(L=0.1193) - EDGE3_000__233 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__117 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__234 = Multipole(Kn1L=-4.07894736378E-6) - D000018__234 = Drift(L=0.1193) - EDGE2_000__234 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__117 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__234 = Multipole(Kn1L=-4.4179123956E-5) - D000068__1 = Drift(L=0.386407) - CV01_3 = VKicker(L=0.2) - D000017__141 = Drift(L=0.0638) - HQD_3__2 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__143 = Drift(L=0.1559) - SD1_1__33 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__130 = Drift(L=0.1042) - SD1_1__34 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__142 = Drift(L=0.50037) - EDGE1_000__235 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__118 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__235 = Multipole(Kn1L=4.07894736378E-6) - D000018__235 = Drift(L=0.1193) - EDGE3_000__235 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__118 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__236 = Multipole(Kn1L=-4.07894736378E-6) - D000018__236 = Drift(L=0.1193) - EDGE2_000__236 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__118 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__236 = Multipole(Kn1L=-4.4179123956E-5) - D000068__2 = Drift(L=0.386407) - CH01_3 = HKicker(L=0.2) - D000017__142 = Drift(L=0.0638) - HQF_3__3 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__144 = Drift(L=0.1559) - SF2_1__33 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__131 = Drift(L=0.1042) - SF2_1__34 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__143 = Drift(L=0.50037) - EDGE1_000__237 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__119 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__237 = Multipole(Kn1L=4.07894736378E-6) - D000018__237 = Drift(L=0.1193) - EDGE3_000__237 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__119 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__238 = Multipole(Kn1L=-4.07894736378E-6) - D000018__238 = Drift(L=0.1193) - EDGE2_000__238 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__119 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__238 = Multipole(Kn1L=-4.4179123956E-5) - D000068__3 = Drift(L=0.386407) - CV02_3 = VKicker(L=0.2) - D000017__143 = Drift(L=0.0638) - HQD_3__3 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__145 = Drift(L=0.1559) - SD2_1__33 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__132 = Drift(L=0.1042) - SD2_1__34 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__144 = Drift(L=0.50037) - EDGE1_000__239 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__120 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__239 = Multipole(Kn1L=4.07894736378E-6) - D000018__239 = Drift(L=0.1193) - EDGE3_000__239 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__120 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__240 = Multipole(Kn1L=-4.07894736378E-6) - D000018__240 = Drift(L=0.1193) - EDGE2_000__240 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__120 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__240 = Multipole(Kn1L=-4.4179123956E-5) - D000068__4 = Drift(L=0.386407) - CH02_3 = HKicker(L=0.2) - D000017__144 = Drift(L=0.0638) - HQF_3__4 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__146 = Drift(L=0.1559) - SF1_1__35 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__133 = Drift(L=0.1042) - SF1_1__36 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__145 = Drift(L=0.50037) - EDGE1_000__241 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__121 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__241 = Multipole(Kn1L=4.07894736378E-6) - D000018__241 = Drift(L=0.1193) - EDGE3_000__241 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__121 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__242 = Multipole(Kn1L=-4.07894736378E-6) - D000018__242 = Drift(L=0.1193) - EDGE2_000__242 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__121 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__242 = Multipole(Kn1L=-4.4179123956E-5) - D000068__5 = Drift(L=0.386407) - CV03_3 = VKicker(L=0.2) - D000017__145 = Drift(L=0.0638) - HQD_3__4 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__147 = Drift(L=0.1559) - SD1_1__35 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__134 = Drift(L=0.1042) - SD1_1__36 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__146 = Drift(L=0.50037) - EDGE1_000__243 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__122 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__243 = Multipole(Kn1L=4.07894736378E-6) - D000018__243 = Drift(L=0.1193) - EDGE3_000__243 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__122 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__244 = Multipole(Kn1L=-4.07894736378E-6) - D000018__244 = Drift(L=0.1193) - EDGE2_000__244 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__122 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__244 = Multipole(Kn1L=-4.4179123956E-5) - D000068__6 = Drift(L=0.386407) - CH03_3 = HKicker(L=0.2) - D000017__146 = Drift(L=0.0638) - HQF_3__5 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__148 = Drift(L=0.1559) - SF2_1__35 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__135 = Drift(L=0.1042) - SF2_1__36 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__147 = Drift(L=0.50037) - EDGE1_000__245 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__123 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__245 = Multipole(Kn1L=4.07894736378E-6) - D000018__245 = Drift(L=0.1193) - EDGE3_000__245 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__123 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__246 = Multipole(Kn1L=-4.07894736378E-6) - D000018__246 = Drift(L=0.1193) - EDGE2_000__246 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__123 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__246 = Multipole(Kn1L=-4.4179123956E-5) - D000068__7 = Drift(L=0.386407) - CV04_3 = VKicker(L=0.2) - D000017__147 = Drift(L=0.0638) - HQD_3__5 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__149 = Drift(L=0.1559) - SD2_1__35 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__136 = Drift(L=0.1042) - SD2_1__36 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__148 = Drift(L=0.50037) - EDGE1_000__247 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__124 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__247 = Multipole(Kn1L=4.07894736378E-6) - D000018__247 = Drift(L=0.1193) - EDGE3_000__247 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__124 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__248 = Multipole(Kn1L=-4.07894736378E-6) - D000018__248 = Drift(L=0.1193) - EDGE2_000__248 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__124 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__248 = Multipole(Kn1L=-4.4179123956E-5) - D000068__8 = Drift(L=0.386407) - CH04_3 = HKicker(L=0.2) - D000017__148 = Drift(L=0.0638) - HQF_3__6 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__150 = Drift(L=0.1559) - SF1_1__37 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__137 = Drift(L=0.1042) - SF1_1__38 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__149 = Drift(L=0.50037) - EDGE1_000__249 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__125 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__249 = Multipole(Kn1L=4.07894736378E-6) - D000018__249 = Drift(L=0.1193) - EDGE3_000__249 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__125 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__250 = Multipole(Kn1L=-4.07894736378E-6) - D000018__250 = Drift(L=0.1193) - EDGE2_000__250 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__125 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__250 = Multipole(Kn1L=-4.4179123956E-5) - D000068__9 = Drift(L=0.386407) - CV05_3 = VKicker(L=0.2) - D000017__149 = Drift(L=0.0638) - HQD_3__6 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__151 = Drift(L=0.1559) - SD1_1__37 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__138 = Drift(L=0.1042) - SD1_1__38 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__150 = Drift(L=0.50037) - EDGE1_000__251 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__126 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__251 = Multipole(Kn1L=4.07894736378E-6) - D000018__251 = Drift(L=0.1193) - EDGE3_000__251 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__126 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__252 = Multipole(Kn1L=-4.07894736378E-6) - D000018__252 = Drift(L=0.1193) - EDGE2_000__252 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__126 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__252 = Multipole(Kn1L=-4.4179123956E-5) - D000068__10 = Drift(L=0.386407) - CH05_3 = HKicker(L=0.2) - D000017__150 = Drift(L=0.0638) - HQF_3__7 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__152 = Drift(L=0.1559) - SF2_1__37 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__139 = Drift(L=0.1042) - SF2_1__38 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__151 = Drift(L=0.50037) - EDGE1_000__253 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__127 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__253 = Multipole(Kn1L=4.07894736378E-6) - D000018__253 = Drift(L=0.1193) - EDGE3_000__253 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__127 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__254 = Multipole(Kn1L=-4.07894736378E-6) - D000018__254 = Drift(L=0.1193) - EDGE2_000__254 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__127 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__254 = Multipole(Kn1L=-4.4179123956E-5) - D000068__11 = Drift(L=0.386407) - CV06_3 = VKicker(L=0.2) - D000017__151 = Drift(L=0.0638) - HQD_3__7 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__153 = Drift(L=0.1559) - SD2_1__37 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__140 = Drift(L=0.1042) - SD2_1__38 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__152 = Drift(L=0.50037) - EDGE1_000__255 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__128 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__255 = Multipole(Kn1L=4.07894736378E-6) - D000018__255 = Drift(L=0.1193) - EDGE3_000__255 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__128 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__256 = Multipole(Kn1L=-4.07894736378E-6) - D000018__256 = Drift(L=0.1193) - EDGE2_000__256 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__128 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__256 = Multipole(Kn1L=-4.4179123956E-5) - D000068__12 = Drift(L=0.386407) - CH06_3 = HKicker(L=0.2) - D000017__152 = Drift(L=0.0638) - HQF_3__8 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__154 = Drift(L=0.1559) - SF1_1__39 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__141 = Drift(L=0.1042) - SF1_1__40 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__153 = Drift(L=0.50037) - EDGE1_000__257 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__129 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__257 = Multipole(Kn1L=4.07894736378E-6) - D000018__257 = Drift(L=0.1193) - EDGE3_000__257 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__129 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__258 = Multipole(Kn1L=-4.07894736378E-6) - D000018__258 = Drift(L=0.1193) - EDGE2_000__258 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__129 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__258 = Multipole(Kn1L=-4.4179123956E-5) - D000068__13 = Drift(L=0.386407) - CV07_3 = VKicker(L=0.2) - D000017__153 = Drift(L=0.0638) - HQD_3__8 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__155 = Drift(L=0.1559) - SD1_1__39 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__142 = Drift(L=0.1042) - SD1_1__40 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__154 = Drift(L=0.50037) - EDGE1_000__259 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__130 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__259 = Multipole(Kn1L=4.07894736378E-6) - D000018__259 = Drift(L=0.1193) - EDGE3_000__259 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__130 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__260 = Multipole(Kn1L=-4.07894736378E-6) - D000018__260 = Drift(L=0.1193) - EDGE2_000__260 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__130 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__260 = Multipole(Kn1L=-4.4179123956E-5) - D000068__14 = Drift(L=0.386407) - CH07_3 = HKicker(L=0.2) - D000017__154 = Drift(L=0.0638) - HQF_3__9 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__156 = Drift(L=0.1559) - SF2_1__39 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__143 = Drift(L=0.1042) - SF2_1__40 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__155 = Drift(L=0.50037) - EDGE1_000__261 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__131 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__261 = Multipole(Kn1L=4.07894736378E-6) - D000018__261 = Drift(L=0.1193) - EDGE3_000__261 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__131 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__262 = Multipole(Kn1L=-4.07894736378E-6) - D000018__262 = Drift(L=0.1193) - EDGE2_000__262 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__131 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__262 = Multipole(Kn1L=-4.4179123956E-5) - D000068__15 = Drift(L=0.386407) - CV08_3 = VKicker(L=0.2) - D000017__155 = Drift(L=0.0638) - HQD_3__9 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__157 = Drift(L=0.1559) - SD2_1__39 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__144 = Drift(L=0.1042) - SD2_1__40 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__156 = Drift(L=0.50037) - EDGE1_000__263 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__132 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__263 = Multipole(Kn1L=4.07894736378E-6) - D000018__263 = Drift(L=0.1193) - EDGE3_000__263 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__132 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__264 = Multipole(Kn1L=-4.07894736378E-6) - D000018__264 = Drift(L=0.1193) - EDGE2_000__264 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__132 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__264 = Multipole(Kn1L=-4.4179123956E-5) - D000068__16 = Drift(L=0.386407) - CH08_3 = HKicker(L=0.2) - D000017__156 = Drift(L=0.0638) - HQF_3__10 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__158 = Drift(L=0.1559) - SF1_1__41 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__145 = Drift(L=0.1042) - SF1_1__42 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__157 = Drift(L=0.50037) - EDGE1_000__265 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__133 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__265 = Multipole(Kn1L=4.07894736378E-6) - D000018__265 = Drift(L=0.1193) - EDGE3_000__265 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__133 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__266 = Multipole(Kn1L=-4.07894736378E-6) - D000018__266 = Drift(L=0.1193) - EDGE2_000__266 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__133 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__266 = Multipole(Kn1L=-4.4179123956E-5) - D000068__17 = Drift(L=0.386407) - CV09_3 = VKicker(L=0.2) - D000017__157 = Drift(L=0.0638) - HQD_3__10 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__159 = Drift(L=0.1559) - SD1_1__41 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__146 = Drift(L=0.1042) - SD1_1__42 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__158 = Drift(L=0.50037) - EDGE1_000__267 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__134 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__267 = Multipole(Kn1L=4.07894736378E-6) - D000018__267 = Drift(L=0.1193) - EDGE3_000__267 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__134 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__268 = Multipole(Kn1L=-4.07894736378E-6) - D000018__268 = Drift(L=0.1193) - EDGE2_000__268 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__134 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__268 = Multipole(Kn1L=-4.4179123956E-5) - D000068__18 = Drift(L=0.386407) - CH09_3 = HKicker(L=0.2) - D000017__158 = Drift(L=0.0638) - HQF_3__11 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__160 = Drift(L=0.1559) - SF2_1__41 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__147 = Drift(L=0.1042) - SF2_1__42 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__159 = Drift(L=0.50037) - EDGE1_000__269 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__135 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__269 = Multipole(Kn1L=4.07894736378E-6) - D000018__269 = Drift(L=0.1193) - EDGE3_000__269 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__135 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__270 = Multipole(Kn1L=-4.07894736378E-6) - D000018__270 = Drift(L=0.1193) - EDGE2_000__270 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__135 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__270 = Multipole(Kn1L=-4.4179123956E-5) - D000068__19 = Drift(L=0.386407) - CV10_3 = VKicker(L=0.2) - D000017__159 = Drift(L=0.0638) - HQD_3__11 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__161 = Drift(L=0.1559) - SD2_1__41 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__148 = Drift(L=0.1042) - SD2_1__42 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__160 = Drift(L=0.50037) - EDGE1_000__271 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__136 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__271 = Multipole(Kn1L=4.07894736378E-6) - D000018__271 = Drift(L=0.1193) - EDGE3_000__271 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__136 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__272 = Multipole(Kn1L=-4.07894736378E-6) - D000018__272 = Drift(L=0.1193) - EDGE2_000__272 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__136 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__272 = Multipole(Kn1L=-4.4179123956E-5) - D000068__20 = Drift(L=0.386407) - CH10_3 = HKicker(L=0.2) - D000017__160 = Drift(L=0.0638) - HQF_3__12 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__162 = Drift(L=0.1559) - SF1_1__43 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__149 = Drift(L=0.1042) - SF1_1__44 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__161 = Drift(L=0.50037) - EDGE1_000__273 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__137 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__273 = Multipole(Kn1L=4.07894736378E-6) - D000018__273 = Drift(L=0.1193) - EDGE3_000__273 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__137 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__274 = Multipole(Kn1L=-4.07894736378E-6) - D000018__274 = Drift(L=0.1193) - EDGE2_000__274 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__137 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__274 = Multipole(Kn1L=-4.4179123956E-5) - D000068__21 = Drift(L=0.386407) - CV11_3 = VKicker(L=0.2) - D000017__161 = Drift(L=0.0638) - HQD_3__12 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__163 = Drift(L=0.1559) - SD1_1__43 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__150 = Drift(L=0.1042) - SD1_1__44 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__162 = Drift(L=0.50037) - EDGE1_000__275 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__138 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__275 = Multipole(Kn1L=4.07894736378E-6) - D000018__275 = Drift(L=0.1193) - EDGE3_000__275 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__138 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__276 = Multipole(Kn1L=-4.07894736378E-6) - D000018__276 = Drift(L=0.1193) - EDGE2_000__276 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__138 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__276 = Multipole(Kn1L=-4.4179123956E-5) - D000068__22 = Drift(L=0.386407) - CH11_3 = HKicker(L=0.2) - D000017__162 = Drift(L=0.0638) - HQF_3__13 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__164 = Drift(L=0.1559) - SF2_1__43 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__151 = Drift(L=0.1042) - SF2_1__44 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__163 = Drift(L=0.50037) - EDGE1_000__277 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__139 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__277 = Multipole(Kn1L=4.07894736378E-6) - D000018__277 = Drift(L=0.1193) - EDGE3_000__277 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__139 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__278 = Multipole(Kn1L=-4.07894736378E-6) - D000018__278 = Drift(L=0.1193) - EDGE2_000__278 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__139 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__278 = Multipole(Kn1L=-4.4179123956E-5) - D000068__23 = Drift(L=0.386407) - CV12_3 = VKicker(L=0.2) - D000017__163 = Drift(L=0.0638) - HQD_3__13 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__165 = Drift(L=0.1559) - SD2_1__43 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__152 = Drift(L=0.1042) - SD2_1__44 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__164 = Drift(L=0.50037) - EDGE1_000__279 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__140 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__279 = Multipole(Kn1L=4.07894736378E-6) - D000018__279 = Drift(L=0.1193) - EDGE3_000__279 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__140 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__280 = Multipole(Kn1L=-4.07894736378E-6) - D000018__280 = Drift(L=0.1193) - EDGE2_000__280 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__140 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__280 = Multipole(Kn1L=-4.4179123956E-5) - D000068__24 = Drift(L=0.386407) - CH12_3 = HKicker(L=0.2) - D000017__164 = Drift(L=0.0638) - HQF_3__14 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__166 = Drift(L=0.1559) - SF1_1__45 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__153 = Drift(L=0.1042) - SF1_1__46 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__165 = Drift(L=0.50037) - EDGE1_000__281 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__141 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__281 = Multipole(Kn1L=4.07894736378E-6) - D000018__281 = Drift(L=0.1193) - EDGE3_000__281 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__141 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__282 = Multipole(Kn1L=-4.07894736378E-6) - D000018__282 = Drift(L=0.1193) - EDGE2_000__282 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__141 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__282 = Multipole(Kn1L=-4.4179123956E-5) - D000068__25 = Drift(L=0.386407) - CV13_3 = VKicker(L=0.2) - D000017__165 = Drift(L=0.0638) - HQD_3__14 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__167 = Drift(L=0.1559) - SD1_1__45 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__154 = Drift(L=0.1042) - SD1_1__46 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__166 = Drift(L=0.50037) - EDGE1_000__283 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__142 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__283 = Multipole(Kn1L=4.07894736378E-6) - D000018__283 = Drift(L=0.1193) - EDGE3_000__283 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__142 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__284 = Multipole(Kn1L=-4.07894736378E-6) - D000018__284 = Drift(L=0.1193) - EDGE2_000__284 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__142 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__284 = Multipole(Kn1L=-4.4179123956E-5) - D000068__26 = Drift(L=0.386407) - CH13_3 = HKicker(L=0.2) - D000017__166 = Drift(L=0.0638) - HQF_3__15 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__168 = Drift(L=0.1559) - SF2_1__45 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__155 = Drift(L=0.1042) - SF2_1__46 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__167 = Drift(L=0.50037) - EDGE1_000__285 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__143 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__285 = Multipole(Kn1L=4.07894736378E-6) - D000018__285 = Drift(L=0.1193) - EDGE3_000__285 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__143 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__286 = Multipole(Kn1L=-4.07894736378E-6) - D000018__286 = Drift(L=0.1193) - EDGE2_000__286 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__143 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__286 = Multipole(Kn1L=-4.4179123956E-5) - D000068__27 = Drift(L=0.386407) - CV14_3 = VKicker(L=0.2) - D000017__167 = Drift(L=0.0638) - HQD_3__15 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__169 = Drift(L=0.1559) - SD2_1__45 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__156 = Drift(L=0.1042) - SD2_1__46 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__168 = Drift(L=0.50037) - EDGE1_000__287 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__144 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__287 = Multipole(Kn1L=4.07894736378E-6) - D000018__287 = Drift(L=0.1193) - EDGE3_000__287 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__144 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__288 = Multipole(Kn1L=-4.07894736378E-6) - D000018__288 = Drift(L=0.1193) - EDGE2_000__288 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__144 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__288 = Multipole(Kn1L=-4.4179123956E-5) - D000068__28 = Drift(L=0.386407) - CH14_3 = HKicker(L=0.2) - D000017__168 = Drift(L=0.0638) - HQF_3__16 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__170 = Drift(L=0.1559) - SF1_1__47 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__157 = Drift(L=0.1042) - SF1_1__48 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__169 = Drift(L=0.50037) - EDGE1_000__289 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__145 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__289 = Multipole(Kn1L=4.07894736378E-6) - D000018__289 = Drift(L=0.1193) - EDGE3_000__289 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__145 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__290 = Multipole(Kn1L=-4.07894736378E-6) - D000018__290 = Drift(L=0.1193) - EDGE2_000__290 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__145 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__290 = Multipole(Kn1L=-4.4179123956E-5) - D000068__29 = Drift(L=0.386407) - CV15_3 = VKicker(L=0.2) - D000017__169 = Drift(L=0.0638) - HQD_3__16 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__171 = Drift(L=0.1559) - SD1_1__47 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__158 = Drift(L=0.1042) - SD1_1__48 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__170 = Drift(L=0.50037) - EDGE1_000__291 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__146 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__291 = Multipole(Kn1L=4.07894736378E-6) - D000018__291 = Drift(L=0.1193) - EDGE3_000__291 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__146 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__292 = Multipole(Kn1L=-4.07894736378E-6) - D000018__292 = Drift(L=0.1193) - EDGE2_000__292 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__146 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__292 = Multipole(Kn1L=-4.4179123956E-5) - D000068__30 = Drift(L=0.386407) - CH15_3 = HKicker(L=0.2) - D000017__170 = Drift(L=0.0638) - HQF_3__17 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__172 = Drift(L=0.1559) - SF2_1__47 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__159 = Drift(L=0.1042) - SF2_1__48 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__171 = Drift(L=0.50037) - EDGE1_000__293 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__147 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__293 = Multipole(Kn1L=4.07894736378E-6) - D000018__293 = Drift(L=0.1193) - EDGE3_000__293 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__147 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__294 = Multipole(Kn1L=-4.07894736378E-6) - D000018__294 = Drift(L=0.1193) - EDGE2_000__294 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__147 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__294 = Multipole(Kn1L=-4.4179123956E-5) - D000068__31 = Drift(L=0.386407) - CV16_3 = VKicker(L=0.2) - D000017__171 = Drift(L=0.0638) - HQD_3__17 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__173 = Drift(L=0.1559) - SD2_1__47 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__160 = Drift(L=0.1042) - SD2_1__48 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__172 = Drift(L=0.50037) - EDGE1_000__295 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__148 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__295 = Multipole(Kn1L=4.07894736378E-6) - D000018__295 = Drift(L=0.1193) - EDGE3_000__295 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__148 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__296 = Multipole(Kn1L=-4.07894736378E-6) - D000018__296 = Drift(L=0.1193) - EDGE2_000__296 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__148 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__296 = Multipole(Kn1L=-4.4179123956E-5) - D000068__32 = Drift(L=0.386407) - CH16_3 = HKicker(L=0.2) - D000017__172 = Drift(L=0.0638) - HQF_3__18 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__174 = Drift(L=0.1559) - SF17_3 = Sextupole(L=0.24) - D000014__173 = Drift(L=0.50037) - DB23_3__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000067__3 = Drift(L=1.442004) - CV17_3 = VKicker(L=0.2) - D000017__173 = Drift(L=0.0638) - HQD_3__18 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__175 = Drift(L=0.1559) - SD17_3 = Sextupole(L=0.24) - D000014__174 = Drift(L=0.50037) - DB23_3__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000067__4 = Drift(L=1.442004) - CH17_3 = HKicker(L=0.2) - D000017__174 = Drift(L=0.0638) - HQF_3__19 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__176 = Drift(L=0.1559) - SF18_3 = Sextupole(L=0.24) - D000069__1 = Drift(L=4.065299) - HQD22_3 = Quadrupole(L=0.6, Kn1=-0.2554856666,) - D000069__2 = Drift(L=4.065299) - HQF21_3 = Quadrupole(L=0.6, Kn1=0.1978933106,) - D000032__43 = Drift(L=0.535) - DB23_3__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__44 = Drift(L=0.535) - HQD20_3 = Quadrupole(L=0.6, Kn1=-0.207628952) - D000032__45 = Drift(L=0.535) - DB23_3__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__46 = Drift(L=0.535) - HQF19_3 = Quadrupole(L=0.6, Kn1=0.1950635038,) - D000070__1 = Drift(L=4.543623) - HQD18_3 = Quadrupole(L=0.6, Kn1=-0.1791108016,) - D000070__2 = Drift(L=4.543623) - HQF17_3 = Quadrupole(L=0.6, Kn1=0.1829347368,) - D000070__3 = Drift(L=4.543623) - HQD16_3 = Quadrupole(L=0.6, Kn1=-0.1453526612) - D000032__47 = Drift(L=0.535) - DB23_3__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__48 = Drift(L=0.535) - HQF15_3 = Quadrupole(L=0.6, Kn1=0.1369224329) - D000032__49 = Drift(L=0.535) - DB23_3__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__50 = Drift(L=0.535) - HQD14_3 = Quadrupole(L=0.6, Kn1=-0.1449015186) - MCOLL_V1 = Marker() - D000071__1 = Drift(L=11.224938) - HQF13_3 = Quadrupole(L=0.6, Kn1=0.1268512382,) - D000071__2 = Drift(L=11.224938) - MCOLL_V2 = Marker() - HQD12_3 = Quadrupole(L=0.6, Kn1=-0.1085522138,) - D000071__3 = Drift(L=11.224938) - HQF11_3 = Quadrupole(L=0.6, Kn1=0.1203850125,) - D000056__14 = Drift(L=0.2) - SX41_4 = Sextupole(L=0.24) - D000072__1 = Drift(L=10.784938) - MCOLL_V3 = Marker() - HQD10_3 = Quadrupole(L=0.6, Kn1=-0.1222253567,) - D000056__15 = Drift(L=0.2) - SX42_4 = Sextupole(L=0.24) - D000072__2 = Drift(L=10.784938) - HQF9_3 = Quadrupole(L=0.6, Kn1=0.1171029044,) - D000056__16 = Drift(L=0.2) - SX43_4 = Sextupole(L=0.24) - D000056__17 = Drift(L=0.2) - DB12_4P__4 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000048__5 = Drift(L=0.0975) - DB12_4P__5 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000048__6 = Drift(L=0.0975) - DB12_4P__6 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000032__51 = Drift(L=0.535) - HQD8_3 = Quadrupole(L=0.6, Kn1=-0.08962195033) - D000056__18 = Drift(L=0.2) - SX44_4 = Sextupole(L=0.24) - D000072__3 = Drift(L=10.784938) - HQF7_3 = Quadrupole(L=0.6, Kn1=0.1075244171,) - D000056__19 = Drift(L=0.2) - SX45_4 = Sextupole(L=0.24) - D000072__4 = Drift(L=10.784938) - HQD6_3 = Quadrupole(L=0.6, Kn1=-0.1442054796) - D000056__20 = Drift(L=0.2) - SX46_4 = Sextupole(L=0.24) - D000073 = Drift(L=5.172469) - IP4 = Marker() - D000074 = Drift(L=4.758889) - SX47_4 = Sextupole(L=0.24) - D000056__21 = Drift(L=0.2) - HQD4_4 = Quadrupole(L=0.6, Kn1=0.08272423335) - D000075__1 = Drift(L=9.957779) - SX48_4 = Sextupole(L=0.24) - D000056__22 = Drift(L=0.2) - HQF5_4 = Quadrupole(L=0.6, Kn1=0.07737902144) - D000075__2 = Drift(L=9.957779) - SX49_4 = Sextupole(L=0.24) - D000056__23 = Drift(L=0.2) - HQD6_4 = Quadrupole(L=0.6, Kn1=-0.08977116391) - D000032__52 = Drift(L=0.535) - DB12_4M__4 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000048__7 = Drift(L=0.0975) - DB12_4M__5 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000048__8 = Drift(L=0.0975) - DB12_4M__6 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000056__24 = Drift(L=0.2) - SX50_4 = Sextupole(L=0.24) - D000056__25 = Drift(L=0.2) - HQF7_4 = Quadrupole(L=0.6, Kn1=-0.0511651397,) - D000075__3 = Drift(L=9.957779) - SX51_4 = Sextupole(L=0.24) - D000056__26 = Drift(L=0.2) - HQD8_4 = Quadrupole(L=0.6, Kn1=0.1278181338,) - D000075__4 = Drift(L=9.957779) - SX52_4 = Sextupole(L=0.24) - D000056__27 = Drift(L=0.2) - HQF9_4 = Quadrupole(L=0.6, Kn1=-0.1396142326) - D000076__1 = Drift(L=10.397779) - HQD10_4 = Quadrupole(L=0.6, Kn1=0.05939249134,) - D000076__2 = Drift(L=10.397779) - HQF11_4 = Quadrupole(L=0.6, Kn1=0.1718574708,) - D000032__53 = Drift(L=0.535) - DB23_4__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__54 = Drift(L=0.535) - HQD12_4 = Quadrupole(L=0.6, Kn1=-0.2619520638,) - D000032__55 = Drift(L=0.535) - DB23_4__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__56 = Drift(L=0.535) - HQF13_4 = Quadrupole(L=0.6, Kn1=0.2845893896) - D000077__1 = Drift(L=4.541529) - HQD14_4 = Quadrupole(L=0.6, Kn1=0.1003750764,) - D000077__2 = Drift(L=4.541529) - HQF15_4 = Quadrupole(L=0.6, Kn1=-0.1076656075,) - D000077__3 = Drift(L=4.541529) - HQD16_4 = Quadrupole(L=0.6, Kn1=-0.1185804289,) - D000077__4 = Drift(L=4.541529) - HQF17_4 = Quadrupole(L=0.6, Kn1=0.1115918173,) - D000077__5 = Drift(L=4.541529) - HQD18_4 = Quadrupole(L=0.6, Kn1=0.1271940476,) - D000032__57 = Drift(L=0.535) - DB23_4__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__58 = Drift(L=0.535) - HQF19_4 = Quadrupole(L=0.6, Kn1=-0.2573861159,) - D000032__59 = Drift(L=0.535) - DB23_4__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__60 = Drift(L=0.535) - HQD20_4 = Quadrupole(L=0.6, Kn1=0.1950308183,) - D000078__1 = Drift(L=4.621244) - HQF21_4 = Quadrupole(L=0.6, Kn1=-0.03563213932,) - D000078__2 = Drift(L=4.621244) - HQD22_4 = Quadrupole(L=0.6, Kn1=-0.3301534091,) - D000078__3 = Drift(L=4.621244) - SFM1_5 = Sextupole(L=0.24) - D000056__28 = Drift(L=0.2) - HQF_5__1 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__175 = Drift(L=0.0638) - CH00_5 = HKicker(L=0.2) - D000079__1 = Drift(L=1.367552) - DB23_4__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__175 = Drift(L=0.50037) - SD00_5 = Sextupole(L=0.24) - D000012__177 = Drift(L=0.1559) - HQD_5__1 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__176 = Drift(L=0.0638) - CV00_5 = VKicker(L=0.2) - D000079__2 = Drift(L=1.367552) - DB23_4__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__176 = Drift(L=0.50037) - SF00_5 = Sextupole(L=0.24) - D000012__178 = Drift(L=0.1559) - HQF_5__2 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__177 = Drift(L=0.0638) - CH01_5 = HKicker(L=0.2) - D000080__1 = Drift(L=0.311955) - EDGE1_000__297 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__149 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__297 = Multipole(Kn1L=4.07894736378E-6) - D000018__297 = Drift(L=0.1193) - EDGE3_000__297 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__149 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__298 = Multipole(Kn1L=-4.07894736378E-6) - D000018__298 = Drift(L=0.1193) - EDGE2_000__298 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__149 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__298 = Multipole(Kn1L=-4.4179123956E-5) - D000014__177 = Drift(L=0.50037) - SD1_5__1 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__161 = Drift(L=0.1042) - SD1_5__2 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__179 = Drift(L=0.1559) - HQD_5__2 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__178 = Drift(L=0.0638) - CV01_5 = VKicker(L=0.2) - D000080__2 = Drift(L=0.311955) - EDGE1_000__299 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__150 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__299 = Multipole(Kn1L=4.07894736378E-6) - D000018__299 = Drift(L=0.1193) - EDGE3_000__299 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__150 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__300 = Multipole(Kn1L=-4.07894736378E-6) - D000018__300 = Drift(L=0.1193) - EDGE2_000__300 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__150 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__300 = Multipole(Kn1L=-4.4179123956E-5) - D000014__178 = Drift(L=0.50037) - SF1_5__1 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__162 = Drift(L=0.1042) - SF1_5__2 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__180 = Drift(L=0.1559) - HQF_5__3 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__179 = Drift(L=0.0638) - CH02_5 = HKicker(L=0.2) - D000080__3 = Drift(L=0.311955) - EDGE1_000__301 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__151 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__301 = Multipole(Kn1L=4.07894736378E-6) - D000018__301 = Drift(L=0.1193) - EDGE3_000__301 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__151 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__302 = Multipole(Kn1L=-4.07894736378E-6) - D000018__302 = Drift(L=0.1193) - EDGE2_000__302 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__151 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__302 = Multipole(Kn1L=-4.4179123956E-5) - D000014__179 = Drift(L=0.50037) - SD2_5__1 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__163 = Drift(L=0.1042) - SD2_5__2 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__181 = Drift(L=0.1559) - HQD_5__3 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__180 = Drift(L=0.0638) - CV02_5 = VKicker(L=0.2) - D000080__4 = Drift(L=0.311955) - EDGE1_000__303 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__152 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__303 = Multipole(Kn1L=4.07894736378E-6) - D000018__303 = Drift(L=0.1193) - EDGE3_000__303 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__152 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__304 = Multipole(Kn1L=-4.07894736378E-6) - D000018__304 = Drift(L=0.1193) - EDGE2_000__304 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__152 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__304 = Multipole(Kn1L=-4.4179123956E-5) - D000014__180 = Drift(L=0.50037) - SF2_5__1 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__164 = Drift(L=0.1042) - SF2_5__2 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__182 = Drift(L=0.1559) - HQF_5__4 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__181 = Drift(L=0.0638) - CH03_5 = HKicker(L=0.2) - D000080__5 = Drift(L=0.311955) - EDGE1_000__305 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__153 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__305 = Multipole(Kn1L=4.07894736378E-6) - D000018__305 = Drift(L=0.1193) - EDGE3_000__305 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__153 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__306 = Multipole(Kn1L=-4.07894736378E-6) - D000018__306 = Drift(L=0.1193) - EDGE2_000__306 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__153 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__306 = Multipole(Kn1L=-4.4179123956E-5) - D000014__181 = Drift(L=0.50037) - SD1_5__3 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__165 = Drift(L=0.1042) - SD1_5__4 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__183 = Drift(L=0.1559) - HQD_5__4 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__182 = Drift(L=0.0638) - CV03_5 = VKicker(L=0.2) - D000080__6 = Drift(L=0.311955) - EDGE1_000__307 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__154 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__307 = Multipole(Kn1L=4.07894736378E-6) - D000018__307 = Drift(L=0.1193) - EDGE3_000__307 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__154 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__308 = Multipole(Kn1L=-4.07894736378E-6) - D000018__308 = Drift(L=0.1193) - EDGE2_000__308 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__154 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__308 = Multipole(Kn1L=-4.4179123956E-5) - D000014__182 = Drift(L=0.50037) - SF1_5__3 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__166 = Drift(L=0.1042) - SF1_5__4 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__184 = Drift(L=0.1559) - HQF_5__5 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__183 = Drift(L=0.0638) - CH04_5 = HKicker(L=0.2) - D000080__7 = Drift(L=0.311955) - EDGE1_000__309 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__155 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__309 = Multipole(Kn1L=4.07894736378E-6) - D000018__309 = Drift(L=0.1193) - EDGE3_000__309 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__155 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__310 = Multipole(Kn1L=-4.07894736378E-6) - D000018__310 = Drift(L=0.1193) - EDGE2_000__310 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__155 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__310 = Multipole(Kn1L=-4.4179123956E-5) - D000014__183 = Drift(L=0.50037) - SD2_5__3 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__167 = Drift(L=0.1042) - SD2_5__4 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__185 = Drift(L=0.1559) - HQD_5__5 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__184 = Drift(L=0.0638) - CV04_5 = VKicker(L=0.2) - D000080__8 = Drift(L=0.311955) - EDGE1_000__311 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__156 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__311 = Multipole(Kn1L=4.07894736378E-6) - D000018__311 = Drift(L=0.1193) - EDGE3_000__311 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__156 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__312 = Multipole(Kn1L=-4.07894736378E-6) - D000018__312 = Drift(L=0.1193) - EDGE2_000__312 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__156 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__312 = Multipole(Kn1L=-4.4179123956E-5) - D000014__184 = Drift(L=0.50037) - SF2_5__3 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__168 = Drift(L=0.1042) - SF2_5__4 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__186 = Drift(L=0.1559) - HQF_5__6 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__185 = Drift(L=0.0638) - CH05_5 = HKicker(L=0.2) - D000080__9 = Drift(L=0.311955) - EDGE1_000__313 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__157 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__313 = Multipole(Kn1L=4.07894736378E-6) - D000018__313 = Drift(L=0.1193) - EDGE3_000__313 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__157 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__314 = Multipole(Kn1L=-4.07894736378E-6) - D000018__314 = Drift(L=0.1193) - EDGE2_000__314 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__157 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__314 = Multipole(Kn1L=-4.4179123956E-5) - D000014__185 = Drift(L=0.50037) - SD1_5__5 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__169 = Drift(L=0.1042) - SD1_5__6 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__187 = Drift(L=0.1559) - HQD_5__6 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__186 = Drift(L=0.0638) - CV05_5 = VKicker(L=0.2) - D000080__10 = Drift(L=0.311955) - EDGE1_000__315 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__158 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__315 = Multipole(Kn1L=4.07894736378E-6) - D000018__315 = Drift(L=0.1193) - EDGE3_000__315 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__158 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__316 = Multipole(Kn1L=-4.07894736378E-6) - D000018__316 = Drift(L=0.1193) - EDGE2_000__316 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__158 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__316 = Multipole(Kn1L=-4.4179123956E-5) - D000014__186 = Drift(L=0.50037) - SF1_5__5 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__170 = Drift(L=0.1042) - SF1_5__6 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__188 = Drift(L=0.1559) - HQF_5__7 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__187 = Drift(L=0.0638) - CH06_5 = HKicker(L=0.2) - D000080__11 = Drift(L=0.311955) - EDGE1_000__317 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__159 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__317 = Multipole(Kn1L=4.07894736378E-6) - D000018__317 = Drift(L=0.1193) - EDGE3_000__317 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__159 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__318 = Multipole(Kn1L=-4.07894736378E-6) - D000018__318 = Drift(L=0.1193) - EDGE2_000__318 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__159 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__318 = Multipole(Kn1L=-4.4179123956E-5) - D000014__187 = Drift(L=0.50037) - SD2_5__5 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__171 = Drift(L=0.1042) - SD2_5__6 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__189 = Drift(L=0.1559) - HQD_5__7 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__188 = Drift(L=0.0638) - CV06_5 = VKicker(L=0.2) - D000080__12 = Drift(L=0.311955) - EDGE1_000__319 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__160 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__319 = Multipole(Kn1L=4.07894736378E-6) - D000018__319 = Drift(L=0.1193) - EDGE3_000__319 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__160 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__320 = Multipole(Kn1L=-4.07894736378E-6) - D000018__320 = Drift(L=0.1193) - EDGE2_000__320 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__160 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__320 = Multipole(Kn1L=-4.4179123956E-5) - D000014__188 = Drift(L=0.50037) - SF2_5__5 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__172 = Drift(L=0.1042) - SF2_5__6 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__190 = Drift(L=0.1559) - HQF_5__8 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__189 = Drift(L=0.0638) - CH07_5 = HKicker(L=0.2) - D000080__13 = Drift(L=0.311955) - EDGE1_000__321 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__161 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__321 = Multipole(Kn1L=4.07894736378E-6) - D000018__321 = Drift(L=0.1193) - EDGE3_000__321 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__161 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__322 = Multipole(Kn1L=-4.07894736378E-6) - D000018__322 = Drift(L=0.1193) - EDGE2_000__322 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__161 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__322 = Multipole(Kn1L=-4.4179123956E-5) - D000014__189 = Drift(L=0.50037) - SD1_5__7 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__173 = Drift(L=0.1042) - SD1_5__8 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__191 = Drift(L=0.1559) - HQD_5__8 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__190 = Drift(L=0.0638) - CV07_5 = VKicker(L=0.2) - D000080__14 = Drift(L=0.311955) - EDGE1_000__323 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__162 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__323 = Multipole(Kn1L=4.07894736378E-6) - D000018__323 = Drift(L=0.1193) - EDGE3_000__323 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__162 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__324 = Multipole(Kn1L=-4.07894736378E-6) - D000018__324 = Drift(L=0.1193) - EDGE2_000__324 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__162 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__324 = Multipole(Kn1L=-4.4179123956E-5) - D000014__190 = Drift(L=0.50037) - SF1_5__7 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__174 = Drift(L=0.1042) - SF1_5__8 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__192 = Drift(L=0.1559) - HQF_5__9 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__191 = Drift(L=0.0638) - CH08_5 = HKicker(L=0.2) - D000080__15 = Drift(L=0.311955) - EDGE1_000__325 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__163 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__325 = Multipole(Kn1L=4.07894736378E-6) - D000018__325 = Drift(L=0.1193) - EDGE3_000__325 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__163 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__326 = Multipole(Kn1L=-4.07894736378E-6) - D000018__326 = Drift(L=0.1193) - EDGE2_000__326 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__163 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__326 = Multipole(Kn1L=-4.4179123956E-5) - D000014__191 = Drift(L=0.50037) - SD2_5__7 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__175 = Drift(L=0.1042) - SD2_5__8 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__193 = Drift(L=0.1559) - HQD_5__9 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__192 = Drift(L=0.0638) - CV08_5 = VKicker(L=0.2) - D000080__16 = Drift(L=0.311955) - EDGE1_000__327 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__164 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__327 = Multipole(Kn1L=4.07894736378E-6) - D000018__327 = Drift(L=0.1193) - EDGE3_000__327 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__164 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__328 = Multipole(Kn1L=-4.07894736378E-6) - D000018__328 = Drift(L=0.1193) - EDGE2_000__328 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__164 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__328 = Multipole(Kn1L=-4.4179123956E-5) - D000014__192 = Drift(L=0.50037) - SF2_5__7 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__176 = Drift(L=0.1042) - SF2_5__8 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__194 = Drift(L=0.1559) - HQF_5__10 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__193 = Drift(L=0.0638) - CH09_5 = HKicker(L=0.2) - D000080__17 = Drift(L=0.311955) - EDGE1_000__329 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__165 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__329 = Multipole(Kn1L=4.07894736378E-6) - D000018__329 = Drift(L=0.1193) - EDGE3_000__329 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__165 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__330 = Multipole(Kn1L=-4.07894736378E-6) - D000018__330 = Drift(L=0.1193) - EDGE2_000__330 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__165 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__330 = Multipole(Kn1L=-4.4179123956E-5) - D000014__193 = Drift(L=0.50037) - SD1_5__9 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__177 = Drift(L=0.1042) - SD1_5__10 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__195 = Drift(L=0.1559) - HQD_5__10 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__194 = Drift(L=0.0638) - CV09_5 = VKicker(L=0.2) - D000080__18 = Drift(L=0.311955) - EDGE1_000__331 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__166 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__331 = Multipole(Kn1L=4.07894736378E-6) - D000018__331 = Drift(L=0.1193) - EDGE3_000__331 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__166 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__332 = Multipole(Kn1L=-4.07894736378E-6) - D000018__332 = Drift(L=0.1193) - EDGE2_000__332 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__166 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__332 = Multipole(Kn1L=-4.4179123956E-5) - D000014__194 = Drift(L=0.50037) - SF1_5__9 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__178 = Drift(L=0.1042) - SF1_5__10 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__196 = Drift(L=0.1559) - HQF_5__11 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__195 = Drift(L=0.0638) - CH10_5 = HKicker(L=0.2) - D000080__19 = Drift(L=0.311955) - EDGE1_000__333 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__167 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__333 = Multipole(Kn1L=4.07894736378E-6) - D000018__333 = Drift(L=0.1193) - EDGE3_000__333 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__167 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__334 = Multipole(Kn1L=-4.07894736378E-6) - D000018__334 = Drift(L=0.1193) - EDGE2_000__334 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__167 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__334 = Multipole(Kn1L=-4.4179123956E-5) - D000014__195 = Drift(L=0.50037) - SD2_5__9 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__179 = Drift(L=0.1042) - SD2_5__10 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__197 = Drift(L=0.1559) - HQD_5__11 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__196 = Drift(L=0.0638) - CV10_5 = VKicker(L=0.2) - D000080__20 = Drift(L=0.311955) - EDGE1_000__335 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__168 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__335 = Multipole(Kn1L=4.07894736378E-6) - D000018__335 = Drift(L=0.1193) - EDGE3_000__335 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__168 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__336 = Multipole(Kn1L=-4.07894736378E-6) - D000018__336 = Drift(L=0.1193) - EDGE2_000__336 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__168 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__336 = Multipole(Kn1L=-4.4179123956E-5) - D000014__196 = Drift(L=0.50037) - SF2_5__9 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__180 = Drift(L=0.1042) - SF2_5__10 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__198 = Drift(L=0.1559) - HQF_5__12 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__197 = Drift(L=0.0638) - CH11_5 = HKicker(L=0.2) - D000080__21 = Drift(L=0.311955) - EDGE1_000__337 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__169 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__337 = Multipole(Kn1L=4.07894736378E-6) - D000018__337 = Drift(L=0.1193) - EDGE3_000__337 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__169 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__338 = Multipole(Kn1L=-4.07894736378E-6) - D000018__338 = Drift(L=0.1193) - EDGE2_000__338 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__169 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__338 = Multipole(Kn1L=-4.4179123956E-5) - D000014__197 = Drift(L=0.50037) - SD1_5__11 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__181 = Drift(L=0.1042) - SD1_5__12 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__199 = Drift(L=0.1559) - HQD_5__12 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__198 = Drift(L=0.0638) - CV11_5 = VKicker(L=0.2) - D000080__22 = Drift(L=0.311955) - EDGE1_000__339 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__170 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__339 = Multipole(Kn1L=4.07894736378E-6) - D000018__339 = Drift(L=0.1193) - EDGE3_000__339 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__170 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__340 = Multipole(Kn1L=-4.07894736378E-6) - D000018__340 = Drift(L=0.1193) - EDGE2_000__340 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__170 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__340 = Multipole(Kn1L=-4.4179123956E-5) - D000014__198 = Drift(L=0.50037) - SF1_5__11 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__182 = Drift(L=0.1042) - SF1_5__12 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__200 = Drift(L=0.1559) - HQF_5__13 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__199 = Drift(L=0.0638) - CH12_5 = HKicker(L=0.2) - D000080__23 = Drift(L=0.311955) - EDGE1_000__341 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__171 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__341 = Multipole(Kn1L=4.07894736378E-6) - D000018__341 = Drift(L=0.1193) - EDGE3_000__341 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__171 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__342 = Multipole(Kn1L=-4.07894736378E-6) - D000018__342 = Drift(L=0.1193) - EDGE2_000__342 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__171 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__342 = Multipole(Kn1L=-4.4179123956E-5) - D000014__199 = Drift(L=0.50037) - SD2_5__11 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__183 = Drift(L=0.1042) - SD2_5__12 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__201 = Drift(L=0.1559) - HQD_5__13 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__200 = Drift(L=0.0638) - CV12_5 = VKicker(L=0.2) - D000080__24 = Drift(L=0.311955) - EDGE1_000__343 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__172 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__343 = Multipole(Kn1L=4.07894736378E-6) - D000018__343 = Drift(L=0.1193) - EDGE3_000__343 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__172 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__344 = Multipole(Kn1L=-4.07894736378E-6) - D000018__344 = Drift(L=0.1193) - EDGE2_000__344 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__172 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__344 = Multipole(Kn1L=-4.4179123956E-5) - D000014__200 = Drift(L=0.50037) - SF2_5__11 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__184 = Drift(L=0.1042) - SF2_5__12 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__202 = Drift(L=0.1559) - HQF_5__14 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__201 = Drift(L=0.0638) - CH13_5 = HKicker(L=0.2) - D000080__25 = Drift(L=0.311955) - EDGE1_000__345 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__173 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__345 = Multipole(Kn1L=4.07894736378E-6) - D000018__345 = Drift(L=0.1193) - EDGE3_000__345 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__173 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__346 = Multipole(Kn1L=-4.07894736378E-6) - D000018__346 = Drift(L=0.1193) - EDGE2_000__346 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__173 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__346 = Multipole(Kn1L=-4.4179123956E-5) - D000014__201 = Drift(L=0.50037) - SD1_5__13 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__185 = Drift(L=0.1042) - SD1_5__14 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__203 = Drift(L=0.1559) - HQD_5__14 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__202 = Drift(L=0.0638) - CV13_5 = VKicker(L=0.2) - D000080__26 = Drift(L=0.311955) - EDGE1_000__347 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__174 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__347 = Multipole(Kn1L=4.07894736378E-6) - D000018__347 = Drift(L=0.1193) - EDGE3_000__347 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__174 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__348 = Multipole(Kn1L=-4.07894736378E-6) - D000018__348 = Drift(L=0.1193) - EDGE2_000__348 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__174 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__348 = Multipole(Kn1L=-4.4179123956E-5) - D000014__202 = Drift(L=0.50037) - SF1_5__13 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__186 = Drift(L=0.1042) - SF1_5__14 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__204 = Drift(L=0.1559) - HQF_5__15 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__203 = Drift(L=0.0638) - CH14_5 = HKicker(L=0.2) - D000080__27 = Drift(L=0.311955) - EDGE1_000__349 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__175 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__349 = Multipole(Kn1L=4.07894736378E-6) - D000018__349 = Drift(L=0.1193) - EDGE3_000__349 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__175 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__350 = Multipole(Kn1L=-4.07894736378E-6) - D000018__350 = Drift(L=0.1193) - EDGE2_000__350 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__175 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__350 = Multipole(Kn1L=-4.4179123956E-5) - D000014__203 = Drift(L=0.50037) - SD2_5__13 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__187 = Drift(L=0.1042) - SD2_5__14 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__205 = Drift(L=0.1559) - HQD_5__15 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__204 = Drift(L=0.0638) - CV14_5 = VKicker(L=0.2) - D000080__28 = Drift(L=0.311955) - EDGE1_000__351 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__176 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__351 = Multipole(Kn1L=4.07894736378E-6) - D000018__351 = Drift(L=0.1193) - EDGE3_000__351 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__176 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__352 = Multipole(Kn1L=-4.07894736378E-6) - D000018__352 = Drift(L=0.1193) - EDGE2_000__352 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__176 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__352 = Multipole(Kn1L=-4.4179123956E-5) - D000014__204 = Drift(L=0.50037) - SF2_5__13 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__188 = Drift(L=0.1042) - SF2_5__14 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__206 = Drift(L=0.1559) - HQF_5C = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__205 = Drift(L=0.0638) - CH15_5 = HKicker(L=0.2) - D000080__29 = Drift(L=0.311955) - EDGE1_001__1 = Multipole(Kn1L=-3.71750681571E-5) - D01A_001__1 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE2_001__1 = Multipole(Kn1L=3.43231997011E-6) - D000029__9 = Drift(L=0.1193) - EDGE3_001__1 = Multipole(Kn1L=-3.43231997011E-6) - D23_001__1 = SBend(L=0.61140010692, g=3.3507810471287E-3) - EDGE3_001__2 = Multipole(Kn1L=-3.43231997011E-6) - D000029__10 = Drift(L=0.1193) - EDGE2_001__2 = Multipole(Kn1L=3.43231997011E-6) - D01B_001__1 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE1_001__2 = Multipole(Kn1L=-3.71750681571E-5) - D000014__205 = Drift(L=0.50037) - SD1_5__15 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__189 = Drift(L=0.1042) - SD1_5__16 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__207 = Drift(L=0.1559) - HQD_5C = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__206 = Drift(L=0.0638) - CV15_5 = VKicker(L=0.2) - D000080__30 = Drift(L=0.311955) - EDGE1_001__3 = Multipole(Kn1L=-3.71750681571E-5) - D01A_001__2 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE2_001__3 = Multipole(Kn1L=3.43231997011E-6) - D000029__11 = Drift(L=0.1193) - EDGE3_001__3 = Multipole(Kn1L=-3.43231997011E-6) - D23_001__2 = SBend(L=0.61140010692, g=3.3507810471287E-3) - EDGE3_001__4 = Multipole(Kn1L=-3.43231997011E-6) - D000029__12 = Drift(L=0.1193) - EDGE2_001__4 = Multipole(Kn1L=3.43231997011E-6) - D01B_001__2 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE1_001__4 = Multipole(Kn1L=-3.71750681571E-5) - D000014__206 = Drift(L=0.50037) - SF1_5__15 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__190 = Drift(L=0.1042) - SF1_5__16 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__208 = Drift(L=0.1559) - HQF_5B = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__207 = Drift(L=0.0638) - CH16_5 = HKicker(L=0.2) - D000080__31 = Drift(L=0.311955) - EDGE1_001__5 = Multipole(Kn1L=-3.71750681571E-5) - D01A_001__3 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE2_001__5 = Multipole(Kn1L=3.43231997011E-6) - D000029__13 = Drift(L=0.1193) - EDGE3_001__5 = Multipole(Kn1L=-3.43231997011E-6) - D23_001__3 = SBend(L=0.61140010692, g=3.3507810471287E-3) - EDGE3_001__6 = Multipole(Kn1L=-3.43231997011E-6) - D000029__14 = Drift(L=0.1193) - EDGE2_001__6 = Multipole(Kn1L=3.43231997011E-6) - D01B_001__3 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE1_001__6 = Multipole(Kn1L=-3.71750681571E-5) - D000014__207 = Drift(L=0.50037) - SD2_5__15 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__191 = Drift(L=0.1042) - SD2_5__16 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__209 = Drift(L=0.1559) - HQD_5B = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__208 = Drift(L=0.0638) - CV16_5 = VKicker(L=0.2) - D000080__32 = Drift(L=0.311955) - EDGE1_001__7 = Multipole(Kn1L=-3.71750681571E-5) - D01A_001__4 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE2_001__7 = Multipole(Kn1L=3.43231997011E-6) - D000029__15 = Drift(L=0.1193) - EDGE3_001__7 = Multipole(Kn1L=-3.43231997011E-6) - D23_001__4 = SBend(L=0.61140010692, g=3.3507810471287E-3) - EDGE3_001__8 = Multipole(Kn1L=-3.43231997011E-6) - D000029__16 = Drift(L=0.1193) - EDGE2_001__8 = Multipole(Kn1L=3.43231997011E-6) - D01B_001__4 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE1_001__8 = Multipole(Kn1L=-3.71750681571E-5) - D000014__208 = Drift(L=0.50037) - SF2_5__15 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__192 = Drift(L=0.1042) - SF2_5__16 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__210 = Drift(L=0.1559) - HQF_5A = Quadrupole(L=0.5, Kn1=0.3153779824,) - D000011__4 = Drift(L=1.1) - HQD_5A = Quadrupole(L=0.5, Kn1=-0.1030417826) - D000008__25 = Drift(L=0.85) - MROT1__4 = Marker() - HSOL5_6__3 = Solenoid(L=1.8) - D000008__26 = Drift(L=0.85) - HQSS1_5 = Quadrupole(L=0.6480402, Kn1=-0.4317684894,) - D000009__31 = Drift(L=0.25) - HQSS2_5 = Quadrupole(L=0.9550568, Kn1=-0.1999111594,) - D000009__32 = Drift(L=0.25) - HQSS3_5 = Quadrupole(L=1.634532, Kn1=0.3708753774) - D000009__33 = Drift(L=0.25) - HQSS4_5 = Quadrupole(L=1.020723, Kn1=-0.288327878) - D000009__34 = Drift(L=0.25) - HQSS5_5 = Quadrupole(L=0.6861532, Kn1=-0.1632518563,) - D000008__27 = Drift(L=0.85) - HSOL5_6__4 = Solenoid(L=1.8) - MROT2__4 = Marker() - D000008__28 = Drift(L=0.85) - HQFF1_5 = Quadrupole(L=0.8, Kn1=-0.3422170623,) - D000081__1 = Drift(L=0.566391) - DB23_5__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000081__2 = Drift(L=0.566391) - QFF2_5 = Quadrupole(L=1.2, Kn1=0.191103341,) - D000081__3 = Drift(L=0.566391) - DB23_5__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000081__4 = Drift(L=0.566391) - QFF3_5 = Quadrupole(L=1.2, Kn1=-0.1586177022,) - D000081__5 = Drift(L=0.566391) - DB23_5__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000081__6 = Drift(L=0.566391) - QFF4_5 = Quadrupole(L=1, Kn1=0.3022856494,) - D000081__7 = Drift(L=0.566391) - DB23_5__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000081__8 = Drift(L=0.566391) - HQFF5_5 = Quadrupole(L=0.6, Kn1=-0.3354145962,) - D000081__9 = Drift(L=0.566391) - DB23_5__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000081__10 = Drift(L=0.566391) - MFF_5 = Marker() - HQFF6_5 = Quadrupole(L=0.5, Kn1=0.2871373468,) - D000008__29 = Drift(L=0.85) - MROT3__4 = Marker() - HSOL20_6__3 = Solenoid(L=5.5, Ksol=0.142634259959) - D000008__30 = Drift(L=0.85) - HQLS1_5 = Quadrupole(L=0.9819319, Kn1=0.4980048) - D000009__35 = Drift(L=0.25) - HQLS2_5 = Quadrupole(L=1.469939, Kn1=-0.4983425) - D000009__36 = Drift(L=0.25) - HQLS3_5 = Quadrupole(L=1.530059, Kn1=0.3253198) - D000009__37 = Drift(L=0.25) - HQLS4_5 = Quadrupole(L=0.5187944, Kn1=0.498934) - D000009__38 = Drift(L=0.25) - HQLS5_5 = Quadrupole(L=1.530059, Kn1=0.3253198) - D000009__39 = Drift(L=0.25) - HQLS6_5 = Quadrupole(L=1.469939, Kn1=-0.4983425) - D000009__40 = Drift(L=0.25) - HQLS7_5 = Quadrupole(L=0.9819319, Kn1=0.4980048) - D000008__31 = Drift(L=0.85) - HSOL20_6__4 = Solenoid(L=5.5, Ksol=0.142634259959) - MROT4__4 = Marker() - D000008__32 = Drift(L=0.85) - MLRF_6 = Marker() - Q12EF_6 = Quadrupole(L=1.2, Kn1=0.05667673526,) - D000006__30 = Drift(L=0.4) - D3EF_6__1 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) - D000006__31 = Drift(L=0.4) - Q11EF_6 = Quadrupole(L=1.2, Kn1=-0.12274232) - D000006__32 = Drift(L=0.4) - D3EF_6__2 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) - D000006__33 = Drift(L=0.4) - Q10EF_6 = Quadrupole(L=1.2, Kn1=0.1325250342) - D000006__34 = Drift(L=0.4) - D3EF_6__3 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) - D000006__35 = Drift(L=0.4) - Q9EF_6 = Quadrupole(L=1.2, Kn1=0.06324195501) - D000006__36 = Drift(L=0.4) - D3EF_6__4 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) - D000006__37 = Drift(L=0.4) - Q8EF_6 = Quadrupole(L=1.2, Kn1=-0.1305514285) - D000005__15 = Drift(L=4.6) - Q7EF_6 = Quadrupole(L=1.2, Kn1=0.2370467134,) - D000005__16 = Drift(L=4.6) - Q6EF_6 = Quadrupole(L=1.2, Kn1=-0.2243033401) - D000005__17 = Drift(L=4.6) - Q5EF_6 = Quadrupole(L=1.2, Kn1=0.2358711172) - D000005__18 = Drift(L=4.6) - Q4EF_6 = Quadrupole(L=1.2, Kn1=-0.1541105329) - D000082 = Drift(L=12.410188) - Q3EF_6 = Quadrupole(L=0.6, Kn1=0.1207364787,) - D000007__33 = Drift(L=0.3) - RF_CRAB__4 = Drift(L=4) - D000007__34 = Drift(L=0.3) - Q2EF_6 = Quadrupole(L=0.6, Kn1=-0.07669023958) - D000006__38 = Drift(L=0.4) - D1EF_6 = SBend(L=3.8000633341148, g=-5.263071944473E-3, e1=-0.0100000033605, e2=-0.0100000033605) - D000083 = Drift(L=20.3) - MCOLL_MASK = Marker() - Q1EF_6 = Quadrupole(L=1.61, Kn1=0.1003916016) - D000022__2 = Drift(L=3.76) - Q0EF_6 = Quadrupole(L=1.2, Kn1=-0.2168808898) - D000023__2 = Drift(L=5.8) - IP6__2 = Marker() - IP6__1 = Marker() - D000001__1 = Drift(L=5.3) - Q1ER_6 = Quadrupole(L=1.8, Kn1=-0.2291420342) - D000002__1 = Drift(L=0.5) - Q2ER_6 = Quadrupole(L=1.4, Kn1=0.2267785688) - D000002__2 = Drift(L=0.5) - D2ER_6 = SBend(L=5.50007539103, g=-3.2977170394029E-3, e1=-9.0688461675E-3, e2=-9.0688461675E-3) - D000003__1 = Drift(L=22.7) - Q3ER_6 = Quadrupole(L=0.6, Kn1=0.2223634541) - D000004 = Drift(L=3.530758) - Q4ER_6 = Quadrupole(L=0.6, Kn1=-0.26505565,) - D000005__1 = Drift(L=4.6) - Q5ER_6 = Quadrupole(L=1.2, Kn1=-0.03480279635) - D000006__1 = Drift(L=0.4) - D3ER_6 = SBend(L=3.8000045358949, g=-1.4085135130897E-3, e1=-2.676178869305E-3, e2=-2.676178869305E-3) - D000006__2 = Drift(L=0.4) - Q6ER_6 = Quadrupole(L=1.2, Kn1=0.1490047164,) - D000005__2 = Drift(L=4.6) - Q7ER_6 = Quadrupole(L=1.2, Kn1=-0.1838758976,) - D000005__3 = Drift(L=4.6) - Q9ER_6 = Quadrupole(L=1.2, Kn1=0.06052528741,) - D000007__1 = Drift(L=0.3) - RF_CRAB__1 = Drift(L=4) - D000007__2 = Drift(L=0.3) - Q10ER_6 = Quadrupole(L=1.2, Kn1=0.1362226534) - D000005__4 = Drift(L=4.6) - Q11ER_6 = Quadrupole(L=1.2, Kn1=-0.1612034901) - D000006__3 = Drift(L=0.4) - D5ER_6__1 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) - D000006__4 = Drift(L=0.4) - Q12ER_6 = Quadrupole(L=1.2, Kn1=0.1776428377) - D000006__5 = Drift(L=0.4) - D5ER_6__2 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) - D000006__6 = Drift(L=0.4) - Q13ER_6 = Quadrupole(L=1.2, Kn1=0.108262799,) - D000006__7 = Drift(L=0.4) - D5ER_6__3 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) - D000006__8 = Drift(L=0.4) - Q14ER_6 = Quadrupole(L=1.2, Kn1=-0.1762142779,) - D000006__9 = Drift(L=0.4) - D5ER_6__4 = SBend(L=3.8000383782291, g=4.097007606343E-3, e1=7.78439307E-3, e2=7.78439307E-3) - D000006__10 = Drift(L=0.4) - Q15ER_6 = Quadrupole(L=1.2, Kn1=0.2658297117,) - MLRR_6 = Marker() - D000008__1 = Drift(L=0.85) - MROT4__1 = Marker() - HSOL20_6__1 = Solenoid(L=5.5, Ksol=0.142634259959) - D000008__2 = Drift(L=0.85) - HQLS7_6 = Quadrupole(L=0.9819319, Kn1=0.4980048) - D000009__1 = Drift(L=0.25) - HQLS6_6 = Quadrupole(L=1.469939, Kn1=-0.4983425) - D000009__2 = Drift(L=0.25) - HQLS5_6 = Quadrupole(L=1.530059, Kn1=0.3253198) - D000009__3 = Drift(L=0.25) - HQLS4_6 = Quadrupole(L=0.5187944, Kn1=0.498934) - D000009__4 = Drift(L=0.25) - HQLS3_6 = Quadrupole(L=1.530059, Kn1=0.3253198) - D000009__5 = Drift(L=0.25) - HQLS2_6 = Quadrupole(L=1.469939, Kn1=-0.4983425) - D000009__6 = Drift(L=0.25) - HQLS1_6 = Quadrupole(L=0.9819319, Kn1=0.4980048) - D000008__3 = Drift(L=0.85) - HSOL20_6__2 = Solenoid(L=5.5, Ksol=0.142634259959) - MROT3__1 = Marker() - D000008__4 = Drift(L=0.85) - HQFF6_6 = Quadrupole(L=0.5, Kn1=0.05714467433,) - MFF_6 = Marker() - D000010__1 = Drift(L=0.753912) - DB23_6__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000010__2 = Drift(L=0.753912) - HQFF5_6 = Quadrupole(L=0.6, Kn1=0.2430267659,) - D000010__3 = Drift(L=0.753912) - DB23_6__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000010__4 = Drift(L=0.753912) - QFF4_6 = Quadrupole(L=1, Kn1=-0.1976684766,) - D000010__5 = Drift(L=0.753912) - DB23_6__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000010__6 = Drift(L=0.753912) - QFF3_6 = Quadrupole(L=1.2, Kn1=0.274784227) - D000010__7 = Drift(L=0.753912) - DB23_6__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000010__8 = Drift(L=0.753912) - QFF2_6 = Quadrupole(L=1.2, Kn1=-0.1372520109) - D000010__9 = Drift(L=0.753912) - DB23_6__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000010__10 = Drift(L=0.753912) - QFF1_6 = Quadrupole(L=1.6, Kn1=0.2242944837,) - D000008__5 = Drift(L=0.85) - MROT2__1 = Marker() - HSOL5_6__1 = Solenoid(L=1.8) - D000008__6 = Drift(L=0.85) - HQSS5_6 = Quadrupole(L=0.6861532, Kn1=-0.1709619063,) - D000009__7 = Drift(L=0.25) - HQSS4_6 = Quadrupole(L=1.020723, Kn1=-0.3178330623,) - D000009__8 = Drift(L=0.25) - HQSS3_6 = Quadrupole(L=1.634532, Kn1=0.1897683702,) - D000009__9 = Drift(L=0.25) - HQSS2_6 = Quadrupole(L=0.9550568, Kn1=0.3512480915) - D000009__10 = Drift(L=0.25) - HQSS1_6 = Quadrupole(L=0.6480402, Kn1=-0.4953496086,) - D000008__7 = Drift(L=0.85) - HSOL5_6__2 = Solenoid(L=1.8) - MROT1__1 = Marker() - D000008__8 = Drift(L=0.85) - HQD_6A = Quadrupole(L=0.5, Kn1=-0.06747722682,) - D000011__1 = Drift(L=1.1) - HQF_6A = Quadrupole(L=0.5, Kn1=0.3359722588) - D000012__1 = Drift(L=0.1559) - SF1_7__1 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__1 = Drift(L=0.1042) - SF1_7__2 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__1 = Drift(L=0.50037) - EDGE1_002__1 = Multipole(Kn1L=-5.17873518337E-5) - D01A_002__1 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE2_002__1 = Multipole(Kn1L=4.78133619569E-6) - D000015__1 = Drift(L=0.1193) - EDGE3_002__1 = Multipole(Kn1L=-4.78133619569E-6) - D23_002__1 = SBend(L=0.611400148943, g=3.9548203741204E-3) - EDGE3_002__2 = Multipole(Kn1L=-4.78133619569E-6) - D000015__2 = Drift(L=0.1193) - EDGE2_002__2 = Multipole(Kn1L=4.78133619569E-6) - D01B_002__1 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE1_002__2 = Multipole(Kn1L=-5.17873518337E-5) - D000016__1 = Drift(L=0.374508) - CV01_7 = VKicker(L=0.2) - D000017__1 = Drift(L=0.0638) - HQD_6B = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__2 = Drift(L=0.1559) - SD1_7__1 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__2 = Drift(L=0.1042) - SD1_7__2 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__2 = Drift(L=0.50037) - EDGE1_002__3 = Multipole(Kn1L=-5.17873518337E-5) - D01A_002__2 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE2_002__3 = Multipole(Kn1L=4.78133619569E-6) - D000015__3 = Drift(L=0.1193) - EDGE3_002__3 = Multipole(Kn1L=-4.78133619569E-6) - D23_002__2 = SBend(L=0.611400148943, g=3.9548203741204E-3) - EDGE3_002__4 = Multipole(Kn1L=-4.78133619569E-6) - D000015__4 = Drift(L=0.1193) - EDGE2_002__4 = Multipole(Kn1L=4.78133619569E-6) - D01B_002__2 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE1_002__4 = Multipole(Kn1L=-5.17873518337E-5) - D000016__2 = Drift(L=0.374508) - CH01_7 = HKicker(L=0.2) - D000017__2 = Drift(L=0.0638) - HQF_6B = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__3 = Drift(L=0.1559) - SF2_7__1 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__3 = Drift(L=0.1042) - SF2_7__2 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__3 = Drift(L=0.50037) - EDGE1_002__5 = Multipole(Kn1L=-5.17873518337E-5) - D01A_002__3 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE2_002__5 = Multipole(Kn1L=4.78133619569E-6) - D000015__5 = Drift(L=0.1193) - EDGE3_002__5 = Multipole(Kn1L=-4.78133619569E-6) - D23_002__3 = SBend(L=0.611400148943, g=3.9548203741204E-3) - EDGE3_002__6 = Multipole(Kn1L=-4.78133619569E-6) - D000015__6 = Drift(L=0.1193) - EDGE2_002__6 = Multipole(Kn1L=4.78133619569E-6) - D01B_002__3 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE1_002__6 = Multipole(Kn1L=-5.17873518337E-5) - D000016__3 = Drift(L=0.374508) - CV02_7 = VKicker(L=0.2) - D000017__3 = Drift(L=0.0638) - HQD_6C = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__4 = Drift(L=0.1559) - SD2_7__1 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__4 = Drift(L=0.1042) - SD2_7__2 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__4 = Drift(L=0.50037) - EDGE1_002__7 = Multipole(Kn1L=-5.17873518337E-5) - D01A_002__4 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE2_002__7 = Multipole(Kn1L=4.78133619569E-6) - D000015__7 = Drift(L=0.1193) - EDGE3_002__7 = Multipole(Kn1L=-4.78133619569E-6) - D23_002__4 = SBend(L=0.611400148943, g=3.9548203741204E-3) - EDGE3_002__8 = Multipole(Kn1L=-4.78133619569E-6) - D000015__8 = Drift(L=0.1193) - EDGE2_002__8 = Multipole(Kn1L=4.78133619569E-6) - D01B_002__4 = SBend(L=3.005194535002, g=3.9548203740468E-3) - EDGE1_002__8 = Multipole(Kn1L=-5.17873518337E-5) - D000016__4 = Drift(L=0.374508) - CH02_7 = HKicker(L=0.2) - D000017__4 = Drift(L=0.0638) - HQF_6C = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__5 = Drift(L=0.1559) - SF1_7__3 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__5 = Drift(L=0.1042) - SF1_7__4 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__5 = Drift(L=0.50037) - EDGE1_000__1 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__1 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__1 = Multipole(Kn1L=4.07894736378E-6) - D000018__1 = Drift(L=0.1193) - EDGE3_000__1 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__1 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__2 = Multipole(Kn1L=-4.07894736378E-6) - D000018__2 = Drift(L=0.1193) - EDGE2_000__2 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__1 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__2 = Multipole(Kn1L=-4.4179123956E-5) - D000016__5 = Drift(L=0.374508) - CV03_7 = VKicker(L=0.2) - D000017__5 = Drift(L=0.0638) - HQD_7__1 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__6 = Drift(L=0.1559) - SD1_7__3 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__6 = Drift(L=0.1042) - SD1_7__4 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__6 = Drift(L=0.50037) - EDGE1_000__3 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__2 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__3 = Multipole(Kn1L=4.07894736378E-6) - D000018__3 = Drift(L=0.1193) - EDGE3_000__3 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__2 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__4 = Multipole(Kn1L=-4.07894736378E-6) - D000018__4 = Drift(L=0.1193) - EDGE2_000__4 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__2 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__4 = Multipole(Kn1L=-4.4179123956E-5) - D000016__6 = Drift(L=0.374508) - CH03_7 = HKicker(L=0.2) - D000017__6 = Drift(L=0.0638) - HQF_7__1 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__7 = Drift(L=0.1559) - SF2_7__3 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__7 = Drift(L=0.1042) - SF2_7__4 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__7 = Drift(L=0.50037) - EDGE1_000__5 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__3 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__5 = Multipole(Kn1L=4.07894736378E-6) - D000018__5 = Drift(L=0.1193) - EDGE3_000__5 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__3 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__6 = Multipole(Kn1L=-4.07894736378E-6) - D000018__6 = Drift(L=0.1193) - EDGE2_000__6 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__3 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__6 = Multipole(Kn1L=-4.4179123956E-5) - D000016__7 = Drift(L=0.374508) - CV04_7 = VKicker(L=0.2) - D000017__7 = Drift(L=0.0638) - HQD_7__2 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__8 = Drift(L=0.1559) - SD2_7__3 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__8 = Drift(L=0.1042) - SD2_7__4 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__8 = Drift(L=0.50037) - EDGE1_000__7 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__4 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__7 = Multipole(Kn1L=4.07894736378E-6) - D000018__7 = Drift(L=0.1193) - EDGE3_000__7 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__4 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__8 = Multipole(Kn1L=-4.07894736378E-6) - D000018__8 = Drift(L=0.1193) - EDGE2_000__8 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__4 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__8 = Multipole(Kn1L=-4.4179123956E-5) - D000016__8 = Drift(L=0.374508) - CH04_7 = HKicker(L=0.2) - D000017__8 = Drift(L=0.0638) - HQF_7__2 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__9 = Drift(L=0.1559) - SF1_7__5 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__9 = Drift(L=0.1042) - SF1_7__6 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__9 = Drift(L=0.50037) - EDGE1_000__9 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__5 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__9 = Multipole(Kn1L=4.07894736378E-6) - D000018__9 = Drift(L=0.1193) - EDGE3_000__9 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__5 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__10 = Multipole(Kn1L=-4.07894736378E-6) - D000018__10 = Drift(L=0.1193) - EDGE2_000__10 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__5 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__10 = Multipole(Kn1L=-4.4179123956E-5) - D000016__9 = Drift(L=0.374508) - CV05_7 = VKicker(L=0.2) - D000017__9 = Drift(L=0.0638) - HQD_7__3 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__10 = Drift(L=0.1559) - SD1_7__5 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__10 = Drift(L=0.1042) - SD1_7__6 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__10 = Drift(L=0.50037) - EDGE1_000__11 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__6 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__11 = Multipole(Kn1L=4.07894736378E-6) - D000018__11 = Drift(L=0.1193) - EDGE3_000__11 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__6 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__12 = Multipole(Kn1L=-4.07894736378E-6) - D000018__12 = Drift(L=0.1193) - EDGE2_000__12 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__6 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__12 = Multipole(Kn1L=-4.4179123956E-5) - D000016__10 = Drift(L=0.374508) - CH05_7 = HKicker(L=0.2) - D000017__10 = Drift(L=0.0638) - HQF_7__3 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__11 = Drift(L=0.1559) - SF2_7__5 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__11 = Drift(L=0.1042) - SF2_7__6 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__11 = Drift(L=0.50037) - EDGE1_000__13 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__7 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__13 = Multipole(Kn1L=4.07894736378E-6) - D000018__13 = Drift(L=0.1193) - EDGE3_000__13 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__7 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__14 = Multipole(Kn1L=-4.07894736378E-6) - D000018__14 = Drift(L=0.1193) - EDGE2_000__14 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__7 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__14 = Multipole(Kn1L=-4.4179123956E-5) - D000016__11 = Drift(L=0.374508) - CV06_7 = VKicker(L=0.2) - D000017__11 = Drift(L=0.0638) - HQD_7__4 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__12 = Drift(L=0.1559) - SD2_7__5 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__12 = Drift(L=0.1042) - SD2_7__6 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__12 = Drift(L=0.50037) - EDGE1_000__15 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__8 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__15 = Multipole(Kn1L=4.07894736378E-6) - D000018__15 = Drift(L=0.1193) - EDGE3_000__15 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__8 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__16 = Multipole(Kn1L=-4.07894736378E-6) - D000018__16 = Drift(L=0.1193) - EDGE2_000__16 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__8 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__16 = Multipole(Kn1L=-4.4179123956E-5) - D000016__12 = Drift(L=0.374508) - CH06_7 = HKicker(L=0.2) - D000017__12 = Drift(L=0.0638) - HQF_7__4 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__13 = Drift(L=0.1559) - SF1_7__7 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__13 = Drift(L=0.1042) - SF1_7__8 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__13 = Drift(L=0.50037) - EDGE1_000__17 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__9 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__17 = Multipole(Kn1L=4.07894736378E-6) - D000018__17 = Drift(L=0.1193) - EDGE3_000__17 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__9 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__18 = Multipole(Kn1L=-4.07894736378E-6) - D000018__18 = Drift(L=0.1193) - EDGE2_000__18 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__9 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__18 = Multipole(Kn1L=-4.4179123956E-5) - D000016__13 = Drift(L=0.374508) - CV07_7 = VKicker(L=0.2) - D000017__13 = Drift(L=0.0638) - HQD_7__5 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__14 = Drift(L=0.1559) - SD1_7__7 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__14 = Drift(L=0.1042) - SD1_7__8 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__14 = Drift(L=0.50037) - EDGE1_000__19 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__10 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__19 = Multipole(Kn1L=4.07894736378E-6) - D000018__19 = Drift(L=0.1193) - EDGE3_000__19 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__10 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__20 = Multipole(Kn1L=-4.07894736378E-6) - D000018__20 = Drift(L=0.1193) - EDGE2_000__20 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__10 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__20 = Multipole(Kn1L=-4.4179123956E-5) - D000016__14 = Drift(L=0.374508) - CH07_7 = HKicker(L=0.2) - D000017__14 = Drift(L=0.0638) - HQF_7__5 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__15 = Drift(L=0.1559) - SF2_7__7 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__15 = Drift(L=0.1042) - SF2_7__8 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__15 = Drift(L=0.50037) - EDGE1_000__21 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__11 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__21 = Multipole(Kn1L=4.07894736378E-6) - D000018__21 = Drift(L=0.1193) - EDGE3_000__21 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__11 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__22 = Multipole(Kn1L=-4.07894736378E-6) - D000018__22 = Drift(L=0.1193) - EDGE2_000__22 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__11 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__22 = Multipole(Kn1L=-4.4179123956E-5) - D000016__15 = Drift(L=0.374508) - CV08_7 = VKicker(L=0.2) - D000017__15 = Drift(L=0.0638) - HQD_7__6 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__16 = Drift(L=0.1559) - SD2_7__7 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__16 = Drift(L=0.1042) - SD2_7__8 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__16 = Drift(L=0.50037) - EDGE1_000__23 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__12 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__23 = Multipole(Kn1L=4.07894736378E-6) - D000018__23 = Drift(L=0.1193) - EDGE3_000__23 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__12 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__24 = Multipole(Kn1L=-4.07894736378E-6) - D000018__24 = Drift(L=0.1193) - EDGE2_000__24 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__12 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__24 = Multipole(Kn1L=-4.4179123956E-5) - D000016__16 = Drift(L=0.374508) - CH08_7 = HKicker(L=0.2) - D000017__16 = Drift(L=0.0638) - HQF_7__6 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__17 = Drift(L=0.1559) - SF1_7__9 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__17 = Drift(L=0.1042) - SF1_7__10 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__17 = Drift(L=0.50037) - EDGE1_000__25 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__13 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__25 = Multipole(Kn1L=4.07894736378E-6) - D000018__25 = Drift(L=0.1193) - EDGE3_000__25 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__13 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__26 = Multipole(Kn1L=-4.07894736378E-6) - D000018__26 = Drift(L=0.1193) - EDGE2_000__26 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__13 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__26 = Multipole(Kn1L=-4.4179123956E-5) - D000016__17 = Drift(L=0.374508) - CV09_7 = VKicker(L=0.2) - D000017__17 = Drift(L=0.0638) - HQD_7__7 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__18 = Drift(L=0.1559) - SD1_7__9 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__18 = Drift(L=0.1042) - SD1_7__10 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__18 = Drift(L=0.50037) - EDGE1_000__27 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__14 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__27 = Multipole(Kn1L=4.07894736378E-6) - D000018__27 = Drift(L=0.1193) - EDGE3_000__27 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__14 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__28 = Multipole(Kn1L=-4.07894736378E-6) - D000018__28 = Drift(L=0.1193) - EDGE2_000__28 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__14 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__28 = Multipole(Kn1L=-4.4179123956E-5) - D000016__18 = Drift(L=0.374508) - CH09_7 = HKicker(L=0.2) - D000017__18 = Drift(L=0.0638) - HQF_7__7 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__19 = Drift(L=0.1559) - SF2_7__9 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__19 = Drift(L=0.1042) - SF2_7__10 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__19 = Drift(L=0.50037) - EDGE1_000__29 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__15 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__29 = Multipole(Kn1L=4.07894736378E-6) - D000018__29 = Drift(L=0.1193) - EDGE3_000__29 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__15 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__30 = Multipole(Kn1L=-4.07894736378E-6) - D000018__30 = Drift(L=0.1193) - EDGE2_000__30 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__15 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__30 = Multipole(Kn1L=-4.4179123956E-5) - D000016__19 = Drift(L=0.374508) - CV10_7 = VKicker(L=0.2) - D000017__19 = Drift(L=0.0638) - HQD_7__8 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__20 = Drift(L=0.1559) - SD2_7__9 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__20 = Drift(L=0.1042) - SD2_7__10 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__20 = Drift(L=0.50037) - EDGE1_000__31 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__16 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__31 = Multipole(Kn1L=4.07894736378E-6) - D000018__31 = Drift(L=0.1193) - EDGE3_000__31 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__16 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__32 = Multipole(Kn1L=-4.07894736378E-6) - D000018__32 = Drift(L=0.1193) - EDGE2_000__32 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__16 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__32 = Multipole(Kn1L=-4.4179123956E-5) - D000016__20 = Drift(L=0.374508) - CH10_7 = HKicker(L=0.2) - D000017__20 = Drift(L=0.0638) - HQF_7__8 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__21 = Drift(L=0.1559) - SF1_7__11 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__21 = Drift(L=0.1042) - SF1_7__12 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__21 = Drift(L=0.50037) - EDGE1_000__33 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__17 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__33 = Multipole(Kn1L=4.07894736378E-6) - D000018__33 = Drift(L=0.1193) - EDGE3_000__33 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__17 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__34 = Multipole(Kn1L=-4.07894736378E-6) - D000018__34 = Drift(L=0.1193) - EDGE2_000__34 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__17 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__34 = Multipole(Kn1L=-4.4179123956E-5) - D000016__21 = Drift(L=0.374508) - CV11_7 = VKicker(L=0.2) - D000017__21 = Drift(L=0.0638) - HQD_7__9 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__22 = Drift(L=0.1559) - SD1_7__11 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__22 = Drift(L=0.1042) - SD1_7__12 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__22 = Drift(L=0.50037) - EDGE1_000__35 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__18 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__35 = Multipole(Kn1L=4.07894736378E-6) - D000018__35 = Drift(L=0.1193) - EDGE3_000__35 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__18 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__36 = Multipole(Kn1L=-4.07894736378E-6) - D000018__36 = Drift(L=0.1193) - EDGE2_000__36 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__18 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__36 = Multipole(Kn1L=-4.4179123956E-5) - D000016__22 = Drift(L=0.374508) - CH11_7 = HKicker(L=0.2) - D000017__22 = Drift(L=0.0638) - HQF_7__9 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__23 = Drift(L=0.1559) - SF2_7__11 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__23 = Drift(L=0.1042) - SF2_7__12 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__23 = Drift(L=0.50037) - EDGE1_000__37 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__19 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__37 = Multipole(Kn1L=4.07894736378E-6) - D000018__37 = Drift(L=0.1193) - EDGE3_000__37 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__19 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__38 = Multipole(Kn1L=-4.07894736378E-6) - D000018__38 = Drift(L=0.1193) - EDGE2_000__38 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__19 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__38 = Multipole(Kn1L=-4.4179123956E-5) - D000016__23 = Drift(L=0.374508) - CV12_7 = VKicker(L=0.2) - D000017__23 = Drift(L=0.0638) - HQD_7__10 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__24 = Drift(L=0.1559) - SD2_7__11 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__24 = Drift(L=0.1042) - SD2_7__12 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__24 = Drift(L=0.50037) - EDGE1_000__39 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__20 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__39 = Multipole(Kn1L=4.07894736378E-6) - D000018__39 = Drift(L=0.1193) - EDGE3_000__39 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__20 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__40 = Multipole(Kn1L=-4.07894736378E-6) - D000018__40 = Drift(L=0.1193) - EDGE2_000__40 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__20 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__40 = Multipole(Kn1L=-4.4179123956E-5) - D000016__24 = Drift(L=0.374508) - CH12_7 = HKicker(L=0.2) - D000017__24 = Drift(L=0.0638) - HQF_7__10 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__25 = Drift(L=0.1559) - SF1_7__13 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__25 = Drift(L=0.1042) - SF1_7__14 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__25 = Drift(L=0.50037) - EDGE1_000__41 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__21 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__41 = Multipole(Kn1L=4.07894736378E-6) - D000018__41 = Drift(L=0.1193) - EDGE3_000__41 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__21 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__42 = Multipole(Kn1L=-4.07894736378E-6) - D000018__42 = Drift(L=0.1193) - EDGE2_000__42 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__21 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__42 = Multipole(Kn1L=-4.4179123956E-5) - D000016__25 = Drift(L=0.374508) - CV13_7 = VKicker(L=0.2) - D000017__25 = Drift(L=0.0638) - HQD_7__11 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__26 = Drift(L=0.1559) - SD1_7__13 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__26 = Drift(L=0.1042) - SD1_7__14 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__26 = Drift(L=0.50037) - EDGE1_000__43 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__22 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__43 = Multipole(Kn1L=4.07894736378E-6) - D000018__43 = Drift(L=0.1193) - EDGE3_000__43 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__22 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__44 = Multipole(Kn1L=-4.07894736378E-6) - D000018__44 = Drift(L=0.1193) - EDGE2_000__44 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__22 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__44 = Multipole(Kn1L=-4.4179123956E-5) - D000016__26 = Drift(L=0.374508) - CH13_7 = HKicker(L=0.2) - D000017__26 = Drift(L=0.0638) - HQF_7__11 = Quadrupole(L=0.5, Kn1=0.3118076686,) - D000012__27 = Drift(L=0.1559) - SF2_7__13 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__27 = Drift(L=0.1042) - SF2_7__14 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__27 = Drift(L=0.50037) - EDGE1_000__45 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__23 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__45 = Multipole(Kn1L=4.07894736378E-6) - D000018__45 = Drift(L=0.1193) - EDGE3_000__45 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__23 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__46 = Multipole(Kn1L=-4.07894736378E-6) - D000018__46 = Drift(L=0.1193) - EDGE2_000__46 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__23 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__46 = Multipole(Kn1L=-4.4179123956E-5) - D000016__27 = Drift(L=0.374508) - CV14_7 = VKicker(L=0.2) - D000017__27 = Drift(L=0.0638) - HQD_7__12 = Quadrupole(L=0.5, Kn1=-0.3116315384,) - D000012__28 = Drift(L=0.1559) - SD2_7__13 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__28 = Drift(L=0.1042) - SD2_7__14 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__28 = Drift(L=0.50037) - EDGE1_000__47 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__24 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__47 = Multipole(Kn1L=4.07894736378E-6) - D000018__47 = Drift(L=0.1193) - EDGE3_000__47 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__24 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__48 = Multipole(Kn1L=-4.07894736378E-6) - D000018__48 = Drift(L=0.1193) - EDGE2_000__48 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__24 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__48 = Multipole(Kn1L=-4.4179123956E-5) - D000016__28 = Drift(L=0.374508) - CH14_7 = HKicker(L=0.2) - D000017__28 = Drift(L=0.0638) - HQF_7C = Quadrupole(L=0.5, Kn1=0.3127956769,) - D000012__29 = Drift(L=0.1559) - SF1_7__15 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__29 = Drift(L=0.1042) - SF1_7__16 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__29 = Drift(L=0.50037) - EDGE1_003__1 = Multipole(Kn1L=-5.47962034702E-5) - D01A_003__1 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE2_003__1 = Multipole(Kn1L=5.05910744438E-6) - D000015__9 = Drift(L=0.1193) - EDGE3_003__1 = Multipole(Kn1L=-5.05910744438E-6) - D23_003__1 = SBend(L=0.611400157595, g=4.0680760596525E-3) - EDGE3_003__2 = Multipole(Kn1L=-5.05910744438E-6) - D000015__10 = Drift(L=0.1193) - EDGE2_003__2 = Multipole(Kn1L=5.05910744438E-6) - D01B_003__1 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE1_003__2 = Multipole(Kn1L=-5.47962034702E-5) - D000016__29 = Drift(L=0.374508) - CV15_7 = VKicker(L=0.2) - D000017__29 = Drift(L=0.0638) - HQD_7C = Quadrupole(L=0.5, Kn1=-0.3108838126,) - D000012__30 = Drift(L=0.1559) - SD1_7__15 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__30 = Drift(L=0.1042) - SD1_7__16 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__30 = Drift(L=0.50037) - EDGE1_003__3 = Multipole(Kn1L=-5.47962034702E-5) - D01A_003__2 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE2_003__3 = Multipole(Kn1L=5.05910744438E-6) - D000015__11 = Drift(L=0.1193) - EDGE3_003__3 = Multipole(Kn1L=-5.05910744438E-6) - D23_003__2 = SBend(L=0.611400157595, g=4.0680760596525E-3) - EDGE3_003__4 = Multipole(Kn1L=-5.05910744438E-6) - D000015__12 = Drift(L=0.1193) - EDGE2_003__4 = Multipole(Kn1L=5.05910744438E-6) - D01B_003__2 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE1_003__4 = Multipole(Kn1L=-5.47962034702E-5) - D000016__30 = Drift(L=0.374508) - CH15_7 = HKicker(L=0.2) - D000017__30 = Drift(L=0.0638) - HQF_7B = Quadrupole(L=0.5, Kn1=0.3194594174,) - D000012__31 = Drift(L=0.1559) - SF2_7__15 = Sextupole(L=0.24, Kn2=2.465563152) - D000013__31 = Drift(L=0.1042) - SF2_7__16 = Sextupole(L=0.24, Kn2=2.465563152) - D000014__31 = Drift(L=0.50037) - EDGE1_003__5 = Multipole(Kn1L=-5.47962034702E-5) - D01A_003__3 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE2_003__5 = Multipole(Kn1L=5.05910744438E-6) - D000015__13 = Drift(L=0.1193) - EDGE3_003__5 = Multipole(Kn1L=-5.05910744438E-6) - D23_003__3 = SBend(L=0.611400157595, g=4.0680760596525E-3) - EDGE3_003__6 = Multipole(Kn1L=-5.05910744438E-6) - D000015__14 = Drift(L=0.1193) - EDGE2_003__6 = Multipole(Kn1L=5.05910744438E-6) - D01B_003__3 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE1_003__6 = Multipole(Kn1L=-5.47962034702E-5) - D000016__31 = Drift(L=0.374508) - CV16_7 = VKicker(L=0.2) - D000017__31 = Drift(L=0.0638) - HQD_7B = Quadrupole(L=0.5, Kn1=-0.3105982322,) - D000012__32 = Drift(L=0.1559) - SD2_7__15 = Sextupole(L=0.24, Kn2=-4.313410584) - D000013__32 = Drift(L=0.1042) - SD2_7__16 = Sextupole(L=0.24, Kn2=-4.313410584) - D000014__32 = Drift(L=0.50037) - EDGE1_003__7 = Multipole(Kn1L=-5.47962034702E-5) - D01A_003__4 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE2_003__7 = Multipole(Kn1L=5.05910744438E-6) - D000015__15 = Drift(L=0.1193) - EDGE3_003__7 = Multipole(Kn1L=-5.05910744438E-6) - D23_003__4 = SBend(L=0.611400157595, g=4.0680760596525E-3) - EDGE3_003__8 = Multipole(Kn1L=-5.05910744438E-6) - D000015__16 = Drift(L=0.1193) - EDGE2_003__8 = Multipole(Kn1L=5.05910744438E-6) - D01B_003__4 = SBend(L=3.005200027448, g=4.0680760596098E-3) - EDGE1_003__8 = Multipole(Kn1L=-5.47962034702E-5) - D000016__32 = Drift(L=0.374508) - CH16_7 = HKicker(L=0.2) - D000017__32 = Drift(L=0.0638) - HQF_7A = Quadrupole(L=0.5, Kn1=0.3259712517) - D000011__2 = Drift(L=1.1) - HQD_7A = Quadrupole(L=0.5, Kn1=-0.071909135,) - D000008__9 = Drift(L=0.85) - MROT1__2 = Marker() - HSOL5_8__1 = Solenoid(L=1.8) - D000008__10 = Drift(L=0.85) - HQSS1_7 = Quadrupole(L=0.6480402, Kn1=-0.1976628965) - D000009__11 = Drift(L=0.25) - HQSS2_7 = Quadrupole(L=0.9550568, Kn1=-0.1370256837) - D000009__12 = Drift(L=0.25) - HQSS3_7 = Quadrupole(L=1.634532, Kn1=3.239613906E-3,) - D000009__13 = Drift(L=0.25) - HQSS4_7 = Quadrupole(L=1.020723, Kn1=0.255335572,) - D000009__14 = Drift(L=0.25) - HQSS5_7 = Quadrupole(L=0.6861532, Kn1=-0.1505457051,) - D000008__11 = Drift(L=0.85) - HSOL5_8__2 = Solenoid(L=1.8) - MROT2__2 = Marker() - D000008__12 = Drift(L=0.85) - HQFF1_7 = Quadrupole(L=0.8, Kn1=-0.1943356792,) - D000019__1 = Drift(L=0.372681) - DB23_7__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000019__2 = Drift(L=0.372681) - QFF2_7 = Quadrupole(L=1.2, Kn1=0.1909728817,) - D000019__3 = Drift(L=0.372681) - DB23_7__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000019__4 = Drift(L=0.372681) - QFF3_7 = Quadrupole(L=1.2, Kn1=-0.1633145219,) - D000019__5 = Drift(L=0.372681) - DB23_7__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000019__6 = Drift(L=0.372681) - QFF4_7 = Quadrupole(L=1, Kn1=0.2524257334) - D000019__7 = Drift(L=0.372681) - DB23_7__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000019__8 = Drift(L=0.372681) - HQFF5_7 = Quadrupole(L=0.6, Kn1=-0.2773213506) - D000019__9 = Drift(L=0.372681) - DB23_7__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000019__10 = Drift(L=0.372681) - MFF_7 = Marker() - HQFF6_7 = Quadrupole(L=0.5, Kn1=0.3016541182,) - D000008__13 = Drift(L=0.85) - MROT3__2 = Marker() - HSOL20_8__1 = Solenoid(L=5.5) - D000008__14 = Drift(L=0.85) - HQLS1_7 = Quadrupole(L=0.9819319, Kn1=0.3525126074,) - D000009__15 = Drift(L=0.25) - HQLS2_7 = Quadrupole(L=1.469939, Kn1=-0.3544489077,) - D000009__16 = Drift(L=0.25) - HQLS3_7 = Quadrupole(L=1.530059, Kn1=0.1497450638,) - D000009__17 = Drift(L=0.25) - HQLS4_7 = Quadrupole(L=0.5187944, Kn1=0.2705914324,) - D000009__18 = Drift(L=0.25) - HQLS5_7 = Quadrupole(L=1.530059, Kn1=0.2008969574,) - D000009__19 = Drift(L=0.25) - HQLS6_7 = Quadrupole(L=1.469939, Kn1=-0.3524613373,) - D000009__20 = Drift(L=0.25) - HQLS7_7 = Quadrupole(L=0.9819319, Kn1=0.3516668168,) - D000008__15 = Drift(L=0.85) - HSOL20_8__2 = Solenoid(L=5.5) - MROT4__2 = Marker() - D000008__16 = Drift(L=0.85) - MLRF_8 = Marker() - Q14EF_8 = Quadrupole(L=1.2, Kn1=-0.0805622429) - D000006__11 = Drift(L=0.4) - D3EF_8__1 = SBend(L=3.8000531337057, g=4.8206664263497E-3, e1=9.15939428E-3, e2=9.15939428E-3) - D000006__12 = Drift(L=0.4) - Q13EF_8 = Quadrupole(L=1.2, Kn1=0.2147150407,) - D000006__13 = Drift(L=0.4) - D3EF_8__2 = SBend(L=3.8000531337057, g=4.8206664263497E-3, e1=9.15939428E-3, e2=9.15939428E-3) - D000006__14 = Drift(L=0.4) - Q12EF_8 = Quadrupole(L=1.2, Kn1=-0.1875116872) - D000006__15 = Drift(L=0.4) - D3EF_8__3 = SBend(L=3.8000531337057, g=4.8206664263497E-3, e1=9.15939428E-3, e2=9.15939428E-3) - D000006__16 = Drift(L=0.4) - Q11EF_8 = Quadrupole(L=1.2, Kn1=0.319522109) - D000006__17 = Drift(L=0.4) - D2EF_8 = SBend(L=3.0051217587267, g=-4.3866170409633E-3, e1=-6.5911591585E-3, e2=-6.5911591585E-3) - D000006__18 = Drift(L=0.4) - Q10EF_8 = Quadrupole(L=1.2, Kn1=-0.2329008389,) - D000005__5 = Drift(L=4.6) - Q9EF_8 = Quadrupole(L=1.2, Kn1=0.2677564554) - D000005__6 = Drift(L=4.6) - Q8EF_8 = Quadrupole(L=1.2, Kn1=-0.1860583032) - D000005__7 = Drift(L=4.6) - Q7EF_8 = Quadrupole(L=1.2, Kn1=0.05181069896) - D000005__8 = Drift(L=4.6) - Q6EF_8 = Quadrupole(L=1.2, Kn1=0.01106416249) - D000005__9 = Drift(L=4.6) - Q5EF_8 = Quadrupole(L=1.2, Kn1=0.1111051943) - D000005__10 = Drift(L=4.6) - Q4EF_8 = Quadrupole(L=1.2, Kn1=-0.1192696818) - D000020 = Drift(L=5.367456) - Q3EF_8 = Quadrupole(L=0.6, Kn1=0.1942090498) - D000007__3 = Drift(L=0.3) - RF_CRAB__2 = Drift(L=4) - D000007__4 = Drift(L=0.3) - Q2EF_8 = Quadrupole(L=0.6, Kn1=-0.1340200446) - D000006__19 = Drift(L=0.4) - D1EF_8__1 = SBend(L=3.0051002796571, g=-4.9731333334425E-4, e1=-7.47238218555E-4, e2=-7.47238218555E-4) - D000006__20 = Drift(L=0.4) - D1EF_8__2 = SBend(L=3.0051002796571, g=-4.9731333334425E-4, e1=-7.47238218555E-4, e2=-7.47238218555E-4) - D000021 = Drift(L=16.9) - Q1EF_8 = Quadrupole(L=1.61, Kn1=0.1016217263) - D000022__1 = Drift(L=3.76) - Q0EF_8 = Quadrupole(L=1.2, Kn1=-0.2159418046) - D000023__1 = Drift(L=5.8) - IP8 = Marker() - D000001__2 = Drift(L=5.3) - Q1ER_8 = Quadrupole(L=1.8, Kn1=-0.2143949606) - D000002__3 = Drift(L=0.5) - Q2ER_8 = Quadrupole(L=1.4, Kn1=0.2031685787) - D000002__4 = Drift(L=0.5) - D2ER_8 = SBend(L=5.50007539103, g=-3.2977170394029E-3, e1=-9.0688461675E-3, e2=-9.0688461675E-3) - D000003__2 = Drift(L=22.7) - Q3ER_8 = Quadrupole(L=0.6, Kn1=-0.1022387522) - D000006__21 = Drift(L=0.4) - D3ER_8 = SBend(L=3.0051041632592, g=1.9188151700459E-3, e1=2.883119728015E-3, e2=2.883119728015E-3) - D000024 = Drift(L=3.522083) - Q4ER_8 = Quadrupole(L=0.6, Kn1=0.1693940448) - D000025 = Drift(L=4.8) - Q5ER_8 = Quadrupole(L=1.2, Kn1=-0.1475150732) - D000026 = Drift(L=2.8) - Q6ER_8 = Quadrupole(L=1.2, Kn1=0.07294971889) - D000005__11 = Drift(L=4.6) - Q7ER_8 = Quadrupole(L=1.2, Kn1=0.07596588916) - D000005__12 = Drift(L=4.6) - Q8ER_8 = Quadrupole(L=1.2, Kn1=-0.202860792) - D000005__13 = Drift(L=4.6) - Q9ER_8 = Quadrupole(L=1.2, Kn1=0.09499816132) - D000007__5 = Drift(L=0.3) - RF_CRAB__3 = Drift(L=4) - D000007__6 = Drift(L=0.3) - Q10ER_8 = Quadrupole(L=1.2, Kn1=0.1322610543) - D000005__14 = Drift(L=4.6) - Q11ER_8 = Quadrupole(L=1.2, Kn1=-0.221468388) - D000006__22 = Drift(L=0.4) - D4ER_8 = SBend(L=3.0051224305305, g=4.453819619468E-3, e1=6.69213662E-3, e2=6.69213662E-3) - D000006__23 = Drift(L=0.4) - Q12ER_8 = Quadrupole(L=1.2, Kn1=0.1585832349) - D000006__24 = Drift(L=0.4) - D5ER_8__1 = SBend(L=3.0051198496773, g=4.1897690181481E-3, e1=6.295379021E-3, e2=6.295379021E-3) - D000006__25 = Drift(L=0.4) - Q13ER_8 = Quadrupole(L=1.2, Kn1=0.1446740057) - D000006__26 = Drift(L=0.4) - D5ER_8__2 = SBend(L=3.0051198496773, g=4.1897690181481E-3, e1=6.295379021E-3, e2=6.295379021E-3) - D000006__27 = Drift(L=0.4) - Q14ER_8 = Quadrupole(L=1.2, Kn1=-0.2212744801) - D000006__28 = Drift(L=0.4) - D5ER_8__3 = SBend(L=3.0051198496773, g=4.1897690181481E-3, e1=6.295379021E-3, e2=6.295379021E-3) - D000006__29 = Drift(L=0.4) - Q15ER_8 = Quadrupole(L=1.2, Kn1=0.2116494718,) - MLRR_8 = Marker() - D000008__17 = Drift(L=0.85) - MROT4__3 = Marker() - HSOL20_8__3 = Solenoid(L=5.5) - D000008__18 = Drift(L=0.85) - HQLS7_8 = Quadrupole(L=0.9819319, Kn1=0.3360574653) - D000009__21 = Drift(L=0.25) - HQLS6_8 = Quadrupole(L=1.469939, Kn1=-0.3470868863,) - D000009__22 = Drift(L=0.25) - HQLS5_8 = Quadrupole(L=1.530059, Kn1=0.1626287734) - D000009__23 = Drift(L=0.25) - HQLS4_8 = Quadrupole(L=0.5187944, Kn1=0.2546260677) - D000009__24 = Drift(L=0.25) - HQLS3_8 = Quadrupole(L=1.530059, Kn1=0.158055864) - D000009__25 = Drift(L=0.25) - HQLS2_8 = Quadrupole(L=1.469939, Kn1=-0.3498818893,) - D000009__26 = Drift(L=0.25) - HQLS1_8 = Quadrupole(L=0.9819319, Kn1=0.3342207154) - D000008__19 = Drift(L=0.85) - HSOL20_8__4 = Solenoid(L=5.5) - MROT3__3 = Marker() - D000008__20 = Drift(L=0.85) - HQFF6_8 = Quadrupole(L=0.5, Kn1=0.3107342787,) - MFF_8 = Marker() - D000027__1 = Drift(L=0.354127) - DB23_8__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000027__2 = Drift(L=0.354127) - HQFF5_8 = Quadrupole(L=0.6, Kn1=-0.3351061032) - D000027__3 = Drift(L=0.354127) - DB23_8__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000027__4 = Drift(L=0.354127) - QFF4_8 = Quadrupole(L=1, Kn1=0.2878909144) - D000027__5 = Drift(L=0.354127) - DB23_8__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000027__6 = Drift(L=0.354127) - QFF3_8 = Quadrupole(L=1.2, Kn1=-0.2004078496) - D000027__7 = Drift(L=0.354127) - DB23_8__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000027__8 = Drift(L=0.354127) - QFF2_8 = Quadrupole(L=1.2, Kn1=0.2051948078) - D000027__9 = Drift(L=0.354127) - DB23_8__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000027__10 = Drift(L=0.354127) - QFF1_8 = Quadrupole(L=1.6, Kn1=-0.137612492,) - D000008__21 = Drift(L=0.85) - MROT2__3 = Marker() - HSOL5_8__3 = Solenoid(L=1.8) - D000008__22 = Drift(L=0.85) - HQSS5_8 = Quadrupole(L=0.6861532, Kn1=0.02610418854,) - D000009__27 = Drift(L=0.25) - HQSS4_8 = Quadrupole(L=1.020723, Kn1=0.02642026735,) - D000009__28 = Drift(L=0.25) - HQSS3_8 = Quadrupole(L=1.634532, Kn1=0.07061989633,) - D000009__29 = Drift(L=0.25) - HQSS2_8 = Quadrupole(L=0.9550568, Kn1=-0.099348953) - D000009__30 = Drift(L=0.25) - HQSS1_8 = Quadrupole(L=0.6480402, Kn1=-0.1036476643,) - D000008__23 = Drift(L=0.85) - HSOL5_8__4 = Solenoid(L=1.8) - MROT1__3 = Marker() - D000008__24 = Drift(L=0.85) - HQD_8A = Quadrupole(L=0.5, Kn1=-0.08760720367) - D000011__3 = Drift(L=1.1) - HQF_8A = Quadrupole(L=0.5, Kn1=0.3426857894) - D000017__33 = Drift(L=0.0638) - CH01_9 = HKicker(L=0.2) - D000028__1 = Drift(L=0.29394) - EDGE1_004__1 = Multipole(Kn1L=-3.4704307448E-5) - D01A_004__1 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE2_004__1 = Multipole(Kn1L=3.20421122147E-6) - D000029__1 = Drift(L=0.1193) - EDGE3_004__1 = Multipole(Kn1L=-3.20421122147E-6) - D23_004__1 = SBend(L=0.611400099814, g=3.2375221083251E-3) - EDGE3_004__2 = Multipole(Kn1L=-3.20421122147E-6) - D000029__2 = Drift(L=0.1193) - EDGE2_004__2 = Multipole(Kn1L=3.20421122147E-6) - D01B_004__1 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE1_004__2 = Multipole(Kn1L=-3.4704307448E-5) - D000014__33 = Drift(L=0.50037) - SD1_9__1 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__33 = Drift(L=0.1042) - SD1_9__2 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__33 = Drift(L=0.1559) - HQD_8B = Quadrupole(L=0.5, Kn1=-0.3126076902,) - D000017__34 = Drift(L=0.0638) - CV01_9 = VKicker(L=0.2) - D000028__2 = Drift(L=0.29394) - EDGE1_004__3 = Multipole(Kn1L=-3.4704307448E-5) - D01A_004__2 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE2_004__3 = Multipole(Kn1L=3.20421122147E-6) - D000029__3 = Drift(L=0.1193) - EDGE3_004__3 = Multipole(Kn1L=-3.20421122147E-6) - D23_004__2 = SBend(L=0.611400099814, g=3.2375221083251E-3) - EDGE3_004__4 = Multipole(Kn1L=-3.20421122147E-6) - D000029__4 = Drift(L=0.1193) - EDGE2_004__4 = Multipole(Kn1L=3.20421122147E-6) - D01B_004__2 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE1_004__4 = Multipole(Kn1L=-3.4704307448E-5) - D000014__34 = Drift(L=0.50037) - SF1_9__1 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__34 = Drift(L=0.1042) - SF1_9__2 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__34 = Drift(L=0.1559) - HQF_8B = Quadrupole(L=0.5, Kn1=0.3285018589,) - D000017__35 = Drift(L=0.0638) - CH02_9 = HKicker(L=0.2) - D000028__3 = Drift(L=0.29394) - EDGE1_004__5 = Multipole(Kn1L=-3.4704307448E-5) - D01A_004__3 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE2_004__5 = Multipole(Kn1L=3.20421122147E-6) - D000029__5 = Drift(L=0.1193) - EDGE3_004__5 = Multipole(Kn1L=-3.20421122147E-6) - D23_004__3 = SBend(L=0.611400099814, g=3.2375221083251E-3) - EDGE3_004__6 = Multipole(Kn1L=-3.20421122147E-6) - D000029__6 = Drift(L=0.1193) - EDGE2_004__6 = Multipole(Kn1L=3.20421122147E-6) - D01B_004__3 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE1_004__6 = Multipole(Kn1L=-3.4704307448E-5) - D000014__35 = Drift(L=0.50037) - SD2_9__1 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__35 = Drift(L=0.1042) - SD2_9__2 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__35 = Drift(L=0.1559) - HQD_8C = Quadrupole(L=0.5, Kn1=-0.3136673336,) - D000017__36 = Drift(L=0.0638) - CV02_9 = VKicker(L=0.2) - D000028__4 = Drift(L=0.29394) - EDGE1_004__7 = Multipole(Kn1L=-3.4704307448E-5) - D01A_004__4 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE2_004__7 = Multipole(Kn1L=3.20421122147E-6) - D000029__7 = Drift(L=0.1193) - EDGE3_004__7 = Multipole(Kn1L=-3.20421122147E-6) - D23_004__4 = SBend(L=0.611400099814, g=3.2375221083251E-3) - EDGE3_004__8 = Multipole(Kn1L=-3.20421122147E-6) - D000029__8 = Drift(L=0.1193) - EDGE2_004__8 = Multipole(Kn1L=3.20421122147E-6) - D01B_004__4 = SBend(L=3.005163351009, g=3.2375221083251E-3) - EDGE1_004__8 = Multipole(Kn1L=-3.4704307448E-5) - D000014__36 = Drift(L=0.50037) - SF2_9__1 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__36 = Drift(L=0.1042) - SF2_9__2 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__36 = Drift(L=0.1559) - HQF_8C = Quadrupole(L=0.5, Kn1=0.3021376478,) - D000017__37 = Drift(L=0.0638) - CH03_9 = HKicker(L=0.2) - D000028__5 = Drift(L=0.29394) - EDGE1_000__49 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__25 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__49 = Multipole(Kn1L=4.07894736378E-6) - D000018__49 = Drift(L=0.1193) - EDGE3_000__49 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__25 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__50 = Multipole(Kn1L=-4.07894736378E-6) - D000018__50 = Drift(L=0.1193) - EDGE2_000__50 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__25 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__50 = Multipole(Kn1L=-4.4179123956E-5) - D000014__37 = Drift(L=0.50037) - SD1_9__3 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__37 = Drift(L=0.1042) - SD1_9__4 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__37 = Drift(L=0.1559) - HQD_9__1 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__38 = Drift(L=0.0638) - CV03_9 = VKicker(L=0.2) - D000028__6 = Drift(L=0.29394) - EDGE1_000__51 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__26 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__51 = Multipole(Kn1L=4.07894736378E-6) - D000018__51 = Drift(L=0.1193) - EDGE3_000__51 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__26 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__52 = Multipole(Kn1L=-4.07894736378E-6) - D000018__52 = Drift(L=0.1193) - EDGE2_000__52 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__26 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__52 = Multipole(Kn1L=-4.4179123956E-5) - D000014__38 = Drift(L=0.50037) - SF1_9__3 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__38 = Drift(L=0.1042) - SF1_9__4 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__38 = Drift(L=0.1559) - HQF_9__1 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__39 = Drift(L=0.0638) - CH04_9 = HKicker(L=0.2) - D000028__7 = Drift(L=0.29394) - EDGE1_000__53 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__27 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__53 = Multipole(Kn1L=4.07894736378E-6) - D000018__53 = Drift(L=0.1193) - EDGE3_000__53 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__27 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__54 = Multipole(Kn1L=-4.07894736378E-6) - D000018__54 = Drift(L=0.1193) - EDGE2_000__54 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__27 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__54 = Multipole(Kn1L=-4.4179123956E-5) - D000014__39 = Drift(L=0.50037) - SD2_9__3 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__39 = Drift(L=0.1042) - SD2_9__4 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__39 = Drift(L=0.1559) - HQD_9__2 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__40 = Drift(L=0.0638) - CV04_9 = VKicker(L=0.2) - D000028__8 = Drift(L=0.29394) - EDGE1_000__55 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__28 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__55 = Multipole(Kn1L=4.07894736378E-6) - D000018__55 = Drift(L=0.1193) - EDGE3_000__55 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__28 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__56 = Multipole(Kn1L=-4.07894736378E-6) - D000018__56 = Drift(L=0.1193) - EDGE2_000__56 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__28 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__56 = Multipole(Kn1L=-4.4179123956E-5) - D000014__40 = Drift(L=0.50037) - SF2_9__3 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__40 = Drift(L=0.1042) - SF2_9__4 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__40 = Drift(L=0.1559) - HQF_9__2 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__41 = Drift(L=0.0638) - CH05_9 = HKicker(L=0.2) - D000028__9 = Drift(L=0.29394) - EDGE1_000__57 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__29 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__57 = Multipole(Kn1L=4.07894736378E-6) - D000018__57 = Drift(L=0.1193) - EDGE3_000__57 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__29 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__58 = Multipole(Kn1L=-4.07894736378E-6) - D000018__58 = Drift(L=0.1193) - EDGE2_000__58 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__29 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__58 = Multipole(Kn1L=-4.4179123956E-5) - D000014__41 = Drift(L=0.50037) - SD1_9__5 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__41 = Drift(L=0.1042) - SD1_9__6 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__41 = Drift(L=0.1559) - HQD_9__3 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__42 = Drift(L=0.0638) - CV05_9 = VKicker(L=0.2) - D000028__10 = Drift(L=0.29394) - EDGE1_000__59 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__30 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__59 = Multipole(Kn1L=4.07894736378E-6) - D000018__59 = Drift(L=0.1193) - EDGE3_000__59 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__30 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__60 = Multipole(Kn1L=-4.07894736378E-6) - D000018__60 = Drift(L=0.1193) - EDGE2_000__60 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__30 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__60 = Multipole(Kn1L=-4.4179123956E-5) - D000014__42 = Drift(L=0.50037) - SF1_9__5 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__42 = Drift(L=0.1042) - SF1_9__6 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__42 = Drift(L=0.1559) - HQF_9__3 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__43 = Drift(L=0.0638) - CH06_9 = HKicker(L=0.2) - D000028__11 = Drift(L=0.29394) - EDGE1_000__61 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__31 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__61 = Multipole(Kn1L=4.07894736378E-6) - D000018__61 = Drift(L=0.1193) - EDGE3_000__61 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__31 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__62 = Multipole(Kn1L=-4.07894736378E-6) - D000018__62 = Drift(L=0.1193) - EDGE2_000__62 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__31 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__62 = Multipole(Kn1L=-4.4179123956E-5) - D000014__43 = Drift(L=0.50037) - SD2_9__5 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__43 = Drift(L=0.1042) - SD2_9__6 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__43 = Drift(L=0.1559) - HQD_9__4 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__44 = Drift(L=0.0638) - CV06_9 = VKicker(L=0.2) - D000028__12 = Drift(L=0.29394) - EDGE1_000__63 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__32 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__63 = Multipole(Kn1L=4.07894736378E-6) - D000018__63 = Drift(L=0.1193) - EDGE3_000__63 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__32 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__64 = Multipole(Kn1L=-4.07894736378E-6) - D000018__64 = Drift(L=0.1193) - EDGE2_000__64 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__32 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__64 = Multipole(Kn1L=-4.4179123956E-5) - D000014__44 = Drift(L=0.50037) - SF2_9__5 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__44 = Drift(L=0.1042) - SF2_9__6 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__44 = Drift(L=0.1559) - HQF_9__4 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__45 = Drift(L=0.0638) - CH07_9 = HKicker(L=0.2) - D000028__13 = Drift(L=0.29394) - EDGE1_000__65 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__33 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__65 = Multipole(Kn1L=4.07894736378E-6) - D000018__65 = Drift(L=0.1193) - EDGE3_000__65 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__33 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__66 = Multipole(Kn1L=-4.07894736378E-6) - D000018__66 = Drift(L=0.1193) - EDGE2_000__66 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__33 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__66 = Multipole(Kn1L=-4.4179123956E-5) - D000014__45 = Drift(L=0.50037) - SD1_9__7 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__45 = Drift(L=0.1042) - SD1_9__8 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__45 = Drift(L=0.1559) - HQD_9__5 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__46 = Drift(L=0.0638) - CV07_9 = VKicker(L=0.2) - D000028__14 = Drift(L=0.29394) - EDGE1_000__67 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__34 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__67 = Multipole(Kn1L=4.07894736378E-6) - D000018__67 = Drift(L=0.1193) - EDGE3_000__67 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__34 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__68 = Multipole(Kn1L=-4.07894736378E-6) - D000018__68 = Drift(L=0.1193) - EDGE2_000__68 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__34 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__68 = Multipole(Kn1L=-4.4179123956E-5) - D000014__46 = Drift(L=0.50037) - SF1_9__7 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__46 = Drift(L=0.1042) - SF1_9__8 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__46 = Drift(L=0.1559) - HQF_9__5 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__47 = Drift(L=0.0638) - CH08_9 = HKicker(L=0.2) - D000028__15 = Drift(L=0.29394) - EDGE1_000__69 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__35 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__69 = Multipole(Kn1L=4.07894736378E-6) - D000018__69 = Drift(L=0.1193) - EDGE3_000__69 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__35 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__70 = Multipole(Kn1L=-4.07894736378E-6) - D000018__70 = Drift(L=0.1193) - EDGE2_000__70 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__35 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__70 = Multipole(Kn1L=-4.4179123956E-5) - D000014__47 = Drift(L=0.50037) - SD2_9__7 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__47 = Drift(L=0.1042) - SD2_9__8 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__47 = Drift(L=0.1559) - HQD_9__6 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__48 = Drift(L=0.0638) - CV08_9 = VKicker(L=0.2) - D000028__16 = Drift(L=0.29394) - EDGE1_000__71 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__36 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__71 = Multipole(Kn1L=4.07894736378E-6) - D000018__71 = Drift(L=0.1193) - EDGE3_000__71 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__36 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__72 = Multipole(Kn1L=-4.07894736378E-6) - D000018__72 = Drift(L=0.1193) - EDGE2_000__72 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__36 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__72 = Multipole(Kn1L=-4.4179123956E-5) - D000014__48 = Drift(L=0.50037) - SF2_9__7 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__48 = Drift(L=0.1042) - SF2_9__8 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__48 = Drift(L=0.1559) - HQF_9__6 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__49 = Drift(L=0.0638) - CH09_9 = HKicker(L=0.2) - D000028__17 = Drift(L=0.29394) - EDGE1_000__73 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__37 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__73 = Multipole(Kn1L=4.07894736378E-6) - D000018__73 = Drift(L=0.1193) - EDGE3_000__73 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__37 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__74 = Multipole(Kn1L=-4.07894736378E-6) - D000018__74 = Drift(L=0.1193) - EDGE2_000__74 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__37 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__74 = Multipole(Kn1L=-4.4179123956E-5) - D000014__49 = Drift(L=0.50037) - SD1_9__9 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__49 = Drift(L=0.1042) - SD1_9__10 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__49 = Drift(L=0.1559) - HQD_9__7 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__50 = Drift(L=0.0638) - CV09_9 = VKicker(L=0.2) - D000028__18 = Drift(L=0.29394) - EDGE1_000__75 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__38 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__75 = Multipole(Kn1L=4.07894736378E-6) - D000018__75 = Drift(L=0.1193) - EDGE3_000__75 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__38 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__76 = Multipole(Kn1L=-4.07894736378E-6) - D000018__76 = Drift(L=0.1193) - EDGE2_000__76 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__38 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__76 = Multipole(Kn1L=-4.4179123956E-5) - D000014__50 = Drift(L=0.50037) - SF1_9__9 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__50 = Drift(L=0.1042) - SF1_9__10 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__50 = Drift(L=0.1559) - HQF_9__7 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__51 = Drift(L=0.0638) - CH10_9 = HKicker(L=0.2) - D000028__19 = Drift(L=0.29394) - EDGE1_000__77 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__39 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__77 = Multipole(Kn1L=4.07894736378E-6) - D000018__77 = Drift(L=0.1193) - EDGE3_000__77 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__39 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__78 = Multipole(Kn1L=-4.07894736378E-6) - D000018__78 = Drift(L=0.1193) - EDGE2_000__78 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__39 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__78 = Multipole(Kn1L=-4.4179123956E-5) - D000014__51 = Drift(L=0.50037) - SD2_9__9 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__51 = Drift(L=0.1042) - SD2_9__10 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__51 = Drift(L=0.1559) - HQD_9__8 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__52 = Drift(L=0.0638) - CV10_9 = VKicker(L=0.2) - D000028__20 = Drift(L=0.29394) - EDGE1_000__79 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__40 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__79 = Multipole(Kn1L=4.07894736378E-6) - D000018__79 = Drift(L=0.1193) - EDGE3_000__79 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__40 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__80 = Multipole(Kn1L=-4.07894736378E-6) - D000018__80 = Drift(L=0.1193) - EDGE2_000__80 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__40 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__80 = Multipole(Kn1L=-4.4179123956E-5) - D000014__52 = Drift(L=0.50037) - SF2_9__9 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__52 = Drift(L=0.1042) - SF2_9__10 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__52 = Drift(L=0.1559) - HQF_9__8 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__53 = Drift(L=0.0638) - CH11_9 = HKicker(L=0.2) - D000028__21 = Drift(L=0.29394) - EDGE1_000__81 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__41 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__81 = Multipole(Kn1L=4.07894736378E-6) - D000018__81 = Drift(L=0.1193) - EDGE3_000__81 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__41 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__82 = Multipole(Kn1L=-4.07894736378E-6) - D000018__82 = Drift(L=0.1193) - EDGE2_000__82 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__41 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__82 = Multipole(Kn1L=-4.4179123956E-5) - D000014__53 = Drift(L=0.50037) - SD1_9__11 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__53 = Drift(L=0.1042) - SD1_9__12 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__53 = Drift(L=0.1559) - HQD_9__9 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__54 = Drift(L=0.0638) - CV11_9 = VKicker(L=0.2) - D000028__22 = Drift(L=0.29394) - EDGE1_000__83 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__42 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__83 = Multipole(Kn1L=4.07894736378E-6) - D000018__83 = Drift(L=0.1193) - EDGE3_000__83 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__42 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__84 = Multipole(Kn1L=-4.07894736378E-6) - D000018__84 = Drift(L=0.1193) - EDGE2_000__84 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__42 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__84 = Multipole(Kn1L=-4.4179123956E-5) - D000014__54 = Drift(L=0.50037) - SF1_9__11 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__54 = Drift(L=0.1042) - SF1_9__12 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__54 = Drift(L=0.1559) - HQF_9__9 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__55 = Drift(L=0.0638) - CH12_9 = HKicker(L=0.2) - D000028__23 = Drift(L=0.29394) - EDGE1_000__85 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__43 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__85 = Multipole(Kn1L=4.07894736378E-6) - D000018__85 = Drift(L=0.1193) - EDGE3_000__85 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__43 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__86 = Multipole(Kn1L=-4.07894736378E-6) - D000018__86 = Drift(L=0.1193) - EDGE2_000__86 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__43 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__86 = Multipole(Kn1L=-4.4179123956E-5) - D000014__55 = Drift(L=0.50037) - SD2_9__11 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__55 = Drift(L=0.1042) - SD2_9__12 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__55 = Drift(L=0.1559) - HQD_9__10 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__56 = Drift(L=0.0638) - CV12_9 = VKicker(L=0.2) - D000028__24 = Drift(L=0.29394) - EDGE1_000__87 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__44 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__87 = Multipole(Kn1L=4.07894736378E-6) - D000018__87 = Drift(L=0.1193) - EDGE3_000__87 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__44 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__88 = Multipole(Kn1L=-4.07894736378E-6) - D000018__88 = Drift(L=0.1193) - EDGE2_000__88 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__44 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__88 = Multipole(Kn1L=-4.4179123956E-5) - D000014__56 = Drift(L=0.50037) - SF2_9__11 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__56 = Drift(L=0.1042) - SF2_9__12 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__56 = Drift(L=0.1559) - HQF_9__10 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__57 = Drift(L=0.0638) - CH13_9 = HKicker(L=0.2) - D000028__25 = Drift(L=0.29394) - EDGE1_000__89 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__45 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__89 = Multipole(Kn1L=4.07894736378E-6) - D000018__89 = Drift(L=0.1193) - EDGE3_000__89 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__45 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__90 = Multipole(Kn1L=-4.07894736378E-6) - D000018__90 = Drift(L=0.1193) - EDGE2_000__90 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__45 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__90 = Multipole(Kn1L=-4.4179123956E-5) - D000014__57 = Drift(L=0.50037) - SD1_9__13 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__57 = Drift(L=0.1042) - SD1_9__14 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__57 = Drift(L=0.1559) - HQD_9__11 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__58 = Drift(L=0.0638) - CV13_9 = VKicker(L=0.2) - D000028__26 = Drift(L=0.29394) - EDGE1_000__91 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__46 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__91 = Multipole(Kn1L=4.07894736378E-6) - D000018__91 = Drift(L=0.1193) - EDGE3_000__91 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__46 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__92 = Multipole(Kn1L=-4.07894736378E-6) - D000018__92 = Drift(L=0.1193) - EDGE2_000__92 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__46 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__92 = Multipole(Kn1L=-4.4179123956E-5) - D000014__58 = Drift(L=0.50037) - SF1_9__13 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__58 = Drift(L=0.1042) - SF1_9__14 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__58 = Drift(L=0.1559) - HQF_9__11 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__59 = Drift(L=0.0638) - CH14_9 = HKicker(L=0.2) - D000028__27 = Drift(L=0.29394) - EDGE1_000__93 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__47 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__93 = Multipole(Kn1L=4.07894736378E-6) - D000018__93 = Drift(L=0.1193) - EDGE3_000__93 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__47 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__94 = Multipole(Kn1L=-4.07894736378E-6) - D000018__94 = Drift(L=0.1193) - EDGE2_000__94 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__47 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__94 = Multipole(Kn1L=-4.4179123956E-5) - D000014__59 = Drift(L=0.50037) - SD2_9__13 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__59 = Drift(L=0.1042) - SD2_9__14 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__59 = Drift(L=0.1559) - HQD_9__12 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__60 = Drift(L=0.0638) - CV14_9 = VKicker(L=0.2) - D000028__28 = Drift(L=0.29394) - EDGE1_000__95 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__48 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__95 = Multipole(Kn1L=4.07894736378E-6) - D000018__95 = Drift(L=0.1193) - EDGE3_000__95 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__48 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__96 = Multipole(Kn1L=-4.07894736378E-6) - D000018__96 = Drift(L=0.1193) - EDGE2_000__96 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__48 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__96 = Multipole(Kn1L=-4.4179123956E-5) - D000014__60 = Drift(L=0.50037) - SF2_9__13 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__60 = Drift(L=0.1042) - SF2_9__14 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__60 = Drift(L=0.1559) - HQF_9__12 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__61 = Drift(L=0.0638) - CH15_9 = HKicker(L=0.2) - D000028__29 = Drift(L=0.29394) - EDGE1_000__97 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__49 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__97 = Multipole(Kn1L=4.07894736378E-6) - D000018__97 = Drift(L=0.1193) - EDGE3_000__97 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__49 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__98 = Multipole(Kn1L=-4.07894736378E-6) - D000018__98 = Drift(L=0.1193) - EDGE2_000__98 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__49 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__98 = Multipole(Kn1L=-4.4179123956E-5) - D000014__61 = Drift(L=0.50037) - SD1_9__15 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000013__61 = Drift(L=0.1042) - SD1_9__16 = Sextupole(L=0.24, Kn2=-5.8103245174) - D000012__61 = Drift(L=0.1559) - HQD_9__13 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__62 = Drift(L=0.0638) - CV15_9 = VKicker(L=0.2) - D000028__30 = Drift(L=0.29394) - EDGE1_000__99 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__50 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__99 = Multipole(Kn1L=4.07894736378E-6) - D000018__99 = Drift(L=0.1193) - EDGE3_000__99 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__50 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__100 = Multipole(Kn1L=-4.07894736378E-6) - D000018__100 = Drift(L=0.1193) - EDGE2_000__100 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__50 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__100 = Multipole(Kn1L=-4.4179123956E-5) - D000014__62 = Drift(L=0.50037) - SF1_9__15 = Sextupole(L=0.24, Kn2=1.7172760006) - D000013__62 = Drift(L=0.1042) - SF1_9__16 = Sextupole(L=0.24, Kn2=1.7172760006) - D000012__62 = Drift(L=0.1559) - HQF_9__13 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__63 = Drift(L=0.0638) - CH16_9 = HKicker(L=0.2) - D000028__31 = Drift(L=0.29394) - EDGE1_000__101 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__51 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__101 = Multipole(Kn1L=4.07894736378E-6) - D000018__101 = Drift(L=0.1193) - EDGE3_000__101 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__51 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__102 = Multipole(Kn1L=-4.07894736378E-6) - D000018__102 = Drift(L=0.1193) - EDGE2_000__102 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__51 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__102 = Multipole(Kn1L=-4.4179123956E-5) - D000014__63 = Drift(L=0.50037) - SD2_9__15 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000013__63 = Drift(L=0.1042) - SD2_9__16 = Sextupole(L=0.24, Kn2=-2.4101857362) - D000012__63 = Drift(L=0.1559) - HQD_9__14 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__64 = Drift(L=0.0638) - CV16_9 = VKicker(L=0.2) - D000028__32 = Drift(L=0.29394) - EDGE1_000__103 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__52 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__103 = Multipole(Kn1L=4.07894736378E-6) - D000018__103 = Drift(L=0.1193) - EDGE3_000__103 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__52 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__104 = Multipole(Kn1L=-4.07894736378E-6) - D000018__104 = Drift(L=0.1193) - EDGE2_000__104 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__52 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__104 = Multipole(Kn1L=-4.4179123956E-5) - D000014__64 = Drift(L=0.50037) - SF2_9__15 = Sextupole(L=0.24, Kn2=3.010408804) - D000013__64 = Drift(L=0.1042) - SF2_9__16 = Sextupole(L=0.24, Kn2=3.010408804) - D000012__64 = Drift(L=0.1559) - HQF_9__14 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000017__65 = Drift(L=0.0638) - CH17_9 = HKicker(L=0.2) - D000030__1 = Drift(L=1.507746) - DB23_9__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__65 = Drift(L=0.50037) - SD17_9 = Sextupole(L=0.24) - D000012__65 = Drift(L=0.1559) - HQD_9__15 = Quadrupole(L=0.5, Kn1=-0.3144260183,) - D000017__66 = Drift(L=0.0638) - CV17_9 = VKicker(L=0.2) - D000030__2 = Drift(L=1.507746) - DB23_9__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__66 = Drift(L=0.50037) - SF17_9 = Sextupole(L=0.24) - D000012__66 = Drift(L=0.1559) - HQF_9__15 = Quadrupole(L=0.5, Kn1=0.3146029671,) - D000031__1 = Drift(L=4.09917) - HQM22_9 = Quadrupole(L=0.6, Kn1=-0.1685397554,) - D000031__2 = Drift(L=4.09917) - HQM21_9 = Quadrupole(L=0.6, Kn1=-0.1480298273) - D000032__1 = Drift(L=0.535) - DB23_9__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__2 = Drift(L=0.535) - HQM20_9 = Quadrupole(L=0.6, Kn1=0.277981004) - D000032__3 = Drift(L=0.535) - DB23_9__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__4 = Drift(L=0.535) - HQM19_9 = Quadrupole(L=0.6, Kn1=-0.2250375129) - D000033__1 = Drift(L=2.888539) - HQM18_9 = Quadrupole(L=0.6, Kn1=0.02025658815,) - D000033__2 = Drift(L=2.888539) - HQM17_9 = Quadrupole(L=0.6, Kn1=0.03151369613,) - D000033__3 = Drift(L=2.888539) - HQM16_9 = Quadrupole(L=0.6, Kn1=-0.1023890903,) - D000033__4 = Drift(L=2.888539) - HQM15_9 = Quadrupole(L=0.6, Kn1=0.1915717998,) - D000033__5 = Drift(L=2.888539) - HQM14_9 = Quadrupole(L=0.6, Kn1=-0.1029612912,) - D000033__6 = Drift(L=2.888539) - HQM13_9 = Quadrupole(L=0.6, Kn1=0.2169016275) - D000032__5 = Drift(L=0.535) - DB23_9__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__6 = Drift(L=0.535) - HQM12_9 = Quadrupole(L=0.6, Kn1=-0.1792559115,) - D000032__7 = Drift(L=0.535) - DB23_9__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000034 = Drift(L=14.482069) - HQFSS_10__1 = Quadrupole(L=0.6, Kn1=0.2106851444) - D000035__1 = Drift(L=8.25) - HQDSS_10__1 = Quadrupole(L=0.6, Kn1=-0.2091039051) - D000035__2 = Drift(L=8.25) - HQFSS_10__2 = Quadrupole(L=0.6, Kn1=0.2106851444) - D000035__3 = Drift(L=8.25) - HQDSS_10__2 = Quadrupole(L=0.6, Kn1=-0.2091039051) - D000036 = Drift(L=6.11312) - HQFLSS_10__1 = Quadrupole(L=1.2, Kn1=0.1407178134) - D000007__7 = Drift(L=0.3) - RF0__1 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__8 = Drift(L=0.3) - RF0__2 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__9 = Drift(L=0.3) - HQDLSS_10__1 = Quadrupole(L=1.2, Kn1=-0.1176261853,) - D000007__10 = Drift(L=0.3) - RF0__3 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__11 = Drift(L=0.3) - RF0__4 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__12 = Drift(L=0.3) - HQFLSS_10__2 = Quadrupole(L=1.2, Kn1=0.1407178134) - D000007__13 = Drift(L=0.3) - RF0__5 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__14 = Drift(L=0.3) - RF0__6 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__15 = Drift(L=0.3) - HQDLSS_10__2 = Quadrupole(L=1.2, Kn1=-0.1176261853,) - D000007__16 = Drift(L=0.3) - RF0__7 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__17 = Drift(L=0.3) - RF0__8 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__18 = Drift(L=0.3) - HQFLSS_10__3 = Quadrupole(L=1.2, Kn1=0.1407178134) - D000007__19 = Drift(L=0.3) - RF0__9 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000037 = Drift(L=0.3,) - RF0__10 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__20 = Drift(L=0.3) - HQDLSS_10__3 = Quadrupole(L=1.2, Kn1=-0.1176261853,) - D000007__21 = Drift(L=0.3) - RF0__11 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__22 = Drift(L=0.3) - RF0__12 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__23 = Drift(L=0.3) - HQFLSS_10__4 = Quadrupole(L=1.2, Kn1=0.1407178134) - D000007__24 = Drift(L=0.3) - RF0__13 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__25 = Drift(L=0.3) - RF0__14 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__26 = Drift(L=0.3) - HQDLSS_10__4 = Quadrupole(L=1.2, Kn1=-0.1176261853,) - D000007__27 = Drift(L=0.3) - RF0__15 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__28 = Drift(L=0.3) - RF0__16 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__29 = Drift(L=0.3) - HQFLSS_10__5 = Quadrupole(L=1.2, Kn1=0.1407178134) - D000007__30 = Drift(L=0.3) - RF0__17 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__31 = Drift(L=0.3) - RF0__18 = RFCavity(L=4.01667, voltage=3.3210942126011E6, rf_frequency=5.9114268014977E8) - D000007__32 = Drift(L=0.3) - HQDLSS_10__5 = Quadrupole(L=1.2, Kn1=-0.1176261853,) - D000035__4 = Drift(L=8.25) - HQFSS_10__3 = Quadrupole(L=0.6, Kn1=0.2106851444) - D000035__5 = Drift(L=8.25) - HQDSS_10__3 = Quadrupole(L=0.6, Kn1=-0.2091039051) - D000035__6 = Drift(L=8.25) - HQFSS_10__4 = Quadrupole(L=0.6, Kn1=0.2106851444) - D000035__7 = Drift(L=8.25) - HQDSS_10__4 = Quadrupole(L=0.6, Kn1=-0.2091039051) - D000038 = Drift(L=12.120511) - DB23_10__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__8 = Drift(L=0.535) - HQM12_10 = Quadrupole(L=0.6, Kn1=0.2083558853) - D000032__9 = Drift(L=0.535) - DB23_10__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__10 = Drift(L=0.535) - HQM13_10 = Quadrupole(L=0.6, Kn1=-0.3339548025) - D000039__1 = Drift(L=3.311504) - HQM14_10 = Quadrupole(L=0.6, Kn1=0.260187069,) - D000039__2 = Drift(L=3.311504) - HQM15_10 = Quadrupole(L=0.6, Kn1=-0.3169977879,) - D000039__3 = Drift(L=3.311504) - HQM16_10 = Quadrupole(L=0.6, Kn1=0.2834385625) - D000039__4 = Drift(L=3.311504) - HQM17_10 = Quadrupole(L=0.6, Kn1=-0.04877659888,) - D000039__5 = Drift(L=3.311504) - HQM18_10 = Quadrupole(L=0.6, Kn1=-0.3358614339) - D000039__6 = Drift(L=3.311504) - HQM19_10 = Quadrupole(L=0.6, Kn1=0.3254555367,) - D000039__7 = Drift(L=3.311504) - HQM20_10 = Quadrupole(L=0.6, Kn1=-0.2765818098) - D000032__11 = Drift(L=0.535) - DB23_10__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__12 = Drift(L=0.535) - HQM21_10 = Quadrupole(L=0.6, Kn1=0.1976841058,) - D000032__13 = Drift(L=0.535) - DB23_10__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__14 = Drift(L=0.535) - HQM22_10 = Quadrupole(L=0.6, Kn1=-0.3313145061,) - D000040 = Drift(L=3.425026) - HQF_11__1 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__67 = Drift(L=0.1559) - SF00_11 = Sextupole(L=0.24) - D000014__67 = Drift(L=0.50037) - DB23_10__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000041__1 = Drift(L=1.201799) - CV00_11 = VKicker(L=0.2) - D000017__67 = Drift(L=0.0638) - HQD_11__1 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__68 = Drift(L=0.1559) - SD00_11 = Sextupole(L=0.24) - D000014__68 = Drift(L=0.50037) - DB23_10__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000041__2 = Drift(L=1.201799) - CH00_11 = HKicker(L=0.2) - D000017__68 = Drift(L=0.0638) - HQF_11__2 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__69 = Drift(L=0.1559) - SF1_1__1 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__65 = Drift(L=0.1042) - SF1_1__2 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__69 = Drift(L=0.50037) - EDGE1_000__105 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__53 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__105 = Multipole(Kn1L=4.07894736378E-6) - D000018__105 = Drift(L=0.1193) - EDGE3_000__105 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__53 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__106 = Multipole(Kn1L=-4.07894736378E-6) - D000018__106 = Drift(L=0.1193) - EDGE2_000__106 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__53 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__106 = Multipole(Kn1L=-4.4179123956E-5) - D000042__1 = Drift(L=0.319264) - CV01_11 = VKicker(L=0.2) - D000017__69 = Drift(L=0.0638) - HQD_11__2 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__70 = Drift(L=0.1559) - SD1_1__1 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__66 = Drift(L=0.1042) - SD1_1__2 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__70 = Drift(L=0.50037) - EDGE1_000__107 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__54 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__107 = Multipole(Kn1L=4.07894736378E-6) - D000018__107 = Drift(L=0.1193) - EDGE3_000__107 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__54 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__108 = Multipole(Kn1L=-4.07894736378E-6) - D000018__108 = Drift(L=0.1193) - EDGE2_000__108 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__54 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__108 = Multipole(Kn1L=-4.4179123956E-5) - D000042__2 = Drift(L=0.319264) - CH01_11 = HKicker(L=0.2) - D000017__70 = Drift(L=0.0638) - HQF_11__3 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__71 = Drift(L=0.1559) - SF2_1__1 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__67 = Drift(L=0.1042) - SF2_1__2 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__71 = Drift(L=0.50037) - EDGE1_000__109 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__55 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__109 = Multipole(Kn1L=4.07894736378E-6) - D000018__109 = Drift(L=0.1193) - EDGE3_000__109 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__55 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__110 = Multipole(Kn1L=-4.07894736378E-6) - D000018__110 = Drift(L=0.1193) - EDGE2_000__110 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__55 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__110 = Multipole(Kn1L=-4.4179123956E-5) - D000042__3 = Drift(L=0.319264) - CV02_11 = VKicker(L=0.2) - D000017__71 = Drift(L=0.0638) - HQD_11__3 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__72 = Drift(L=0.1559) - SD2_1__1 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__68 = Drift(L=0.1042) - SD2_1__2 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__72 = Drift(L=0.50037) - EDGE1_000__111 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__56 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__111 = Multipole(Kn1L=4.07894736378E-6) - D000018__111 = Drift(L=0.1193) - EDGE3_000__111 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__56 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__112 = Multipole(Kn1L=-4.07894736378E-6) - D000018__112 = Drift(L=0.1193) - EDGE2_000__112 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__56 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__112 = Multipole(Kn1L=-4.4179123956E-5) - D000042__4 = Drift(L=0.319264) - CH02_11 = HKicker(L=0.2) - D000017__72 = Drift(L=0.0638) - HQF_11__4 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__73 = Drift(L=0.1559) - SF1_1__3 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__69 = Drift(L=0.1042) - SF1_1__4 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__73 = Drift(L=0.50037) - EDGE1_000__113 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__57 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__113 = Multipole(Kn1L=4.07894736378E-6) - D000018__113 = Drift(L=0.1193) - EDGE3_000__113 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__57 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__114 = Multipole(Kn1L=-4.07894736378E-6) - D000018__114 = Drift(L=0.1193) - EDGE2_000__114 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__57 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__114 = Multipole(Kn1L=-4.4179123956E-5) - D000042__5 = Drift(L=0.319264) - CV03_11 = VKicker(L=0.2) - D000017__73 = Drift(L=0.0638) - HQD_11__4 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__74 = Drift(L=0.1559) - SD1_1__3 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__70 = Drift(L=0.1042) - SD1_1__4 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__74 = Drift(L=0.50037) - EDGE1_000__115 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__58 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__115 = Multipole(Kn1L=4.07894736378E-6) - D000018__115 = Drift(L=0.1193) - EDGE3_000__115 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__58 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__116 = Multipole(Kn1L=-4.07894736378E-6) - D000018__116 = Drift(L=0.1193) - EDGE2_000__116 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__58 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__116 = Multipole(Kn1L=-4.4179123956E-5) - D000042__6 = Drift(L=0.319264) - CH03_11 = HKicker(L=0.2) - D000017__74 = Drift(L=0.0638) - HQF_11__5 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__75 = Drift(L=0.1559) - SF2_1__3 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__71 = Drift(L=0.1042) - SF2_1__4 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__75 = Drift(L=0.50037) - EDGE1_000__117 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__59 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__117 = Multipole(Kn1L=4.07894736378E-6) - D000018__117 = Drift(L=0.1193) - EDGE3_000__117 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__59 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__118 = Multipole(Kn1L=-4.07894736378E-6) - D000018__118 = Drift(L=0.1193) - EDGE2_000__118 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__59 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__118 = Multipole(Kn1L=-4.4179123956E-5) - D000042__7 = Drift(L=0.319264) - CV04_11 = VKicker(L=0.2) - D000017__75 = Drift(L=0.0638) - HQD_11__5 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__76 = Drift(L=0.1559) - SD2_1__3 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__72 = Drift(L=0.1042) - SD2_1__4 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__76 = Drift(L=0.50037) - EDGE1_000__119 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__60 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__119 = Multipole(Kn1L=4.07894736378E-6) - D000018__119 = Drift(L=0.1193) - EDGE3_000__119 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__60 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__120 = Multipole(Kn1L=-4.07894736378E-6) - D000018__120 = Drift(L=0.1193) - EDGE2_000__120 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__60 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__120 = Multipole(Kn1L=-4.4179123956E-5) - D000042__8 = Drift(L=0.319264) - CH04_11 = HKicker(L=0.2) - D000017__76 = Drift(L=0.0638) - HQF_11__6 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__77 = Drift(L=0.1559) - SF1_1__5 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__73 = Drift(L=0.1042) - SF1_1__6 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__77 = Drift(L=0.50037) - EDGE1_000__121 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__61 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__121 = Multipole(Kn1L=4.07894736378E-6) - D000018__121 = Drift(L=0.1193) - EDGE3_000__121 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__61 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__122 = Multipole(Kn1L=-4.07894736378E-6) - D000018__122 = Drift(L=0.1193) - EDGE2_000__122 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__61 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__122 = Multipole(Kn1L=-4.4179123956E-5) - D000042__9 = Drift(L=0.319264) - CV05_11 = VKicker(L=0.2) - D000017__77 = Drift(L=0.0638) - HQD_11__6 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__78 = Drift(L=0.1559) - SD1_1__5 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__74 = Drift(L=0.1042) - SD1_1__6 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__78 = Drift(L=0.50037) - EDGE1_000__123 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__62 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__123 = Multipole(Kn1L=4.07894736378E-6) - D000018__123 = Drift(L=0.1193) - EDGE3_000__123 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__62 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__124 = Multipole(Kn1L=-4.07894736378E-6) - D000018__124 = Drift(L=0.1193) - EDGE2_000__124 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__62 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__124 = Multipole(Kn1L=-4.4179123956E-5) - D000042__10 = Drift(L=0.319264) - CH05_11 = HKicker(L=0.2) - D000017__78 = Drift(L=0.0638) - HQF_11__7 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__79 = Drift(L=0.1559) - SF2_1__5 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__75 = Drift(L=0.1042) - SF2_1__6 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__79 = Drift(L=0.50037) - EDGE1_000__125 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__63 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__125 = Multipole(Kn1L=4.07894736378E-6) - D000018__125 = Drift(L=0.1193) - EDGE3_000__125 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__63 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__126 = Multipole(Kn1L=-4.07894736378E-6) - D000018__126 = Drift(L=0.1193) - EDGE2_000__126 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__63 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__126 = Multipole(Kn1L=-4.4179123956E-5) - D000042__11 = Drift(L=0.319264) - CV06_11 = VKicker(L=0.2) - D000017__79 = Drift(L=0.0638) - HQD_11__7 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__80 = Drift(L=0.1559) - SD2_1__5 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__76 = Drift(L=0.1042) - SD2_1__6 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__80 = Drift(L=0.50037) - EDGE1_000__127 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__64 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__127 = Multipole(Kn1L=4.07894736378E-6) - D000018__127 = Drift(L=0.1193) - EDGE3_000__127 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__64 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__128 = Multipole(Kn1L=-4.07894736378E-6) - D000018__128 = Drift(L=0.1193) - EDGE2_000__128 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__64 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__128 = Multipole(Kn1L=-4.4179123956E-5) - D000042__12 = Drift(L=0.319264) - CH06_11 = HKicker(L=0.2) - D000017__80 = Drift(L=0.0638) - HQF_11__8 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__81 = Drift(L=0.1559) - SF1_1__7 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__77 = Drift(L=0.1042) - SF1_1__8 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__81 = Drift(L=0.50037) - EDGE1_000__129 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__65 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__129 = Multipole(Kn1L=4.07894736378E-6) - D000018__129 = Drift(L=0.1193) - EDGE3_000__129 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__65 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__130 = Multipole(Kn1L=-4.07894736378E-6) - D000018__130 = Drift(L=0.1193) - EDGE2_000__130 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__65 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__130 = Multipole(Kn1L=-4.4179123956E-5) - D000042__13 = Drift(L=0.319264) - CV07_11 = VKicker(L=0.2) - D000017__81 = Drift(L=0.0638) - HQD_11__8 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__82 = Drift(L=0.1559) - SD1_1__7 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__78 = Drift(L=0.1042) - SD1_1__8 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__82 = Drift(L=0.50037) - EDGE1_000__131 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__66 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__131 = Multipole(Kn1L=4.07894736378E-6) - D000018__131 = Drift(L=0.1193) - EDGE3_000__131 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__66 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__132 = Multipole(Kn1L=-4.07894736378E-6) - D000018__132 = Drift(L=0.1193) - EDGE2_000__132 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__66 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__132 = Multipole(Kn1L=-4.4179123956E-5) - D000042__14 = Drift(L=0.319264) - CH07_11 = HKicker(L=0.2) - D000017__82 = Drift(L=0.0638) - HQF_11__9 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__83 = Drift(L=0.1559) - SF2_1__7 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__79 = Drift(L=0.1042) - SF2_1__8 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__83 = Drift(L=0.50037) - EDGE1_000__133 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__67 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__133 = Multipole(Kn1L=4.07894736378E-6) - D000018__133 = Drift(L=0.1193) - EDGE3_000__133 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__67 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__134 = Multipole(Kn1L=-4.07894736378E-6) - D000018__134 = Drift(L=0.1193) - EDGE2_000__134 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__67 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__134 = Multipole(Kn1L=-4.4179123956E-5) - D000042__15 = Drift(L=0.319264) - CV08_11 = VKicker(L=0.2) - D000017__83 = Drift(L=0.0638) - HQD_11__9 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__84 = Drift(L=0.1559) - SD2_1__7 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__80 = Drift(L=0.1042) - SD2_1__8 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__84 = Drift(L=0.50037) - EDGE1_000__135 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__68 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__135 = Multipole(Kn1L=4.07894736378E-6) - D000018__135 = Drift(L=0.1193) - EDGE3_000__135 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__68 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__136 = Multipole(Kn1L=-4.07894736378E-6) - D000018__136 = Drift(L=0.1193) - EDGE2_000__136 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__68 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__136 = Multipole(Kn1L=-4.4179123956E-5) - D000042__16 = Drift(L=0.319264) - CH08_11 = HKicker(L=0.2) - D000017__84 = Drift(L=0.0638) - HQF_11__10 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__85 = Drift(L=0.1559) - SF1_1__9 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__81 = Drift(L=0.1042) - SF1_1__10 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__85 = Drift(L=0.50037) - EDGE1_000__137 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__69 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__137 = Multipole(Kn1L=4.07894736378E-6) - D000018__137 = Drift(L=0.1193) - EDGE3_000__137 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__69 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__138 = Multipole(Kn1L=-4.07894736378E-6) - D000018__138 = Drift(L=0.1193) - EDGE2_000__138 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__69 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__138 = Multipole(Kn1L=-4.4179123956E-5) - D000042__17 = Drift(L=0.319264) - CV09_11 = VKicker(L=0.2) - D000017__85 = Drift(L=0.0638) - HQD_11__10 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__86 = Drift(L=0.1559) - SD1_1__9 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__82 = Drift(L=0.1042) - SD1_1__10 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__86 = Drift(L=0.50037) - EDGE1_000__139 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__70 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__139 = Multipole(Kn1L=4.07894736378E-6) - D000018__139 = Drift(L=0.1193) - EDGE3_000__139 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__70 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__140 = Multipole(Kn1L=-4.07894736378E-6) - D000018__140 = Drift(L=0.1193) - EDGE2_000__140 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__70 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__140 = Multipole(Kn1L=-4.4179123956E-5) - D000042__18 = Drift(L=0.319264) - CH09_11 = HKicker(L=0.2) - D000017__86 = Drift(L=0.0638) - HQF_11__11 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__87 = Drift(L=0.1559) - SF2_1__9 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__83 = Drift(L=0.1042) - SF2_1__10 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__87 = Drift(L=0.50037) - EDGE1_000__141 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__71 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__141 = Multipole(Kn1L=4.07894736378E-6) - D000018__141 = Drift(L=0.1193) - EDGE3_000__141 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__71 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__142 = Multipole(Kn1L=-4.07894736378E-6) - D000018__142 = Drift(L=0.1193) - EDGE2_000__142 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__71 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__142 = Multipole(Kn1L=-4.4179123956E-5) - D000042__19 = Drift(L=0.319264) - CV10_11 = VKicker(L=0.2) - D000017__87 = Drift(L=0.0638) - HQD_11__11 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__88 = Drift(L=0.1559) - SD2_1__9 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__84 = Drift(L=0.1042) - SD2_1__10 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__88 = Drift(L=0.50037) - EDGE1_000__143 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__72 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__143 = Multipole(Kn1L=4.07894736378E-6) - D000018__143 = Drift(L=0.1193) - EDGE3_000__143 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__72 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__144 = Multipole(Kn1L=-4.07894736378E-6) - D000018__144 = Drift(L=0.1193) - EDGE2_000__144 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__72 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__144 = Multipole(Kn1L=-4.4179123956E-5) - D000042__20 = Drift(L=0.319264) - CH10_11 = HKicker(L=0.2) - D000017__88 = Drift(L=0.0638) - HQF_11__12 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__89 = Drift(L=0.1559) - SF1_1__11 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__85 = Drift(L=0.1042) - SF1_1__12 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__89 = Drift(L=0.50037) - EDGE1_000__145 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__73 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__145 = Multipole(Kn1L=4.07894736378E-6) - D000018__145 = Drift(L=0.1193) - EDGE3_000__145 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__73 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__146 = Multipole(Kn1L=-4.07894736378E-6) - D000018__146 = Drift(L=0.1193) - EDGE2_000__146 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__73 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__146 = Multipole(Kn1L=-4.4179123956E-5) - D000042__21 = Drift(L=0.319264) - CV11_11 = VKicker(L=0.2) - D000017__89 = Drift(L=0.0638) - HQD_11__12 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__90 = Drift(L=0.1559) - SD1_1__11 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__86 = Drift(L=0.1042) - SD1_1__12 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__90 = Drift(L=0.50037) - EDGE1_000__147 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__74 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__147 = Multipole(Kn1L=4.07894736378E-6) - D000018__147 = Drift(L=0.1193) - EDGE3_000__147 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__74 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__148 = Multipole(Kn1L=-4.07894736378E-6) - D000018__148 = Drift(L=0.1193) - EDGE2_000__148 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__74 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__148 = Multipole(Kn1L=-4.4179123956E-5) - D000042__22 = Drift(L=0.319264) - CH11_11 = HKicker(L=0.2) - D000017__90 = Drift(L=0.0638) - HQF_11__13 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__91 = Drift(L=0.1559) - SF2_1__11 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__87 = Drift(L=0.1042) - SF2_1__12 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__91 = Drift(L=0.50037) - EDGE1_000__149 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__75 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__149 = Multipole(Kn1L=4.07894736378E-6) - D000018__149 = Drift(L=0.1193) - EDGE3_000__149 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__75 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__150 = Multipole(Kn1L=-4.07894736378E-6) - D000018__150 = Drift(L=0.1193) - EDGE2_000__150 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__75 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__150 = Multipole(Kn1L=-4.4179123956E-5) - D000042__23 = Drift(L=0.319264) - CV12_11 = VKicker(L=0.2) - D000017__91 = Drift(L=0.0638) - HQD_11__13 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__92 = Drift(L=0.1559) - SD2_1__11 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__88 = Drift(L=0.1042) - SD2_1__12 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__92 = Drift(L=0.50037) - EDGE1_000__151 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__76 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__151 = Multipole(Kn1L=4.07894736378E-6) - D000018__151 = Drift(L=0.1193) - EDGE3_000__151 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__76 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__152 = Multipole(Kn1L=-4.07894736378E-6) - D000018__152 = Drift(L=0.1193) - EDGE2_000__152 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__76 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__152 = Multipole(Kn1L=-4.4179123956E-5) - D000042__24 = Drift(L=0.319264) - CH12_11 = HKicker(L=0.2) - D000017__92 = Drift(L=0.0638) - HQF_11__14 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__93 = Drift(L=0.1559) - SF1_1__13 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__89 = Drift(L=0.1042) - SF1_1__14 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__93 = Drift(L=0.50037) - EDGE1_000__153 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__77 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__153 = Multipole(Kn1L=4.07894736378E-6) - D000018__153 = Drift(L=0.1193) - EDGE3_000__153 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__77 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__154 = Multipole(Kn1L=-4.07894736378E-6) - D000018__154 = Drift(L=0.1193) - EDGE2_000__154 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__77 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__154 = Multipole(Kn1L=-4.4179123956E-5) - D000042__25 = Drift(L=0.319264) - CV13_11 = VKicker(L=0.2) - D000017__93 = Drift(L=0.0638) - HQD_11__14 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__94 = Drift(L=0.1559) - SD1_1__13 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__90 = Drift(L=0.1042) - SD1_1__14 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__94 = Drift(L=0.50037) - EDGE1_000__155 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__78 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__155 = Multipole(Kn1L=4.07894736378E-6) - D000018__155 = Drift(L=0.1193) - EDGE3_000__155 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__78 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__156 = Multipole(Kn1L=-4.07894736378E-6) - D000018__156 = Drift(L=0.1193) - EDGE2_000__156 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__78 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__156 = Multipole(Kn1L=-4.4179123956E-5) - D000042__26 = Drift(L=0.319264) - CH13_11 = HKicker(L=0.2) - D000017__94 = Drift(L=0.0638) - HQF_11__15 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__95 = Drift(L=0.1559) - SF2_1__13 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__91 = Drift(L=0.1042) - SF2_1__14 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__95 = Drift(L=0.50037) - EDGE1_000__157 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__79 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__157 = Multipole(Kn1L=4.07894736378E-6) - D000018__157 = Drift(L=0.1193) - EDGE3_000__157 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__79 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__158 = Multipole(Kn1L=-4.07894736378E-6) - D000018__158 = Drift(L=0.1193) - EDGE2_000__158 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__79 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__158 = Multipole(Kn1L=-4.4179123956E-5) - D000042__27 = Drift(L=0.319264) - CV14_11 = VKicker(L=0.2) - D000017__95 = Drift(L=0.0638) - HQD_11__15 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__96 = Drift(L=0.1559) - SD2_1__13 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__92 = Drift(L=0.1042) - SD2_1__14 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__96 = Drift(L=0.50037) - EDGE1_000__159 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__80 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__159 = Multipole(Kn1L=4.07894736378E-6) - D000018__159 = Drift(L=0.1193) - EDGE3_000__159 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__80 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__160 = Multipole(Kn1L=-4.07894736378E-6) - D000018__160 = Drift(L=0.1193) - EDGE2_000__160 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__80 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__160 = Multipole(Kn1L=-4.4179123956E-5) - D000042__28 = Drift(L=0.319264) - CH14_11 = HKicker(L=0.2) - D000017__96 = Drift(L=0.0638) - HQF_11__16 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__97 = Drift(L=0.1559) - SF1_1__15 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__93 = Drift(L=0.1042) - SF1_1__16 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__97 = Drift(L=0.50037) - EDGE1_000__161 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__81 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__161 = Multipole(Kn1L=4.07894736378E-6) - D000018__161 = Drift(L=0.1193) - EDGE3_000__161 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__81 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__162 = Multipole(Kn1L=-4.07894736378E-6) - D000018__162 = Drift(L=0.1193) - EDGE2_000__162 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__81 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__162 = Multipole(Kn1L=-4.4179123956E-5) - D000042__29 = Drift(L=0.319264) - CV15_11 = VKicker(L=0.2) - D000017__97 = Drift(L=0.0638) - HQD_11__16 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__98 = Drift(L=0.1559) - SD1_1__15 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__94 = Drift(L=0.1042) - SD1_1__16 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__98 = Drift(L=0.50037) - EDGE1_000__163 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__82 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__163 = Multipole(Kn1L=4.07894736378E-6) - D000018__163 = Drift(L=0.1193) - EDGE3_000__163 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__82 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__164 = Multipole(Kn1L=-4.07894736378E-6) - D000018__164 = Drift(L=0.1193) - EDGE2_000__164 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__82 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__164 = Multipole(Kn1L=-4.4179123956E-5) - D000042__30 = Drift(L=0.319264) - CH15_11 = HKicker(L=0.2) - D000017__98 = Drift(L=0.0638) - HQF_11__17 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__99 = Drift(L=0.1559) - SF2_1__15 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__95 = Drift(L=0.1042) - SF2_1__16 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__99 = Drift(L=0.50037) - EDGE1_000__165 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__83 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__165 = Multipole(Kn1L=4.07894736378E-6) - D000018__165 = Drift(L=0.1193) - EDGE3_000__165 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__83 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__166 = Multipole(Kn1L=-4.07894736378E-6) - D000018__166 = Drift(L=0.1193) - EDGE2_000__166 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__83 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__166 = Multipole(Kn1L=-4.4179123956E-5) - D000042__31 = Drift(L=0.319264) - CV16_11 = VKicker(L=0.2) - D000017__99 = Drift(L=0.0638) - HQD_11__17 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__100 = Drift(L=0.1559) - SD2_1__15 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__96 = Drift(L=0.1042) - SD2_1__16 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__100 = Drift(L=0.50037) - EDGE1_000__167 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__84 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__167 = Multipole(Kn1L=4.07894736378E-6) - D000018__167 = Drift(L=0.1193) - EDGE3_000__167 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__84 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__168 = Multipole(Kn1L=-4.07894736378E-6) - D000018__168 = Drift(L=0.1193) - EDGE2_000__168 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__84 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__168 = Multipole(Kn1L=-4.4179123956E-5) - D000042__32 = Drift(L=0.319264) - CH16_11 = HKicker(L=0.2) - D000017__100 = Drift(L=0.0638) - HQF_11__18 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__101 = Drift(L=0.1559) - SF17_11 = Sextupole(L=0.24) - D000014__101 = Drift(L=0.50037) - DB23_11__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000043__1 = Drift(L=1.374861) - CV17_11 = VKicker(L=0.2) - D000017__101 = Drift(L=0.0638) - HQD_11__18 = Quadrupole(L=0.5, Kn1=-0.3135422732,) - D000012__102 = Drift(L=0.1559) - SD17_11 = Sextupole(L=0.24) - D000014__102 = Drift(L=0.50037) - DB23_11__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000043__2 = Drift(L=1.374861) - CH17_11 = HKicker(L=0.2) - D000017__102 = Drift(L=0.0638) - HQF_11__19 = Quadrupole(L=0.5, Kn1=0.3137189615,) - D000012__103 = Drift(L=0.1559) - SF18_11 = Sextupole(L=0.24) - D000044__1 = Drift(L=4.055463) - HQM22_11 = Quadrupole(L=0.6, Kn1=-0.3288030901,) - D000044__2 = Drift(L=4.055463) - HQM21_11 = Quadrupole(L=0.6, Kn1=0.1805100149,) - D000032__15 = Drift(L=0.535) - DB23_11__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__16 = Drift(L=0.535) - HQM20_11 = Quadrupole(L=0.6, Kn1=-0.14458509) - D000032__17 = Drift(L=0.535) - DB23_11__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__18 = Drift(L=0.535) - HQM19_11 = Quadrupole(L=0.6, Kn1=0.2557330047,) - D000045__1 = Drift(L=3.035675) - HQM18_11 = Quadrupole(L=0.6, Kn1=-0.1001891766,) - D000045__2 = Drift(L=3.035675) - HQM17_11 = Quadrupole(L=0.6, Kn1=-0.08890632892) - D000045__3 = Drift(L=3.035675) - HQM16_11 = Quadrupole(L=0.6, Kn1=-0.1156289813,) - D000045__4 = Drift(L=3.035675) - HQM15_11 = Quadrupole(L=0.6, Kn1=0.1167136133,) - D000045__5 = Drift(L=3.035675) - HQM14_11 = Quadrupole(L=0.6, Kn1=0.01649413513,) - D000045__6 = Drift(L=3.035675) - HQM13_11 = Quadrupole(L=0.6, Kn1=0.1479132215,) - D000032__19 = Drift(L=0.535) - DB23_11__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__20 = Drift(L=0.535) - HQM12_11 = Quadrupole(L=0.6, Kn1=-0.1783631142,) - D000032__21 = Drift(L=0.535) - DB23_11__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000046__1 = Drift(L=2.526471) - HQFSS_12__1 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000047__1 = Drift(L=11.5) - HQDSS_12__1 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000047__2 = Drift(L=11.5) - HQFSS_12__2 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000047__3 = Drift(L=11.5) - HQDSS_12__2 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000046__2 = Drift(L=2.526471) - DB12_4M__1 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000048__1 = Drift(L=0.0975) - DB12_4M__2 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000048__2 = Drift(L=0.0975) - DB12_4M__3 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000049 = Drift(L=5.21429) - HQFSS_12__3 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000047__4 = Drift(L=11.5) - HQDSS_12__3 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000047__5 = Drift(L=11.5) - HQFSS_12__4 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000050 = Drift(L=12.836707) - IP12 = Marker() - D000051 = Drift(L=6.263293) - HQDSS_12__4 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000047__6 = Drift(L=11.5) - HQFSS_12__5 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000047__7 = Drift(L=11.5) - HQDSS_12__5 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000047__8 = Drift(L=11.5) - HQFSS_12__6 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000052 = Drift(L=0.714288) - DB12_4P__1 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000048__3 = Drift(L=0.0975) - DB12_4P__2 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000048__4 = Drift(L=0.0975) - DB12_4P__3 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000053__1 = Drift(L=1.590529) - HQDSS_12__6 = Quadrupole(L=0.6, Kn1=-0.1399369071) - MKICK_INJ = Marker() - D000047__9 = Drift(L=11.5) - HQFSS_12__7 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000047__10 = Drift(L=11.5) - HQDSS_12__7 = Quadrupole(L=0.6, Kn1=-0.1399369071) - D000047__11 = Drift(L=11.5) - MCOLL_INJ = Marker() - HQFSS_12__8 = Quadrupole(L=0.6, Kn1=0.1527595871) - D000053__2 = Drift(L=1.590529) - DB23_12__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__22 = Drift(L=0.535) - HQM14_12 = Quadrupole(L=0.6, Kn1=-0.1363018832,) - D000032__23 = Drift(L=0.535) - DB23_12__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__24 = Drift(L=0.535) - HQM15_12 = Quadrupole(L=0.6, Kn1=0.1895913536,) - D000054__1 = Drift(L=4.706452) - HQM16_12 = Quadrupole(L=0.6, Kn1=-0.2272414187) - D000054__2 = Drift(L=4.706452) - HQM17_12 = Quadrupole(L=0.6, Kn1=0.3038863874,) - D000054__3 = Drift(L=4.706452) - HQM18_12 = Quadrupole(L=0.6, Kn1=-0.3056640346,) - D000054__4 = Drift(L=4.706452) - HQM19_12 = Quadrupole(L=0.6, Kn1=0.33500458,) - D000032__25 = Drift(L=0.535) - DB23_12__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__26 = Drift(L=0.535) - HQM20_12 = Quadrupole(L=0.6, Kn1=-0.2490023496,) - D000032__27 = Drift(L=0.535) - DB23_12__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__28 = Drift(L=0.535) - HQM21_12 = Quadrupole(L=0.6, Kn1=0.26081512,) - D000055__1 = Drift(L=4.809451) - HQM22_12 = Quadrupole(L=0.6, Kn1=-0.3351370008) - D000055__2 = Drift(L=4.809451) - SFM1_1 = Sextupole(L=0.24) - D000056__1 = Drift(L=0.2) - HQF_1__1 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__103 = Drift(L=0.0638) - CH00_1 = HKicker(L=0.2) - D000057__1 = Drift(L=1.442045) - DB23_12__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__103 = Drift(L=0.50037) - SD00_1 = Sextupole(L=0.24) - D000012__104 = Drift(L=0.1559) - HQD_1__1 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__104 = Drift(L=0.0638) - CV00_1 = VKicker(L=0.2) - D000057__2 = Drift(L=1.442045) - DB23_12__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__104 = Drift(L=0.50037) - SF00_1 = Sextupole(L=0.24) - D000012__105 = Drift(L=0.1559) - HQF_1__2 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__105 = Drift(L=0.0638) - CH01_1 = HKicker(L=0.2) - D000058__1 = Drift(L=0.386448) - EDGE1_000__169 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__85 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__169 = Multipole(Kn1L=4.07894736378E-6) - D000018__169 = Drift(L=0.1193) - EDGE3_000__169 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__85 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__170 = Multipole(Kn1L=-4.07894736378E-6) - D000018__170 = Drift(L=0.1193) - EDGE2_000__170 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__85 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__170 = Multipole(Kn1L=-4.4179123956E-5) - D000014__105 = Drift(L=0.50037) - SD1_1__17 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__97 = Drift(L=0.1042) - SD1_1__18 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__106 = Drift(L=0.1559) - HQD_1__2 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__106 = Drift(L=0.0638) - CV01_1 = VKicker(L=0.2) - D000058__2 = Drift(L=0.386448) - EDGE1_000__171 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__86 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__171 = Multipole(Kn1L=4.07894736378E-6) - D000018__171 = Drift(L=0.1193) - EDGE3_000__171 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__86 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__172 = Multipole(Kn1L=-4.07894736378E-6) - D000018__172 = Drift(L=0.1193) - EDGE2_000__172 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__86 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__172 = Multipole(Kn1L=-4.4179123956E-5) - D000014__106 = Drift(L=0.50037) - SF1_1__17 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__98 = Drift(L=0.1042) - SF1_1__18 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__107 = Drift(L=0.1559) - HQF_1__3 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__107 = Drift(L=0.0638) - CH02_1 = HKicker(L=0.2) - D000058__3 = Drift(L=0.386448) - EDGE1_000__173 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__87 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__173 = Multipole(Kn1L=4.07894736378E-6) - D000018__173 = Drift(L=0.1193) - EDGE3_000__173 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__87 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__174 = Multipole(Kn1L=-4.07894736378E-6) - D000018__174 = Drift(L=0.1193) - EDGE2_000__174 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__87 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__174 = Multipole(Kn1L=-4.4179123956E-5) - D000014__107 = Drift(L=0.50037) - SD2_1__17 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__99 = Drift(L=0.1042) - SD2_1__18 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__108 = Drift(L=0.1559) - HQD_1__3 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__108 = Drift(L=0.0638) - CV02_1 = VKicker(L=0.2) - D000058__4 = Drift(L=0.386448) - EDGE1_000__175 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__88 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__175 = Multipole(Kn1L=4.07894736378E-6) - D000018__175 = Drift(L=0.1193) - EDGE3_000__175 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__88 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__176 = Multipole(Kn1L=-4.07894736378E-6) - D000018__176 = Drift(L=0.1193) - EDGE2_000__176 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__88 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__176 = Multipole(Kn1L=-4.4179123956E-5) - D000014__108 = Drift(L=0.50037) - SF2_1__17 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__100 = Drift(L=0.1042) - SF2_1__18 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__109 = Drift(L=0.1559) - HQF_1__4 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__109 = Drift(L=0.0638) - CH03_1 = HKicker(L=0.2) - D000058__5 = Drift(L=0.386448) - EDGE1_000__177 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__89 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__177 = Multipole(Kn1L=4.07894736378E-6) - D000018__177 = Drift(L=0.1193) - EDGE3_000__177 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__89 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__178 = Multipole(Kn1L=-4.07894736378E-6) - D000018__178 = Drift(L=0.1193) - EDGE2_000__178 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__89 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__178 = Multipole(Kn1L=-4.4179123956E-5) - D000014__109 = Drift(L=0.50037) - SD1_1__19 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__101 = Drift(L=0.1042) - SD1_1__20 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__110 = Drift(L=0.1559) - HQD_1__4 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__110 = Drift(L=0.0638) - CV03_1 = VKicker(L=0.2) - D000058__6 = Drift(L=0.386448) - EDGE1_000__179 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__90 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__179 = Multipole(Kn1L=4.07894736378E-6) - D000018__179 = Drift(L=0.1193) - EDGE3_000__179 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__90 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__180 = Multipole(Kn1L=-4.07894736378E-6) - D000018__180 = Drift(L=0.1193) - EDGE2_000__180 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__90 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__180 = Multipole(Kn1L=-4.4179123956E-5) - D000014__110 = Drift(L=0.50037) - SF1_1__19 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__102 = Drift(L=0.1042) - SF1_1__20 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__111 = Drift(L=0.1559) - HQF_1__5 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__111 = Drift(L=0.0638) - CH04_1 = HKicker(L=0.2) - D000058__7 = Drift(L=0.386448) - EDGE1_000__181 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__91 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__181 = Multipole(Kn1L=4.07894736378E-6) - D000018__181 = Drift(L=0.1193) - EDGE3_000__181 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__91 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__182 = Multipole(Kn1L=-4.07894736378E-6) - D000018__182 = Drift(L=0.1193) - EDGE2_000__182 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__91 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__182 = Multipole(Kn1L=-4.4179123956E-5) - D000014__111 = Drift(L=0.50037) - SD2_1__19 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__103 = Drift(L=0.1042) - SD2_1__20 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__112 = Drift(L=0.1559) - HQD_1__5 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__112 = Drift(L=0.0638) - CV04_1 = VKicker(L=0.2) - D000058__8 = Drift(L=0.386448) - EDGE1_000__183 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__92 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__183 = Multipole(Kn1L=4.07894736378E-6) - D000018__183 = Drift(L=0.1193) - EDGE3_000__183 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__92 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__184 = Multipole(Kn1L=-4.07894736378E-6) - D000018__184 = Drift(L=0.1193) - EDGE2_000__184 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__92 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__184 = Multipole(Kn1L=-4.4179123956E-5) - D000014__112 = Drift(L=0.50037) - SF2_1__19 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__104 = Drift(L=0.1042) - SF2_1__20 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__113 = Drift(L=0.1559) - HQF_1__6 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__113 = Drift(L=0.0638) - CH05_1 = HKicker(L=0.2) - D000058__9 = Drift(L=0.386448) - EDGE1_000__185 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__93 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__185 = Multipole(Kn1L=4.07894736378E-6) - D000018__185 = Drift(L=0.1193) - EDGE3_000__185 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__93 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__186 = Multipole(Kn1L=-4.07894736378E-6) - D000018__186 = Drift(L=0.1193) - EDGE2_000__186 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__93 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__186 = Multipole(Kn1L=-4.4179123956E-5) - D000014__113 = Drift(L=0.50037) - SD1_1__21 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__105 = Drift(L=0.1042) - SD1_1__22 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__114 = Drift(L=0.1559) - HQD_1__6 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__114 = Drift(L=0.0638) - CV05_1 = VKicker(L=0.2) - D000058__10 = Drift(L=0.386448) - EDGE1_000__187 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__94 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__187 = Multipole(Kn1L=4.07894736378E-6) - D000018__187 = Drift(L=0.1193) - EDGE3_000__187 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__94 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__188 = Multipole(Kn1L=-4.07894736378E-6) - D000018__188 = Drift(L=0.1193) - EDGE2_000__188 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__94 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__188 = Multipole(Kn1L=-4.4179123956E-5) - D000014__114 = Drift(L=0.50037) - SF1_1__21 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__106 = Drift(L=0.1042) - SF1_1__22 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__115 = Drift(L=0.1559) - HQF_1__7 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__115 = Drift(L=0.0638) - CH06_1 = HKicker(L=0.2) - D000058__11 = Drift(L=0.386448) - EDGE1_000__189 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__95 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__189 = Multipole(Kn1L=4.07894736378E-6) - D000018__189 = Drift(L=0.1193) - EDGE3_000__189 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__95 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__190 = Multipole(Kn1L=-4.07894736378E-6) - D000018__190 = Drift(L=0.1193) - EDGE2_000__190 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__95 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__190 = Multipole(Kn1L=-4.4179123956E-5) - D000014__115 = Drift(L=0.50037) - SD2_1__21 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__107 = Drift(L=0.1042) - SD2_1__22 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__116 = Drift(L=0.1559) - HQD_1__7 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__116 = Drift(L=0.0638) - CV06_1 = VKicker(L=0.2) - D000058__12 = Drift(L=0.386448) - EDGE1_000__191 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__96 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__191 = Multipole(Kn1L=4.07894736378E-6) - D000018__191 = Drift(L=0.1193) - EDGE3_000__191 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__96 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__192 = Multipole(Kn1L=-4.07894736378E-6) - D000018__192 = Drift(L=0.1193) - EDGE2_000__192 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__96 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__192 = Multipole(Kn1L=-4.4179123956E-5) - D000014__116 = Drift(L=0.50037) - SF2_1__21 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__108 = Drift(L=0.1042) - SF2_1__22 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__117 = Drift(L=0.1559) - HQF_1__8 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__117 = Drift(L=0.0638) - CH07_1 = HKicker(L=0.2) - D000058__13 = Drift(L=0.386448) - EDGE1_000__193 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__97 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__193 = Multipole(Kn1L=4.07894736378E-6) - D000018__193 = Drift(L=0.1193) - EDGE3_000__193 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__97 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__194 = Multipole(Kn1L=-4.07894736378E-6) - D000018__194 = Drift(L=0.1193) - EDGE2_000__194 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__97 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__194 = Multipole(Kn1L=-4.4179123956E-5) - D000014__117 = Drift(L=0.50037) - SD1_1__23 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__109 = Drift(L=0.1042) - SD1_1__24 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__118 = Drift(L=0.1559) - HQD_1__8 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__118 = Drift(L=0.0638) - CV07_1 = VKicker(L=0.2) - D000058__14 = Drift(L=0.386448) - EDGE1_000__195 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__98 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__195 = Multipole(Kn1L=4.07894736378E-6) - D000018__195 = Drift(L=0.1193) - EDGE3_000__195 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__98 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__196 = Multipole(Kn1L=-4.07894736378E-6) - D000018__196 = Drift(L=0.1193) - EDGE2_000__196 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__98 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__196 = Multipole(Kn1L=-4.4179123956E-5) - D000014__118 = Drift(L=0.50037) - SF1_1__23 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__110 = Drift(L=0.1042) - SF1_1__24 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__119 = Drift(L=0.1559) - HQF_1__9 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__119 = Drift(L=0.0638) - CH08_1 = HKicker(L=0.2) - D000058__15 = Drift(L=0.386448) - EDGE1_000__197 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__99 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__197 = Multipole(Kn1L=4.07894736378E-6) - D000018__197 = Drift(L=0.1193) - EDGE3_000__197 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__99 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__198 = Multipole(Kn1L=-4.07894736378E-6) - D000018__198 = Drift(L=0.1193) - EDGE2_000__198 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__99 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__198 = Multipole(Kn1L=-4.4179123956E-5) - D000014__119 = Drift(L=0.50037) - SD2_1__23 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__111 = Drift(L=0.1042) - SD2_1__24 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__120 = Drift(L=0.1559) - HQD_1__9 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__120 = Drift(L=0.0638) - CV08_1 = VKicker(L=0.2) - D000058__16 = Drift(L=0.386448) - EDGE1_000__199 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__100 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__199 = Multipole(Kn1L=4.07894736378E-6) - D000018__199 = Drift(L=0.1193) - EDGE3_000__199 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__100 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__200 = Multipole(Kn1L=-4.07894736378E-6) - D000018__200 = Drift(L=0.1193) - EDGE2_000__200 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__100 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__200 = Multipole(Kn1L=-4.4179123956E-5) - D000014__120 = Drift(L=0.50037) - SF2_1__23 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__112 = Drift(L=0.1042) - SF2_1__24 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__121 = Drift(L=0.1559) - HQF_1__10 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__121 = Drift(L=0.0638) - CH09_1 = HKicker(L=0.2) - D000058__17 = Drift(L=0.386448) - EDGE1_000__201 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__101 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__201 = Multipole(Kn1L=4.07894736378E-6) - D000018__201 = Drift(L=0.1193) - EDGE3_000__201 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__101 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__202 = Multipole(Kn1L=-4.07894736378E-6) - D000018__202 = Drift(L=0.1193) - EDGE2_000__202 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__101 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__202 = Multipole(Kn1L=-4.4179123956E-5) - D000014__121 = Drift(L=0.50037) - SD1_1__25 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__113 = Drift(L=0.1042) - SD1_1__26 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__122 = Drift(L=0.1559) - HQD_1__10 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__122 = Drift(L=0.0638) - CV09_1 = VKicker(L=0.2) - D000058__18 = Drift(L=0.386448) - EDGE1_000__203 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__102 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__203 = Multipole(Kn1L=4.07894736378E-6) - D000018__203 = Drift(L=0.1193) - EDGE3_000__203 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__102 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__204 = Multipole(Kn1L=-4.07894736378E-6) - D000018__204 = Drift(L=0.1193) - EDGE2_000__204 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__102 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__204 = Multipole(Kn1L=-4.4179123956E-5) - D000014__122 = Drift(L=0.50037) - SF1_1__25 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__114 = Drift(L=0.1042) - SF1_1__26 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__123 = Drift(L=0.1559) - HQF_1__11 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__123 = Drift(L=0.0638) - CH10_1 = HKicker(L=0.2) - D000058__19 = Drift(L=0.386448) - EDGE1_000__205 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__103 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__205 = Multipole(Kn1L=4.07894736378E-6) - D000018__205 = Drift(L=0.1193) - EDGE3_000__205 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__103 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__206 = Multipole(Kn1L=-4.07894736378E-6) - D000018__206 = Drift(L=0.1193) - EDGE2_000__206 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__103 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__206 = Multipole(Kn1L=-4.4179123956E-5) - D000014__123 = Drift(L=0.50037) - SD2_1__25 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__115 = Drift(L=0.1042) - SD2_1__26 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__124 = Drift(L=0.1559) - HQD_1__11 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__124 = Drift(L=0.0638) - CV10_1 = VKicker(L=0.2) - D000058__20 = Drift(L=0.386448) - EDGE1_000__207 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__104 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__207 = Multipole(Kn1L=4.07894736378E-6) - D000018__207 = Drift(L=0.1193) - EDGE3_000__207 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__104 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__208 = Multipole(Kn1L=-4.07894736378E-6) - D000018__208 = Drift(L=0.1193) - EDGE2_000__208 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__104 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__208 = Multipole(Kn1L=-4.4179123956E-5) - D000014__124 = Drift(L=0.50037) - SF2_1__25 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__116 = Drift(L=0.1042) - SF2_1__26 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__125 = Drift(L=0.1559) - HQF_1__12 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__125 = Drift(L=0.0638) - CH11_1 = HKicker(L=0.2) - D000058__21 = Drift(L=0.386448) - EDGE1_000__209 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__105 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__209 = Multipole(Kn1L=4.07894736378E-6) - D000018__209 = Drift(L=0.1193) - EDGE3_000__209 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__105 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__210 = Multipole(Kn1L=-4.07894736378E-6) - D000018__210 = Drift(L=0.1193) - EDGE2_000__210 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__105 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__210 = Multipole(Kn1L=-4.4179123956E-5) - D000014__125 = Drift(L=0.50037) - SD1_1__27 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__117 = Drift(L=0.1042) - SD1_1__28 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__126 = Drift(L=0.1559) - HQD_1__12 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__126 = Drift(L=0.0638) - CV11_1 = VKicker(L=0.2) - D000058__22 = Drift(L=0.386448) - EDGE1_000__211 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__106 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__211 = Multipole(Kn1L=4.07894736378E-6) - D000018__211 = Drift(L=0.1193) - EDGE3_000__211 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__106 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__212 = Multipole(Kn1L=-4.07894736378E-6) - D000018__212 = Drift(L=0.1193) - EDGE2_000__212 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__106 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__212 = Multipole(Kn1L=-4.4179123956E-5) - D000014__126 = Drift(L=0.50037) - SF1_1__27 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__118 = Drift(L=0.1042) - SF1_1__28 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__127 = Drift(L=0.1559) - HQF_1__13 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__127 = Drift(L=0.0638) - CH12_1 = HKicker(L=0.2) - D000058__23 = Drift(L=0.386448) - EDGE1_000__213 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__107 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__213 = Multipole(Kn1L=4.07894736378E-6) - D000018__213 = Drift(L=0.1193) - EDGE3_000__213 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__107 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__214 = Multipole(Kn1L=-4.07894736378E-6) - D000018__214 = Drift(L=0.1193) - EDGE2_000__214 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__107 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__214 = Multipole(Kn1L=-4.4179123956E-5) - D000014__127 = Drift(L=0.50037) - SD2_1__27 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__119 = Drift(L=0.1042) - SD2_1__28 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__128 = Drift(L=0.1559) - HQD_1__13 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__128 = Drift(L=0.0638) - CV12_1 = VKicker(L=0.2) - D000058__24 = Drift(L=0.386448) - EDGE1_000__215 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__108 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__215 = Multipole(Kn1L=4.07894736378E-6) - D000018__215 = Drift(L=0.1193) - EDGE3_000__215 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__108 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__216 = Multipole(Kn1L=-4.07894736378E-6) - D000018__216 = Drift(L=0.1193) - EDGE2_000__216 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__108 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__216 = Multipole(Kn1L=-4.4179123956E-5) - D000014__128 = Drift(L=0.50037) - SF2_1__27 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__120 = Drift(L=0.1042) - SF2_1__28 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__129 = Drift(L=0.1559) - HQF_1__14 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__129 = Drift(L=0.0638) - CH13_1 = HKicker(L=0.2) - D000058__25 = Drift(L=0.386448) - EDGE1_000__217 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__109 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__217 = Multipole(Kn1L=4.07894736378E-6) - D000018__217 = Drift(L=0.1193) - EDGE3_000__217 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__109 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__218 = Multipole(Kn1L=-4.07894736378E-6) - D000018__218 = Drift(L=0.1193) - EDGE2_000__218 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__109 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__218 = Multipole(Kn1L=-4.4179123956E-5) - D000014__129 = Drift(L=0.50037) - SD1_1__29 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__121 = Drift(L=0.1042) - SD1_1__30 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__130 = Drift(L=0.1559) - HQD_1__14 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__130 = Drift(L=0.0638) - CV13_1 = VKicker(L=0.2) - D000058__26 = Drift(L=0.386448) - EDGE1_000__219 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__110 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__219 = Multipole(Kn1L=4.07894736378E-6) - D000018__219 = Drift(L=0.1193) - EDGE3_000__219 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__110 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__220 = Multipole(Kn1L=-4.07894736378E-6) - D000018__220 = Drift(L=0.1193) - EDGE2_000__220 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__110 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__220 = Multipole(Kn1L=-4.4179123956E-5) - D000014__130 = Drift(L=0.50037) - SF1_1__29 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__122 = Drift(L=0.1042) - SF1_1__30 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__131 = Drift(L=0.1559) - HQF_1__15 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__131 = Drift(L=0.0638) - CH14_1 = HKicker(L=0.2) - D000058__27 = Drift(L=0.386448) - EDGE1_000__221 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__111 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__221 = Multipole(Kn1L=4.07894736378E-6) - D000018__221 = Drift(L=0.1193) - EDGE3_000__221 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__111 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__222 = Multipole(Kn1L=-4.07894736378E-6) - D000018__222 = Drift(L=0.1193) - EDGE2_000__222 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__111 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__222 = Multipole(Kn1L=-4.4179123956E-5) - D000014__131 = Drift(L=0.50037) - SD2_1__29 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__123 = Drift(L=0.1042) - SD2_1__30 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__132 = Drift(L=0.1559) - HQD_1__15 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__132 = Drift(L=0.0638) - CV14_1 = VKicker(L=0.2) - D000058__28 = Drift(L=0.386448) - EDGE1_000__223 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__112 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__223 = Multipole(Kn1L=4.07894736378E-6) - D000018__223 = Drift(L=0.1193) - EDGE3_000__223 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__112 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__224 = Multipole(Kn1L=-4.07894736378E-6) - D000018__224 = Drift(L=0.1193) - EDGE2_000__224 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__112 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__224 = Multipole(Kn1L=-4.4179123956E-5) - D000014__132 = Drift(L=0.50037) - SF2_1__29 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__124 = Drift(L=0.1042) - SF2_1__30 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__133 = Drift(L=0.1559) - HQF_1__16 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__133 = Drift(L=0.0638) - CH15_1 = HKicker(L=0.2) - D000058__29 = Drift(L=0.386448) - EDGE1_000__225 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__113 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__225 = Multipole(Kn1L=4.07894736378E-6) - D000018__225 = Drift(L=0.1193) - EDGE3_000__225 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__113 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__226 = Multipole(Kn1L=-4.07894736378E-6) - D000018__226 = Drift(L=0.1193) - EDGE2_000__226 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__113 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__226 = Multipole(Kn1L=-4.4179123956E-5) - D000014__133 = Drift(L=0.50037) - SD1_1__31 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__125 = Drift(L=0.1042) - SD1_1__32 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000012__134 = Drift(L=0.1559) - HQD_1__16 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__134 = Drift(L=0.0638) - CV15_1 = VKicker(L=0.2) - D000058__30 = Drift(L=0.386448) - EDGE1_000__227 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__114 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__227 = Multipole(Kn1L=4.07894736378E-6) - D000018__227 = Drift(L=0.1193) - EDGE3_000__227 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__114 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__228 = Multipole(Kn1L=-4.07894736378E-6) - D000018__228 = Drift(L=0.1193) - EDGE2_000__228 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__114 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__228 = Multipole(Kn1L=-4.4179123956E-5) - D000014__134 = Drift(L=0.50037) - SF1_1__31 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__126 = Drift(L=0.1042) - SF1_1__32 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000012__135 = Drift(L=0.1559) - HQF_1__17 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__135 = Drift(L=0.0638) - CH16_1 = HKicker(L=0.2) - D000058__31 = Drift(L=0.386448) - EDGE1_000__229 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__115 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__229 = Multipole(Kn1L=4.07894736378E-6) - D000018__229 = Drift(L=0.1193) - EDGE3_000__229 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__115 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__230 = Multipole(Kn1L=-4.07894736378E-6) - D000018__230 = Drift(L=0.1193) - EDGE2_000__230 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__115 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__230 = Multipole(Kn1L=-4.4179123956E-5) - D000014__135 = Drift(L=0.50037) - SD2_1__31 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__127 = Drift(L=0.1042) - SD2_1__32 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000012__136 = Drift(L=0.1559) - HQD_1__17 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__136 = Drift(L=0.0638) - CV16_1 = VKicker(L=0.2) - D000058__32 = Drift(L=0.386448) - EDGE1_000__231 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__116 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__231 = Multipole(Kn1L=4.07894736378E-6) - D000018__231 = Drift(L=0.1193) - EDGE3_000__231 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__116 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__232 = Multipole(Kn1L=-4.07894736378E-6) - D000018__232 = Drift(L=0.1193) - EDGE2_000__232 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__116 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__232 = Multipole(Kn1L=-4.4179123956E-5) - D000014__136 = Drift(L=0.50037) - SF2_1__31 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__128 = Drift(L=0.1042) - SF2_1__32 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000012__137 = Drift(L=0.1559) - HQF_1__18 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000017__137 = Drift(L=0.0638) - CH17_1 = HKicker(L=0.2) - D000057__3 = Drift(L=1.442045) - DB23_1__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__137 = Drift(L=0.50037) - SD17_1 = Sextupole(L=0.24) - D000012__138 = Drift(L=0.1559) - HQD_1__18 = Quadrupole(L=0.5, Kn1=-0.3112215884,) - D000017__138 = Drift(L=0.0638) - CV17_1 = VKicker(L=0.2) - D000057__4 = Drift(L=1.442045) - DB23_1__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__138 = Drift(L=0.50037) - SF17_1 = Sextupole(L=0.24) - D000012__139 = Drift(L=0.1559) - HQF_1__19 = Quadrupole(L=0.5, Kn1=0.3113975997,) - D000059__1 = Drift(L=2.551335) - HQM22_1 = Quadrupole(L=0.6, Kn1=0.01722745969,) - D000059__2 = Drift(L=2.551335) - HQM21_1 = Quadrupole(L=0.6, Kn1=-0.07374323012) - D000059__3 = Drift(L=2.551335) - HQM20_1 = Quadrupole(L=0.6, Kn1=-0.01932000017,) - D000059__4 = Drift(L=2.551335) - HQM19_1 = Quadrupole(L=0.6, Kn1=-0.08634709755) - D000059__5 = Drift(L=2.551335) - HQM18_1 = Quadrupole(L=0.6, Kn1=-0.08439397155) - D000032__29 = Drift(L=0.535) - DB23_1__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__30 = Drift(L=0.535) - HQM17_1 = Quadrupole(L=0.6, Kn1=0.215697629) - D000032__31 = Drift(L=0.535) - DB23_1__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__32 = Drift(L=0.535) - HQM16_1 = Quadrupole(L=0.6, Kn1=0.09620701749) - D000060__1 = Drift(L=6.217138) - HQM15_1 = Quadrupole(L=0.6, Kn1=-0.2153529094) - D000060__2 = Drift(L=6.217138) - HQM14_1 = Quadrupole(L=0.6, Kn1=0.312179911,) - D000060__3 = Drift(L=6.217138) - HQM13_1 = Quadrupole(L=0.6, Kn1=-0.1606496122) - D000032__33 = Drift(L=0.535) - DB23_1__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__34 = Drift(L=0.535) - HQM12_1 = Quadrupole(L=0.6, Kn1=0.1379574645) - D000032__35 = Drift(L=0.535) - DB23_1__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000061__1 = Drift(L=1.995182) - HQDSS_2__1 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000062__1 = Drift(L=12.36) - SX41_2 = Sextupole(L=0.24) - D000056__2 = Drift(L=0.2) - HQFSS_2__1 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000062__2 = Drift(L=12.36) - SX42_2 = Sextupole(L=0.24) - D000056__3 = Drift(L=0.2) - HQDSS_2__2 = Quadrupole(L=0.6, Kn1=-0.0980096273) - MCOLL_H1 = Marker() - D000062__3 = Drift(L=12.36) - SX43_2 = Sextupole(L=0.24) - D000056__4 = Drift(L=0.2) - HQFSS_2__2 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000062__4 = Drift(L=12.36) - MCOLL_H2 = Marker() - SX44_2 = Sextupole(L=0.24) - D000056__5 = Drift(L=0.2) - HQDSS_2__3 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000062__5 = Drift(L=12.36) - SX45_2 = Sextupole(L=0.24) - D000056__6 = Drift(L=0.2) - HQFSS_2__3 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000062__6 = Drift(L=12.36) - MCOLL_H3 = Marker() - SX46_2 = Sextupole(L=0.24) - D000056__7 = Drift(L=0.2) - HQDSS_2__4 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000063 = Drift(L=6.169233) - IP2 = Marker() - D000064 = Drift(L=6.630767) - HQFSS_2__4 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000056__8 = Drift(L=0.2) - SX47_2 = Sextupole(L=0.24) - D000062__7 = Drift(L=12.36) - HQDSS_2__5 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000056__9 = Drift(L=0.2) - SX48_2 = Sextupole(L=0.24) - D000062__8 = Drift(L=12.36) - HQFSS_2__5 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000056__10 = Drift(L=0.2) - SX49_2 = Sextupole(L=0.24) - D000062__9 = Drift(L=12.36) - HQDSS_2__6 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000056__11 = Drift(L=0.2) - SX50_2 = Sextupole(L=0.24) - MLAMB = Marker() - D000062__10 = Drift(L=12.36) - HQFSS_2__6 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000056__12 = Drift(L=0.2) - SX51_2 = Sextupole(L=0.24) - D000062__11 = Drift(L=12.36) - HQDSS_2__7 = Quadrupole(L=0.6, Kn1=-0.0980096273) - D000056__13 = Drift(L=0.2) - SX52_2 = Sextupole(L=0.24) - D000062__12 = Drift(L=12.36) - HQFSS_2__7 = Quadrupole(L=0.6, Kn1=0.1238165582,) - D000061__2 = Drift(L=1.995182) - DB23_2__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__36 = Drift(L=0.535) - HQM12_2 = Quadrupole(L=0.6, Kn1=-0.08415385784) - D000032__37 = Drift(L=0.535) - DB23_2__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__38 = Drift(L=0.535) - HQM13_2 = Quadrupole(L=0.6, Kn1=-7.038584918E-4,) - D000065__1 = Drift(L=5.927225) - HQM14_2 = Quadrupole(L=0.6, Kn1=-0.07676463633) - D000065__2 = Drift(L=5.927225) - HQM15_2 = Quadrupole(L=0.6, Kn1=0.3290445086,) - D000065__3 = Drift(L=5.927225) - HQM16_2 = Quadrupole(L=0.6, Kn1=-0.2520023905,) - D000032__39 = Drift(L=0.535) - DB23_2__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__40 = Drift(L=0.535) - HQM17_2 = Quadrupole(L=0.6, Kn1=0.2982328613) - D000032__41 = Drift(L=0.535) - DB23_2__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__42 = Drift(L=0.535) - HQM18_2 = Quadrupole(L=0.6, Kn1=0.2057910441) - D000066__1 = Drift(L=2.623669) - HQM19_2 = Quadrupole(L=0.6, Kn1=-0.2632180047,) - D000066__2 = Drift(L=2.623669) - HQM20_2 = Quadrupole(L=0.6, Kn1=-0.06371765756,) - D000066__3 = Drift(L=2.623669) - HQM21_2 = Quadrupole(L=0.6, Kn1=-2.457652622E-3,) - D000066__4 = Drift(L=2.623669) - HQM22_2 = Quadrupole(L=0.6, Kn1=0.08440660021) - D000066__5 = Drift(L=2.623669) - HQF_3__1 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__140 = Drift(L=0.1559) - SF00_3 = Sextupole(L=0.24) - D000014__139 = Drift(L=0.50037) - DB23_2__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000067__1 = Drift(L=1.442004) - CV00_3 = HKicker(L=0.2) - D000017__139 = Drift(L=0.0638) - HQD_3__1 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__141 = Drift(L=0.1559) - SD00_3 = Sextupole(L=0.24) - D000014__140 = Drift(L=0.50037) - DB23_2__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000067__2 = Drift(L=1.442004) - CH00_3 = HKicker(L=0.2) - D000017__140 = Drift(L=0.0638) - HQF_3__2 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__142 = Drift(L=0.1559) - SF1_1__33 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__129 = Drift(L=0.1042) - SF1_1__34 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__141 = Drift(L=0.50037) - EDGE1_000__233 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__117 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__233 = Multipole(Kn1L=4.07894736378E-6) - D000018__233 = Drift(L=0.1193) - EDGE3_000__233 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__117 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__234 = Multipole(Kn1L=-4.07894736378E-6) - D000018__234 = Drift(L=0.1193) - EDGE2_000__234 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__117 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__234 = Multipole(Kn1L=-4.4179123956E-5) - D000068__1 = Drift(L=0.386407) - CV01_3 = VKicker(L=0.2) - D000017__141 = Drift(L=0.0638) - HQD_3__2 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__143 = Drift(L=0.1559) - SD1_1__33 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__130 = Drift(L=0.1042) - SD1_1__34 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__142 = Drift(L=0.50037) - EDGE1_000__235 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__118 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__235 = Multipole(Kn1L=4.07894736378E-6) - D000018__235 = Drift(L=0.1193) - EDGE3_000__235 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__118 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__236 = Multipole(Kn1L=-4.07894736378E-6) - D000018__236 = Drift(L=0.1193) - EDGE2_000__236 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__118 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__236 = Multipole(Kn1L=-4.4179123956E-5) - D000068__2 = Drift(L=0.386407) - CH01_3 = HKicker(L=0.2) - D000017__142 = Drift(L=0.0638) - HQF_3__3 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__144 = Drift(L=0.1559) - SF2_1__33 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__131 = Drift(L=0.1042) - SF2_1__34 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__143 = Drift(L=0.50037) - EDGE1_000__237 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__119 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__237 = Multipole(Kn1L=4.07894736378E-6) - D000018__237 = Drift(L=0.1193) - EDGE3_000__237 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__119 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__238 = Multipole(Kn1L=-4.07894736378E-6) - D000018__238 = Drift(L=0.1193) - EDGE2_000__238 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__119 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__238 = Multipole(Kn1L=-4.4179123956E-5) - D000068__3 = Drift(L=0.386407) - CV02_3 = VKicker(L=0.2) - D000017__143 = Drift(L=0.0638) - HQD_3__3 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__145 = Drift(L=0.1559) - SD2_1__33 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__132 = Drift(L=0.1042) - SD2_1__34 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__144 = Drift(L=0.50037) - EDGE1_000__239 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__120 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__239 = Multipole(Kn1L=4.07894736378E-6) - D000018__239 = Drift(L=0.1193) - EDGE3_000__239 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__120 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__240 = Multipole(Kn1L=-4.07894736378E-6) - D000018__240 = Drift(L=0.1193) - EDGE2_000__240 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__120 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__240 = Multipole(Kn1L=-4.4179123956E-5) - D000068__4 = Drift(L=0.386407) - CH02_3 = HKicker(L=0.2) - D000017__144 = Drift(L=0.0638) - HQF_3__4 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__146 = Drift(L=0.1559) - SF1_1__35 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__133 = Drift(L=0.1042) - SF1_1__36 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__145 = Drift(L=0.50037) - EDGE1_000__241 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__121 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__241 = Multipole(Kn1L=4.07894736378E-6) - D000018__241 = Drift(L=0.1193) - EDGE3_000__241 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__121 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__242 = Multipole(Kn1L=-4.07894736378E-6) - D000018__242 = Drift(L=0.1193) - EDGE2_000__242 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__121 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__242 = Multipole(Kn1L=-4.4179123956E-5) - D000068__5 = Drift(L=0.386407) - CV03_3 = VKicker(L=0.2) - D000017__145 = Drift(L=0.0638) - HQD_3__4 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__147 = Drift(L=0.1559) - SD1_1__35 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__134 = Drift(L=0.1042) - SD1_1__36 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__146 = Drift(L=0.50037) - EDGE1_000__243 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__122 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__243 = Multipole(Kn1L=4.07894736378E-6) - D000018__243 = Drift(L=0.1193) - EDGE3_000__243 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__122 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__244 = Multipole(Kn1L=-4.07894736378E-6) - D000018__244 = Drift(L=0.1193) - EDGE2_000__244 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__122 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__244 = Multipole(Kn1L=-4.4179123956E-5) - D000068__6 = Drift(L=0.386407) - CH03_3 = HKicker(L=0.2) - D000017__146 = Drift(L=0.0638) - HQF_3__5 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__148 = Drift(L=0.1559) - SF2_1__35 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__135 = Drift(L=0.1042) - SF2_1__36 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__147 = Drift(L=0.50037) - EDGE1_000__245 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__123 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__245 = Multipole(Kn1L=4.07894736378E-6) - D000018__245 = Drift(L=0.1193) - EDGE3_000__245 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__123 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__246 = Multipole(Kn1L=-4.07894736378E-6) - D000018__246 = Drift(L=0.1193) - EDGE2_000__246 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__123 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__246 = Multipole(Kn1L=-4.4179123956E-5) - D000068__7 = Drift(L=0.386407) - CV04_3 = VKicker(L=0.2) - D000017__147 = Drift(L=0.0638) - HQD_3__5 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__149 = Drift(L=0.1559) - SD2_1__35 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__136 = Drift(L=0.1042) - SD2_1__36 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__148 = Drift(L=0.50037) - EDGE1_000__247 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__124 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__247 = Multipole(Kn1L=4.07894736378E-6) - D000018__247 = Drift(L=0.1193) - EDGE3_000__247 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__124 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__248 = Multipole(Kn1L=-4.07894736378E-6) - D000018__248 = Drift(L=0.1193) - EDGE2_000__248 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__124 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__248 = Multipole(Kn1L=-4.4179123956E-5) - D000068__8 = Drift(L=0.386407) - CH04_3 = HKicker(L=0.2) - D000017__148 = Drift(L=0.0638) - HQF_3__6 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__150 = Drift(L=0.1559) - SF1_1__37 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__137 = Drift(L=0.1042) - SF1_1__38 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__149 = Drift(L=0.50037) - EDGE1_000__249 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__125 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__249 = Multipole(Kn1L=4.07894736378E-6) - D000018__249 = Drift(L=0.1193) - EDGE3_000__249 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__125 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__250 = Multipole(Kn1L=-4.07894736378E-6) - D000018__250 = Drift(L=0.1193) - EDGE2_000__250 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__125 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__250 = Multipole(Kn1L=-4.4179123956E-5) - D000068__9 = Drift(L=0.386407) - CV05_3 = VKicker(L=0.2) - D000017__149 = Drift(L=0.0638) - HQD_3__6 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__151 = Drift(L=0.1559) - SD1_1__37 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__138 = Drift(L=0.1042) - SD1_1__38 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__150 = Drift(L=0.50037) - EDGE1_000__251 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__126 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__251 = Multipole(Kn1L=4.07894736378E-6) - D000018__251 = Drift(L=0.1193) - EDGE3_000__251 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__126 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__252 = Multipole(Kn1L=-4.07894736378E-6) - D000018__252 = Drift(L=0.1193) - EDGE2_000__252 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__126 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__252 = Multipole(Kn1L=-4.4179123956E-5) - D000068__10 = Drift(L=0.386407) - CH05_3 = HKicker(L=0.2) - D000017__150 = Drift(L=0.0638) - HQF_3__7 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__152 = Drift(L=0.1559) - SF2_1__37 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__139 = Drift(L=0.1042) - SF2_1__38 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__151 = Drift(L=0.50037) - EDGE1_000__253 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__127 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__253 = Multipole(Kn1L=4.07894736378E-6) - D000018__253 = Drift(L=0.1193) - EDGE3_000__253 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__127 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__254 = Multipole(Kn1L=-4.07894736378E-6) - D000018__254 = Drift(L=0.1193) - EDGE2_000__254 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__127 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__254 = Multipole(Kn1L=-4.4179123956E-5) - D000068__11 = Drift(L=0.386407) - CV06_3 = VKicker(L=0.2) - D000017__151 = Drift(L=0.0638) - HQD_3__7 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__153 = Drift(L=0.1559) - SD2_1__37 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__140 = Drift(L=0.1042) - SD2_1__38 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__152 = Drift(L=0.50037) - EDGE1_000__255 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__128 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__255 = Multipole(Kn1L=4.07894736378E-6) - D000018__255 = Drift(L=0.1193) - EDGE3_000__255 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__128 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__256 = Multipole(Kn1L=-4.07894736378E-6) - D000018__256 = Drift(L=0.1193) - EDGE2_000__256 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__128 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__256 = Multipole(Kn1L=-4.4179123956E-5) - D000068__12 = Drift(L=0.386407) - CH06_3 = HKicker(L=0.2) - D000017__152 = Drift(L=0.0638) - HQF_3__8 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__154 = Drift(L=0.1559) - SF1_1__39 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__141 = Drift(L=0.1042) - SF1_1__40 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__153 = Drift(L=0.50037) - EDGE1_000__257 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__129 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__257 = Multipole(Kn1L=4.07894736378E-6) - D000018__257 = Drift(L=0.1193) - EDGE3_000__257 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__129 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__258 = Multipole(Kn1L=-4.07894736378E-6) - D000018__258 = Drift(L=0.1193) - EDGE2_000__258 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__129 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__258 = Multipole(Kn1L=-4.4179123956E-5) - D000068__13 = Drift(L=0.386407) - CV07_3 = VKicker(L=0.2) - D000017__153 = Drift(L=0.0638) - HQD_3__8 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__155 = Drift(L=0.1559) - SD1_1__39 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__142 = Drift(L=0.1042) - SD1_1__40 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__154 = Drift(L=0.50037) - EDGE1_000__259 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__130 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__259 = Multipole(Kn1L=4.07894736378E-6) - D000018__259 = Drift(L=0.1193) - EDGE3_000__259 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__130 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__260 = Multipole(Kn1L=-4.07894736378E-6) - D000018__260 = Drift(L=0.1193) - EDGE2_000__260 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__130 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__260 = Multipole(Kn1L=-4.4179123956E-5) - D000068__14 = Drift(L=0.386407) - CH07_3 = HKicker(L=0.2) - D000017__154 = Drift(L=0.0638) - HQF_3__9 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__156 = Drift(L=0.1559) - SF2_1__39 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__143 = Drift(L=0.1042) - SF2_1__40 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__155 = Drift(L=0.50037) - EDGE1_000__261 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__131 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__261 = Multipole(Kn1L=4.07894736378E-6) - D000018__261 = Drift(L=0.1193) - EDGE3_000__261 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__131 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__262 = Multipole(Kn1L=-4.07894736378E-6) - D000018__262 = Drift(L=0.1193) - EDGE2_000__262 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__131 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__262 = Multipole(Kn1L=-4.4179123956E-5) - D000068__15 = Drift(L=0.386407) - CV08_3 = VKicker(L=0.2) - D000017__155 = Drift(L=0.0638) - HQD_3__9 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__157 = Drift(L=0.1559) - SD2_1__39 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__144 = Drift(L=0.1042) - SD2_1__40 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__156 = Drift(L=0.50037) - EDGE1_000__263 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__132 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__263 = Multipole(Kn1L=4.07894736378E-6) - D000018__263 = Drift(L=0.1193) - EDGE3_000__263 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__132 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__264 = Multipole(Kn1L=-4.07894736378E-6) - D000018__264 = Drift(L=0.1193) - EDGE2_000__264 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__132 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__264 = Multipole(Kn1L=-4.4179123956E-5) - D000068__16 = Drift(L=0.386407) - CH08_3 = HKicker(L=0.2) - D000017__156 = Drift(L=0.0638) - HQF_3__10 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__158 = Drift(L=0.1559) - SF1_1__41 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__145 = Drift(L=0.1042) - SF1_1__42 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__157 = Drift(L=0.50037) - EDGE1_000__265 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__133 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__265 = Multipole(Kn1L=4.07894736378E-6) - D000018__265 = Drift(L=0.1193) - EDGE3_000__265 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__133 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__266 = Multipole(Kn1L=-4.07894736378E-6) - D000018__266 = Drift(L=0.1193) - EDGE2_000__266 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__133 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__266 = Multipole(Kn1L=-4.4179123956E-5) - D000068__17 = Drift(L=0.386407) - CV09_3 = VKicker(L=0.2) - D000017__157 = Drift(L=0.0638) - HQD_3__10 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__159 = Drift(L=0.1559) - SD1_1__41 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__146 = Drift(L=0.1042) - SD1_1__42 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__158 = Drift(L=0.50037) - EDGE1_000__267 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__134 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__267 = Multipole(Kn1L=4.07894736378E-6) - D000018__267 = Drift(L=0.1193) - EDGE3_000__267 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__134 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__268 = Multipole(Kn1L=-4.07894736378E-6) - D000018__268 = Drift(L=0.1193) - EDGE2_000__268 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__134 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__268 = Multipole(Kn1L=-4.4179123956E-5) - D000068__18 = Drift(L=0.386407) - CH09_3 = HKicker(L=0.2) - D000017__158 = Drift(L=0.0638) - HQF_3__11 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__160 = Drift(L=0.1559) - SF2_1__41 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__147 = Drift(L=0.1042) - SF2_1__42 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__159 = Drift(L=0.50037) - EDGE1_000__269 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__135 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__269 = Multipole(Kn1L=4.07894736378E-6) - D000018__269 = Drift(L=0.1193) - EDGE3_000__269 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__135 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__270 = Multipole(Kn1L=-4.07894736378E-6) - D000018__270 = Drift(L=0.1193) - EDGE2_000__270 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__135 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__270 = Multipole(Kn1L=-4.4179123956E-5) - D000068__19 = Drift(L=0.386407) - CV10_3 = VKicker(L=0.2) - D000017__159 = Drift(L=0.0638) - HQD_3__11 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__161 = Drift(L=0.1559) - SD2_1__41 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__148 = Drift(L=0.1042) - SD2_1__42 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__160 = Drift(L=0.50037) - EDGE1_000__271 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__136 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__271 = Multipole(Kn1L=4.07894736378E-6) - D000018__271 = Drift(L=0.1193) - EDGE3_000__271 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__136 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__272 = Multipole(Kn1L=-4.07894736378E-6) - D000018__272 = Drift(L=0.1193) - EDGE2_000__272 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__136 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__272 = Multipole(Kn1L=-4.4179123956E-5) - D000068__20 = Drift(L=0.386407) - CH10_3 = HKicker(L=0.2) - D000017__160 = Drift(L=0.0638) - HQF_3__12 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__162 = Drift(L=0.1559) - SF1_1__43 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__149 = Drift(L=0.1042) - SF1_1__44 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__161 = Drift(L=0.50037) - EDGE1_000__273 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__137 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__273 = Multipole(Kn1L=4.07894736378E-6) - D000018__273 = Drift(L=0.1193) - EDGE3_000__273 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__137 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__274 = Multipole(Kn1L=-4.07894736378E-6) - D000018__274 = Drift(L=0.1193) - EDGE2_000__274 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__137 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__274 = Multipole(Kn1L=-4.4179123956E-5) - D000068__21 = Drift(L=0.386407) - CV11_3 = VKicker(L=0.2) - D000017__161 = Drift(L=0.0638) - HQD_3__12 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__163 = Drift(L=0.1559) - SD1_1__43 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__150 = Drift(L=0.1042) - SD1_1__44 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__162 = Drift(L=0.50037) - EDGE1_000__275 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__138 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__275 = Multipole(Kn1L=4.07894736378E-6) - D000018__275 = Drift(L=0.1193) - EDGE3_000__275 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__138 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__276 = Multipole(Kn1L=-4.07894736378E-6) - D000018__276 = Drift(L=0.1193) - EDGE2_000__276 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__138 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__276 = Multipole(Kn1L=-4.4179123956E-5) - D000068__22 = Drift(L=0.386407) - CH11_3 = HKicker(L=0.2) - D000017__162 = Drift(L=0.0638) - HQF_3__13 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__164 = Drift(L=0.1559) - SF2_1__43 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__151 = Drift(L=0.1042) - SF2_1__44 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__163 = Drift(L=0.50037) - EDGE1_000__277 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__139 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__277 = Multipole(Kn1L=4.07894736378E-6) - D000018__277 = Drift(L=0.1193) - EDGE3_000__277 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__139 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__278 = Multipole(Kn1L=-4.07894736378E-6) - D000018__278 = Drift(L=0.1193) - EDGE2_000__278 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__139 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__278 = Multipole(Kn1L=-4.4179123956E-5) - D000068__23 = Drift(L=0.386407) - CV12_3 = VKicker(L=0.2) - D000017__163 = Drift(L=0.0638) - HQD_3__13 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__165 = Drift(L=0.1559) - SD2_1__43 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__152 = Drift(L=0.1042) - SD2_1__44 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__164 = Drift(L=0.50037) - EDGE1_000__279 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__140 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__279 = Multipole(Kn1L=4.07894736378E-6) - D000018__279 = Drift(L=0.1193) - EDGE3_000__279 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__140 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__280 = Multipole(Kn1L=-4.07894736378E-6) - D000018__280 = Drift(L=0.1193) - EDGE2_000__280 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__140 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__280 = Multipole(Kn1L=-4.4179123956E-5) - D000068__24 = Drift(L=0.386407) - CH12_3 = HKicker(L=0.2) - D000017__164 = Drift(L=0.0638) - HQF_3__14 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__166 = Drift(L=0.1559) - SF1_1__45 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__153 = Drift(L=0.1042) - SF1_1__46 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__165 = Drift(L=0.50037) - EDGE1_000__281 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__141 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__281 = Multipole(Kn1L=4.07894736378E-6) - D000018__281 = Drift(L=0.1193) - EDGE3_000__281 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__141 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__282 = Multipole(Kn1L=-4.07894736378E-6) - D000018__282 = Drift(L=0.1193) - EDGE2_000__282 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__141 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__282 = Multipole(Kn1L=-4.4179123956E-5) - D000068__25 = Drift(L=0.386407) - CV13_3 = VKicker(L=0.2) - D000017__165 = Drift(L=0.0638) - HQD_3__14 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__167 = Drift(L=0.1559) - SD1_1__45 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__154 = Drift(L=0.1042) - SD1_1__46 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__166 = Drift(L=0.50037) - EDGE1_000__283 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__142 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__283 = Multipole(Kn1L=4.07894736378E-6) - D000018__283 = Drift(L=0.1193) - EDGE3_000__283 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__142 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__284 = Multipole(Kn1L=-4.07894736378E-6) - D000018__284 = Drift(L=0.1193) - EDGE2_000__284 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__142 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__284 = Multipole(Kn1L=-4.4179123956E-5) - D000068__26 = Drift(L=0.386407) - CH13_3 = HKicker(L=0.2) - D000017__166 = Drift(L=0.0638) - HQF_3__15 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__168 = Drift(L=0.1559) - SF2_1__45 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__155 = Drift(L=0.1042) - SF2_1__46 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__167 = Drift(L=0.50037) - EDGE1_000__285 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__143 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__285 = Multipole(Kn1L=4.07894736378E-6) - D000018__285 = Drift(L=0.1193) - EDGE3_000__285 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__143 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__286 = Multipole(Kn1L=-4.07894736378E-6) - D000018__286 = Drift(L=0.1193) - EDGE2_000__286 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__143 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__286 = Multipole(Kn1L=-4.4179123956E-5) - D000068__27 = Drift(L=0.386407) - CV14_3 = VKicker(L=0.2) - D000017__167 = Drift(L=0.0638) - HQD_3__15 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__169 = Drift(L=0.1559) - SD2_1__45 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__156 = Drift(L=0.1042) - SD2_1__46 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__168 = Drift(L=0.50037) - EDGE1_000__287 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__144 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__287 = Multipole(Kn1L=4.07894736378E-6) - D000018__287 = Drift(L=0.1193) - EDGE3_000__287 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__144 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__288 = Multipole(Kn1L=-4.07894736378E-6) - D000018__288 = Drift(L=0.1193) - EDGE2_000__288 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__144 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__288 = Multipole(Kn1L=-4.4179123956E-5) - D000068__28 = Drift(L=0.386407) - CH14_3 = HKicker(L=0.2) - D000017__168 = Drift(L=0.0638) - HQF_3__16 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__170 = Drift(L=0.1559) - SF1_1__47 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000013__157 = Drift(L=0.1042) - SF1_1__48 = Sextupole(L=0.24, Kn2=1.2778843352549) - D000014__169 = Drift(L=0.50037) - EDGE1_000__289 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__145 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__289 = Multipole(Kn1L=4.07894736378E-6) - D000018__289 = Drift(L=0.1193) - EDGE3_000__289 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__145 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__290 = Multipole(Kn1L=-4.07894736378E-6) - D000018__290 = Drift(L=0.1193) - EDGE2_000__290 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__145 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__290 = Multipole(Kn1L=-4.4179123956E-5) - D000068__29 = Drift(L=0.386407) - CV15_3 = VKicker(L=0.2) - D000017__169 = Drift(L=0.0638) - HQD_3__16 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__171 = Drift(L=0.1559) - SD1_1__47 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000013__158 = Drift(L=0.1042) - SD1_1__48 = Sextupole(L=0.24, Kn2=-3.3675331974214) - D000014__170 = Drift(L=0.50037) - EDGE1_000__291 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__146 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__291 = Multipole(Kn1L=4.07894736378E-6) - D000018__291 = Drift(L=0.1193) - EDGE3_000__291 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__146 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__292 = Multipole(Kn1L=-4.07894736378E-6) - D000018__292 = Drift(L=0.1193) - EDGE2_000__292 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__146 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__292 = Multipole(Kn1L=-4.4179123956E-5) - D000068__30 = Drift(L=0.386407) - CH15_3 = HKicker(L=0.2) - D000017__170 = Drift(L=0.0638) - HQF_3__17 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__172 = Drift(L=0.1559) - SF2_1__47 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000013__159 = Drift(L=0.1042) - SF2_1__48 = Sextupole(L=0.24, Kn2=1.7265866168549) - D000014__171 = Drift(L=0.50037) - EDGE1_000__293 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__147 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__293 = Multipole(Kn1L=4.07894736378E-6) - D000018__293 = Drift(L=0.1193) - EDGE3_000__293 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__147 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__294 = Multipole(Kn1L=-4.07894736378E-6) - D000018__294 = Drift(L=0.1193) - EDGE2_000__294 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__147 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__294 = Multipole(Kn1L=-4.4179123956E-5) - D000068__31 = Drift(L=0.386407) - CV16_3 = VKicker(L=0.2) - D000017__171 = Drift(L=0.0638) - HQD_3__17 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__173 = Drift(L=0.1559) - SD2_1__47 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000013__160 = Drift(L=0.1042) - SD2_1__48 = Sextupole(L=0.24, Kn2=-3.4287727906214) - D000014__172 = Drift(L=0.50037) - EDGE1_000__295 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__148 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__295 = Multipole(Kn1L=4.07894736378E-6) - D000018__295 = Drift(L=0.1193) - EDGE3_000__295 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__148 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__296 = Multipole(Kn1L=-4.07894736378E-6) - D000018__296 = Drift(L=0.1193) - EDGE2_000__296 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__148 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__296 = Multipole(Kn1L=-4.4179123956E-5) - D000068__32 = Drift(L=0.386407) - CH16_3 = HKicker(L=0.2) - D000017__172 = Drift(L=0.0638) - HQF_3__18 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__174 = Drift(L=0.1559) - SF17_3 = Sextupole(L=0.24) - D000014__173 = Drift(L=0.50037) - DB23_3__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000067__3 = Drift(L=1.442004) - CV17_3 = VKicker(L=0.2) - D000017__173 = Drift(L=0.0638) - HQD_3__18 = Quadrupole(L=0.5, Kn1=-0.3112230088,) - D000012__175 = Drift(L=0.1559) - SD17_3 = Sextupole(L=0.24) - D000014__174 = Drift(L=0.50037) - DB23_3__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000067__4 = Drift(L=1.442004) - CH17_3 = HKicker(L=0.2) - D000017__174 = Drift(L=0.0638) - HQF_3__19 = Quadrupole(L=0.5, Kn1=0.3113990205,) - D000012__176 = Drift(L=0.1559) - SF18_3 = Sextupole(L=0.24) - D000069__1 = Drift(L=4.065299) - HQD22_3 = Quadrupole(L=0.6, Kn1=-0.2554856666,) - D000069__2 = Drift(L=4.065299) - HQF21_3 = Quadrupole(L=0.6, Kn1=0.1978933106,) - D000032__43 = Drift(L=0.535) - DB23_3__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__44 = Drift(L=0.535) - HQD20_3 = Quadrupole(L=0.6, Kn1=-0.207628952) - D000032__45 = Drift(L=0.535) - DB23_3__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__46 = Drift(L=0.535) - HQF19_3 = Quadrupole(L=0.6, Kn1=0.1950635038,) - D000070__1 = Drift(L=4.543623) - HQD18_3 = Quadrupole(L=0.6, Kn1=-0.1791108016,) - D000070__2 = Drift(L=4.543623) - HQF17_3 = Quadrupole(L=0.6, Kn1=0.1829347368,) - D000070__3 = Drift(L=4.543623) - HQD16_3 = Quadrupole(L=0.6, Kn1=-0.1453526612) - D000032__47 = Drift(L=0.535) - DB23_3__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__48 = Drift(L=0.535) - HQF15_3 = Quadrupole(L=0.6, Kn1=0.1369224329) - D000032__49 = Drift(L=0.535) - DB23_3__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__50 = Drift(L=0.535) - HQD14_3 = Quadrupole(L=0.6, Kn1=-0.1449015186) - MCOLL_V1 = Marker() - D000071__1 = Drift(L=11.224938) - HQF13_3 = Quadrupole(L=0.6, Kn1=0.1268512382,) - D000071__2 = Drift(L=11.224938) - MCOLL_V2 = Marker() - HQD12_3 = Quadrupole(L=0.6, Kn1=-0.1085522138,) - D000071__3 = Drift(L=11.224938) - HQF11_3 = Quadrupole(L=0.6, Kn1=0.1203850125,) - D000056__14 = Drift(L=0.2) - SX41_4 = Sextupole(L=0.24) - D000072__1 = Drift(L=10.784938) - MCOLL_V3 = Marker() - HQD10_3 = Quadrupole(L=0.6, Kn1=-0.1222253567,) - D000056__15 = Drift(L=0.2) - SX42_4 = Sextupole(L=0.24) - D000072__2 = Drift(L=10.784938) - HQF9_3 = Quadrupole(L=0.6, Kn1=0.1171029044,) - D000056__16 = Drift(L=0.2) - SX43_4 = Sextupole(L=0.24) - D000056__17 = Drift(L=0.2) - DB12_4P__4 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000048__5 = Drift(L=0.0975) - DB12_4P__5 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000048__6 = Drift(L=0.0975) - DB12_4P__6 = SBend(L=3.0051000000005, g=3.6299291204945E-3, e1=5.45415E-3, e2=5.45415E-3) - D000032__51 = Drift(L=0.535) - HQD8_3 = Quadrupole(L=0.6, Kn1=-0.08962195033) - D000056__18 = Drift(L=0.2) - SX44_4 = Sextupole(L=0.24) - D000072__3 = Drift(L=10.784938) - HQF7_3 = Quadrupole(L=0.6, Kn1=0.1075244171,) - D000056__19 = Drift(L=0.2) - SX45_4 = Sextupole(L=0.24) - D000072__4 = Drift(L=10.784938) - HQD6_3 = Quadrupole(L=0.6, Kn1=-0.1442054796) - D000056__20 = Drift(L=0.2) - SX46_4 = Sextupole(L=0.24) - D000073 = Drift(L=5.172469) - IP4 = Marker() - D000074 = Drift(L=4.758889) - SX47_4 = Sextupole(L=0.24) - D000056__21 = Drift(L=0.2) - HQD4_4 = Quadrupole(L=0.6, Kn1=0.08272423335) - D000075__1 = Drift(L=9.957779) - SX48_4 = Sextupole(L=0.24) - D000056__22 = Drift(L=0.2) - HQF5_4 = Quadrupole(L=0.6, Kn1=0.07737902144) - D000075__2 = Drift(L=9.957779) - SX49_4 = Sextupole(L=0.24) - D000056__23 = Drift(L=0.2) - HQD6_4 = Quadrupole(L=0.6, Kn1=-0.08977116391) - D000032__52 = Drift(L=0.535) - DB12_4M__4 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000048__7 = Drift(L=0.0975) - DB12_4M__5 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000048__8 = Drift(L=0.0975) - DB12_4M__6 = SBend(L=3.0051000000005, g=-3.6299291204945E-3, e1=-5.45415E-3, e2=-5.45415E-3) - D000056__24 = Drift(L=0.2) - SX50_4 = Sextupole(L=0.24) - D000056__25 = Drift(L=0.2) - HQF7_4 = Quadrupole(L=0.6, Kn1=-0.0511651397,) - D000075__3 = Drift(L=9.957779) - SX51_4 = Sextupole(L=0.24) - D000056__26 = Drift(L=0.2) - HQD8_4 = Quadrupole(L=0.6, Kn1=0.1278181338,) - D000075__4 = Drift(L=9.957779) - SX52_4 = Sextupole(L=0.24) - D000056__27 = Drift(L=0.2) - HQF9_4 = Quadrupole(L=0.6, Kn1=-0.1396142326) - D000076__1 = Drift(L=10.397779) - HQD10_4 = Quadrupole(L=0.6, Kn1=0.05939249134,) - D000076__2 = Drift(L=10.397779) - HQF11_4 = Quadrupole(L=0.6, Kn1=0.1718574708,) - D000032__53 = Drift(L=0.535) - DB23_4__1 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__54 = Drift(L=0.535) - HQD12_4 = Quadrupole(L=0.6, Kn1=-0.2619520638,) - D000032__55 = Drift(L=0.535) - DB23_4__2 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__56 = Drift(L=0.535) - HQF13_4 = Quadrupole(L=0.6, Kn1=0.2845893896) - D000077__1 = Drift(L=4.541529) - HQD14_4 = Quadrupole(L=0.6, Kn1=0.1003750764,) - D000077__2 = Drift(L=4.541529) - HQF15_4 = Quadrupole(L=0.6, Kn1=-0.1076656075,) - D000077__3 = Drift(L=4.541529) - HQD16_4 = Quadrupole(L=0.6, Kn1=-0.1185804289,) - D000077__4 = Drift(L=4.541529) - HQF17_4 = Quadrupole(L=0.6, Kn1=0.1115918173,) - D000077__5 = Drift(L=4.541529) - HQD18_4 = Quadrupole(L=0.6, Kn1=0.1271940476,) - D000032__57 = Drift(L=0.535) - DB23_4__3 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__58 = Drift(L=0.535) - HQF19_4 = Quadrupole(L=0.6, Kn1=-0.2573861159,) - D000032__59 = Drift(L=0.535) - DB23_4__4 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000032__60 = Drift(L=0.535) - HQD20_4 = Quadrupole(L=0.6, Kn1=0.1950308183,) - D000078__1 = Drift(L=4.621244) - HQF21_4 = Quadrupole(L=0.6, Kn1=-0.03563213932,) - D000078__2 = Drift(L=4.621244) - HQD22_4 = Quadrupole(L=0.6, Kn1=-0.3301534091,) - D000078__3 = Drift(L=4.621244) - SFM1_5 = Sextupole(L=0.24) - D000056__28 = Drift(L=0.2) - HQF_5__1 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__175 = Drift(L=0.0638) - CH00_5 = HKicker(L=0.2) - D000079__1 = Drift(L=1.367552) - DB23_4__5 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__175 = Drift(L=0.50037) - SD00_5 = Sextupole(L=0.24) - D000012__177 = Drift(L=0.1559) - HQD_5__1 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__176 = Drift(L=0.0638) - CV00_5 = VKicker(L=0.2) - D000079__2 = Drift(L=1.367552) - DB23_4__6 = SBend(L=5.8047647843254, g=3.9218064817153E-3, e1=0.011382582078, e2=0.011382582078) - D000014__176 = Drift(L=0.50037) - SF00_5 = Sextupole(L=0.24) - D000012__178 = Drift(L=0.1559) - HQF_5__2 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__177 = Drift(L=0.0638) - CH01_5 = HKicker(L=0.2) - D000080__1 = Drift(L=0.311955) - EDGE1_000__297 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__149 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__297 = Multipole(Kn1L=4.07894736378E-6) - D000018__297 = Drift(L=0.1193) - EDGE3_000__297 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__149 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__298 = Multipole(Kn1L=-4.07894736378E-6) - D000018__298 = Drift(L=0.1193) - EDGE2_000__298 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__149 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__298 = Multipole(Kn1L=-4.4179123956E-5) - D000014__177 = Drift(L=0.50037) - SD1_5__1 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__161 = Drift(L=0.1042) - SD1_5__2 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__179 = Drift(L=0.1559) - HQD_5__2 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__178 = Drift(L=0.0638) - CV01_5 = VKicker(L=0.2) - D000080__2 = Drift(L=0.311955) - EDGE1_000__299 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__150 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__299 = Multipole(Kn1L=4.07894736378E-6) - D000018__299 = Drift(L=0.1193) - EDGE3_000__299 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__150 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__300 = Multipole(Kn1L=-4.07894736378E-6) - D000018__300 = Drift(L=0.1193) - EDGE2_000__300 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__150 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__300 = Multipole(Kn1L=-4.4179123956E-5) - D000014__178 = Drift(L=0.50037) - SF1_5__1 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__162 = Drift(L=0.1042) - SF1_5__2 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__180 = Drift(L=0.1559) - HQF_5__3 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__179 = Drift(L=0.0638) - CH02_5 = HKicker(L=0.2) - D000080__3 = Drift(L=0.311955) - EDGE1_000__301 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__151 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__301 = Multipole(Kn1L=4.07894736378E-6) - D000018__301 = Drift(L=0.1193) - EDGE3_000__301 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__151 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__302 = Multipole(Kn1L=-4.07894736378E-6) - D000018__302 = Drift(L=0.1193) - EDGE2_000__302 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__151 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__302 = Multipole(Kn1L=-4.4179123956E-5) - D000014__179 = Drift(L=0.50037) - SD2_5__1 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__163 = Drift(L=0.1042) - SD2_5__2 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__181 = Drift(L=0.1559) - HQD_5__3 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__180 = Drift(L=0.0638) - CV02_5 = VKicker(L=0.2) - D000080__4 = Drift(L=0.311955) - EDGE1_000__303 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__152 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__303 = Multipole(Kn1L=4.07894736378E-6) - D000018__303 = Drift(L=0.1193) - EDGE3_000__303 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__152 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__304 = Multipole(Kn1L=-4.07894736378E-6) - D000018__304 = Drift(L=0.1193) - EDGE2_000__304 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__152 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__304 = Multipole(Kn1L=-4.4179123956E-5) - D000014__180 = Drift(L=0.50037) - SF2_5__1 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__164 = Drift(L=0.1042) - SF2_5__2 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__182 = Drift(L=0.1559) - HQF_5__4 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__181 = Drift(L=0.0638) - CH03_5 = HKicker(L=0.2) - D000080__5 = Drift(L=0.311955) - EDGE1_000__305 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__153 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__305 = Multipole(Kn1L=4.07894736378E-6) - D000018__305 = Drift(L=0.1193) - EDGE3_000__305 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__153 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__306 = Multipole(Kn1L=-4.07894736378E-6) - D000018__306 = Drift(L=0.1193) - EDGE2_000__306 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__153 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__306 = Multipole(Kn1L=-4.4179123956E-5) - D000014__181 = Drift(L=0.50037) - SD1_5__3 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__165 = Drift(L=0.1042) - SD1_5__4 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__183 = Drift(L=0.1559) - HQD_5__4 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__182 = Drift(L=0.0638) - CV03_5 = VKicker(L=0.2) - D000080__6 = Drift(L=0.311955) - EDGE1_000__307 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__154 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__307 = Multipole(Kn1L=4.07894736378E-6) - D000018__307 = Drift(L=0.1193) - EDGE3_000__307 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__154 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__308 = Multipole(Kn1L=-4.07894736378E-6) - D000018__308 = Drift(L=0.1193) - EDGE2_000__308 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__154 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__308 = Multipole(Kn1L=-4.4179123956E-5) - D000014__182 = Drift(L=0.50037) - SF1_5__3 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__166 = Drift(L=0.1042) - SF1_5__4 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__184 = Drift(L=0.1559) - HQF_5__5 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__183 = Drift(L=0.0638) - CH04_5 = HKicker(L=0.2) - D000080__7 = Drift(L=0.311955) - EDGE1_000__309 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__155 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__309 = Multipole(Kn1L=4.07894736378E-6) - D000018__309 = Drift(L=0.1193) - EDGE3_000__309 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__155 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__310 = Multipole(Kn1L=-4.07894736378E-6) - D000018__310 = Drift(L=0.1193) - EDGE2_000__310 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__155 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__310 = Multipole(Kn1L=-4.4179123956E-5) - D000014__183 = Drift(L=0.50037) - SD2_5__3 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__167 = Drift(L=0.1042) - SD2_5__4 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__185 = Drift(L=0.1559) - HQD_5__5 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__184 = Drift(L=0.0638) - CV04_5 = VKicker(L=0.2) - D000080__8 = Drift(L=0.311955) - EDGE1_000__311 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__156 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__311 = Multipole(Kn1L=4.07894736378E-6) - D000018__311 = Drift(L=0.1193) - EDGE3_000__311 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__156 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__312 = Multipole(Kn1L=-4.07894736378E-6) - D000018__312 = Drift(L=0.1193) - EDGE2_000__312 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__156 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__312 = Multipole(Kn1L=-4.4179123956E-5) - D000014__184 = Drift(L=0.50037) - SF2_5__3 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__168 = Drift(L=0.1042) - SF2_5__4 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__186 = Drift(L=0.1559) - HQF_5__6 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__185 = Drift(L=0.0638) - CH05_5 = HKicker(L=0.2) - D000080__9 = Drift(L=0.311955) - EDGE1_000__313 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__157 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__313 = Multipole(Kn1L=4.07894736378E-6) - D000018__313 = Drift(L=0.1193) - EDGE3_000__313 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__157 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__314 = Multipole(Kn1L=-4.07894736378E-6) - D000018__314 = Drift(L=0.1193) - EDGE2_000__314 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__157 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__314 = Multipole(Kn1L=-4.4179123956E-5) - D000014__185 = Drift(L=0.50037) - SD1_5__5 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__169 = Drift(L=0.1042) - SD1_5__6 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__187 = Drift(L=0.1559) - HQD_5__6 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__186 = Drift(L=0.0638) - CV05_5 = VKicker(L=0.2) - D000080__10 = Drift(L=0.311955) - EDGE1_000__315 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__158 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__315 = Multipole(Kn1L=4.07894736378E-6) - D000018__315 = Drift(L=0.1193) - EDGE3_000__315 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__158 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__316 = Multipole(Kn1L=-4.07894736378E-6) - D000018__316 = Drift(L=0.1193) - EDGE2_000__316 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__158 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__316 = Multipole(Kn1L=-4.4179123956E-5) - D000014__186 = Drift(L=0.50037) - SF1_5__5 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__170 = Drift(L=0.1042) - SF1_5__6 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__188 = Drift(L=0.1559) - HQF_5__7 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__187 = Drift(L=0.0638) - CH06_5 = HKicker(L=0.2) - D000080__11 = Drift(L=0.311955) - EDGE1_000__317 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__159 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__317 = Multipole(Kn1L=4.07894736378E-6) - D000018__317 = Drift(L=0.1193) - EDGE3_000__317 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__159 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__318 = Multipole(Kn1L=-4.07894736378E-6) - D000018__318 = Drift(L=0.1193) - EDGE2_000__318 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__159 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__318 = Multipole(Kn1L=-4.4179123956E-5) - D000014__187 = Drift(L=0.50037) - SD2_5__5 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__171 = Drift(L=0.1042) - SD2_5__6 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__189 = Drift(L=0.1559) - HQD_5__7 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__188 = Drift(L=0.0638) - CV06_5 = VKicker(L=0.2) - D000080__12 = Drift(L=0.311955) - EDGE1_000__319 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__160 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__319 = Multipole(Kn1L=4.07894736378E-6) - D000018__319 = Drift(L=0.1193) - EDGE3_000__319 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__160 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__320 = Multipole(Kn1L=-4.07894736378E-6) - D000018__320 = Drift(L=0.1193) - EDGE2_000__320 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__160 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__320 = Multipole(Kn1L=-4.4179123956E-5) - D000014__188 = Drift(L=0.50037) - SF2_5__5 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__172 = Drift(L=0.1042) - SF2_5__6 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__190 = Drift(L=0.1559) - HQF_5__8 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__189 = Drift(L=0.0638) - CH07_5 = HKicker(L=0.2) - D000080__13 = Drift(L=0.311955) - EDGE1_000__321 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__161 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__321 = Multipole(Kn1L=4.07894736378E-6) - D000018__321 = Drift(L=0.1193) - EDGE3_000__321 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__161 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__322 = Multipole(Kn1L=-4.07894736378E-6) - D000018__322 = Drift(L=0.1193) - EDGE2_000__322 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__161 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__322 = Multipole(Kn1L=-4.4179123956E-5) - D000014__189 = Drift(L=0.50037) - SD1_5__7 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__173 = Drift(L=0.1042) - SD1_5__8 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__191 = Drift(L=0.1559) - HQD_5__8 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__190 = Drift(L=0.0638) - CV07_5 = VKicker(L=0.2) - D000080__14 = Drift(L=0.311955) - EDGE1_000__323 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__162 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__323 = Multipole(Kn1L=4.07894736378E-6) - D000018__323 = Drift(L=0.1193) - EDGE3_000__323 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__162 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__324 = Multipole(Kn1L=-4.07894736378E-6) - D000018__324 = Drift(L=0.1193) - EDGE2_000__324 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__162 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__324 = Multipole(Kn1L=-4.4179123956E-5) - D000014__190 = Drift(L=0.50037) - SF1_5__7 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__174 = Drift(L=0.1042) - SF1_5__8 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__192 = Drift(L=0.1559) - HQF_5__9 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__191 = Drift(L=0.0638) - CH08_5 = HKicker(L=0.2) - D000080__15 = Drift(L=0.311955) - EDGE1_000__325 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__163 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__325 = Multipole(Kn1L=4.07894736378E-6) - D000018__325 = Drift(L=0.1193) - EDGE3_000__325 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__163 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__326 = Multipole(Kn1L=-4.07894736378E-6) - D000018__326 = Drift(L=0.1193) - EDGE2_000__326 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__163 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__326 = Multipole(Kn1L=-4.4179123956E-5) - D000014__191 = Drift(L=0.50037) - SD2_5__7 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__175 = Drift(L=0.1042) - SD2_5__8 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__193 = Drift(L=0.1559) - HQD_5__9 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__192 = Drift(L=0.0638) - CV08_5 = VKicker(L=0.2) - D000080__16 = Drift(L=0.311955) - EDGE1_000__327 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__164 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__327 = Multipole(Kn1L=4.07894736378E-6) - D000018__327 = Drift(L=0.1193) - EDGE3_000__327 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__164 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__328 = Multipole(Kn1L=-4.07894736378E-6) - D000018__328 = Drift(L=0.1193) - EDGE2_000__328 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__164 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__328 = Multipole(Kn1L=-4.4179123956E-5) - D000014__192 = Drift(L=0.50037) - SF2_5__7 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__176 = Drift(L=0.1042) - SF2_5__8 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__194 = Drift(L=0.1559) - HQF_5__10 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__193 = Drift(L=0.0638) - CH09_5 = HKicker(L=0.2) - D000080__17 = Drift(L=0.311955) - EDGE1_000__329 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__165 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__329 = Multipole(Kn1L=4.07894736378E-6) - D000018__329 = Drift(L=0.1193) - EDGE3_000__329 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__165 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__330 = Multipole(Kn1L=-4.07894736378E-6) - D000018__330 = Drift(L=0.1193) - EDGE2_000__330 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__165 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__330 = Multipole(Kn1L=-4.4179123956E-5) - D000014__193 = Drift(L=0.50037) - SD1_5__9 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__177 = Drift(L=0.1042) - SD1_5__10 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__195 = Drift(L=0.1559) - HQD_5__10 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__194 = Drift(L=0.0638) - CV09_5 = VKicker(L=0.2) - D000080__18 = Drift(L=0.311955) - EDGE1_000__331 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__166 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__331 = Multipole(Kn1L=4.07894736378E-6) - D000018__331 = Drift(L=0.1193) - EDGE3_000__331 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__166 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__332 = Multipole(Kn1L=-4.07894736378E-6) - D000018__332 = Drift(L=0.1193) - EDGE2_000__332 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__166 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__332 = Multipole(Kn1L=-4.4179123956E-5) - D000014__194 = Drift(L=0.50037) - SF1_5__9 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__178 = Drift(L=0.1042) - SF1_5__10 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__196 = Drift(L=0.1559) - HQF_5__11 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__195 = Drift(L=0.0638) - CH10_5 = HKicker(L=0.2) - D000080__19 = Drift(L=0.311955) - EDGE1_000__333 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__167 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__333 = Multipole(Kn1L=4.07894736378E-6) - D000018__333 = Drift(L=0.1193) - EDGE3_000__333 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__167 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__334 = Multipole(Kn1L=-4.07894736378E-6) - D000018__334 = Drift(L=0.1193) - EDGE2_000__334 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__167 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__334 = Multipole(Kn1L=-4.4179123956E-5) - D000014__195 = Drift(L=0.50037) - SD2_5__9 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__179 = Drift(L=0.1042) - SD2_5__10 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__197 = Drift(L=0.1559) - HQD_5__11 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__196 = Drift(L=0.0638) - CV10_5 = VKicker(L=0.2) - D000080__20 = Drift(L=0.311955) - EDGE1_000__335 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__168 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__335 = Multipole(Kn1L=4.07894736378E-6) - D000018__335 = Drift(L=0.1193) - EDGE3_000__335 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__168 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__336 = Multipole(Kn1L=-4.07894736378E-6) - D000018__336 = Drift(L=0.1193) - EDGE2_000__336 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__168 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__336 = Multipole(Kn1L=-4.4179123956E-5) - D000014__196 = Drift(L=0.50037) - SF2_5__9 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__180 = Drift(L=0.1042) - SF2_5__10 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__198 = Drift(L=0.1559) - HQF_5__12 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__197 = Drift(L=0.0638) - CH11_5 = HKicker(L=0.2) - D000080__21 = Drift(L=0.311955) - EDGE1_000__337 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__169 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__337 = Multipole(Kn1L=4.07894736378E-6) - D000018__337 = Drift(L=0.1193) - EDGE3_000__337 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__169 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__338 = Multipole(Kn1L=-4.07894736378E-6) - D000018__338 = Drift(L=0.1193) - EDGE2_000__338 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__169 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__338 = Multipole(Kn1L=-4.4179123956E-5) - D000014__197 = Drift(L=0.50037) - SD1_5__11 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__181 = Drift(L=0.1042) - SD1_5__12 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__199 = Drift(L=0.1559) - HQD_5__12 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__198 = Drift(L=0.0638) - CV11_5 = VKicker(L=0.2) - D000080__22 = Drift(L=0.311955) - EDGE1_000__339 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__170 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__339 = Multipole(Kn1L=4.07894736378E-6) - D000018__339 = Drift(L=0.1193) - EDGE3_000__339 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__170 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__340 = Multipole(Kn1L=-4.07894736378E-6) - D000018__340 = Drift(L=0.1193) - EDGE2_000__340 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__170 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__340 = Multipole(Kn1L=-4.4179123956E-5) - D000014__198 = Drift(L=0.50037) - SF1_5__11 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__182 = Drift(L=0.1042) - SF1_5__12 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__200 = Drift(L=0.1559) - HQF_5__13 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__199 = Drift(L=0.0638) - CH12_5 = HKicker(L=0.2) - D000080__23 = Drift(L=0.311955) - EDGE1_000__341 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__171 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__341 = Multipole(Kn1L=4.07894736378E-6) - D000018__341 = Drift(L=0.1193) - EDGE3_000__341 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__171 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__342 = Multipole(Kn1L=-4.07894736378E-6) - D000018__342 = Drift(L=0.1193) - EDGE2_000__342 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__171 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__342 = Multipole(Kn1L=-4.4179123956E-5) - D000014__199 = Drift(L=0.50037) - SD2_5__11 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__183 = Drift(L=0.1042) - SD2_5__12 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__201 = Drift(L=0.1559) - HQD_5__13 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__200 = Drift(L=0.0638) - CV12_5 = VKicker(L=0.2) - D000080__24 = Drift(L=0.311955) - EDGE1_000__343 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__172 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__343 = Multipole(Kn1L=4.07894736378E-6) - D000018__343 = Drift(L=0.1193) - EDGE3_000__343 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__172 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__344 = Multipole(Kn1L=-4.07894736378E-6) - D000018__344 = Drift(L=0.1193) - EDGE2_000__344 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__172 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__344 = Multipole(Kn1L=-4.4179123956E-5) - D000014__200 = Drift(L=0.50037) - SF2_5__11 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__184 = Drift(L=0.1042) - SF2_5__12 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__202 = Drift(L=0.1559) - HQF_5__14 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__201 = Drift(L=0.0638) - CH13_5 = HKicker(L=0.2) - D000080__25 = Drift(L=0.311955) - EDGE1_000__345 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__173 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__345 = Multipole(Kn1L=4.07894736378E-6) - D000018__345 = Drift(L=0.1193) - EDGE3_000__345 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__173 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__346 = Multipole(Kn1L=-4.07894736378E-6) - D000018__346 = Drift(L=0.1193) - EDGE2_000__346 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__173 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__346 = Multipole(Kn1L=-4.4179123956E-5) - D000014__201 = Drift(L=0.50037) - SD1_5__13 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__185 = Drift(L=0.1042) - SD1_5__14 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__203 = Drift(L=0.1559) - HQD_5__14 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__202 = Drift(L=0.0638) - CV13_5 = VKicker(L=0.2) - D000080__26 = Drift(L=0.311955) - EDGE1_000__347 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__174 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__347 = Multipole(Kn1L=4.07894736378E-6) - D000018__347 = Drift(L=0.1193) - EDGE3_000__347 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__174 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__348 = Multipole(Kn1L=-4.07894736378E-6) - D000018__348 = Drift(L=0.1193) - EDGE2_000__348 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__174 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__348 = Multipole(Kn1L=-4.4179123956E-5) - D000014__202 = Drift(L=0.50037) - SF1_5__13 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__186 = Drift(L=0.1042) - SF1_5__14 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__204 = Drift(L=0.1559) - HQF_5__15 = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__203 = Drift(L=0.0638) - CH14_5 = HKicker(L=0.2) - D000080__27 = Drift(L=0.311955) - EDGE1_000__349 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__175 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__349 = Multipole(Kn1L=4.07894736378E-6) - D000018__349 = Drift(L=0.1193) - EDGE3_000__349 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__175 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__350 = Multipole(Kn1L=-4.07894736378E-6) - D000018__350 = Drift(L=0.1193) - EDGE2_000__350 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__175 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__350 = Multipole(Kn1L=-4.4179123956E-5) - D000014__203 = Drift(L=0.50037) - SD2_5__13 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__187 = Drift(L=0.1042) - SD2_5__14 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__205 = Drift(L=0.1559) - HQD_5__15 = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__204 = Drift(L=0.0638) - CV14_5 = VKicker(L=0.2) - D000080__28 = Drift(L=0.311955) - EDGE1_000__351 = Multipole(Kn1L=-4.4179123956E-5) - D01A_000__176 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE2_000__351 = Multipole(Kn1L=4.07894736378E-6) - D000018__351 = Drift(L=0.1193) - EDGE3_000__351 = Multipole(Kn1L=-4.07894736378E-6) - D23_000__176 = SBend(L=0.611400127063, g=3.6528025370199E-3) - EDGE3_000__352 = Multipole(Kn1L=-4.07894736378E-6) - D000018__352 = Drift(L=0.1193) - EDGE2_000__352 = Multipole(Kn1L=4.07894736378E-6) - D01B_000__176 = SBend(L=3.005180646695, g=3.65280253687E-3) - EDGE1_000__352 = Multipole(Kn1L=-4.4179123956E-5) - D000014__204 = Drift(L=0.50037) - SF2_5__13 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__188 = Drift(L=0.1042) - SF2_5__14 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__206 = Drift(L=0.1559) - HQF_5C = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__205 = Drift(L=0.0638) - CH15_5 = HKicker(L=0.2) - D000080__29 = Drift(L=0.311955) - EDGE1_001__1 = Multipole(Kn1L=-3.71750681571E-5) - D01A_001__1 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE2_001__1 = Multipole(Kn1L=3.43231997011E-6) - D000029__9 = Drift(L=0.1193) - EDGE3_001__1 = Multipole(Kn1L=-3.43231997011E-6) - D23_001__1 = SBend(L=0.61140010692, g=3.3507810471287E-3) - EDGE3_001__2 = Multipole(Kn1L=-3.43231997011E-6) - D000029__10 = Drift(L=0.1193) - EDGE2_001__2 = Multipole(Kn1L=3.43231997011E-6) - D01B_001__1 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE1_001__2 = Multipole(Kn1L=-3.71750681571E-5) - D000014__205 = Drift(L=0.50037) - SD1_5__15 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000013__189 = Drift(L=0.1042) - SD1_5__16 = Sextupole(L=0.24, Kn2=-1.2585512508) - D000012__207 = Drift(L=0.1559) - HQD_5C = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__206 = Drift(L=0.0638) - CV15_5 = VKicker(L=0.2) - D000080__30 = Drift(L=0.311955) - EDGE1_001__3 = Multipole(Kn1L=-3.71750681571E-5) - D01A_001__2 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE2_001__3 = Multipole(Kn1L=3.43231997011E-6) - D000029__11 = Drift(L=0.1193) - EDGE3_001__3 = Multipole(Kn1L=-3.43231997011E-6) - D23_001__2 = SBend(L=0.61140010692, g=3.3507810471287E-3) - EDGE3_001__4 = Multipole(Kn1L=-3.43231997011E-6) - D000029__12 = Drift(L=0.1193) - EDGE2_001__4 = Multipole(Kn1L=3.43231997011E-6) - D01B_001__2 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE1_001__4 = Multipole(Kn1L=-3.71750681571E-5) - D000014__206 = Drift(L=0.50037) - SF1_5__15 = Sextupole(L=0.24, Kn2=3.1529470258) - D000013__190 = Drift(L=0.1042) - SF1_5__16 = Sextupole(L=0.24, Kn2=3.1529470258) - D000012__208 = Drift(L=0.1559) - HQF_5B = Quadrupole(L=0.5, Kn1=0.3139735856,) - D000017__207 = Drift(L=0.0638) - CH16_5 = HKicker(L=0.2) - D000080__31 = Drift(L=0.311955) - EDGE1_001__5 = Multipole(Kn1L=-3.71750681571E-5) - D01A_001__3 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE2_001__5 = Multipole(Kn1L=3.43231997011E-6) - D000029__13 = Drift(L=0.1193) - EDGE3_001__5 = Multipole(Kn1L=-3.43231997011E-6) - D23_001__3 = SBend(L=0.61140010692, g=3.3507810471287E-3) - EDGE3_001__6 = Multipole(Kn1L=-3.43231997011E-6) - D000029__14 = Drift(L=0.1193) - EDGE2_001__6 = Multipole(Kn1L=3.43231997011E-6) - D01B_001__3 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE1_001__6 = Multipole(Kn1L=-3.71750681571E-5) - D000014__207 = Drift(L=0.50037) - SD2_5__15 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000013__191 = Drift(L=0.1042) - SD2_5__16 = Sextupole(L=0.24, Kn2=-6.1246897208) - D000012__209 = Drift(L=0.1559) - HQD_5B = Quadrupole(L=0.5, Kn1=-0.3137968224,) - D000017__208 = Drift(L=0.0638) - CV16_5 = VKicker(L=0.2) - D000080__32 = Drift(L=0.311955) - EDGE1_001__7 = Multipole(Kn1L=-3.71750681571E-5) - D01A_001__4 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE2_001__7 = Multipole(Kn1L=3.43231997011E-6) - D000029__15 = Drift(L=0.1193) - EDGE3_001__7 = Multipole(Kn1L=-3.43231997011E-6) - D23_001__4 = SBend(L=0.61140010692, g=3.3507810471287E-3) - EDGE3_001__8 = Multipole(Kn1L=-3.43231997011E-6) - D000029__16 = Drift(L=0.1193) - EDGE2_001__8 = Multipole(Kn1L=3.43231997011E-6) - D01B_001__4 = SBend(L=3.005167861233, g=3.3507810471753E-3) - EDGE1_001__8 = Multipole(Kn1L=-3.71750681571E-5) - D000014__208 = Drift(L=0.50037) - SF2_5__15 = Sextupole(L=0.24, Kn2=1.7622709942) - D000013__192 = Drift(L=0.1042) - SF2_5__16 = Sextupole(L=0.24, Kn2=1.7622709942) - D000012__210 = Drift(L=0.1559) - HQF_5A = Quadrupole(L=0.5, Kn1=0.3153779824,) - D000011__4 = Drift(L=1.1) - HQD_5A = Quadrupole(L=0.5, Kn1=-0.1030417826) - D000008__25 = Drift(L=0.85) - MROT1__4 = Marker() - HSOL5_6__3 = Solenoid(L=1.8) - D000008__26 = Drift(L=0.85) - HQSS1_5 = Quadrupole(L=0.6480402, Kn1=-0.4317684894,) - D000009__31 = Drift(L=0.25) - HQSS2_5 = Quadrupole(L=0.9550568, Kn1=-0.1999111594,) - D000009__32 = Drift(L=0.25) - HQSS3_5 = Quadrupole(L=1.634532, Kn1=0.3708753774) - D000009__33 = Drift(L=0.25) - HQSS4_5 = Quadrupole(L=1.020723, Kn1=-0.288327878) - D000009__34 = Drift(L=0.25) - HQSS5_5 = Quadrupole(L=0.6861532, Kn1=-0.1632518563,) - D000008__27 = Drift(L=0.85) - HSOL5_6__4 = Solenoid(L=1.8) - MROT2__4 = Marker() - D000008__28 = Drift(L=0.85) - HQFF1_5 = Quadrupole(L=0.8, Kn1=-0.3422170623,) - D000081__1 = Drift(L=0.566391) - DB23_5__1 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000081__2 = Drift(L=0.566391) - QFF2_5 = Quadrupole(L=1.2, Kn1=0.191103341,) - D000081__3 = Drift(L=0.566391) - DB23_5__2 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000081__4 = Drift(L=0.566391) - QFF3_5 = Quadrupole(L=1.2, Kn1=-0.1586177022,) - D000081__5 = Drift(L=0.566391) - DB23_5__3 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000081__6 = Drift(L=0.566391) - QFF4_5 = Quadrupole(L=1, Kn1=0.3022856494,) - D000081__7 = Drift(L=0.566391) - DB23_5__4 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000081__8 = Drift(L=0.566391) - HQFF5_5 = Quadrupole(L=0.6, Kn1=-0.3354145962,) - D000081__9 = Drift(L=0.566391) - DB23_5__5 = SBend(L=3.8000605852935, g=5.1475963740429E-3, e1=9.780589045E-3, e2=9.780589045E-3) - D000081__10 = Drift(L=0.566391) - MFF_5 = Marker() - HQFF6_5 = Quadrupole(L=0.5, Kn1=0.2871373468,) - D000008__29 = Drift(L=0.85) - MROT3__4 = Marker() - HSOL20_6__3 = Solenoid(L=5.5, Ksol=0.142634259959) - D000008__30 = Drift(L=0.85) - HQLS1_5 = Quadrupole(L=0.9819319, Kn1=0.4980048) - D000009__35 = Drift(L=0.25) - HQLS2_5 = Quadrupole(L=1.469939, Kn1=-0.4983425) - D000009__36 = Drift(L=0.25) - HQLS3_5 = Quadrupole(L=1.530059, Kn1=0.3253198) - D000009__37 = Drift(L=0.25) - HQLS4_5 = Quadrupole(L=0.5187944, Kn1=0.498934) - D000009__38 = Drift(L=0.25) - HQLS5_5 = Quadrupole(L=1.530059, Kn1=0.3253198) - D000009__39 = Drift(L=0.25) - HQLS6_5 = Quadrupole(L=1.469939, Kn1=-0.4983425) - D000009__40 = Drift(L=0.25) - HQLS7_5 = Quadrupole(L=0.9819319, Kn1=0.4980048) - D000008__31 = Drift(L=0.85) - HSOL20_6__4 = Solenoid(L=5.5, Ksol=0.142634259959) - MROT4__4 = Marker() - D000008__32 = Drift(L=0.85) - MLRF_6 = Marker() - Q12EF_6 = Quadrupole(L=1.2, Kn1=0.05667673526,) - D000006__30 = Drift(L=0.4) - D3EF_6__1 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) - D000006__31 = Drift(L=0.4) - Q11EF_6 = Quadrupole(L=1.2, Kn1=-0.12274232) - D000006__32 = Drift(L=0.4) - D3EF_6__2 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) - D000006__33 = Drift(L=0.4) - Q10EF_6 = Quadrupole(L=1.2, Kn1=0.1325250342) - D000006__34 = Drift(L=0.4) - D3EF_6__3 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) - D000006__35 = Drift(L=0.4) - Q9EF_6 = Quadrupole(L=1.2, Kn1=0.06324195501) - D000006__36 = Drift(L=0.4) - D3EF_6__4 = SBend(L=3.8000341971292, g=3.8674060652146E-3, e1=7.348137651E-3, e2=7.348137651E-3) - D000006__37 = Drift(L=0.4) - Q8EF_6 = Quadrupole(L=1.2, Kn1=-0.1305514285) - D000005__15 = Drift(L=4.6) - Q7EF_6 = Quadrupole(L=1.2, Kn1=0.2370467134,) - D000005__16 = Drift(L=4.6) - Q6EF_6 = Quadrupole(L=1.2, Kn1=-0.2243033401) - D000005__17 = Drift(L=4.6) - Q5EF_6 = Quadrupole(L=1.2, Kn1=0.2358711172) - D000005__18 = Drift(L=4.6) - Q4EF_6 = Quadrupole(L=1.2, Kn1=-0.1541105329) - D000082 = Drift(L=12.410188) - Q3EF_6 = Quadrupole(L=0.6, Kn1=0.1207364787,) - D000007__33 = Drift(L=0.3) - RF_CRAB__4 = Drift(L=4) - D000007__34 = Drift(L=0.3) - Q2EF_6 = Quadrupole(L=0.6, Kn1=-0.07669023958) - D000006__38 = Drift(L=0.4) - D1EF_6 = SBend(L=3.8000633341148, g=-5.263071944473E-3, e1=-0.0100000033605, e2=-0.0100000033605) - D000083 = Drift(L=20.3) - MCOLL_MASK = Marker() - Q1EF_6 = Quadrupole(L=1.61, Kn1=0.1003916016) - D000022__2 = Drift(L=3.76) - Q0EF_6 = Quadrupole(L=1.2, Kn1=-0.2168808898) - D000023__2 = Drift(L=5.8) - IP6__2 = Marker() +IP6__1 = Marker() +D000001__1 = Drift( L = 5.3) +Q1ER_6 = Quadrupole( L = 1.8, Kn1 = -0.2291420342) +D000002__1 = Drift( L = 0.5) +Q2ER_6 = Quadrupole( L = 1.4, Kn1 = 0.2267785688) +D000002__2 = Drift( L = 0.5) +D2ER_6 = SBend( L = 5.50007539103, g = -3.2977170394029E-3, e1 = -9.0688461675E-3, e2 = -9.0688461675E-3) +D000003__1 = Drift( L = 22.7) +Q3ER_6 = Quadrupole( L = 0.6, Kn1 = 0.2223634541) +D000004 = Drift( L = 3.530758) +Q4ER_6 = Quadrupole( L = 0.6, Kn1 = -0.26505565,) +D000005__1 = Drift( L = 4.6) +Q5ER_6 = Quadrupole( L = 1.2, Kn1 = -0.03480279635) +D000006__1 = Drift( L = 0.4) +D3ER_6 = SBend( L = 3.8000045358949, g = -1.4085135130897E-3, e1 = -2.676178869305E-3, e2 = -2.676178869305E-3) +D000006__2 = Drift( L = 0.4) +Q6ER_6 = Quadrupole( L = 1.2, Kn1 = 0.1490047164,) +D000005__2 = Drift( L = 4.6) +Q7ER_6 = Quadrupole( L = 1.2, Kn1 = -0.1838758976,) +D000005__3 = Drift( L = 4.6) +Q9ER_6 = Quadrupole( L = 1.2, Kn1 = 0.06052528741,) +D000007__1 = Drift( L = 0.3) +RF_CRAB__1 = Drift( L = 4) +D000007__2 = Drift( L = 0.3) +Q10ER_6 = Quadrupole( L = 1.2, Kn1 = 0.1362226534) +D000005__4 = Drift( L = 4.6) +Q11ER_6 = Quadrupole( L = 1.2, Kn1 = -0.1612034901) +D000006__3 = Drift( L = 0.4) +D5ER_6__1 = SBend( L = 3.8000383782291, g = 4.097007606343E-3, e1 = 7.78439307E-3, e2 = 7.78439307E-3) +D000006__4 = Drift( L = 0.4) +Q12ER_6 = Quadrupole( L = 1.2, Kn1 = 0.1776428377) +D000006__5 = Drift( L = 0.4) +D5ER_6__2 = SBend( L = 3.8000383782291, g = 4.097007606343E-3, e1 = 7.78439307E-3, e2 = 7.78439307E-3) +D000006__6 = Drift( L = 0.4) +Q13ER_6 = Quadrupole( L = 1.2, Kn1 = 0.108262799,) +D000006__7 = Drift( L = 0.4) +D5ER_6__3 = SBend( L = 3.8000383782291, g = 4.097007606343E-3, e1 = 7.78439307E-3, e2 = 7.78439307E-3) +D000006__8 = Drift( L = 0.4) +Q14ER_6 = Quadrupole( L = 1.2, Kn1 = -0.1762142779,) +D000006__9 = Drift( L = 0.4) +D5ER_6__4 = SBend( L = 3.8000383782291, g = 4.097007606343E-3, e1 = 7.78439307E-3, e2 = 7.78439307E-3) +D000006__10 = Drift( L = 0.4) +Q15ER_6 = Quadrupole( L = 1.2, Kn1 = 0.2658297117,) +MLRR_6 = Marker() +D000008__1 = Drift( L = 0.85) +MROT4__1 = Marker() +HSOL20_6__1 = Solenoid( L = 5.5, Ksol = 0.142634259959) +D000008__2 = Drift( L = 0.85) +HQLS7_6 = Quadrupole( L = 0.9819319, Kn1 = 0.4980048) +D000009__1 = Drift( L = 0.25) +HQLS6_6 = Quadrupole( L = 1.469939, Kn1 = -0.4983425) +D000009__2 = Drift( L = 0.25) +HQLS5_6 = Quadrupole( L = 1.530059, Kn1 = 0.3253198) +D000009__3 = Drift( L = 0.25) +HQLS4_6 = Quadrupole( L = 0.5187944, Kn1 = 0.498934) +D000009__4 = Drift( L = 0.25) +HQLS3_6 = Quadrupole( L = 1.530059, Kn1 = 0.3253198) +D000009__5 = Drift( L = 0.25) +HQLS2_6 = Quadrupole( L = 1.469939, Kn1 = -0.4983425) +D000009__6 = Drift( L = 0.25) +HQLS1_6 = Quadrupole( L = 0.9819319, Kn1 = 0.4980048) +D000008__3 = Drift( L = 0.85) +HSOL20_6__2 = Solenoid( L = 5.5, Ksol = 0.142634259959) +MROT3__1 = Marker() +D000008__4 = Drift( L = 0.85) +HQFF6_6 = Quadrupole( L = 0.5, Kn1 = 0.05714467433,) +MFF_6 = Marker() +D000010__1 = Drift( L = 0.753912) +DB23_6__1 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000010__2 = Drift( L = 0.753912) +HQFF5_6 = Quadrupole( L = 0.6, Kn1 = 0.2430267659,) +D000010__3 = Drift( L = 0.753912) +DB23_6__2 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000010__4 = Drift( L = 0.753912) +QFF4_6 = Quadrupole( L = 1, Kn1 = -0.1976684766,) +D000010__5 = Drift( L = 0.753912) +DB23_6__3 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000010__6 = Drift( L = 0.753912) +QFF3_6 = Quadrupole( L = 1.2, Kn1 = 0.274784227) +D000010__7 = Drift( L = 0.753912) +DB23_6__4 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000010__8 = Drift( L = 0.753912) +QFF2_6 = Quadrupole( L = 1.2, Kn1 = -0.1372520109) +D000010__9 = Drift( L = 0.753912) +DB23_6__5 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000010__10 = Drift( L = 0.753912) +QFF1_6 = Quadrupole( L = 1.6, Kn1 = 0.2242944837,) +D000008__5 = Drift( L = 0.85) +MROT2__1 = Marker() +HSOL5_6__1 = Solenoid( L = 1.8) +D000008__6 = Drift( L = 0.85) +HQSS5_6 = Quadrupole( L = 0.6861532, Kn1 = -0.1709619063,) +D000009__7 = Drift( L = 0.25) +HQSS4_6 = Quadrupole( L = 1.020723, Kn1 = -0.3178330623,) +D000009__8 = Drift( L = 0.25) +HQSS3_6 = Quadrupole( L = 1.634532, Kn1 = 0.1897683702,) +D000009__9 = Drift( L = 0.25) +HQSS2_6 = Quadrupole( L = 0.9550568, Kn1 = 0.3512480915) +D000009__10 = Drift( L = 0.25) +HQSS1_6 = Quadrupole( L = 0.6480402, Kn1 = -0.4953496086,) +D000008__7 = Drift( L = 0.85) +HSOL5_6__2 = Solenoid( L = 1.8) +MROT1__1 = Marker() +D000008__8 = Drift( L = 0.85) +HQD_6A = Quadrupole( L = 0.5, Kn1 = -0.06747722682,) +D000011__1 = Drift( L = 1.1) +HQF_6A = Quadrupole( L = 0.5, Kn1 = 0.3359722588) +D000012__1 = Drift( L = 0.1559) +SF1_7__1 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__1 = Drift( L = 0.1042) +SF1_7__2 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__1 = Drift( L = 0.50037) +EDGE1_002__1 = Multipole( Kn1L = -5.17873518337E-5) +D01A_002__1 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) +EDGE2_002__1 = Multipole( Kn1L = 4.78133619569E-6) +D000015__1 = Drift( L = 0.1193) +EDGE3_002__1 = Multipole( Kn1L = -4.78133619569E-6) +D23_002__1 = SBend( L = 0.611400148943, g = 3.9548203741204E-3) +EDGE3_002__2 = Multipole( Kn1L = -4.78133619569E-6) +D000015__2 = Drift( L = 0.1193) +EDGE2_002__2 = Multipole( Kn1L = 4.78133619569E-6) +D01B_002__1 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) +EDGE1_002__2 = Multipole( Kn1L = -5.17873518337E-5) +D000016__1 = Drift( L = 0.374508) +CV01_7 = VKicker( L = 0.2) +D000017__1 = Drift( L = 0.0638) +HQD_6B = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__2 = Drift( L = 0.1559) +SD1_7__1 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__2 = Drift( L = 0.1042) +SD1_7__2 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__2 = Drift( L = 0.50037) +EDGE1_002__3 = Multipole( Kn1L = -5.17873518337E-5) +D01A_002__2 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) +EDGE2_002__3 = Multipole( Kn1L = 4.78133619569E-6) +D000015__3 = Drift( L = 0.1193) +EDGE3_002__3 = Multipole( Kn1L = -4.78133619569E-6) +D23_002__2 = SBend( L = 0.611400148943, g = 3.9548203741204E-3) +EDGE3_002__4 = Multipole( Kn1L = -4.78133619569E-6) +D000015__4 = Drift( L = 0.1193) +EDGE2_002__4 = Multipole( Kn1L = 4.78133619569E-6) +D01B_002__2 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) +EDGE1_002__4 = Multipole( Kn1L = -5.17873518337E-5) +D000016__2 = Drift( L = 0.374508) +CH01_7 = HKicker( L = 0.2) +D000017__2 = Drift( L = 0.0638) +HQF_6B = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__3 = Drift( L = 0.1559) +SF2_7__1 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__3 = Drift( L = 0.1042) +SF2_7__2 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__3 = Drift( L = 0.50037) +EDGE1_002__5 = Multipole( Kn1L = -5.17873518337E-5) +D01A_002__3 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) +EDGE2_002__5 = Multipole( Kn1L = 4.78133619569E-6) +D000015__5 = Drift( L = 0.1193) +EDGE3_002__5 = Multipole( Kn1L = -4.78133619569E-6) +D23_002__3 = SBend( L = 0.611400148943, g = 3.9548203741204E-3) +EDGE3_002__6 = Multipole( Kn1L = -4.78133619569E-6) +D000015__6 = Drift( L = 0.1193) +EDGE2_002__6 = Multipole( Kn1L = 4.78133619569E-6) +D01B_002__3 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) +EDGE1_002__6 = Multipole( Kn1L = -5.17873518337E-5) +D000016__3 = Drift( L = 0.374508) +CV02_7 = VKicker( L = 0.2) +D000017__3 = Drift( L = 0.0638) +HQD_6C = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__4 = Drift( L = 0.1559) +SD2_7__1 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__4 = Drift( L = 0.1042) +SD2_7__2 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__4 = Drift( L = 0.50037) +EDGE1_002__7 = Multipole( Kn1L = -5.17873518337E-5) +D01A_002__4 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) +EDGE2_002__7 = Multipole( Kn1L = 4.78133619569E-6) +D000015__7 = Drift( L = 0.1193) +EDGE3_002__7 = Multipole( Kn1L = -4.78133619569E-6) +D23_002__4 = SBend( L = 0.611400148943, g = 3.9548203741204E-3) +EDGE3_002__8 = Multipole( Kn1L = -4.78133619569E-6) +D000015__8 = Drift( L = 0.1193) +EDGE2_002__8 = Multipole( Kn1L = 4.78133619569E-6) +D01B_002__4 = SBend( L = 3.005194535002, g = 3.9548203740468E-3) +EDGE1_002__8 = Multipole( Kn1L = -5.17873518337E-5) +D000016__4 = Drift( L = 0.374508) +CH02_7 = HKicker( L = 0.2) +D000017__4 = Drift( L = 0.0638) +HQF_6C = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__5 = Drift( L = 0.1559) +SF1_7__3 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__5 = Drift( L = 0.1042) +SF1_7__4 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__5 = Drift( L = 0.50037) +EDGE1_000__1 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__1 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__1 = Multipole( Kn1L = 4.07894736378E-6) +D000018__1 = Drift( L = 0.1193) +EDGE3_000__1 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__1 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__2 = Multipole( Kn1L = -4.07894736378E-6) +D000018__2 = Drift( L = 0.1193) +EDGE2_000__2 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__1 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__2 = Multipole( Kn1L = -4.4179123956E-5) +D000016__5 = Drift( L = 0.374508) +CV03_7 = VKicker( L = 0.2) +D000017__5 = Drift( L = 0.0638) +HQD_7__1 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__6 = Drift( L = 0.1559) +SD1_7__3 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__6 = Drift( L = 0.1042) +SD1_7__4 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__6 = Drift( L = 0.50037) +EDGE1_000__3 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__2 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__3 = Multipole( Kn1L = 4.07894736378E-6) +D000018__3 = Drift( L = 0.1193) +EDGE3_000__3 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__2 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__4 = Multipole( Kn1L = -4.07894736378E-6) +D000018__4 = Drift( L = 0.1193) +EDGE2_000__4 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__2 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__4 = Multipole( Kn1L = -4.4179123956E-5) +D000016__6 = Drift( L = 0.374508) +CH03_7 = HKicker( L = 0.2) +D000017__6 = Drift( L = 0.0638) +HQF_7__1 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__7 = Drift( L = 0.1559) +SF2_7__3 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__7 = Drift( L = 0.1042) +SF2_7__4 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__7 = Drift( L = 0.50037) +EDGE1_000__5 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__3 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__5 = Multipole( Kn1L = 4.07894736378E-6) +D000018__5 = Drift( L = 0.1193) +EDGE3_000__5 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__3 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__6 = Multipole( Kn1L = -4.07894736378E-6) +D000018__6 = Drift( L = 0.1193) +EDGE2_000__6 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__3 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__6 = Multipole( Kn1L = -4.4179123956E-5) +D000016__7 = Drift( L = 0.374508) +CV04_7 = VKicker( L = 0.2) +D000017__7 = Drift( L = 0.0638) +HQD_7__2 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__8 = Drift( L = 0.1559) +SD2_7__3 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__8 = Drift( L = 0.1042) +SD2_7__4 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__8 = Drift( L = 0.50037) +EDGE1_000__7 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__4 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__7 = Multipole( Kn1L = 4.07894736378E-6) +D000018__7 = Drift( L = 0.1193) +EDGE3_000__7 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__4 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__8 = Multipole( Kn1L = -4.07894736378E-6) +D000018__8 = Drift( L = 0.1193) +EDGE2_000__8 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__4 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__8 = Multipole( Kn1L = -4.4179123956E-5) +D000016__8 = Drift( L = 0.374508) +CH04_7 = HKicker( L = 0.2) +D000017__8 = Drift( L = 0.0638) +HQF_7__2 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__9 = Drift( L = 0.1559) +SF1_7__5 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__9 = Drift( L = 0.1042) +SF1_7__6 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__9 = Drift( L = 0.50037) +EDGE1_000__9 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__5 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__9 = Multipole( Kn1L = 4.07894736378E-6) +D000018__9 = Drift( L = 0.1193) +EDGE3_000__9 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__5 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__10 = Multipole( Kn1L = -4.07894736378E-6) +D000018__10 = Drift( L = 0.1193) +EDGE2_000__10 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__5 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__10 = Multipole( Kn1L = -4.4179123956E-5) +D000016__9 = Drift( L = 0.374508) +CV05_7 = VKicker( L = 0.2) +D000017__9 = Drift( L = 0.0638) +HQD_7__3 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__10 = Drift( L = 0.1559) +SD1_7__5 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__10 = Drift( L = 0.1042) +SD1_7__6 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__10 = Drift( L = 0.50037) +EDGE1_000__11 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__6 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__11 = Multipole( Kn1L = 4.07894736378E-6) +D000018__11 = Drift( L = 0.1193) +EDGE3_000__11 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__6 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__12 = Multipole( Kn1L = -4.07894736378E-6) +D000018__12 = Drift( L = 0.1193) +EDGE2_000__12 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__6 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__12 = Multipole( Kn1L = -4.4179123956E-5) +D000016__10 = Drift( L = 0.374508) +CH05_7 = HKicker( L = 0.2) +D000017__10 = Drift( L = 0.0638) +HQF_7__3 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__11 = Drift( L = 0.1559) +SF2_7__5 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__11 = Drift( L = 0.1042) +SF2_7__6 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__11 = Drift( L = 0.50037) +EDGE1_000__13 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__7 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__13 = Multipole( Kn1L = 4.07894736378E-6) +D000018__13 = Drift( L = 0.1193) +EDGE3_000__13 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__7 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__14 = Multipole( Kn1L = -4.07894736378E-6) +D000018__14 = Drift( L = 0.1193) +EDGE2_000__14 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__7 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__14 = Multipole( Kn1L = -4.4179123956E-5) +D000016__11 = Drift( L = 0.374508) +CV06_7 = VKicker( L = 0.2) +D000017__11 = Drift( L = 0.0638) +HQD_7__4 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__12 = Drift( L = 0.1559) +SD2_7__5 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__12 = Drift( L = 0.1042) +SD2_7__6 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__12 = Drift( L = 0.50037) +EDGE1_000__15 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__8 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__15 = Multipole( Kn1L = 4.07894736378E-6) +D000018__15 = Drift( L = 0.1193) +EDGE3_000__15 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__8 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__16 = Multipole( Kn1L = -4.07894736378E-6) +D000018__16 = Drift( L = 0.1193) +EDGE2_000__16 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__8 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__16 = Multipole( Kn1L = -4.4179123956E-5) +D000016__12 = Drift( L = 0.374508) +CH06_7 = HKicker( L = 0.2) +D000017__12 = Drift( L = 0.0638) +HQF_7__4 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__13 = Drift( L = 0.1559) +SF1_7__7 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__13 = Drift( L = 0.1042) +SF1_7__8 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__13 = Drift( L = 0.50037) +EDGE1_000__17 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__9 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__17 = Multipole( Kn1L = 4.07894736378E-6) +D000018__17 = Drift( L = 0.1193) +EDGE3_000__17 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__9 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__18 = Multipole( Kn1L = -4.07894736378E-6) +D000018__18 = Drift( L = 0.1193) +EDGE2_000__18 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__9 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__18 = Multipole( Kn1L = -4.4179123956E-5) +D000016__13 = Drift( L = 0.374508) +CV07_7 = VKicker( L = 0.2) +D000017__13 = Drift( L = 0.0638) +HQD_7__5 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__14 = Drift( L = 0.1559) +SD1_7__7 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__14 = Drift( L = 0.1042) +SD1_7__8 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__14 = Drift( L = 0.50037) +EDGE1_000__19 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__10 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__19 = Multipole( Kn1L = 4.07894736378E-6) +D000018__19 = Drift( L = 0.1193) +EDGE3_000__19 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__10 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__20 = Multipole( Kn1L = -4.07894736378E-6) +D000018__20 = Drift( L = 0.1193) +EDGE2_000__20 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__10 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__20 = Multipole( Kn1L = -4.4179123956E-5) +D000016__14 = Drift( L = 0.374508) +CH07_7 = HKicker( L = 0.2) +D000017__14 = Drift( L = 0.0638) +HQF_7__5 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__15 = Drift( L = 0.1559) +SF2_7__7 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__15 = Drift( L = 0.1042) +SF2_7__8 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__15 = Drift( L = 0.50037) +EDGE1_000__21 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__11 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__21 = Multipole( Kn1L = 4.07894736378E-6) +D000018__21 = Drift( L = 0.1193) +EDGE3_000__21 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__11 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__22 = Multipole( Kn1L = -4.07894736378E-6) +D000018__22 = Drift( L = 0.1193) +EDGE2_000__22 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__11 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__22 = Multipole( Kn1L = -4.4179123956E-5) +D000016__15 = Drift( L = 0.374508) +CV08_7 = VKicker( L = 0.2) +D000017__15 = Drift( L = 0.0638) +HQD_7__6 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__16 = Drift( L = 0.1559) +SD2_7__7 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__16 = Drift( L = 0.1042) +SD2_7__8 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__16 = Drift( L = 0.50037) +EDGE1_000__23 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__12 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__23 = Multipole( Kn1L = 4.07894736378E-6) +D000018__23 = Drift( L = 0.1193) +EDGE3_000__23 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__12 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__24 = Multipole( Kn1L = -4.07894736378E-6) +D000018__24 = Drift( L = 0.1193) +EDGE2_000__24 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__12 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__24 = Multipole( Kn1L = -4.4179123956E-5) +D000016__16 = Drift( L = 0.374508) +CH08_7 = HKicker( L = 0.2) +D000017__16 = Drift( L = 0.0638) +HQF_7__6 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__17 = Drift( L = 0.1559) +SF1_7__9 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__17 = Drift( L = 0.1042) +SF1_7__10 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__17 = Drift( L = 0.50037) +EDGE1_000__25 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__13 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__25 = Multipole( Kn1L = 4.07894736378E-6) +D000018__25 = Drift( L = 0.1193) +EDGE3_000__25 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__13 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__26 = Multipole( Kn1L = -4.07894736378E-6) +D000018__26 = Drift( L = 0.1193) +EDGE2_000__26 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__13 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__26 = Multipole( Kn1L = -4.4179123956E-5) +D000016__17 = Drift( L = 0.374508) +CV09_7 = VKicker( L = 0.2) +D000017__17 = Drift( L = 0.0638) +HQD_7__7 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__18 = Drift( L = 0.1559) +SD1_7__9 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__18 = Drift( L = 0.1042) +SD1_7__10 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__18 = Drift( L = 0.50037) +EDGE1_000__27 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__14 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__27 = Multipole( Kn1L = 4.07894736378E-6) +D000018__27 = Drift( L = 0.1193) +EDGE3_000__27 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__14 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__28 = Multipole( Kn1L = -4.07894736378E-6) +D000018__28 = Drift( L = 0.1193) +EDGE2_000__28 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__14 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__28 = Multipole( Kn1L = -4.4179123956E-5) +D000016__18 = Drift( L = 0.374508) +CH09_7 = HKicker( L = 0.2) +D000017__18 = Drift( L = 0.0638) +HQF_7__7 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__19 = Drift( L = 0.1559) +SF2_7__9 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__19 = Drift( L = 0.1042) +SF2_7__10 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__19 = Drift( L = 0.50037) +EDGE1_000__29 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__15 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__29 = Multipole( Kn1L = 4.07894736378E-6) +D000018__29 = Drift( L = 0.1193) +EDGE3_000__29 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__15 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__30 = Multipole( Kn1L = -4.07894736378E-6) +D000018__30 = Drift( L = 0.1193) +EDGE2_000__30 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__15 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__30 = Multipole( Kn1L = -4.4179123956E-5) +D000016__19 = Drift( L = 0.374508) +CV10_7 = VKicker( L = 0.2) +D000017__19 = Drift( L = 0.0638) +HQD_7__8 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__20 = Drift( L = 0.1559) +SD2_7__9 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__20 = Drift( L = 0.1042) +SD2_7__10 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__20 = Drift( L = 0.50037) +EDGE1_000__31 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__16 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__31 = Multipole( Kn1L = 4.07894736378E-6) +D000018__31 = Drift( L = 0.1193) +EDGE3_000__31 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__16 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__32 = Multipole( Kn1L = -4.07894736378E-6) +D000018__32 = Drift( L = 0.1193) +EDGE2_000__32 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__16 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__32 = Multipole( Kn1L = -4.4179123956E-5) +D000016__20 = Drift( L = 0.374508) +CH10_7 = HKicker( L = 0.2) +D000017__20 = Drift( L = 0.0638) +HQF_7__8 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__21 = Drift( L = 0.1559) +SF1_7__11 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__21 = Drift( L = 0.1042) +SF1_7__12 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__21 = Drift( L = 0.50037) +EDGE1_000__33 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__17 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__33 = Multipole( Kn1L = 4.07894736378E-6) +D000018__33 = Drift( L = 0.1193) +EDGE3_000__33 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__17 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__34 = Multipole( Kn1L = -4.07894736378E-6) +D000018__34 = Drift( L = 0.1193) +EDGE2_000__34 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__17 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__34 = Multipole( Kn1L = -4.4179123956E-5) +D000016__21 = Drift( L = 0.374508) +CV11_7 = VKicker( L = 0.2) +D000017__21 = Drift( L = 0.0638) +HQD_7__9 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__22 = Drift( L = 0.1559) +SD1_7__11 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__22 = Drift( L = 0.1042) +SD1_7__12 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__22 = Drift( L = 0.50037) +EDGE1_000__35 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__18 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__35 = Multipole( Kn1L = 4.07894736378E-6) +D000018__35 = Drift( L = 0.1193) +EDGE3_000__35 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__18 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__36 = Multipole( Kn1L = -4.07894736378E-6) +D000018__36 = Drift( L = 0.1193) +EDGE2_000__36 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__18 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__36 = Multipole( Kn1L = -4.4179123956E-5) +D000016__22 = Drift( L = 0.374508) +CH11_7 = HKicker( L = 0.2) +D000017__22 = Drift( L = 0.0638) +HQF_7__9 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__23 = Drift( L = 0.1559) +SF2_7__11 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__23 = Drift( L = 0.1042) +SF2_7__12 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__23 = Drift( L = 0.50037) +EDGE1_000__37 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__19 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__37 = Multipole( Kn1L = 4.07894736378E-6) +D000018__37 = Drift( L = 0.1193) +EDGE3_000__37 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__19 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__38 = Multipole( Kn1L = -4.07894736378E-6) +D000018__38 = Drift( L = 0.1193) +EDGE2_000__38 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__19 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__38 = Multipole( Kn1L = -4.4179123956E-5) +D000016__23 = Drift( L = 0.374508) +CV12_7 = VKicker( L = 0.2) +D000017__23 = Drift( L = 0.0638) +HQD_7__10 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__24 = Drift( L = 0.1559) +SD2_7__11 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__24 = Drift( L = 0.1042) +SD2_7__12 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__24 = Drift( L = 0.50037) +EDGE1_000__39 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__20 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__39 = Multipole( Kn1L = 4.07894736378E-6) +D000018__39 = Drift( L = 0.1193) +EDGE3_000__39 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__20 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__40 = Multipole( Kn1L = -4.07894736378E-6) +D000018__40 = Drift( L = 0.1193) +EDGE2_000__40 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__20 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__40 = Multipole( Kn1L = -4.4179123956E-5) +D000016__24 = Drift( L = 0.374508) +CH12_7 = HKicker( L = 0.2) +D000017__24 = Drift( L = 0.0638) +HQF_7__10 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__25 = Drift( L = 0.1559) +SF1_7__13 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__25 = Drift( L = 0.1042) +SF1_7__14 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__25 = Drift( L = 0.50037) +EDGE1_000__41 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__21 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__41 = Multipole( Kn1L = 4.07894736378E-6) +D000018__41 = Drift( L = 0.1193) +EDGE3_000__41 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__21 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__42 = Multipole( Kn1L = -4.07894736378E-6) +D000018__42 = Drift( L = 0.1193) +EDGE2_000__42 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__21 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__42 = Multipole( Kn1L = -4.4179123956E-5) +D000016__25 = Drift( L = 0.374508) +CV13_7 = VKicker( L = 0.2) +D000017__25 = Drift( L = 0.0638) +HQD_7__11 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__26 = Drift( L = 0.1559) +SD1_7__13 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__26 = Drift( L = 0.1042) +SD1_7__14 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__26 = Drift( L = 0.50037) +EDGE1_000__43 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__22 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__43 = Multipole( Kn1L = 4.07894736378E-6) +D000018__43 = Drift( L = 0.1193) +EDGE3_000__43 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__22 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__44 = Multipole( Kn1L = -4.07894736378E-6) +D000018__44 = Drift( L = 0.1193) +EDGE2_000__44 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__22 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__44 = Multipole( Kn1L = -4.4179123956E-5) +D000016__26 = Drift( L = 0.374508) +CH13_7 = HKicker( L = 0.2) +D000017__26 = Drift( L = 0.0638) +HQF_7__11 = Quadrupole( L = 0.5, Kn1 = 0.3118076686,) +D000012__27 = Drift( L = 0.1559) +SF2_7__13 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__27 = Drift( L = 0.1042) +SF2_7__14 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__27 = Drift( L = 0.50037) +EDGE1_000__45 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__23 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__45 = Multipole( Kn1L = 4.07894736378E-6) +D000018__45 = Drift( L = 0.1193) +EDGE3_000__45 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__23 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__46 = Multipole( Kn1L = -4.07894736378E-6) +D000018__46 = Drift( L = 0.1193) +EDGE2_000__46 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__23 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__46 = Multipole( Kn1L = -4.4179123956E-5) +D000016__27 = Drift( L = 0.374508) +CV14_7 = VKicker( L = 0.2) +D000017__27 = Drift( L = 0.0638) +HQD_7__12 = Quadrupole( L = 0.5, Kn1 = -0.3116315384,) +D000012__28 = Drift( L = 0.1559) +SD2_7__13 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__28 = Drift( L = 0.1042) +SD2_7__14 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__28 = Drift( L = 0.50037) +EDGE1_000__47 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__24 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__47 = Multipole( Kn1L = 4.07894736378E-6) +D000018__47 = Drift( L = 0.1193) +EDGE3_000__47 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__24 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__48 = Multipole( Kn1L = -4.07894736378E-6) +D000018__48 = Drift( L = 0.1193) +EDGE2_000__48 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__24 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__48 = Multipole( Kn1L = -4.4179123956E-5) +D000016__28 = Drift( L = 0.374508) +CH14_7 = HKicker( L = 0.2) +D000017__28 = Drift( L = 0.0638) +HQF_7C = Quadrupole( L = 0.5, Kn1 = 0.3127956769,) +D000012__29 = Drift( L = 0.1559) +SF1_7__15 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__29 = Drift( L = 0.1042) +SF1_7__16 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__29 = Drift( L = 0.50037) +EDGE1_003__1 = Multipole( Kn1L = -5.47962034702E-5) +D01A_003__1 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) +EDGE2_003__1 = Multipole( Kn1L = 5.05910744438E-6) +D000015__9 = Drift( L = 0.1193) +EDGE3_003__1 = Multipole( Kn1L = -5.05910744438E-6) +D23_003__1 = SBend( L = 0.611400157595, g = 4.0680760596525E-3) +EDGE3_003__2 = Multipole( Kn1L = -5.05910744438E-6) +D000015__10 = Drift( L = 0.1193) +EDGE2_003__2 = Multipole( Kn1L = 5.05910744438E-6) +D01B_003__1 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) +EDGE1_003__2 = Multipole( Kn1L = -5.47962034702E-5) +D000016__29 = Drift( L = 0.374508) +CV15_7 = VKicker( L = 0.2) +D000017__29 = Drift( L = 0.0638) +HQD_7C = Quadrupole( L = 0.5, Kn1 = -0.3108838126,) +D000012__30 = Drift( L = 0.1559) +SD1_7__15 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__30 = Drift( L = 0.1042) +SD1_7__16 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__30 = Drift( L = 0.50037) +EDGE1_003__3 = Multipole( Kn1L = -5.47962034702E-5) +D01A_003__2 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) +EDGE2_003__3 = Multipole( Kn1L = 5.05910744438E-6) +D000015__11 = Drift( L = 0.1193) +EDGE3_003__3 = Multipole( Kn1L = -5.05910744438E-6) +D23_003__2 = SBend( L = 0.611400157595, g = 4.0680760596525E-3) +EDGE3_003__4 = Multipole( Kn1L = -5.05910744438E-6) +D000015__12 = Drift( L = 0.1193) +EDGE2_003__4 = Multipole( Kn1L = 5.05910744438E-6) +D01B_003__2 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) +EDGE1_003__4 = Multipole( Kn1L = -5.47962034702E-5) +D000016__30 = Drift( L = 0.374508) +CH15_7 = HKicker( L = 0.2) +D000017__30 = Drift( L = 0.0638) +HQF_7B = Quadrupole( L = 0.5, Kn1 = 0.3194594174,) +D000012__31 = Drift( L = 0.1559) +SF2_7__15 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000013__31 = Drift( L = 0.1042) +SF2_7__16 = Sextupole( L = 0.24, Kn2 = 2.465563152) +D000014__31 = Drift( L = 0.50037) +EDGE1_003__5 = Multipole( Kn1L = -5.47962034702E-5) +D01A_003__3 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) +EDGE2_003__5 = Multipole( Kn1L = 5.05910744438E-6) +D000015__13 = Drift( L = 0.1193) +EDGE3_003__5 = Multipole( Kn1L = -5.05910744438E-6) +D23_003__3 = SBend( L = 0.611400157595, g = 4.0680760596525E-3) +EDGE3_003__6 = Multipole( Kn1L = -5.05910744438E-6) +D000015__14 = Drift( L = 0.1193) +EDGE2_003__6 = Multipole( Kn1L = 5.05910744438E-6) +D01B_003__3 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) +EDGE1_003__6 = Multipole( Kn1L = -5.47962034702E-5) +D000016__31 = Drift( L = 0.374508) +CV16_7 = VKicker( L = 0.2) +D000017__31 = Drift( L = 0.0638) +HQD_7B = Quadrupole( L = 0.5, Kn1 = -0.3105982322,) +D000012__32 = Drift( L = 0.1559) +SD2_7__15 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000013__32 = Drift( L = 0.1042) +SD2_7__16 = Sextupole( L = 0.24, Kn2 = -4.313410584) +D000014__32 = Drift( L = 0.50037) +EDGE1_003__7 = Multipole( Kn1L = -5.47962034702E-5) +D01A_003__4 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) +EDGE2_003__7 = Multipole( Kn1L = 5.05910744438E-6) +D000015__15 = Drift( L = 0.1193) +EDGE3_003__7 = Multipole( Kn1L = -5.05910744438E-6) +D23_003__4 = SBend( L = 0.611400157595, g = 4.0680760596525E-3) +EDGE3_003__8 = Multipole( Kn1L = -5.05910744438E-6) +D000015__16 = Drift( L = 0.1193) +EDGE2_003__8 = Multipole( Kn1L = 5.05910744438E-6) +D01B_003__4 = SBend( L = 3.005200027448, g = 4.0680760596098E-3) +EDGE1_003__8 = Multipole( Kn1L = -5.47962034702E-5) +D000016__32 = Drift( L = 0.374508) +CH16_7 = HKicker( L = 0.2) +D000017__32 = Drift( L = 0.0638) +HQF_7A = Quadrupole( L = 0.5, Kn1 = 0.3259712517) +D000011__2 = Drift( L = 1.1) +HQD_7A = Quadrupole( L = 0.5, Kn1 = -0.071909135,) +D000008__9 = Drift( L = 0.85) +MROT1__2 = Marker() +HSOL5_8__1 = Solenoid( L = 1.8) +D000008__10 = Drift( L = 0.85) +HQSS1_7 = Quadrupole( L = 0.6480402, Kn1 = -0.1976628965) +D000009__11 = Drift( L = 0.25) +HQSS2_7 = Quadrupole( L = 0.9550568, Kn1 = -0.1370256837) +D000009__12 = Drift( L = 0.25) +HQSS3_7 = Quadrupole( L = 1.634532, Kn1 = 3.239613906E-3,) +D000009__13 = Drift( L = 0.25) +HQSS4_7 = Quadrupole( L = 1.020723, Kn1 = 0.255335572,) +D000009__14 = Drift( L = 0.25) +HQSS5_7 = Quadrupole( L = 0.6861532, Kn1 = -0.1505457051,) +D000008__11 = Drift( L = 0.85) +HSOL5_8__2 = Solenoid( L = 1.8) +MROT2__2 = Marker() +D000008__12 = Drift( L = 0.85) +HQFF1_7 = Quadrupole( L = 0.8, Kn1 = -0.1943356792,) +D000019__1 = Drift( L = 0.372681) +DB23_7__1 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000019__2 = Drift( L = 0.372681) +QFF2_7 = Quadrupole( L = 1.2, Kn1 = 0.1909728817,) +D000019__3 = Drift( L = 0.372681) +DB23_7__2 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000019__4 = Drift( L = 0.372681) +QFF3_7 = Quadrupole( L = 1.2, Kn1 = -0.1633145219,) +D000019__5 = Drift( L = 0.372681) +DB23_7__3 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000019__6 = Drift( L = 0.372681) +QFF4_7 = Quadrupole( L = 1, Kn1 = 0.2524257334) +D000019__7 = Drift( L = 0.372681) +DB23_7__4 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000019__8 = Drift( L = 0.372681) +HQFF5_7 = Quadrupole( L = 0.6, Kn1 = -0.2773213506) +D000019__9 = Drift( L = 0.372681) +DB23_7__5 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000019__10 = Drift( L = 0.372681) +MFF_7 = Marker() +HQFF6_7 = Quadrupole( L = 0.5, Kn1 = 0.3016541182,) +D000008__13 = Drift( L = 0.85) +MROT3__2 = Marker() +HSOL20_8__1 = Solenoid( L = 5.5) +D000008__14 = Drift( L = 0.85) +HQLS1_7 = Quadrupole( L = 0.9819319, Kn1 = 0.3525126074,) +D000009__15 = Drift( L = 0.25) +HQLS2_7 = Quadrupole( L = 1.469939, Kn1 = -0.3544489077,) +D000009__16 = Drift( L = 0.25) +HQLS3_7 = Quadrupole( L = 1.530059, Kn1 = 0.1497450638,) +D000009__17 = Drift( L = 0.25) +HQLS4_7 = Quadrupole( L = 0.5187944, Kn1 = 0.2705914324,) +D000009__18 = Drift( L = 0.25) +HQLS5_7 = Quadrupole( L = 1.530059, Kn1 = 0.2008969574,) +D000009__19 = Drift( L = 0.25) +HQLS6_7 = Quadrupole( L = 1.469939, Kn1 = -0.3524613373,) +D000009__20 = Drift( L = 0.25) +HQLS7_7 = Quadrupole( L = 0.9819319, Kn1 = 0.3516668168,) +D000008__15 = Drift( L = 0.85) +HSOL20_8__2 = Solenoid( L = 5.5) +MROT4__2 = Marker() +D000008__16 = Drift( L = 0.85) +MLRF_8 = Marker() +Q14EF_8 = Quadrupole( L = 1.2, Kn1 = -0.0805622429) +D000006__11 = Drift( L = 0.4) +D3EF_8__1 = SBend( L = 3.8000531337057, g = 4.8206664263497E-3, e1 = 9.15939428E-3, e2 = 9.15939428E-3) +D000006__12 = Drift( L = 0.4) +Q13EF_8 = Quadrupole( L = 1.2, Kn1 = 0.2147150407,) +D000006__13 = Drift( L = 0.4) +D3EF_8__2 = SBend( L = 3.8000531337057, g = 4.8206664263497E-3, e1 = 9.15939428E-3, e2 = 9.15939428E-3) +D000006__14 = Drift( L = 0.4) +Q12EF_8 = Quadrupole( L = 1.2, Kn1 = -0.1875116872) +D000006__15 = Drift( L = 0.4) +D3EF_8__3 = SBend( L = 3.8000531337057, g = 4.8206664263497E-3, e1 = 9.15939428E-3, e2 = 9.15939428E-3) +D000006__16 = Drift( L = 0.4) +Q11EF_8 = Quadrupole( L = 1.2, Kn1 = 0.319522109) +D000006__17 = Drift( L = 0.4) +D2EF_8 = SBend( L = 3.0051217587267, g = -4.3866170409633E-3, e1 = -6.5911591585E-3, e2 = -6.5911591585E-3) +D000006__18 = Drift( L = 0.4) +Q10EF_8 = Quadrupole( L = 1.2, Kn1 = -0.2329008389,) +D000005__5 = Drift( L = 4.6) +Q9EF_8 = Quadrupole( L = 1.2, Kn1 = 0.2677564554) +D000005__6 = Drift( L = 4.6) +Q8EF_8 = Quadrupole( L = 1.2, Kn1 = -0.1860583032) +D000005__7 = Drift( L = 4.6) +Q7EF_8 = Quadrupole( L = 1.2, Kn1 = 0.05181069896) +D000005__8 = Drift( L = 4.6) +Q6EF_8 = Quadrupole( L = 1.2, Kn1 = 0.01106416249) +D000005__9 = Drift( L = 4.6) +Q5EF_8 = Quadrupole( L = 1.2, Kn1 = 0.1111051943) +D000005__10 = Drift( L = 4.6) +Q4EF_8 = Quadrupole( L = 1.2, Kn1 = -0.1192696818) +D000020 = Drift( L = 5.367456) +Q3EF_8 = Quadrupole( L = 0.6, Kn1 = 0.1942090498) +D000007__3 = Drift( L = 0.3) +RF_CRAB__2 = Drift( L = 4) +D000007__4 = Drift( L = 0.3) +Q2EF_8 = Quadrupole( L = 0.6, Kn1 = -0.1340200446) +D000006__19 = Drift( L = 0.4) +D1EF_8__1 = SBend( L = 3.0051002796571, g = -4.9731333334425E-4, e1 = -7.47238218555E-4, e2 = -7.47238218555E-4) +D000006__20 = Drift( L = 0.4) +D1EF_8__2 = SBend( L = 3.0051002796571, g = -4.9731333334425E-4, e1 = -7.47238218555E-4, e2 = -7.47238218555E-4) +D000021 = Drift( L = 16.9) +Q1EF_8 = Quadrupole( L = 1.61, Kn1 = 0.1016217263) +D000022__1 = Drift( L = 3.76) +Q0EF_8 = Quadrupole( L = 1.2, Kn1 = -0.2159418046) +D000023__1 = Drift( L = 5.8) +IP8 = Marker() +D000001__2 = Drift( L = 5.3) +Q1ER_8 = Quadrupole( L = 1.8, Kn1 = -0.2143949606) +D000002__3 = Drift( L = 0.5) +Q2ER_8 = Quadrupole( L = 1.4, Kn1 = 0.2031685787) +D000002__4 = Drift( L = 0.5) +D2ER_8 = SBend( L = 5.50007539103, g = -3.2977170394029E-3, e1 = -9.0688461675E-3, e2 = -9.0688461675E-3) +D000003__2 = Drift( L = 22.7) +Q3ER_8 = Quadrupole( L = 0.6, Kn1 = -0.1022387522) +D000006__21 = Drift( L = 0.4) +D3ER_8 = SBend( L = 3.0051041632592, g = 1.9188151700459E-3, e1 = 2.883119728015E-3, e2 = 2.883119728015E-3) +D000024 = Drift( L = 3.522083) +Q4ER_8 = Quadrupole( L = 0.6, Kn1 = 0.1693940448) +D000025 = Drift( L = 4.8) +Q5ER_8 = Quadrupole( L = 1.2, Kn1 = -0.1475150732) +D000026 = Drift( L = 2.8) +Q6ER_8 = Quadrupole( L = 1.2, Kn1 = 0.07294971889) +D000005__11 = Drift( L = 4.6) +Q7ER_8 = Quadrupole( L = 1.2, Kn1 = 0.07596588916) +D000005__12 = Drift( L = 4.6) +Q8ER_8 = Quadrupole( L = 1.2, Kn1 = -0.202860792) +D000005__13 = Drift( L = 4.6) +Q9ER_8 = Quadrupole( L = 1.2, Kn1 = 0.09499816132) +D000007__5 = Drift( L = 0.3) +RF_CRAB__3 = Drift( L = 4) +D000007__6 = Drift( L = 0.3) +Q10ER_8 = Quadrupole( L = 1.2, Kn1 = 0.1322610543) +D000005__14 = Drift( L = 4.6) +Q11ER_8 = Quadrupole( L = 1.2, Kn1 = -0.221468388) +D000006__22 = Drift( L = 0.4) +D4ER_8 = SBend( L = 3.0051224305305, g = 4.453819619468E-3, e1 = 6.69213662E-3, e2 = 6.69213662E-3) +D000006__23 = Drift( L = 0.4) +Q12ER_8 = Quadrupole( L = 1.2, Kn1 = 0.1585832349) +D000006__24 = Drift( L = 0.4) +D5ER_8__1 = SBend( L = 3.0051198496773, g = 4.1897690181481E-3, e1 = 6.295379021E-3, e2 = 6.295379021E-3) +D000006__25 = Drift( L = 0.4) +Q13ER_8 = Quadrupole( L = 1.2, Kn1 = 0.1446740057) +D000006__26 = Drift( L = 0.4) +D5ER_8__2 = SBend( L = 3.0051198496773, g = 4.1897690181481E-3, e1 = 6.295379021E-3, e2 = 6.295379021E-3) +D000006__27 = Drift( L = 0.4) +Q14ER_8 = Quadrupole( L = 1.2, Kn1 = -0.2212744801) +D000006__28 = Drift( L = 0.4) +D5ER_8__3 = SBend( L = 3.0051198496773, g = 4.1897690181481E-3, e1 = 6.295379021E-3, e2 = 6.295379021E-3) +D000006__29 = Drift( L = 0.4) +Q15ER_8 = Quadrupole( L = 1.2, Kn1 = 0.2116494718,) +MLRR_8 = Marker() +D000008__17 = Drift( L = 0.85) +MROT4__3 = Marker() +HSOL20_8__3 = Solenoid( L = 5.5) +D000008__18 = Drift( L = 0.85) +HQLS7_8 = Quadrupole( L = 0.9819319, Kn1 = 0.3360574653) +D000009__21 = Drift( L = 0.25) +HQLS6_8 = Quadrupole( L = 1.469939, Kn1 = -0.3470868863,) +D000009__22 = Drift( L = 0.25) +HQLS5_8 = Quadrupole( L = 1.530059, Kn1 = 0.1626287734) +D000009__23 = Drift( L = 0.25) +HQLS4_8 = Quadrupole( L = 0.5187944, Kn1 = 0.2546260677) +D000009__24 = Drift( L = 0.25) +HQLS3_8 = Quadrupole( L = 1.530059, Kn1 = 0.158055864) +D000009__25 = Drift( L = 0.25) +HQLS2_8 = Quadrupole( L = 1.469939, Kn1 = -0.3498818893,) +D000009__26 = Drift( L = 0.25) +HQLS1_8 = Quadrupole( L = 0.9819319, Kn1 = 0.3342207154) +D000008__19 = Drift( L = 0.85) +HSOL20_8__4 = Solenoid( L = 5.5) +MROT3__3 = Marker() +D000008__20 = Drift( L = 0.85) +HQFF6_8 = Quadrupole( L = 0.5, Kn1 = 0.3107342787,) +MFF_8 = Marker() +D000027__1 = Drift( L = 0.354127) +DB23_8__1 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000027__2 = Drift( L = 0.354127) +HQFF5_8 = Quadrupole( L = 0.6, Kn1 = -0.3351061032) +D000027__3 = Drift( L = 0.354127) +DB23_8__2 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000027__4 = Drift( L = 0.354127) +QFF4_8 = Quadrupole( L = 1, Kn1 = 0.2878909144) +D000027__5 = Drift( L = 0.354127) +DB23_8__3 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000027__6 = Drift( L = 0.354127) +QFF3_8 = Quadrupole( L = 1.2, Kn1 = -0.2004078496) +D000027__7 = Drift( L = 0.354127) +DB23_8__4 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000027__8 = Drift( L = 0.354127) +QFF2_8 = Quadrupole( L = 1.2, Kn1 = 0.2051948078) +D000027__9 = Drift( L = 0.354127) +DB23_8__5 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000027__10 = Drift( L = 0.354127) +QFF1_8 = Quadrupole( L = 1.6, Kn1 = -0.137612492,) +D000008__21 = Drift( L = 0.85) +MROT2__3 = Marker() +HSOL5_8__3 = Solenoid( L = 1.8) +D000008__22 = Drift( L = 0.85) +HQSS5_8 = Quadrupole( L = 0.6861532, Kn1 = 0.02610418854,) +D000009__27 = Drift( L = 0.25) +HQSS4_8 = Quadrupole( L = 1.020723, Kn1 = 0.02642026735,) +D000009__28 = Drift( L = 0.25) +HQSS3_8 = Quadrupole( L = 1.634532, Kn1 = 0.07061989633,) +D000009__29 = Drift( L = 0.25) +HQSS2_8 = Quadrupole( L = 0.9550568, Kn1 = -0.099348953) +D000009__30 = Drift( L = 0.25) +HQSS1_8 = Quadrupole( L = 0.6480402, Kn1 = -0.1036476643,) +D000008__23 = Drift( L = 0.85) +HSOL5_8__4 = Solenoid( L = 1.8) +MROT1__3 = Marker() +D000008__24 = Drift( L = 0.85) +HQD_8A = Quadrupole( L = 0.5, Kn1 = -0.08760720367) +D000011__3 = Drift( L = 1.1) +HQF_8A = Quadrupole( L = 0.5, Kn1 = 0.3426857894) +D000017__33 = Drift( L = 0.0638) +CH01_9 = HKicker( L = 0.2) +D000028__1 = Drift( L = 0.29394) +EDGE1_004__1 = Multipole( Kn1L = -3.4704307448E-5) +D01A_004__1 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) +EDGE2_004__1 = Multipole( Kn1L = 3.20421122147E-6) +D000029__1 = Drift( L = 0.1193) +EDGE3_004__1 = Multipole( Kn1L = -3.20421122147E-6) +D23_004__1 = SBend( L = 0.611400099814, g = 3.2375221083251E-3) +EDGE3_004__2 = Multipole( Kn1L = -3.20421122147E-6) +D000029__2 = Drift( L = 0.1193) +EDGE2_004__2 = Multipole( Kn1L = 3.20421122147E-6) +D01B_004__1 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) +EDGE1_004__2 = Multipole( Kn1L = -3.4704307448E-5) +D000014__33 = Drift( L = 0.50037) +SD1_9__1 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000013__33 = Drift( L = 0.1042) +SD1_9__2 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000012__33 = Drift( L = 0.1559) +HQD_8B = Quadrupole( L = 0.5, Kn1 = -0.3126076902,) +D000017__34 = Drift( L = 0.0638) +CV01_9 = VKicker( L = 0.2) +D000028__2 = Drift( L = 0.29394) +EDGE1_004__3 = Multipole( Kn1L = -3.4704307448E-5) +D01A_004__2 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) +EDGE2_004__3 = Multipole( Kn1L = 3.20421122147E-6) +D000029__3 = Drift( L = 0.1193) +EDGE3_004__3 = Multipole( Kn1L = -3.20421122147E-6) +D23_004__2 = SBend( L = 0.611400099814, g = 3.2375221083251E-3) +EDGE3_004__4 = Multipole( Kn1L = -3.20421122147E-6) +D000029__4 = Drift( L = 0.1193) +EDGE2_004__4 = Multipole( Kn1L = 3.20421122147E-6) +D01B_004__2 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) +EDGE1_004__4 = Multipole( Kn1L = -3.4704307448E-5) +D000014__34 = Drift( L = 0.50037) +SF1_9__1 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000013__34 = Drift( L = 0.1042) +SF1_9__2 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000012__34 = Drift( L = 0.1559) +HQF_8B = Quadrupole( L = 0.5, Kn1 = 0.3285018589,) +D000017__35 = Drift( L = 0.0638) +CH02_9 = HKicker( L = 0.2) +D000028__3 = Drift( L = 0.29394) +EDGE1_004__5 = Multipole( Kn1L = -3.4704307448E-5) +D01A_004__3 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) +EDGE2_004__5 = Multipole( Kn1L = 3.20421122147E-6) +D000029__5 = Drift( L = 0.1193) +EDGE3_004__5 = Multipole( Kn1L = -3.20421122147E-6) +D23_004__3 = SBend( L = 0.611400099814, g = 3.2375221083251E-3) +EDGE3_004__6 = Multipole( Kn1L = -3.20421122147E-6) +D000029__6 = Drift( L = 0.1193) +EDGE2_004__6 = Multipole( Kn1L = 3.20421122147E-6) +D01B_004__3 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) +EDGE1_004__6 = Multipole( Kn1L = -3.4704307448E-5) +D000014__35 = Drift( L = 0.50037) +SD2_9__1 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000013__35 = Drift( L = 0.1042) +SD2_9__2 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000012__35 = Drift( L = 0.1559) +HQD_8C = Quadrupole( L = 0.5, Kn1 = -0.3136673336,) +D000017__36 = Drift( L = 0.0638) +CV02_9 = VKicker( L = 0.2) +D000028__4 = Drift( L = 0.29394) +EDGE1_004__7 = Multipole( Kn1L = -3.4704307448E-5) +D01A_004__4 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) +EDGE2_004__7 = Multipole( Kn1L = 3.20421122147E-6) +D000029__7 = Drift( L = 0.1193) +EDGE3_004__7 = Multipole( Kn1L = -3.20421122147E-6) +D23_004__4 = SBend( L = 0.611400099814, g = 3.2375221083251E-3) +EDGE3_004__8 = Multipole( Kn1L = -3.20421122147E-6) +D000029__8 = Drift( L = 0.1193) +EDGE2_004__8 = Multipole( Kn1L = 3.20421122147E-6) +D01B_004__4 = SBend( L = 3.005163351009, g = 3.2375221083251E-3) +EDGE1_004__8 = Multipole( Kn1L = -3.4704307448E-5) +D000014__36 = Drift( L = 0.50037) +SF2_9__1 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000013__36 = Drift( L = 0.1042) +SF2_9__2 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000012__36 = Drift( L = 0.1559) +HQF_8C = Quadrupole( L = 0.5, Kn1 = 0.3021376478,) +D000017__37 = Drift( L = 0.0638) +CH03_9 = HKicker( L = 0.2) +D000028__5 = Drift( L = 0.29394) +EDGE1_000__49 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__25 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__49 = Multipole( Kn1L = 4.07894736378E-6) +D000018__49 = Drift( L = 0.1193) +EDGE3_000__49 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__25 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__50 = Multipole( Kn1L = -4.07894736378E-6) +D000018__50 = Drift( L = 0.1193) +EDGE2_000__50 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__25 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__50 = Multipole( Kn1L = -4.4179123956E-5) +D000014__37 = Drift( L = 0.50037) +SD1_9__3 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000013__37 = Drift( L = 0.1042) +SD1_9__4 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000012__37 = Drift( L = 0.1559) +HQD_9__1 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__38 = Drift( L = 0.0638) +CV03_9 = VKicker( L = 0.2) +D000028__6 = Drift( L = 0.29394) +EDGE1_000__51 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__26 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__51 = Multipole( Kn1L = 4.07894736378E-6) +D000018__51 = Drift( L = 0.1193) +EDGE3_000__51 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__26 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__52 = Multipole( Kn1L = -4.07894736378E-6) +D000018__52 = Drift( L = 0.1193) +EDGE2_000__52 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__26 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__52 = Multipole( Kn1L = -4.4179123956E-5) +D000014__38 = Drift( L = 0.50037) +SF1_9__3 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000013__38 = Drift( L = 0.1042) +SF1_9__4 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000012__38 = Drift( L = 0.1559) +HQF_9__1 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__39 = Drift( L = 0.0638) +CH04_9 = HKicker( L = 0.2) +D000028__7 = Drift( L = 0.29394) +EDGE1_000__53 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__27 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__53 = Multipole( Kn1L = 4.07894736378E-6) +D000018__53 = Drift( L = 0.1193) +EDGE3_000__53 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__27 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__54 = Multipole( Kn1L = -4.07894736378E-6) +D000018__54 = Drift( L = 0.1193) +EDGE2_000__54 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__27 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__54 = Multipole( Kn1L = -4.4179123956E-5) +D000014__39 = Drift( L = 0.50037) +SD2_9__3 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000013__39 = Drift( L = 0.1042) +SD2_9__4 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000012__39 = Drift( L = 0.1559) +HQD_9__2 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__40 = Drift( L = 0.0638) +CV04_9 = VKicker( L = 0.2) +D000028__8 = Drift( L = 0.29394) +EDGE1_000__55 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__28 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__55 = Multipole( Kn1L = 4.07894736378E-6) +D000018__55 = Drift( L = 0.1193) +EDGE3_000__55 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__28 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__56 = Multipole( Kn1L = -4.07894736378E-6) +D000018__56 = Drift( L = 0.1193) +EDGE2_000__56 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__28 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__56 = Multipole( Kn1L = -4.4179123956E-5) +D000014__40 = Drift( L = 0.50037) +SF2_9__3 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000013__40 = Drift( L = 0.1042) +SF2_9__4 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000012__40 = Drift( L = 0.1559) +HQF_9__2 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__41 = Drift( L = 0.0638) +CH05_9 = HKicker( L = 0.2) +D000028__9 = Drift( L = 0.29394) +EDGE1_000__57 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__29 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__57 = Multipole( Kn1L = 4.07894736378E-6) +D000018__57 = Drift( L = 0.1193) +EDGE3_000__57 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__29 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__58 = Multipole( Kn1L = -4.07894736378E-6) +D000018__58 = Drift( L = 0.1193) +EDGE2_000__58 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__29 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__58 = Multipole( Kn1L = -4.4179123956E-5) +D000014__41 = Drift( L = 0.50037) +SD1_9__5 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000013__41 = Drift( L = 0.1042) +SD1_9__6 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000012__41 = Drift( L = 0.1559) +HQD_9__3 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__42 = Drift( L = 0.0638) +CV05_9 = VKicker( L = 0.2) +D000028__10 = Drift( L = 0.29394) +EDGE1_000__59 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__30 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__59 = Multipole( Kn1L = 4.07894736378E-6) +D000018__59 = Drift( L = 0.1193) +EDGE3_000__59 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__30 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__60 = Multipole( Kn1L = -4.07894736378E-6) +D000018__60 = Drift( L = 0.1193) +EDGE2_000__60 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__30 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__60 = Multipole( Kn1L = -4.4179123956E-5) +D000014__42 = Drift( L = 0.50037) +SF1_9__5 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000013__42 = Drift( L = 0.1042) +SF1_9__6 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000012__42 = Drift( L = 0.1559) +HQF_9__3 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__43 = Drift( L = 0.0638) +CH06_9 = HKicker( L = 0.2) +D000028__11 = Drift( L = 0.29394) +EDGE1_000__61 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__31 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__61 = Multipole( Kn1L = 4.07894736378E-6) +D000018__61 = Drift( L = 0.1193) +EDGE3_000__61 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__31 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__62 = Multipole( Kn1L = -4.07894736378E-6) +D000018__62 = Drift( L = 0.1193) +EDGE2_000__62 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__31 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__62 = Multipole( Kn1L = -4.4179123956E-5) +D000014__43 = Drift( L = 0.50037) +SD2_9__5 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000013__43 = Drift( L = 0.1042) +SD2_9__6 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000012__43 = Drift( L = 0.1559) +HQD_9__4 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__44 = Drift( L = 0.0638) +CV06_9 = VKicker( L = 0.2) +D000028__12 = Drift( L = 0.29394) +EDGE1_000__63 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__32 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__63 = Multipole( Kn1L = 4.07894736378E-6) +D000018__63 = Drift( L = 0.1193) +EDGE3_000__63 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__32 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__64 = Multipole( Kn1L = -4.07894736378E-6) +D000018__64 = Drift( L = 0.1193) +EDGE2_000__64 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__32 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__64 = Multipole( Kn1L = -4.4179123956E-5) +D000014__44 = Drift( L = 0.50037) +SF2_9__5 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000013__44 = Drift( L = 0.1042) +SF2_9__6 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000012__44 = Drift( L = 0.1559) +HQF_9__4 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__45 = Drift( L = 0.0638) +CH07_9 = HKicker( L = 0.2) +D000028__13 = Drift( L = 0.29394) +EDGE1_000__65 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__33 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__65 = Multipole( Kn1L = 4.07894736378E-6) +D000018__65 = Drift( L = 0.1193) +EDGE3_000__65 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__33 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__66 = Multipole( Kn1L = -4.07894736378E-6) +D000018__66 = Drift( L = 0.1193) +EDGE2_000__66 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__33 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__66 = Multipole( Kn1L = -4.4179123956E-5) +D000014__45 = Drift( L = 0.50037) +SD1_9__7 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000013__45 = Drift( L = 0.1042) +SD1_9__8 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000012__45 = Drift( L = 0.1559) +HQD_9__5 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__46 = Drift( L = 0.0638) +CV07_9 = VKicker( L = 0.2) +D000028__14 = Drift( L = 0.29394) +EDGE1_000__67 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__34 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__67 = Multipole( Kn1L = 4.07894736378E-6) +D000018__67 = Drift( L = 0.1193) +EDGE3_000__67 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__34 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__68 = Multipole( Kn1L = -4.07894736378E-6) +D000018__68 = Drift( L = 0.1193) +EDGE2_000__68 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__34 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__68 = Multipole( Kn1L = -4.4179123956E-5) +D000014__46 = Drift( L = 0.50037) +SF1_9__7 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000013__46 = Drift( L = 0.1042) +SF1_9__8 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000012__46 = Drift( L = 0.1559) +HQF_9__5 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__47 = Drift( L = 0.0638) +CH08_9 = HKicker( L = 0.2) +D000028__15 = Drift( L = 0.29394) +EDGE1_000__69 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__35 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__69 = Multipole( Kn1L = 4.07894736378E-6) +D000018__69 = Drift( L = 0.1193) +EDGE3_000__69 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__35 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__70 = Multipole( Kn1L = -4.07894736378E-6) +D000018__70 = Drift( L = 0.1193) +EDGE2_000__70 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__35 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__70 = Multipole( Kn1L = -4.4179123956E-5) +D000014__47 = Drift( L = 0.50037) +SD2_9__7 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000013__47 = Drift( L = 0.1042) +SD2_9__8 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000012__47 = Drift( L = 0.1559) +HQD_9__6 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__48 = Drift( L = 0.0638) +CV08_9 = VKicker( L = 0.2) +D000028__16 = Drift( L = 0.29394) +EDGE1_000__71 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__36 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__71 = Multipole( Kn1L = 4.07894736378E-6) +D000018__71 = Drift( L = 0.1193) +EDGE3_000__71 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__36 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__72 = Multipole( Kn1L = -4.07894736378E-6) +D000018__72 = Drift( L = 0.1193) +EDGE2_000__72 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__36 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__72 = Multipole( Kn1L = -4.4179123956E-5) +D000014__48 = Drift( L = 0.50037) +SF2_9__7 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000013__48 = Drift( L = 0.1042) +SF2_9__8 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000012__48 = Drift( L = 0.1559) +HQF_9__6 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__49 = Drift( L = 0.0638) +CH09_9 = HKicker( L = 0.2) +D000028__17 = Drift( L = 0.29394) +EDGE1_000__73 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__37 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__73 = Multipole( Kn1L = 4.07894736378E-6) +D000018__73 = Drift( L = 0.1193) +EDGE3_000__73 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__37 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__74 = Multipole( Kn1L = -4.07894736378E-6) +D000018__74 = Drift( L = 0.1193) +EDGE2_000__74 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__37 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__74 = Multipole( Kn1L = -4.4179123956E-5) +D000014__49 = Drift( L = 0.50037) +SD1_9__9 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000013__49 = Drift( L = 0.1042) +SD1_9__10 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000012__49 = Drift( L = 0.1559) +HQD_9__7 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__50 = Drift( L = 0.0638) +CV09_9 = VKicker( L = 0.2) +D000028__18 = Drift( L = 0.29394) +EDGE1_000__75 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__38 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__75 = Multipole( Kn1L = 4.07894736378E-6) +D000018__75 = Drift( L = 0.1193) +EDGE3_000__75 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__38 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__76 = Multipole( Kn1L = -4.07894736378E-6) +D000018__76 = Drift( L = 0.1193) +EDGE2_000__76 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__38 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__76 = Multipole( Kn1L = -4.4179123956E-5) +D000014__50 = Drift( L = 0.50037) +SF1_9__9 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000013__50 = Drift( L = 0.1042) +SF1_9__10 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000012__50 = Drift( L = 0.1559) +HQF_9__7 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__51 = Drift( L = 0.0638) +CH10_9 = HKicker( L = 0.2) +D000028__19 = Drift( L = 0.29394) +EDGE1_000__77 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__39 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__77 = Multipole( Kn1L = 4.07894736378E-6) +D000018__77 = Drift( L = 0.1193) +EDGE3_000__77 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__39 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__78 = Multipole( Kn1L = -4.07894736378E-6) +D000018__78 = Drift( L = 0.1193) +EDGE2_000__78 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__39 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__78 = Multipole( Kn1L = -4.4179123956E-5) +D000014__51 = Drift( L = 0.50037) +SD2_9__9 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000013__51 = Drift( L = 0.1042) +SD2_9__10 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000012__51 = Drift( L = 0.1559) +HQD_9__8 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__52 = Drift( L = 0.0638) +CV10_9 = VKicker( L = 0.2) +D000028__20 = Drift( L = 0.29394) +EDGE1_000__79 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__40 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__79 = Multipole( Kn1L = 4.07894736378E-6) +D000018__79 = Drift( L = 0.1193) +EDGE3_000__79 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__40 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__80 = Multipole( Kn1L = -4.07894736378E-6) +D000018__80 = Drift( L = 0.1193) +EDGE2_000__80 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__40 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__80 = Multipole( Kn1L = -4.4179123956E-5) +D000014__52 = Drift( L = 0.50037) +SF2_9__9 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000013__52 = Drift( L = 0.1042) +SF2_9__10 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000012__52 = Drift( L = 0.1559) +HQF_9__8 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__53 = Drift( L = 0.0638) +CH11_9 = HKicker( L = 0.2) +D000028__21 = Drift( L = 0.29394) +EDGE1_000__81 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__41 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__81 = Multipole( Kn1L = 4.07894736378E-6) +D000018__81 = Drift( L = 0.1193) +EDGE3_000__81 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__41 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__82 = Multipole( Kn1L = -4.07894736378E-6) +D000018__82 = Drift( L = 0.1193) +EDGE2_000__82 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__41 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__82 = Multipole( Kn1L = -4.4179123956E-5) +D000014__53 = Drift( L = 0.50037) +SD1_9__11 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000013__53 = Drift( L = 0.1042) +SD1_9__12 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000012__53 = Drift( L = 0.1559) +HQD_9__9 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__54 = Drift( L = 0.0638) +CV11_9 = VKicker( L = 0.2) +D000028__22 = Drift( L = 0.29394) +EDGE1_000__83 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__42 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__83 = Multipole( Kn1L = 4.07894736378E-6) +D000018__83 = Drift( L = 0.1193) +EDGE3_000__83 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__42 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__84 = Multipole( Kn1L = -4.07894736378E-6) +D000018__84 = Drift( L = 0.1193) +EDGE2_000__84 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__42 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__84 = Multipole( Kn1L = -4.4179123956E-5) +D000014__54 = Drift( L = 0.50037) +SF1_9__11 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000013__54 = Drift( L = 0.1042) +SF1_9__12 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000012__54 = Drift( L = 0.1559) +HQF_9__9 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__55 = Drift( L = 0.0638) +CH12_9 = HKicker( L = 0.2) +D000028__23 = Drift( L = 0.29394) +EDGE1_000__85 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__43 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__85 = Multipole( Kn1L = 4.07894736378E-6) +D000018__85 = Drift( L = 0.1193) +EDGE3_000__85 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__43 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__86 = Multipole( Kn1L = -4.07894736378E-6) +D000018__86 = Drift( L = 0.1193) +EDGE2_000__86 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__43 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__86 = Multipole( Kn1L = -4.4179123956E-5) +D000014__55 = Drift( L = 0.50037) +SD2_9__11 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000013__55 = Drift( L = 0.1042) +SD2_9__12 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000012__55 = Drift( L = 0.1559) +HQD_9__10 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__56 = Drift( L = 0.0638) +CV12_9 = VKicker( L = 0.2) +D000028__24 = Drift( L = 0.29394) +EDGE1_000__87 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__44 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__87 = Multipole( Kn1L = 4.07894736378E-6) +D000018__87 = Drift( L = 0.1193) +EDGE3_000__87 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__44 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__88 = Multipole( Kn1L = -4.07894736378E-6) +D000018__88 = Drift( L = 0.1193) +EDGE2_000__88 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__44 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__88 = Multipole( Kn1L = -4.4179123956E-5) +D000014__56 = Drift( L = 0.50037) +SF2_9__11 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000013__56 = Drift( L = 0.1042) +SF2_9__12 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000012__56 = Drift( L = 0.1559) +HQF_9__10 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__57 = Drift( L = 0.0638) +CH13_9 = HKicker( L = 0.2) +D000028__25 = Drift( L = 0.29394) +EDGE1_000__89 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__45 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__89 = Multipole( Kn1L = 4.07894736378E-6) +D000018__89 = Drift( L = 0.1193) +EDGE3_000__89 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__45 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__90 = Multipole( Kn1L = -4.07894736378E-6) +D000018__90 = Drift( L = 0.1193) +EDGE2_000__90 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__45 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__90 = Multipole( Kn1L = -4.4179123956E-5) +D000014__57 = Drift( L = 0.50037) +SD1_9__13 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000013__57 = Drift( L = 0.1042) +SD1_9__14 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000012__57 = Drift( L = 0.1559) +HQD_9__11 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__58 = Drift( L = 0.0638) +CV13_9 = VKicker( L = 0.2) +D000028__26 = Drift( L = 0.29394) +EDGE1_000__91 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__46 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__91 = Multipole( Kn1L = 4.07894736378E-6) +D000018__91 = Drift( L = 0.1193) +EDGE3_000__91 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__46 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__92 = Multipole( Kn1L = -4.07894736378E-6) +D000018__92 = Drift( L = 0.1193) +EDGE2_000__92 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__46 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__92 = Multipole( Kn1L = -4.4179123956E-5) +D000014__58 = Drift( L = 0.50037) +SF1_9__13 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000013__58 = Drift( L = 0.1042) +SF1_9__14 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000012__58 = Drift( L = 0.1559) +HQF_9__11 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__59 = Drift( L = 0.0638) +CH14_9 = HKicker( L = 0.2) +D000028__27 = Drift( L = 0.29394) +EDGE1_000__93 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__47 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__93 = Multipole( Kn1L = 4.07894736378E-6) +D000018__93 = Drift( L = 0.1193) +EDGE3_000__93 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__47 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__94 = Multipole( Kn1L = -4.07894736378E-6) +D000018__94 = Drift( L = 0.1193) +EDGE2_000__94 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__47 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__94 = Multipole( Kn1L = -4.4179123956E-5) +D000014__59 = Drift( L = 0.50037) +SD2_9__13 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000013__59 = Drift( L = 0.1042) +SD2_9__14 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000012__59 = Drift( L = 0.1559) +HQD_9__12 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__60 = Drift( L = 0.0638) +CV14_9 = VKicker( L = 0.2) +D000028__28 = Drift( L = 0.29394) +EDGE1_000__95 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__48 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__95 = Multipole( Kn1L = 4.07894736378E-6) +D000018__95 = Drift( L = 0.1193) +EDGE3_000__95 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__48 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__96 = Multipole( Kn1L = -4.07894736378E-6) +D000018__96 = Drift( L = 0.1193) +EDGE2_000__96 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__48 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__96 = Multipole( Kn1L = -4.4179123956E-5) +D000014__60 = Drift( L = 0.50037) +SF2_9__13 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000013__60 = Drift( L = 0.1042) +SF2_9__14 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000012__60 = Drift( L = 0.1559) +HQF_9__12 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__61 = Drift( L = 0.0638) +CH15_9 = HKicker( L = 0.2) +D000028__29 = Drift( L = 0.29394) +EDGE1_000__97 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__49 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__97 = Multipole( Kn1L = 4.07894736378E-6) +D000018__97 = Drift( L = 0.1193) +EDGE3_000__97 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__49 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__98 = Multipole( Kn1L = -4.07894736378E-6) +D000018__98 = Drift( L = 0.1193) +EDGE2_000__98 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__49 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__98 = Multipole( Kn1L = -4.4179123956E-5) +D000014__61 = Drift( L = 0.50037) +SD1_9__15 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000013__61 = Drift( L = 0.1042) +SD1_9__16 = Sextupole( L = 0.24, Kn2 = -5.8103245174) +D000012__61 = Drift( L = 0.1559) +HQD_9__13 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__62 = Drift( L = 0.0638) +CV15_9 = VKicker( L = 0.2) +D000028__30 = Drift( L = 0.29394) +EDGE1_000__99 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__50 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__99 = Multipole( Kn1L = 4.07894736378E-6) +D000018__99 = Drift( L = 0.1193) +EDGE3_000__99 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__50 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__100 = Multipole( Kn1L = -4.07894736378E-6) +D000018__100 = Drift( L = 0.1193) +EDGE2_000__100 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__50 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__100 = Multipole( Kn1L = -4.4179123956E-5) +D000014__62 = Drift( L = 0.50037) +SF1_9__15 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000013__62 = Drift( L = 0.1042) +SF1_9__16 = Sextupole( L = 0.24, Kn2 = 1.7172760006) +D000012__62 = Drift( L = 0.1559) +HQF_9__13 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__63 = Drift( L = 0.0638) +CH16_9 = HKicker( L = 0.2) +D000028__31 = Drift( L = 0.29394) +EDGE1_000__101 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__51 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__101 = Multipole( Kn1L = 4.07894736378E-6) +D000018__101 = Drift( L = 0.1193) +EDGE3_000__101 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__51 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__102 = Multipole( Kn1L = -4.07894736378E-6) +D000018__102 = Drift( L = 0.1193) +EDGE2_000__102 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__51 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__102 = Multipole( Kn1L = -4.4179123956E-5) +D000014__63 = Drift( L = 0.50037) +SD2_9__15 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000013__63 = Drift( L = 0.1042) +SD2_9__16 = Sextupole( L = 0.24, Kn2 = -2.4101857362) +D000012__63 = Drift( L = 0.1559) +HQD_9__14 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__64 = Drift( L = 0.0638) +CV16_9 = VKicker( L = 0.2) +D000028__32 = Drift( L = 0.29394) +EDGE1_000__103 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__52 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__103 = Multipole( Kn1L = 4.07894736378E-6) +D000018__103 = Drift( L = 0.1193) +EDGE3_000__103 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__52 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__104 = Multipole( Kn1L = -4.07894736378E-6) +D000018__104 = Drift( L = 0.1193) +EDGE2_000__104 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__52 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__104 = Multipole( Kn1L = -4.4179123956E-5) +D000014__64 = Drift( L = 0.50037) +SF2_9__15 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000013__64 = Drift( L = 0.1042) +SF2_9__16 = Sextupole( L = 0.24, Kn2 = 3.010408804) +D000012__64 = Drift( L = 0.1559) +HQF_9__14 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000017__65 = Drift( L = 0.0638) +CH17_9 = HKicker( L = 0.2) +D000030__1 = Drift( L = 1.507746) +DB23_9__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000014__65 = Drift( L = 0.50037) +SD17_9 = Sextupole( L = 0.24) +D000012__65 = Drift( L = 0.1559) +HQD_9__15 = Quadrupole( L = 0.5, Kn1 = -0.3144260183,) +D000017__66 = Drift( L = 0.0638) +CV17_9 = VKicker( L = 0.2) +D000030__2 = Drift( L = 1.507746) +DB23_9__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000014__66 = Drift( L = 0.50037) +SF17_9 = Sextupole( L = 0.24) +D000012__66 = Drift( L = 0.1559) +HQF_9__15 = Quadrupole( L = 0.5, Kn1 = 0.3146029671,) +D000031__1 = Drift( L = 4.09917) +HQM22_9 = Quadrupole( L = 0.6, Kn1 = -0.1685397554,) +D000031__2 = Drift( L = 4.09917) +HQM21_9 = Quadrupole( L = 0.6, Kn1 = -0.1480298273) +D000032__1 = Drift( L = 0.535) +DB23_9__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__2 = Drift( L = 0.535) +HQM20_9 = Quadrupole( L = 0.6, Kn1 = 0.277981004) +D000032__3 = Drift( L = 0.535) +DB23_9__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__4 = Drift( L = 0.535) +HQM19_9 = Quadrupole( L = 0.6, Kn1 = -0.2250375129) +D000033__1 = Drift( L = 2.888539) +HQM18_9 = Quadrupole( L = 0.6, Kn1 = 0.02025658815,) +D000033__2 = Drift( L = 2.888539) +HQM17_9 = Quadrupole( L = 0.6, Kn1 = 0.03151369613,) +D000033__3 = Drift( L = 2.888539) +HQM16_9 = Quadrupole( L = 0.6, Kn1 = -0.1023890903,) +D000033__4 = Drift( L = 2.888539) +HQM15_9 = Quadrupole( L = 0.6, Kn1 = 0.1915717998,) +D000033__5 = Drift( L = 2.888539) +HQM14_9 = Quadrupole( L = 0.6, Kn1 = -0.1029612912,) +D000033__6 = Drift( L = 2.888539) +HQM13_9 = Quadrupole( L = 0.6, Kn1 = 0.2169016275) +D000032__5 = Drift( L = 0.535) +DB23_9__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__6 = Drift( L = 0.535) +HQM12_9 = Quadrupole( L = 0.6, Kn1 = -0.1792559115,) +D000032__7 = Drift( L = 0.535) +DB23_9__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000034 = Drift( L = 14.482069) +HQFSS_10__1 = Quadrupole( L = 0.6, Kn1 = 0.2106851444) +D000035__1 = Drift( L = 8.25) +HQDSS_10__1 = Quadrupole( L = 0.6, Kn1 = -0.2091039051) +D000035__2 = Drift( L = 8.25) +HQFSS_10__2 = Quadrupole( L = 0.6, Kn1 = 0.2106851444) +D000035__3 = Drift( L = 8.25) +HQDSS_10__2 = Quadrupole( L = 0.6, Kn1 = -0.2091039051) +D000036 = Drift( L = 6.11312) +HQFLSS_10__1 = Quadrupole( L = 1.2, Kn1 = 0.1407178134) +D000007__7 = Drift( L = 0.3) +RF0__1 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__8 = Drift( L = 0.3) +RF0__2 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__9 = Drift( L = 0.3) +HQDLSS_10__1 = Quadrupole( L = 1.2, Kn1 = -0.1176261853,) +D000007__10 = Drift( L = 0.3) +RF0__3 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__11 = Drift( L = 0.3) +RF0__4 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__12 = Drift( L = 0.3) +HQFLSS_10__2 = Quadrupole( L = 1.2, Kn1 = 0.1407178134) +D000007__13 = Drift( L = 0.3) +RF0__5 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__14 = Drift( L = 0.3) +RF0__6 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__15 = Drift( L = 0.3) +HQDLSS_10__2 = Quadrupole( L = 1.2, Kn1 = -0.1176261853,) +D000007__16 = Drift( L = 0.3) +RF0__7 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__17 = Drift( L = 0.3) +RF0__8 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__18 = Drift( L = 0.3) +HQFLSS_10__3 = Quadrupole( L = 1.2, Kn1 = 0.1407178134) +D000007__19 = Drift( L = 0.3) +RF0__9 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000037 = Drift( L = 0.3,) +RF0__10 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__20 = Drift( L = 0.3) +HQDLSS_10__3 = Quadrupole( L = 1.2, Kn1 = -0.1176261853,) +D000007__21 = Drift( L = 0.3) +RF0__11 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__22 = Drift( L = 0.3) +RF0__12 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__23 = Drift( L = 0.3) +HQFLSS_10__4 = Quadrupole( L = 1.2, Kn1 = 0.1407178134) +D000007__24 = Drift( L = 0.3) +RF0__13 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__25 = Drift( L = 0.3) +RF0__14 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__26 = Drift( L = 0.3) +HQDLSS_10__4 = Quadrupole( L = 1.2, Kn1 = -0.1176261853,) +D000007__27 = Drift( L = 0.3) +RF0__15 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__28 = Drift( L = 0.3) +RF0__16 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__29 = Drift( L = 0.3) +HQFLSS_10__5 = Quadrupole( L = 1.2, Kn1 = 0.1407178134) +D000007__30 = Drift( L = 0.3) +RF0__17 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__31 = Drift( L = 0.3) +RF0__18 = RFCavity( L = 4.01667, voltage=3.3210942126011E6, rf_frequency = 5.9114268014977E8) +D000007__32 = Drift( L = 0.3) +HQDLSS_10__5 = Quadrupole( L = 1.2, Kn1 = -0.1176261853,) +D000035__4 = Drift( L = 8.25) +HQFSS_10__3 = Quadrupole( L = 0.6, Kn1 = 0.2106851444) +D000035__5 = Drift( L = 8.25) +HQDSS_10__3 = Quadrupole( L = 0.6, Kn1 = -0.2091039051) +D000035__6 = Drift( L = 8.25) +HQFSS_10__4 = Quadrupole( L = 0.6, Kn1 = 0.2106851444) +D000035__7 = Drift( L = 8.25) +HQDSS_10__4 = Quadrupole( L = 0.6, Kn1 = -0.2091039051) +D000038 = Drift( L = 12.120511) +DB23_10__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__8 = Drift( L = 0.535) +HQM12_10 = Quadrupole( L = 0.6, Kn1 = 0.2083558853) +D000032__9 = Drift( L = 0.535) +DB23_10__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__10 = Drift( L = 0.535) +HQM13_10 = Quadrupole( L = 0.6, Kn1 = -0.3339548025) +D000039__1 = Drift( L = 3.311504) +HQM14_10 = Quadrupole( L = 0.6, Kn1 = 0.260187069,) +D000039__2 = Drift( L = 3.311504) +HQM15_10 = Quadrupole( L = 0.6, Kn1 = -0.3169977879,) +D000039__3 = Drift( L = 3.311504) +HQM16_10 = Quadrupole( L = 0.6, Kn1 = 0.2834385625) +D000039__4 = Drift( L = 3.311504) +HQM17_10 = Quadrupole( L = 0.6, Kn1 = -0.04877659888,) +D000039__5 = Drift( L = 3.311504) +HQM18_10 = Quadrupole( L = 0.6, Kn1 = -0.3358614339) +D000039__6 = Drift( L = 3.311504) +HQM19_10 = Quadrupole( L = 0.6, Kn1 = 0.3254555367,) +D000039__7 = Drift( L = 3.311504) +HQM20_10 = Quadrupole( L = 0.6, Kn1 = -0.2765818098) +D000032__11 = Drift( L = 0.535) +DB23_10__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__12 = Drift( L = 0.535) +HQM21_10 = Quadrupole( L = 0.6, Kn1 = 0.1976841058,) +D000032__13 = Drift( L = 0.535) +DB23_10__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__14 = Drift( L = 0.535) +HQM22_10 = Quadrupole( L = 0.6, Kn1 = -0.3313145061,) +D000040 = Drift( L = 3.425026) +HQF_11__1 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__67 = Drift( L = 0.1559) +SF00_11 = Sextupole( L = 0.24) +D000014__67 = Drift( L = 0.50037) +DB23_10__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000041__1 = Drift( L = 1.201799) +CV00_11 = VKicker( L = 0.2) +D000017__67 = Drift( L = 0.0638) +HQD_11__1 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__68 = Drift( L = 0.1559) +SD00_11 = Sextupole( L = 0.24) +D000014__68 = Drift( L = 0.50037) +DB23_10__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000041__2 = Drift( L = 1.201799) +CH00_11 = HKicker( L = 0.2) +D000017__68 = Drift( L = 0.0638) +HQF_11__2 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__69 = Drift( L = 0.1559) +SF1_1__1 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__65 = Drift( L = 0.1042) +SF1_1__2 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__69 = Drift( L = 0.50037) +EDGE1_000__105 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__53 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__105 = Multipole( Kn1L = 4.07894736378E-6) +D000018__105 = Drift( L = 0.1193) +EDGE3_000__105 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__53 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__106 = Multipole( Kn1L = -4.07894736378E-6) +D000018__106 = Drift( L = 0.1193) +EDGE2_000__106 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__53 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__106 = Multipole( Kn1L = -4.4179123956E-5) +D000042__1 = Drift( L = 0.319264) +CV01_11 = VKicker( L = 0.2) +D000017__69 = Drift( L = 0.0638) +HQD_11__2 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__70 = Drift( L = 0.1559) +SD1_1__1 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__66 = Drift( L = 0.1042) +SD1_1__2 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__70 = Drift( L = 0.50037) +EDGE1_000__107 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__54 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__107 = Multipole( Kn1L = 4.07894736378E-6) +D000018__107 = Drift( L = 0.1193) +EDGE3_000__107 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__54 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__108 = Multipole( Kn1L = -4.07894736378E-6) +D000018__108 = Drift( L = 0.1193) +EDGE2_000__108 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__54 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__108 = Multipole( Kn1L = -4.4179123956E-5) +D000042__2 = Drift( L = 0.319264) +CH01_11 = HKicker( L = 0.2) +D000017__70 = Drift( L = 0.0638) +HQF_11__3 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__71 = Drift( L = 0.1559) +SF2_1__1 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__67 = Drift( L = 0.1042) +SF2_1__2 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__71 = Drift( L = 0.50037) +EDGE1_000__109 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__55 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__109 = Multipole( Kn1L = 4.07894736378E-6) +D000018__109 = Drift( L = 0.1193) +EDGE3_000__109 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__55 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__110 = Multipole( Kn1L = -4.07894736378E-6) +D000018__110 = Drift( L = 0.1193) +EDGE2_000__110 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__55 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__110 = Multipole( Kn1L = -4.4179123956E-5) +D000042__3 = Drift( L = 0.319264) +CV02_11 = VKicker( L = 0.2) +D000017__71 = Drift( L = 0.0638) +HQD_11__3 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__72 = Drift( L = 0.1559) +SD2_1__1 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__68 = Drift( L = 0.1042) +SD2_1__2 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__72 = Drift( L = 0.50037) +EDGE1_000__111 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__56 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__111 = Multipole( Kn1L = 4.07894736378E-6) +D000018__111 = Drift( L = 0.1193) +EDGE3_000__111 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__56 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__112 = Multipole( Kn1L = -4.07894736378E-6) +D000018__112 = Drift( L = 0.1193) +EDGE2_000__112 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__56 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__112 = Multipole( Kn1L = -4.4179123956E-5) +D000042__4 = Drift( L = 0.319264) +CH02_11 = HKicker( L = 0.2) +D000017__72 = Drift( L = 0.0638) +HQF_11__4 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__73 = Drift( L = 0.1559) +SF1_1__3 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__69 = Drift( L = 0.1042) +SF1_1__4 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__73 = Drift( L = 0.50037) +EDGE1_000__113 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__57 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__113 = Multipole( Kn1L = 4.07894736378E-6) +D000018__113 = Drift( L = 0.1193) +EDGE3_000__113 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__57 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__114 = Multipole( Kn1L = -4.07894736378E-6) +D000018__114 = Drift( L = 0.1193) +EDGE2_000__114 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__57 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__114 = Multipole( Kn1L = -4.4179123956E-5) +D000042__5 = Drift( L = 0.319264) +CV03_11 = VKicker( L = 0.2) +D000017__73 = Drift( L = 0.0638) +HQD_11__4 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__74 = Drift( L = 0.1559) +SD1_1__3 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__70 = Drift( L = 0.1042) +SD1_1__4 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__74 = Drift( L = 0.50037) +EDGE1_000__115 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__58 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__115 = Multipole( Kn1L = 4.07894736378E-6) +D000018__115 = Drift( L = 0.1193) +EDGE3_000__115 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__58 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__116 = Multipole( Kn1L = -4.07894736378E-6) +D000018__116 = Drift( L = 0.1193) +EDGE2_000__116 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__58 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__116 = Multipole( Kn1L = -4.4179123956E-5) +D000042__6 = Drift( L = 0.319264) +CH03_11 = HKicker( L = 0.2) +D000017__74 = Drift( L = 0.0638) +HQF_11__5 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__75 = Drift( L = 0.1559) +SF2_1__3 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__71 = Drift( L = 0.1042) +SF2_1__4 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__75 = Drift( L = 0.50037) +EDGE1_000__117 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__59 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__117 = Multipole( Kn1L = 4.07894736378E-6) +D000018__117 = Drift( L = 0.1193) +EDGE3_000__117 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__59 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__118 = Multipole( Kn1L = -4.07894736378E-6) +D000018__118 = Drift( L = 0.1193) +EDGE2_000__118 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__59 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__118 = Multipole( Kn1L = -4.4179123956E-5) +D000042__7 = Drift( L = 0.319264) +CV04_11 = VKicker( L = 0.2) +D000017__75 = Drift( L = 0.0638) +HQD_11__5 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__76 = Drift( L = 0.1559) +SD2_1__3 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__72 = Drift( L = 0.1042) +SD2_1__4 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__76 = Drift( L = 0.50037) +EDGE1_000__119 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__60 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__119 = Multipole( Kn1L = 4.07894736378E-6) +D000018__119 = Drift( L = 0.1193) +EDGE3_000__119 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__60 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__120 = Multipole( Kn1L = -4.07894736378E-6) +D000018__120 = Drift( L = 0.1193) +EDGE2_000__120 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__60 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__120 = Multipole( Kn1L = -4.4179123956E-5) +D000042__8 = Drift( L = 0.319264) +CH04_11 = HKicker( L = 0.2) +D000017__76 = Drift( L = 0.0638) +HQF_11__6 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__77 = Drift( L = 0.1559) +SF1_1__5 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__73 = Drift( L = 0.1042) +SF1_1__6 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__77 = Drift( L = 0.50037) +EDGE1_000__121 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__61 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__121 = Multipole( Kn1L = 4.07894736378E-6) +D000018__121 = Drift( L = 0.1193) +EDGE3_000__121 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__61 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__122 = Multipole( Kn1L = -4.07894736378E-6) +D000018__122 = Drift( L = 0.1193) +EDGE2_000__122 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__61 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__122 = Multipole( Kn1L = -4.4179123956E-5) +D000042__9 = Drift( L = 0.319264) +CV05_11 = VKicker( L = 0.2) +D000017__77 = Drift( L = 0.0638) +HQD_11__6 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__78 = Drift( L = 0.1559) +SD1_1__5 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__74 = Drift( L = 0.1042) +SD1_1__6 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__78 = Drift( L = 0.50037) +EDGE1_000__123 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__62 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__123 = Multipole( Kn1L = 4.07894736378E-6) +D000018__123 = Drift( L = 0.1193) +EDGE3_000__123 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__62 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__124 = Multipole( Kn1L = -4.07894736378E-6) +D000018__124 = Drift( L = 0.1193) +EDGE2_000__124 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__62 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__124 = Multipole( Kn1L = -4.4179123956E-5) +D000042__10 = Drift( L = 0.319264) +CH05_11 = HKicker( L = 0.2) +D000017__78 = Drift( L = 0.0638) +HQF_11__7 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__79 = Drift( L = 0.1559) +SF2_1__5 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__75 = Drift( L = 0.1042) +SF2_1__6 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__79 = Drift( L = 0.50037) +EDGE1_000__125 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__63 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__125 = Multipole( Kn1L = 4.07894736378E-6) +D000018__125 = Drift( L = 0.1193) +EDGE3_000__125 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__63 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__126 = Multipole( Kn1L = -4.07894736378E-6) +D000018__126 = Drift( L = 0.1193) +EDGE2_000__126 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__63 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__126 = Multipole( Kn1L = -4.4179123956E-5) +D000042__11 = Drift( L = 0.319264) +CV06_11 = VKicker( L = 0.2) +D000017__79 = Drift( L = 0.0638) +HQD_11__7 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__80 = Drift( L = 0.1559) +SD2_1__5 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__76 = Drift( L = 0.1042) +SD2_1__6 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__80 = Drift( L = 0.50037) +EDGE1_000__127 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__64 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__127 = Multipole( Kn1L = 4.07894736378E-6) +D000018__127 = Drift( L = 0.1193) +EDGE3_000__127 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__64 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__128 = Multipole( Kn1L = -4.07894736378E-6) +D000018__128 = Drift( L = 0.1193) +EDGE2_000__128 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__64 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__128 = Multipole( Kn1L = -4.4179123956E-5) +D000042__12 = Drift( L = 0.319264) +CH06_11 = HKicker( L = 0.2) +D000017__80 = Drift( L = 0.0638) +HQF_11__8 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__81 = Drift( L = 0.1559) +SF1_1__7 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__77 = Drift( L = 0.1042) +SF1_1__8 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__81 = Drift( L = 0.50037) +EDGE1_000__129 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__65 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__129 = Multipole( Kn1L = 4.07894736378E-6) +D000018__129 = Drift( L = 0.1193) +EDGE3_000__129 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__65 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__130 = Multipole( Kn1L = -4.07894736378E-6) +D000018__130 = Drift( L = 0.1193) +EDGE2_000__130 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__65 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__130 = Multipole( Kn1L = -4.4179123956E-5) +D000042__13 = Drift( L = 0.319264) +CV07_11 = VKicker( L = 0.2) +D000017__81 = Drift( L = 0.0638) +HQD_11__8 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__82 = Drift( L = 0.1559) +SD1_1__7 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__78 = Drift( L = 0.1042) +SD1_1__8 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__82 = Drift( L = 0.50037) +EDGE1_000__131 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__66 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__131 = Multipole( Kn1L = 4.07894736378E-6) +D000018__131 = Drift( L = 0.1193) +EDGE3_000__131 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__66 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__132 = Multipole( Kn1L = -4.07894736378E-6) +D000018__132 = Drift( L = 0.1193) +EDGE2_000__132 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__66 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__132 = Multipole( Kn1L = -4.4179123956E-5) +D000042__14 = Drift( L = 0.319264) +CH07_11 = HKicker( L = 0.2) +D000017__82 = Drift( L = 0.0638) +HQF_11__9 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__83 = Drift( L = 0.1559) +SF2_1__7 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__79 = Drift( L = 0.1042) +SF2_1__8 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__83 = Drift( L = 0.50037) +EDGE1_000__133 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__67 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__133 = Multipole( Kn1L = 4.07894736378E-6) +D000018__133 = Drift( L = 0.1193) +EDGE3_000__133 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__67 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__134 = Multipole( Kn1L = -4.07894736378E-6) +D000018__134 = Drift( L = 0.1193) +EDGE2_000__134 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__67 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__134 = Multipole( Kn1L = -4.4179123956E-5) +D000042__15 = Drift( L = 0.319264) +CV08_11 = VKicker( L = 0.2) +D000017__83 = Drift( L = 0.0638) +HQD_11__9 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__84 = Drift( L = 0.1559) +SD2_1__7 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__80 = Drift( L = 0.1042) +SD2_1__8 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__84 = Drift( L = 0.50037) +EDGE1_000__135 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__68 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__135 = Multipole( Kn1L = 4.07894736378E-6) +D000018__135 = Drift( L = 0.1193) +EDGE3_000__135 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__68 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__136 = Multipole( Kn1L = -4.07894736378E-6) +D000018__136 = Drift( L = 0.1193) +EDGE2_000__136 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__68 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__136 = Multipole( Kn1L = -4.4179123956E-5) +D000042__16 = Drift( L = 0.319264) +CH08_11 = HKicker( L = 0.2) +D000017__84 = Drift( L = 0.0638) +HQF_11__10 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__85 = Drift( L = 0.1559) +SF1_1__9 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__81 = Drift( L = 0.1042) +SF1_1__10 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__85 = Drift( L = 0.50037) +EDGE1_000__137 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__69 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__137 = Multipole( Kn1L = 4.07894736378E-6) +D000018__137 = Drift( L = 0.1193) +EDGE3_000__137 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__69 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__138 = Multipole( Kn1L = -4.07894736378E-6) +D000018__138 = Drift( L = 0.1193) +EDGE2_000__138 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__69 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__138 = Multipole( Kn1L = -4.4179123956E-5) +D000042__17 = Drift( L = 0.319264) +CV09_11 = VKicker( L = 0.2) +D000017__85 = Drift( L = 0.0638) +HQD_11__10 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__86 = Drift( L = 0.1559) +SD1_1__9 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__82 = Drift( L = 0.1042) +SD1_1__10 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__86 = Drift( L = 0.50037) +EDGE1_000__139 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__70 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__139 = Multipole( Kn1L = 4.07894736378E-6) +D000018__139 = Drift( L = 0.1193) +EDGE3_000__139 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__70 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__140 = Multipole( Kn1L = -4.07894736378E-6) +D000018__140 = Drift( L = 0.1193) +EDGE2_000__140 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__70 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__140 = Multipole( Kn1L = -4.4179123956E-5) +D000042__18 = Drift( L = 0.319264) +CH09_11 = HKicker( L = 0.2) +D000017__86 = Drift( L = 0.0638) +HQF_11__11 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__87 = Drift( L = 0.1559) +SF2_1__9 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__83 = Drift( L = 0.1042) +SF2_1__10 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__87 = Drift( L = 0.50037) +EDGE1_000__141 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__71 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__141 = Multipole( Kn1L = 4.07894736378E-6) +D000018__141 = Drift( L = 0.1193) +EDGE3_000__141 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__71 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__142 = Multipole( Kn1L = -4.07894736378E-6) +D000018__142 = Drift( L = 0.1193) +EDGE2_000__142 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__71 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__142 = Multipole( Kn1L = -4.4179123956E-5) +D000042__19 = Drift( L = 0.319264) +CV10_11 = VKicker( L = 0.2) +D000017__87 = Drift( L = 0.0638) +HQD_11__11 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__88 = Drift( L = 0.1559) +SD2_1__9 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__84 = Drift( L = 0.1042) +SD2_1__10 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__88 = Drift( L = 0.50037) +EDGE1_000__143 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__72 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__143 = Multipole( Kn1L = 4.07894736378E-6) +D000018__143 = Drift( L = 0.1193) +EDGE3_000__143 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__72 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__144 = Multipole( Kn1L = -4.07894736378E-6) +D000018__144 = Drift( L = 0.1193) +EDGE2_000__144 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__72 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__144 = Multipole( Kn1L = -4.4179123956E-5) +D000042__20 = Drift( L = 0.319264) +CH10_11 = HKicker( L = 0.2) +D000017__88 = Drift( L = 0.0638) +HQF_11__12 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__89 = Drift( L = 0.1559) +SF1_1__11 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__85 = Drift( L = 0.1042) +SF1_1__12 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__89 = Drift( L = 0.50037) +EDGE1_000__145 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__73 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__145 = Multipole( Kn1L = 4.07894736378E-6) +D000018__145 = Drift( L = 0.1193) +EDGE3_000__145 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__73 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__146 = Multipole( Kn1L = -4.07894736378E-6) +D000018__146 = Drift( L = 0.1193) +EDGE2_000__146 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__73 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__146 = Multipole( Kn1L = -4.4179123956E-5) +D000042__21 = Drift( L = 0.319264) +CV11_11 = VKicker( L = 0.2) +D000017__89 = Drift( L = 0.0638) +HQD_11__12 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__90 = Drift( L = 0.1559) +SD1_1__11 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__86 = Drift( L = 0.1042) +SD1_1__12 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__90 = Drift( L = 0.50037) +EDGE1_000__147 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__74 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__147 = Multipole( Kn1L = 4.07894736378E-6) +D000018__147 = Drift( L = 0.1193) +EDGE3_000__147 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__74 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__148 = Multipole( Kn1L = -4.07894736378E-6) +D000018__148 = Drift( L = 0.1193) +EDGE2_000__148 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__74 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__148 = Multipole( Kn1L = -4.4179123956E-5) +D000042__22 = Drift( L = 0.319264) +CH11_11 = HKicker( L = 0.2) +D000017__90 = Drift( L = 0.0638) +HQF_11__13 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__91 = Drift( L = 0.1559) +SF2_1__11 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__87 = Drift( L = 0.1042) +SF2_1__12 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__91 = Drift( L = 0.50037) +EDGE1_000__149 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__75 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__149 = Multipole( Kn1L = 4.07894736378E-6) +D000018__149 = Drift( L = 0.1193) +EDGE3_000__149 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__75 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__150 = Multipole( Kn1L = -4.07894736378E-6) +D000018__150 = Drift( L = 0.1193) +EDGE2_000__150 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__75 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__150 = Multipole( Kn1L = -4.4179123956E-5) +D000042__23 = Drift( L = 0.319264) +CV12_11 = VKicker( L = 0.2) +D000017__91 = Drift( L = 0.0638) +HQD_11__13 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__92 = Drift( L = 0.1559) +SD2_1__11 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__88 = Drift( L = 0.1042) +SD2_1__12 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__92 = Drift( L = 0.50037) +EDGE1_000__151 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__76 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__151 = Multipole( Kn1L = 4.07894736378E-6) +D000018__151 = Drift( L = 0.1193) +EDGE3_000__151 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__76 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__152 = Multipole( Kn1L = -4.07894736378E-6) +D000018__152 = Drift( L = 0.1193) +EDGE2_000__152 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__76 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__152 = Multipole( Kn1L = -4.4179123956E-5) +D000042__24 = Drift( L = 0.319264) +CH12_11 = HKicker( L = 0.2) +D000017__92 = Drift( L = 0.0638) +HQF_11__14 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__93 = Drift( L = 0.1559) +SF1_1__13 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__89 = Drift( L = 0.1042) +SF1_1__14 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__93 = Drift( L = 0.50037) +EDGE1_000__153 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__77 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__153 = Multipole( Kn1L = 4.07894736378E-6) +D000018__153 = Drift( L = 0.1193) +EDGE3_000__153 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__77 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__154 = Multipole( Kn1L = -4.07894736378E-6) +D000018__154 = Drift( L = 0.1193) +EDGE2_000__154 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__77 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__154 = Multipole( Kn1L = -4.4179123956E-5) +D000042__25 = Drift( L = 0.319264) +CV13_11 = VKicker( L = 0.2) +D000017__93 = Drift( L = 0.0638) +HQD_11__14 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__94 = Drift( L = 0.1559) +SD1_1__13 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__90 = Drift( L = 0.1042) +SD1_1__14 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__94 = Drift( L = 0.50037) +EDGE1_000__155 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__78 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__155 = Multipole( Kn1L = 4.07894736378E-6) +D000018__155 = Drift( L = 0.1193) +EDGE3_000__155 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__78 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__156 = Multipole( Kn1L = -4.07894736378E-6) +D000018__156 = Drift( L = 0.1193) +EDGE2_000__156 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__78 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__156 = Multipole( Kn1L = -4.4179123956E-5) +D000042__26 = Drift( L = 0.319264) +CH13_11 = HKicker( L = 0.2) +D000017__94 = Drift( L = 0.0638) +HQF_11__15 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__95 = Drift( L = 0.1559) +SF2_1__13 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__91 = Drift( L = 0.1042) +SF2_1__14 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__95 = Drift( L = 0.50037) +EDGE1_000__157 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__79 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__157 = Multipole( Kn1L = 4.07894736378E-6) +D000018__157 = Drift( L = 0.1193) +EDGE3_000__157 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__79 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__158 = Multipole( Kn1L = -4.07894736378E-6) +D000018__158 = Drift( L = 0.1193) +EDGE2_000__158 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__79 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__158 = Multipole( Kn1L = -4.4179123956E-5) +D000042__27 = Drift( L = 0.319264) +CV14_11 = VKicker( L = 0.2) +D000017__95 = Drift( L = 0.0638) +HQD_11__15 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__96 = Drift( L = 0.1559) +SD2_1__13 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__92 = Drift( L = 0.1042) +SD2_1__14 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__96 = Drift( L = 0.50037) +EDGE1_000__159 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__80 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__159 = Multipole( Kn1L = 4.07894736378E-6) +D000018__159 = Drift( L = 0.1193) +EDGE3_000__159 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__80 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__160 = Multipole( Kn1L = -4.07894736378E-6) +D000018__160 = Drift( L = 0.1193) +EDGE2_000__160 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__80 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__160 = Multipole( Kn1L = -4.4179123956E-5) +D000042__28 = Drift( L = 0.319264) +CH14_11 = HKicker( L = 0.2) +D000017__96 = Drift( L = 0.0638) +HQF_11__16 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__97 = Drift( L = 0.1559) +SF1_1__15 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__93 = Drift( L = 0.1042) +SF1_1__16 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__97 = Drift( L = 0.50037) +EDGE1_000__161 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__81 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__161 = Multipole( Kn1L = 4.07894736378E-6) +D000018__161 = Drift( L = 0.1193) +EDGE3_000__161 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__81 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__162 = Multipole( Kn1L = -4.07894736378E-6) +D000018__162 = Drift( L = 0.1193) +EDGE2_000__162 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__81 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__162 = Multipole( Kn1L = -4.4179123956E-5) +D000042__29 = Drift( L = 0.319264) +CV15_11 = VKicker( L = 0.2) +D000017__97 = Drift( L = 0.0638) +HQD_11__16 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__98 = Drift( L = 0.1559) +SD1_1__15 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__94 = Drift( L = 0.1042) +SD1_1__16 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__98 = Drift( L = 0.50037) +EDGE1_000__163 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__82 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__163 = Multipole( Kn1L = 4.07894736378E-6) +D000018__163 = Drift( L = 0.1193) +EDGE3_000__163 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__82 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__164 = Multipole( Kn1L = -4.07894736378E-6) +D000018__164 = Drift( L = 0.1193) +EDGE2_000__164 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__82 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__164 = Multipole( Kn1L = -4.4179123956E-5) +D000042__30 = Drift( L = 0.319264) +CH15_11 = HKicker( L = 0.2) +D000017__98 = Drift( L = 0.0638) +HQF_11__17 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__99 = Drift( L = 0.1559) +SF2_1__15 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__95 = Drift( L = 0.1042) +SF2_1__16 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__99 = Drift( L = 0.50037) +EDGE1_000__165 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__83 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__165 = Multipole( Kn1L = 4.07894736378E-6) +D000018__165 = Drift( L = 0.1193) +EDGE3_000__165 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__83 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__166 = Multipole( Kn1L = -4.07894736378E-6) +D000018__166 = Drift( L = 0.1193) +EDGE2_000__166 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__83 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__166 = Multipole( Kn1L = -4.4179123956E-5) +D000042__31 = Drift( L = 0.319264) +CV16_11 = VKicker( L = 0.2) +D000017__99 = Drift( L = 0.0638) +HQD_11__17 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__100 = Drift( L = 0.1559) +SD2_1__15 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__96 = Drift( L = 0.1042) +SD2_1__16 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__100 = Drift( L = 0.50037) +EDGE1_000__167 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__84 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__167 = Multipole( Kn1L = 4.07894736378E-6) +D000018__167 = Drift( L = 0.1193) +EDGE3_000__167 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__84 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__168 = Multipole( Kn1L = -4.07894736378E-6) +D000018__168 = Drift( L = 0.1193) +EDGE2_000__168 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__84 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__168 = Multipole( Kn1L = -4.4179123956E-5) +D000042__32 = Drift( L = 0.319264) +CH16_11 = HKicker( L = 0.2) +D000017__100 = Drift( L = 0.0638) +HQF_11__18 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__101 = Drift( L = 0.1559) +SF17_11 = Sextupole( L = 0.24) +D000014__101 = Drift( L = 0.50037) +DB23_11__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000043__1 = Drift( L = 1.374861) +CV17_11 = VKicker( L = 0.2) +D000017__101 = Drift( L = 0.0638) +HQD_11__18 = Quadrupole( L = 0.5, Kn1 = -0.3135422732,) +D000012__102 = Drift( L = 0.1559) +SD17_11 = Sextupole( L = 0.24) +D000014__102 = Drift( L = 0.50037) +DB23_11__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000043__2 = Drift( L = 1.374861) +CH17_11 = HKicker( L = 0.2) +D000017__102 = Drift( L = 0.0638) +HQF_11__19 = Quadrupole( L = 0.5, Kn1 = 0.3137189615,) +D000012__103 = Drift( L = 0.1559) +SF18_11 = Sextupole( L = 0.24) +D000044__1 = Drift( L = 4.055463) +HQM22_11 = Quadrupole( L = 0.6, Kn1 = -0.3288030901,) +D000044__2 = Drift( L = 4.055463) +HQM21_11 = Quadrupole( L = 0.6, Kn1 = 0.1805100149,) +D000032__15 = Drift( L = 0.535) +DB23_11__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__16 = Drift( L = 0.535) +HQM20_11 = Quadrupole( L = 0.6, Kn1 = -0.14458509) +D000032__17 = Drift( L = 0.535) +DB23_11__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__18 = Drift( L = 0.535) +HQM19_11 = Quadrupole( L = 0.6, Kn1 = 0.2557330047,) +D000045__1 = Drift( L = 3.035675) +HQM18_11 = Quadrupole( L = 0.6, Kn1 = -0.1001891766,) +D000045__2 = Drift( L = 3.035675) +HQM17_11 = Quadrupole( L = 0.6, Kn1 = -0.08890632892) +D000045__3 = Drift( L = 3.035675) +HQM16_11 = Quadrupole( L = 0.6, Kn1 = -0.1156289813,) +D000045__4 = Drift( L = 3.035675) +HQM15_11 = Quadrupole( L = 0.6, Kn1 = 0.1167136133,) +D000045__5 = Drift( L = 3.035675) +HQM14_11 = Quadrupole( L = 0.6, Kn1 = 0.01649413513,) +D000045__6 = Drift( L = 3.035675) +HQM13_11 = Quadrupole( L = 0.6, Kn1 = 0.1479132215,) +D000032__19 = Drift( L = 0.535) +DB23_11__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__20 = Drift( L = 0.535) +HQM12_11 = Quadrupole( L = 0.6, Kn1 = -0.1783631142,) +D000032__21 = Drift( L = 0.535) +DB23_11__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000046__1 = Drift( L = 2.526471) +HQFSS_12__1 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) +D000047__1 = Drift( L = 11.5) +HQDSS_12__1 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) +D000047__2 = Drift( L = 11.5) +HQFSS_12__2 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) +D000047__3 = Drift( L = 11.5) +HQDSS_12__2 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) +D000046__2 = Drift( L = 2.526471) +DB12_4M__1 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) +D000048__1 = Drift( L = 0.0975) +DB12_4M__2 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) +D000048__2 = Drift( L = 0.0975) +DB12_4M__3 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) +D000049 = Drift( L = 5.21429) +HQFSS_12__3 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) +D000047__4 = Drift( L = 11.5) +HQDSS_12__3 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) +D000047__5 = Drift( L = 11.5) +HQFSS_12__4 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) +D000050 = Drift( L = 12.836707) +IP12 = Marker() +D000051 = Drift( L = 6.263293) +HQDSS_12__4 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) +D000047__6 = Drift( L = 11.5) +HQFSS_12__5 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) +D000047__7 = Drift( L = 11.5) +HQDSS_12__5 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) +D000047__8 = Drift( L = 11.5) +HQFSS_12__6 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) +D000052 = Drift( L = 0.714288) +DB12_4P__1 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) +D000048__3 = Drift( L = 0.0975) +DB12_4P__2 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) +D000048__4 = Drift( L = 0.0975) +DB12_4P__3 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) +D000053__1 = Drift( L = 1.590529) +HQDSS_12__6 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) +MKICK_INJ = Marker() +D000047__9 = Drift( L = 11.5) +HQFSS_12__7 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) +D000047__10 = Drift( L = 11.5) +HQDSS_12__7 = Quadrupole( L = 0.6, Kn1 = -0.1399369071) +D000047__11 = Drift( L = 11.5) +MCOLL_INJ = Marker() +HQFSS_12__8 = Quadrupole( L = 0.6, Kn1 = 0.1527595871) +D000053__2 = Drift( L = 1.590529) +DB23_12__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__22 = Drift( L = 0.535) +HQM14_12 = Quadrupole( L = 0.6, Kn1 = -0.1363018832,) +D000032__23 = Drift( L = 0.535) +DB23_12__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__24 = Drift( L = 0.535) +HQM15_12 = Quadrupole( L = 0.6, Kn1 = 0.1895913536,) +D000054__1 = Drift( L = 4.706452) +HQM16_12 = Quadrupole( L = 0.6, Kn1 = -0.2272414187) +D000054__2 = Drift( L = 4.706452) +HQM17_12 = Quadrupole( L = 0.6, Kn1 = 0.3038863874,) +D000054__3 = Drift( L = 4.706452) +HQM18_12 = Quadrupole( L = 0.6, Kn1 = -0.3056640346,) +D000054__4 = Drift( L = 4.706452) +HQM19_12 = Quadrupole( L = 0.6, Kn1 = 0.33500458,) +D000032__25 = Drift( L = 0.535) +DB23_12__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__26 = Drift( L = 0.535) +HQM20_12 = Quadrupole( L = 0.6, Kn1 = -0.2490023496,) +D000032__27 = Drift( L = 0.535) +DB23_12__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__28 = Drift( L = 0.535) +HQM21_12 = Quadrupole( L = 0.6, Kn1 = 0.26081512,) +D000055__1 = Drift( L = 4.809451) +HQM22_12 = Quadrupole( L = 0.6, Kn1 = -0.3351370008) +D000055__2 = Drift( L = 4.809451) +SFM1_1 = Sextupole( L = 0.24) +D000056__1 = Drift( L = 0.2) +HQF_1__1 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__103 = Drift( L = 0.0638) +CH00_1 = HKicker( L = 0.2) +D000057__1 = Drift( L = 1.442045) +DB23_12__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000014__103 = Drift( L = 0.50037) +SD00_1 = Sextupole( L = 0.24) +D000012__104 = Drift( L = 0.1559) +HQD_1__1 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__104 = Drift( L = 0.0638) +CV00_1 = VKicker( L = 0.2) +D000057__2 = Drift( L = 1.442045) +DB23_12__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000014__104 = Drift( L = 0.50037) +SF00_1 = Sextupole( L = 0.24) +D000012__105 = Drift( L = 0.1559) +HQF_1__2 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__105 = Drift( L = 0.0638) +CH01_1 = HKicker( L = 0.2) +D000058__1 = Drift( L = 0.386448) +EDGE1_000__169 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__85 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__169 = Multipole( Kn1L = 4.07894736378E-6) +D000018__169 = Drift( L = 0.1193) +EDGE3_000__169 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__85 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__170 = Multipole( Kn1L = -4.07894736378E-6) +D000018__170 = Drift( L = 0.1193) +EDGE2_000__170 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__85 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__170 = Multipole( Kn1L = -4.4179123956E-5) +D000014__105 = Drift( L = 0.50037) +SD1_1__17 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__97 = Drift( L = 0.1042) +SD1_1__18 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000012__106 = Drift( L = 0.1559) +HQD_1__2 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__106 = Drift( L = 0.0638) +CV01_1 = VKicker( L = 0.2) +D000058__2 = Drift( L = 0.386448) +EDGE1_000__171 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__86 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__171 = Multipole( Kn1L = 4.07894736378E-6) +D000018__171 = Drift( L = 0.1193) +EDGE3_000__171 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__86 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__172 = Multipole( Kn1L = -4.07894736378E-6) +D000018__172 = Drift( L = 0.1193) +EDGE2_000__172 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__86 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__172 = Multipole( Kn1L = -4.4179123956E-5) +D000014__106 = Drift( L = 0.50037) +SF1_1__17 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__98 = Drift( L = 0.1042) +SF1_1__18 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000012__107 = Drift( L = 0.1559) +HQF_1__3 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__107 = Drift( L = 0.0638) +CH02_1 = HKicker( L = 0.2) +D000058__3 = Drift( L = 0.386448) +EDGE1_000__173 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__87 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__173 = Multipole( Kn1L = 4.07894736378E-6) +D000018__173 = Drift( L = 0.1193) +EDGE3_000__173 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__87 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__174 = Multipole( Kn1L = -4.07894736378E-6) +D000018__174 = Drift( L = 0.1193) +EDGE2_000__174 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__87 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__174 = Multipole( Kn1L = -4.4179123956E-5) +D000014__107 = Drift( L = 0.50037) +SD2_1__17 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__99 = Drift( L = 0.1042) +SD2_1__18 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000012__108 = Drift( L = 0.1559) +HQD_1__3 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__108 = Drift( L = 0.0638) +CV02_1 = VKicker( L = 0.2) +D000058__4 = Drift( L = 0.386448) +EDGE1_000__175 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__88 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__175 = Multipole( Kn1L = 4.07894736378E-6) +D000018__175 = Drift( L = 0.1193) +EDGE3_000__175 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__88 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__176 = Multipole( Kn1L = -4.07894736378E-6) +D000018__176 = Drift( L = 0.1193) +EDGE2_000__176 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__88 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__176 = Multipole( Kn1L = -4.4179123956E-5) +D000014__108 = Drift( L = 0.50037) +SF2_1__17 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__100 = Drift( L = 0.1042) +SF2_1__18 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000012__109 = Drift( L = 0.1559) +HQF_1__4 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__109 = Drift( L = 0.0638) +CH03_1 = HKicker( L = 0.2) +D000058__5 = Drift( L = 0.386448) +EDGE1_000__177 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__89 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__177 = Multipole( Kn1L = 4.07894736378E-6) +D000018__177 = Drift( L = 0.1193) +EDGE3_000__177 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__89 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__178 = Multipole( Kn1L = -4.07894736378E-6) +D000018__178 = Drift( L = 0.1193) +EDGE2_000__178 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__89 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__178 = Multipole( Kn1L = -4.4179123956E-5) +D000014__109 = Drift( L = 0.50037) +SD1_1__19 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__101 = Drift( L = 0.1042) +SD1_1__20 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000012__110 = Drift( L = 0.1559) +HQD_1__4 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__110 = Drift( L = 0.0638) +CV03_1 = VKicker( L = 0.2) +D000058__6 = Drift( L = 0.386448) +EDGE1_000__179 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__90 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__179 = Multipole( Kn1L = 4.07894736378E-6) +D000018__179 = Drift( L = 0.1193) +EDGE3_000__179 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__90 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__180 = Multipole( Kn1L = -4.07894736378E-6) +D000018__180 = Drift( L = 0.1193) +EDGE2_000__180 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__90 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__180 = Multipole( Kn1L = -4.4179123956E-5) +D000014__110 = Drift( L = 0.50037) +SF1_1__19 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__102 = Drift( L = 0.1042) +SF1_1__20 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000012__111 = Drift( L = 0.1559) +HQF_1__5 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__111 = Drift( L = 0.0638) +CH04_1 = HKicker( L = 0.2) +D000058__7 = Drift( L = 0.386448) +EDGE1_000__181 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__91 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__181 = Multipole( Kn1L = 4.07894736378E-6) +D000018__181 = Drift( L = 0.1193) +EDGE3_000__181 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__91 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__182 = Multipole( Kn1L = -4.07894736378E-6) +D000018__182 = Drift( L = 0.1193) +EDGE2_000__182 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__91 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__182 = Multipole( Kn1L = -4.4179123956E-5) +D000014__111 = Drift( L = 0.50037) +SD2_1__19 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__103 = Drift( L = 0.1042) +SD2_1__20 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000012__112 = Drift( L = 0.1559) +HQD_1__5 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__112 = Drift( L = 0.0638) +CV04_1 = VKicker( L = 0.2) +D000058__8 = Drift( L = 0.386448) +EDGE1_000__183 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__92 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__183 = Multipole( Kn1L = 4.07894736378E-6) +D000018__183 = Drift( L = 0.1193) +EDGE3_000__183 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__92 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__184 = Multipole( Kn1L = -4.07894736378E-6) +D000018__184 = Drift( L = 0.1193) +EDGE2_000__184 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__92 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__184 = Multipole( Kn1L = -4.4179123956E-5) +D000014__112 = Drift( L = 0.50037) +SF2_1__19 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__104 = Drift( L = 0.1042) +SF2_1__20 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000012__113 = Drift( L = 0.1559) +HQF_1__6 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__113 = Drift( L = 0.0638) +CH05_1 = HKicker( L = 0.2) +D000058__9 = Drift( L = 0.386448) +EDGE1_000__185 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__93 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__185 = Multipole( Kn1L = 4.07894736378E-6) +D000018__185 = Drift( L = 0.1193) +EDGE3_000__185 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__93 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__186 = Multipole( Kn1L = -4.07894736378E-6) +D000018__186 = Drift( L = 0.1193) +EDGE2_000__186 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__93 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__186 = Multipole( Kn1L = -4.4179123956E-5) +D000014__113 = Drift( L = 0.50037) +SD1_1__21 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__105 = Drift( L = 0.1042) +SD1_1__22 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000012__114 = Drift( L = 0.1559) +HQD_1__6 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__114 = Drift( L = 0.0638) +CV05_1 = VKicker( L = 0.2) +D000058__10 = Drift( L = 0.386448) +EDGE1_000__187 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__94 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__187 = Multipole( Kn1L = 4.07894736378E-6) +D000018__187 = Drift( L = 0.1193) +EDGE3_000__187 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__94 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__188 = Multipole( Kn1L = -4.07894736378E-6) +D000018__188 = Drift( L = 0.1193) +EDGE2_000__188 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__94 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__188 = Multipole( Kn1L = -4.4179123956E-5) +D000014__114 = Drift( L = 0.50037) +SF1_1__21 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__106 = Drift( L = 0.1042) +SF1_1__22 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000012__115 = Drift( L = 0.1559) +HQF_1__7 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__115 = Drift( L = 0.0638) +CH06_1 = HKicker( L = 0.2) +D000058__11 = Drift( L = 0.386448) +EDGE1_000__189 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__95 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__189 = Multipole( Kn1L = 4.07894736378E-6) +D000018__189 = Drift( L = 0.1193) +EDGE3_000__189 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__95 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__190 = Multipole( Kn1L = -4.07894736378E-6) +D000018__190 = Drift( L = 0.1193) +EDGE2_000__190 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__95 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__190 = Multipole( Kn1L = -4.4179123956E-5) +D000014__115 = Drift( L = 0.50037) +SD2_1__21 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__107 = Drift( L = 0.1042) +SD2_1__22 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000012__116 = Drift( L = 0.1559) +HQD_1__7 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__116 = Drift( L = 0.0638) +CV06_1 = VKicker( L = 0.2) +D000058__12 = Drift( L = 0.386448) +EDGE1_000__191 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__96 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__191 = Multipole( Kn1L = 4.07894736378E-6) +D000018__191 = Drift( L = 0.1193) +EDGE3_000__191 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__96 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__192 = Multipole( Kn1L = -4.07894736378E-6) +D000018__192 = Drift( L = 0.1193) +EDGE2_000__192 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__96 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__192 = Multipole( Kn1L = -4.4179123956E-5) +D000014__116 = Drift( L = 0.50037) +SF2_1__21 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__108 = Drift( L = 0.1042) +SF2_1__22 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000012__117 = Drift( L = 0.1559) +HQF_1__8 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__117 = Drift( L = 0.0638) +CH07_1 = HKicker( L = 0.2) +D000058__13 = Drift( L = 0.386448) +EDGE1_000__193 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__97 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__193 = Multipole( Kn1L = 4.07894736378E-6) +D000018__193 = Drift( L = 0.1193) +EDGE3_000__193 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__97 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__194 = Multipole( Kn1L = -4.07894736378E-6) +D000018__194 = Drift( L = 0.1193) +EDGE2_000__194 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__97 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__194 = Multipole( Kn1L = -4.4179123956E-5) +D000014__117 = Drift( L = 0.50037) +SD1_1__23 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__109 = Drift( L = 0.1042) +SD1_1__24 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000012__118 = Drift( L = 0.1559) +HQD_1__8 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__118 = Drift( L = 0.0638) +CV07_1 = VKicker( L = 0.2) +D000058__14 = Drift( L = 0.386448) +EDGE1_000__195 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__98 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__195 = Multipole( Kn1L = 4.07894736378E-6) +D000018__195 = Drift( L = 0.1193) +EDGE3_000__195 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__98 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__196 = Multipole( Kn1L = -4.07894736378E-6) +D000018__196 = Drift( L = 0.1193) +EDGE2_000__196 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__98 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__196 = Multipole( Kn1L = -4.4179123956E-5) +D000014__118 = Drift( L = 0.50037) +SF1_1__23 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__110 = Drift( L = 0.1042) +SF1_1__24 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000012__119 = Drift( L = 0.1559) +HQF_1__9 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__119 = Drift( L = 0.0638) +CH08_1 = HKicker( L = 0.2) +D000058__15 = Drift( L = 0.386448) +EDGE1_000__197 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__99 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__197 = Multipole( Kn1L = 4.07894736378E-6) +D000018__197 = Drift( L = 0.1193) +EDGE3_000__197 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__99 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__198 = Multipole( Kn1L = -4.07894736378E-6) +D000018__198 = Drift( L = 0.1193) +EDGE2_000__198 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__99 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__198 = Multipole( Kn1L = -4.4179123956E-5) +D000014__119 = Drift( L = 0.50037) +SD2_1__23 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__111 = Drift( L = 0.1042) +SD2_1__24 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000012__120 = Drift( L = 0.1559) +HQD_1__9 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__120 = Drift( L = 0.0638) +CV08_1 = VKicker( L = 0.2) +D000058__16 = Drift( L = 0.386448) +EDGE1_000__199 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__100 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__199 = Multipole( Kn1L = 4.07894736378E-6) +D000018__199 = Drift( L = 0.1193) +EDGE3_000__199 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__100 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__200 = Multipole( Kn1L = -4.07894736378E-6) +D000018__200 = Drift( L = 0.1193) +EDGE2_000__200 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__100 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__200 = Multipole( Kn1L = -4.4179123956E-5) +D000014__120 = Drift( L = 0.50037) +SF2_1__23 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__112 = Drift( L = 0.1042) +SF2_1__24 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000012__121 = Drift( L = 0.1559) +HQF_1__10 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__121 = Drift( L = 0.0638) +CH09_1 = HKicker( L = 0.2) +D000058__17 = Drift( L = 0.386448) +EDGE1_000__201 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__101 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__201 = Multipole( Kn1L = 4.07894736378E-6) +D000018__201 = Drift( L = 0.1193) +EDGE3_000__201 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__101 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__202 = Multipole( Kn1L = -4.07894736378E-6) +D000018__202 = Drift( L = 0.1193) +EDGE2_000__202 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__101 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__202 = Multipole( Kn1L = -4.4179123956E-5) +D000014__121 = Drift( L = 0.50037) +SD1_1__25 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__113 = Drift( L = 0.1042) +SD1_1__26 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000012__122 = Drift( L = 0.1559) +HQD_1__10 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__122 = Drift( L = 0.0638) +CV09_1 = VKicker( L = 0.2) +D000058__18 = Drift( L = 0.386448) +EDGE1_000__203 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__102 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__203 = Multipole( Kn1L = 4.07894736378E-6) +D000018__203 = Drift( L = 0.1193) +EDGE3_000__203 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__102 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__204 = Multipole( Kn1L = -4.07894736378E-6) +D000018__204 = Drift( L = 0.1193) +EDGE2_000__204 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__102 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__204 = Multipole( Kn1L = -4.4179123956E-5) +D000014__122 = Drift( L = 0.50037) +SF1_1__25 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__114 = Drift( L = 0.1042) +SF1_1__26 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000012__123 = Drift( L = 0.1559) +HQF_1__11 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__123 = Drift( L = 0.0638) +CH10_1 = HKicker( L = 0.2) +D000058__19 = Drift( L = 0.386448) +EDGE1_000__205 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__103 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__205 = Multipole( Kn1L = 4.07894736378E-6) +D000018__205 = Drift( L = 0.1193) +EDGE3_000__205 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__103 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__206 = Multipole( Kn1L = -4.07894736378E-6) +D000018__206 = Drift( L = 0.1193) +EDGE2_000__206 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__103 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__206 = Multipole( Kn1L = -4.4179123956E-5) +D000014__123 = Drift( L = 0.50037) +SD2_1__25 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__115 = Drift( L = 0.1042) +SD2_1__26 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000012__124 = Drift( L = 0.1559) +HQD_1__11 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__124 = Drift( L = 0.0638) +CV10_1 = VKicker( L = 0.2) +D000058__20 = Drift( L = 0.386448) +EDGE1_000__207 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__104 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__207 = Multipole( Kn1L = 4.07894736378E-6) +D000018__207 = Drift( L = 0.1193) +EDGE3_000__207 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__104 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__208 = Multipole( Kn1L = -4.07894736378E-6) +D000018__208 = Drift( L = 0.1193) +EDGE2_000__208 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__104 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__208 = Multipole( Kn1L = -4.4179123956E-5) +D000014__124 = Drift( L = 0.50037) +SF2_1__25 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__116 = Drift( L = 0.1042) +SF2_1__26 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000012__125 = Drift( L = 0.1559) +HQF_1__12 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__125 = Drift( L = 0.0638) +CH11_1 = HKicker( L = 0.2) +D000058__21 = Drift( L = 0.386448) +EDGE1_000__209 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__105 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__209 = Multipole( Kn1L = 4.07894736378E-6) +D000018__209 = Drift( L = 0.1193) +EDGE3_000__209 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__105 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__210 = Multipole( Kn1L = -4.07894736378E-6) +D000018__210 = Drift( L = 0.1193) +EDGE2_000__210 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__105 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__210 = Multipole( Kn1L = -4.4179123956E-5) +D000014__125 = Drift( L = 0.50037) +SD1_1__27 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__117 = Drift( L = 0.1042) +SD1_1__28 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000012__126 = Drift( L = 0.1559) +HQD_1__12 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__126 = Drift( L = 0.0638) +CV11_1 = VKicker( L = 0.2) +D000058__22 = Drift( L = 0.386448) +EDGE1_000__211 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__106 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__211 = Multipole( Kn1L = 4.07894736378E-6) +D000018__211 = Drift( L = 0.1193) +EDGE3_000__211 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__106 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__212 = Multipole( Kn1L = -4.07894736378E-6) +D000018__212 = Drift( L = 0.1193) +EDGE2_000__212 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__106 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__212 = Multipole( Kn1L = -4.4179123956E-5) +D000014__126 = Drift( L = 0.50037) +SF1_1__27 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__118 = Drift( L = 0.1042) +SF1_1__28 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000012__127 = Drift( L = 0.1559) +HQF_1__13 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__127 = Drift( L = 0.0638) +CH12_1 = HKicker( L = 0.2) +D000058__23 = Drift( L = 0.386448) +EDGE1_000__213 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__107 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__213 = Multipole( Kn1L = 4.07894736378E-6) +D000018__213 = Drift( L = 0.1193) +EDGE3_000__213 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__107 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__214 = Multipole( Kn1L = -4.07894736378E-6) +D000018__214 = Drift( L = 0.1193) +EDGE2_000__214 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__107 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__214 = Multipole( Kn1L = -4.4179123956E-5) +D000014__127 = Drift( L = 0.50037) +SD2_1__27 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__119 = Drift( L = 0.1042) +SD2_1__28 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000012__128 = Drift( L = 0.1559) +HQD_1__13 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__128 = Drift( L = 0.0638) +CV12_1 = VKicker( L = 0.2) +D000058__24 = Drift( L = 0.386448) +EDGE1_000__215 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__108 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__215 = Multipole( Kn1L = 4.07894736378E-6) +D000018__215 = Drift( L = 0.1193) +EDGE3_000__215 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__108 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__216 = Multipole( Kn1L = -4.07894736378E-6) +D000018__216 = Drift( L = 0.1193) +EDGE2_000__216 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__108 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__216 = Multipole( Kn1L = -4.4179123956E-5) +D000014__128 = Drift( L = 0.50037) +SF2_1__27 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__120 = Drift( L = 0.1042) +SF2_1__28 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000012__129 = Drift( L = 0.1559) +HQF_1__14 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__129 = Drift( L = 0.0638) +CH13_1 = HKicker( L = 0.2) +D000058__25 = Drift( L = 0.386448) +EDGE1_000__217 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__109 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__217 = Multipole( Kn1L = 4.07894736378E-6) +D000018__217 = Drift( L = 0.1193) +EDGE3_000__217 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__109 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__218 = Multipole( Kn1L = -4.07894736378E-6) +D000018__218 = Drift( L = 0.1193) +EDGE2_000__218 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__109 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__218 = Multipole( Kn1L = -4.4179123956E-5) +D000014__129 = Drift( L = 0.50037) +SD1_1__29 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__121 = Drift( L = 0.1042) +SD1_1__30 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000012__130 = Drift( L = 0.1559) +HQD_1__14 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__130 = Drift( L = 0.0638) +CV13_1 = VKicker( L = 0.2) +D000058__26 = Drift( L = 0.386448) +EDGE1_000__219 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__110 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__219 = Multipole( Kn1L = 4.07894736378E-6) +D000018__219 = Drift( L = 0.1193) +EDGE3_000__219 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__110 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__220 = Multipole( Kn1L = -4.07894736378E-6) +D000018__220 = Drift( L = 0.1193) +EDGE2_000__220 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__110 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__220 = Multipole( Kn1L = -4.4179123956E-5) +D000014__130 = Drift( L = 0.50037) +SF1_1__29 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__122 = Drift( L = 0.1042) +SF1_1__30 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000012__131 = Drift( L = 0.1559) +HQF_1__15 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__131 = Drift( L = 0.0638) +CH14_1 = HKicker( L = 0.2) +D000058__27 = Drift( L = 0.386448) +EDGE1_000__221 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__111 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__221 = Multipole( Kn1L = 4.07894736378E-6) +D000018__221 = Drift( L = 0.1193) +EDGE3_000__221 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__111 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__222 = Multipole( Kn1L = -4.07894736378E-6) +D000018__222 = Drift( L = 0.1193) +EDGE2_000__222 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__111 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__222 = Multipole( Kn1L = -4.4179123956E-5) +D000014__131 = Drift( L = 0.50037) +SD2_1__29 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__123 = Drift( L = 0.1042) +SD2_1__30 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000012__132 = Drift( L = 0.1559) +HQD_1__15 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__132 = Drift( L = 0.0638) +CV14_1 = VKicker( L = 0.2) +D000058__28 = Drift( L = 0.386448) +EDGE1_000__223 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__112 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__223 = Multipole( Kn1L = 4.07894736378E-6) +D000018__223 = Drift( L = 0.1193) +EDGE3_000__223 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__112 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__224 = Multipole( Kn1L = -4.07894736378E-6) +D000018__224 = Drift( L = 0.1193) +EDGE2_000__224 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__112 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__224 = Multipole( Kn1L = -4.4179123956E-5) +D000014__132 = Drift( L = 0.50037) +SF2_1__29 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__124 = Drift( L = 0.1042) +SF2_1__30 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000012__133 = Drift( L = 0.1559) +HQF_1__16 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__133 = Drift( L = 0.0638) +CH15_1 = HKicker( L = 0.2) +D000058__29 = Drift( L = 0.386448) +EDGE1_000__225 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__113 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__225 = Multipole( Kn1L = 4.07894736378E-6) +D000018__225 = Drift( L = 0.1193) +EDGE3_000__225 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__113 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__226 = Multipole( Kn1L = -4.07894736378E-6) +D000018__226 = Drift( L = 0.1193) +EDGE2_000__226 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__113 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__226 = Multipole( Kn1L = -4.4179123956E-5) +D000014__133 = Drift( L = 0.50037) +SD1_1__31 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__125 = Drift( L = 0.1042) +SD1_1__32 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000012__134 = Drift( L = 0.1559) +HQD_1__16 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__134 = Drift( L = 0.0638) +CV15_1 = VKicker( L = 0.2) +D000058__30 = Drift( L = 0.386448) +EDGE1_000__227 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__114 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__227 = Multipole( Kn1L = 4.07894736378E-6) +D000018__227 = Drift( L = 0.1193) +EDGE3_000__227 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__114 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__228 = Multipole( Kn1L = -4.07894736378E-6) +D000018__228 = Drift( L = 0.1193) +EDGE2_000__228 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__114 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__228 = Multipole( Kn1L = -4.4179123956E-5) +D000014__134 = Drift( L = 0.50037) +SF1_1__31 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__126 = Drift( L = 0.1042) +SF1_1__32 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000012__135 = Drift( L = 0.1559) +HQF_1__17 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__135 = Drift( L = 0.0638) +CH16_1 = HKicker( L = 0.2) +D000058__31 = Drift( L = 0.386448) +EDGE1_000__229 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__115 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__229 = Multipole( Kn1L = 4.07894736378E-6) +D000018__229 = Drift( L = 0.1193) +EDGE3_000__229 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__115 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__230 = Multipole( Kn1L = -4.07894736378E-6) +D000018__230 = Drift( L = 0.1193) +EDGE2_000__230 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__115 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__230 = Multipole( Kn1L = -4.4179123956E-5) +D000014__135 = Drift( L = 0.50037) +SD2_1__31 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__127 = Drift( L = 0.1042) +SD2_1__32 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000012__136 = Drift( L = 0.1559) +HQD_1__17 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__136 = Drift( L = 0.0638) +CV16_1 = VKicker( L = 0.2) +D000058__32 = Drift( L = 0.386448) +EDGE1_000__231 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__116 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__231 = Multipole( Kn1L = 4.07894736378E-6) +D000018__231 = Drift( L = 0.1193) +EDGE3_000__231 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__116 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__232 = Multipole( Kn1L = -4.07894736378E-6) +D000018__232 = Drift( L = 0.1193) +EDGE2_000__232 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__116 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__232 = Multipole( Kn1L = -4.4179123956E-5) +D000014__136 = Drift( L = 0.50037) +SF2_1__31 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__128 = Drift( L = 0.1042) +SF2_1__32 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000012__137 = Drift( L = 0.1559) +HQF_1__18 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000017__137 = Drift( L = 0.0638) +CH17_1 = HKicker( L = 0.2) +D000057__3 = Drift( L = 1.442045) +DB23_1__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000014__137 = Drift( L = 0.50037) +SD17_1 = Sextupole( L = 0.24) +D000012__138 = Drift( L = 0.1559) +HQD_1__18 = Quadrupole( L = 0.5, Kn1 = -0.3112215884,) +D000017__138 = Drift( L = 0.0638) +CV17_1 = VKicker( L = 0.2) +D000057__4 = Drift( L = 1.442045) +DB23_1__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000014__138 = Drift( L = 0.50037) +SF17_1 = Sextupole( L = 0.24) +D000012__139 = Drift( L = 0.1559) +HQF_1__19 = Quadrupole( L = 0.5, Kn1 = 0.3113975997,) +D000059__1 = Drift( L = 2.551335) +HQM22_1 = Quadrupole( L = 0.6, Kn1 = 0.01722745969,) +D000059__2 = Drift( L = 2.551335) +HQM21_1 = Quadrupole( L = 0.6, Kn1 = -0.07374323012) +D000059__3 = Drift( L = 2.551335) +HQM20_1 = Quadrupole( L = 0.6, Kn1 = -0.01932000017,) +D000059__4 = Drift( L = 2.551335) +HQM19_1 = Quadrupole( L = 0.6, Kn1 = -0.08634709755) +D000059__5 = Drift( L = 2.551335) +HQM18_1 = Quadrupole( L = 0.6, Kn1 = -0.08439397155) +D000032__29 = Drift( L = 0.535) +DB23_1__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__30 = Drift( L = 0.535) +HQM17_1 = Quadrupole( L = 0.6, Kn1 = 0.215697629) +D000032__31 = Drift( L = 0.535) +DB23_1__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__32 = Drift( L = 0.535) +HQM16_1 = Quadrupole( L = 0.6, Kn1 = 0.09620701749) +D000060__1 = Drift( L = 6.217138) +HQM15_1 = Quadrupole( L = 0.6, Kn1 = -0.2153529094) +D000060__2 = Drift( L = 6.217138) +HQM14_1 = Quadrupole( L = 0.6, Kn1 = 0.312179911,) +D000060__3 = Drift( L = 6.217138) +HQM13_1 = Quadrupole( L = 0.6, Kn1 = -0.1606496122) +D000032__33 = Drift( L = 0.535) +DB23_1__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__34 = Drift( L = 0.535) +HQM12_1 = Quadrupole( L = 0.6, Kn1 = 0.1379574645) +D000032__35 = Drift( L = 0.535) +DB23_1__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000061__1 = Drift( L = 1.995182) +HQDSS_2__1 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) +D000062__1 = Drift( L = 12.36) +SX41_2 = Sextupole( L = 0.24) +D000056__2 = Drift( L = 0.2) +HQFSS_2__1 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) +D000062__2 = Drift( L = 12.36) +SX42_2 = Sextupole( L = 0.24) +D000056__3 = Drift( L = 0.2) +HQDSS_2__2 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) +MCOLL_H1 = Marker() +D000062__3 = Drift( L = 12.36) +SX43_2 = Sextupole( L = 0.24) +D000056__4 = Drift( L = 0.2) +HQFSS_2__2 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) +D000062__4 = Drift( L = 12.36) +MCOLL_H2 = Marker() +SX44_2 = Sextupole( L = 0.24) +D000056__5 = Drift( L = 0.2) +HQDSS_2__3 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) +D000062__5 = Drift( L = 12.36) +SX45_2 = Sextupole( L = 0.24) +D000056__6 = Drift( L = 0.2) +HQFSS_2__3 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) +D000062__6 = Drift( L = 12.36) +MCOLL_H3 = Marker() +SX46_2 = Sextupole( L = 0.24) +D000056__7 = Drift( L = 0.2) +HQDSS_2__4 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) +D000063 = Drift( L = 6.169233) +IP2 = Marker() +D000064 = Drift( L = 6.630767) +HQFSS_2__4 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) +D000056__8 = Drift( L = 0.2) +SX47_2 = Sextupole( L = 0.24) +D000062__7 = Drift( L = 12.36) +HQDSS_2__5 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) +D000056__9 = Drift( L = 0.2) +SX48_2 = Sextupole( L = 0.24) +D000062__8 = Drift( L = 12.36) +HQFSS_2__5 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) +D000056__10 = Drift( L = 0.2) +SX49_2 = Sextupole( L = 0.24) +D000062__9 = Drift( L = 12.36) +HQDSS_2__6 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) +D000056__11 = Drift( L = 0.2) +SX50_2 = Sextupole( L = 0.24) +MLAMB = Marker() +D000062__10 = Drift( L = 12.36) +HQFSS_2__6 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) +D000056__12 = Drift( L = 0.2) +SX51_2 = Sextupole( L = 0.24) +D000062__11 = Drift( L = 12.36) +HQDSS_2__7 = Quadrupole( L = 0.6, Kn1 = -0.0980096273) +D000056__13 = Drift( L = 0.2) +SX52_2 = Sextupole( L = 0.24) +D000062__12 = Drift( L = 12.36) +HQFSS_2__7 = Quadrupole( L = 0.6, Kn1 = 0.1238165582,) +D000061__2 = Drift( L = 1.995182) +DB23_2__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__36 = Drift( L = 0.535) +HQM12_2 = Quadrupole( L = 0.6, Kn1 = -0.08415385784) +D000032__37 = Drift( L = 0.535) +DB23_2__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__38 = Drift( L = 0.535) +HQM13_2 = Quadrupole( L = 0.6, Kn1 = -7.038584918E-4,) +D000065__1 = Drift( L = 5.927225) +HQM14_2 = Quadrupole( L = 0.6, Kn1 = -0.07676463633) +D000065__2 = Drift( L = 5.927225) +HQM15_2 = Quadrupole( L = 0.6, Kn1 = 0.3290445086,) +D000065__3 = Drift( L = 5.927225) +HQM16_2 = Quadrupole( L = 0.6, Kn1 = -0.2520023905,) +D000032__39 = Drift( L = 0.535) +DB23_2__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__40 = Drift( L = 0.535) +HQM17_2 = Quadrupole( L = 0.6, Kn1 = 0.2982328613) +D000032__41 = Drift( L = 0.535) +DB23_2__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__42 = Drift( L = 0.535) +HQM18_2 = Quadrupole( L = 0.6, Kn1 = 0.2057910441) +D000066__1 = Drift( L = 2.623669) +HQM19_2 = Quadrupole( L = 0.6, Kn1 = -0.2632180047,) +D000066__2 = Drift( L = 2.623669) +HQM20_2 = Quadrupole( L = 0.6, Kn1 = -0.06371765756,) +D000066__3 = Drift( L = 2.623669) +HQM21_2 = Quadrupole( L = 0.6, Kn1 = -2.457652622E-3,) +D000066__4 = Drift( L = 2.623669) +HQM22_2 = Quadrupole( L = 0.6, Kn1 = 0.08440660021) +D000066__5 = Drift( L = 2.623669) +HQF_3__1 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__140 = Drift( L = 0.1559) +SF00_3 = Sextupole( L = 0.24) +D000014__139 = Drift( L = 0.50037) +DB23_2__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000067__1 = Drift( L = 1.442004) +CV00_3 = HKicker( L = 0.2) +D000017__139 = Drift( L = 0.0638) +HQD_3__1 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__141 = Drift( L = 0.1559) +SD00_3 = Sextupole( L = 0.24) +D000014__140 = Drift( L = 0.50037) +DB23_2__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000067__2 = Drift( L = 1.442004) +CH00_3 = HKicker( L = 0.2) +D000017__140 = Drift( L = 0.0638) +HQF_3__2 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__142 = Drift( L = 0.1559) +SF1_1__33 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__129 = Drift( L = 0.1042) +SF1_1__34 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__141 = Drift( L = 0.50037) +EDGE1_000__233 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__117 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__233 = Multipole( Kn1L = 4.07894736378E-6) +D000018__233 = Drift( L = 0.1193) +EDGE3_000__233 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__117 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__234 = Multipole( Kn1L = -4.07894736378E-6) +D000018__234 = Drift( L = 0.1193) +EDGE2_000__234 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__117 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__234 = Multipole( Kn1L = -4.4179123956E-5) +D000068__1 = Drift( L = 0.386407) +CV01_3 = VKicker( L = 0.2) +D000017__141 = Drift( L = 0.0638) +HQD_3__2 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__143 = Drift( L = 0.1559) +SD1_1__33 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__130 = Drift( L = 0.1042) +SD1_1__34 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__142 = Drift( L = 0.50037) +EDGE1_000__235 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__118 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__235 = Multipole( Kn1L = 4.07894736378E-6) +D000018__235 = Drift( L = 0.1193) +EDGE3_000__235 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__118 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__236 = Multipole( Kn1L = -4.07894736378E-6) +D000018__236 = Drift( L = 0.1193) +EDGE2_000__236 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__118 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__236 = Multipole( Kn1L = -4.4179123956E-5) +D000068__2 = Drift( L = 0.386407) +CH01_3 = HKicker( L = 0.2) +D000017__142 = Drift( L = 0.0638) +HQF_3__3 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__144 = Drift( L = 0.1559) +SF2_1__33 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__131 = Drift( L = 0.1042) +SF2_1__34 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__143 = Drift( L = 0.50037) +EDGE1_000__237 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__119 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__237 = Multipole( Kn1L = 4.07894736378E-6) +D000018__237 = Drift( L = 0.1193) +EDGE3_000__237 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__119 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__238 = Multipole( Kn1L = -4.07894736378E-6) +D000018__238 = Drift( L = 0.1193) +EDGE2_000__238 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__119 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__238 = Multipole( Kn1L = -4.4179123956E-5) +D000068__3 = Drift( L = 0.386407) +CV02_3 = VKicker( L = 0.2) +D000017__143 = Drift( L = 0.0638) +HQD_3__3 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__145 = Drift( L = 0.1559) +SD2_1__33 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__132 = Drift( L = 0.1042) +SD2_1__34 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__144 = Drift( L = 0.50037) +EDGE1_000__239 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__120 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__239 = Multipole( Kn1L = 4.07894736378E-6) +D000018__239 = Drift( L = 0.1193) +EDGE3_000__239 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__120 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__240 = Multipole( Kn1L = -4.07894736378E-6) +D000018__240 = Drift( L = 0.1193) +EDGE2_000__240 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__120 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__240 = Multipole( Kn1L = -4.4179123956E-5) +D000068__4 = Drift( L = 0.386407) +CH02_3 = HKicker( L = 0.2) +D000017__144 = Drift( L = 0.0638) +HQF_3__4 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__146 = Drift( L = 0.1559) +SF1_1__35 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__133 = Drift( L = 0.1042) +SF1_1__36 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__145 = Drift( L = 0.50037) +EDGE1_000__241 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__121 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__241 = Multipole( Kn1L = 4.07894736378E-6) +D000018__241 = Drift( L = 0.1193) +EDGE3_000__241 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__121 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__242 = Multipole( Kn1L = -4.07894736378E-6) +D000018__242 = Drift( L = 0.1193) +EDGE2_000__242 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__121 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__242 = Multipole( Kn1L = -4.4179123956E-5) +D000068__5 = Drift( L = 0.386407) +CV03_3 = VKicker( L = 0.2) +D000017__145 = Drift( L = 0.0638) +HQD_3__4 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__147 = Drift( L = 0.1559) +SD1_1__35 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__134 = Drift( L = 0.1042) +SD1_1__36 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__146 = Drift( L = 0.50037) +EDGE1_000__243 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__122 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__243 = Multipole( Kn1L = 4.07894736378E-6) +D000018__243 = Drift( L = 0.1193) +EDGE3_000__243 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__122 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__244 = Multipole( Kn1L = -4.07894736378E-6) +D000018__244 = Drift( L = 0.1193) +EDGE2_000__244 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__122 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__244 = Multipole( Kn1L = -4.4179123956E-5) +D000068__6 = Drift( L = 0.386407) +CH03_3 = HKicker( L = 0.2) +D000017__146 = Drift( L = 0.0638) +HQF_3__5 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__148 = Drift( L = 0.1559) +SF2_1__35 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__135 = Drift( L = 0.1042) +SF2_1__36 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__147 = Drift( L = 0.50037) +EDGE1_000__245 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__123 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__245 = Multipole( Kn1L = 4.07894736378E-6) +D000018__245 = Drift( L = 0.1193) +EDGE3_000__245 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__123 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__246 = Multipole( Kn1L = -4.07894736378E-6) +D000018__246 = Drift( L = 0.1193) +EDGE2_000__246 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__123 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__246 = Multipole( Kn1L = -4.4179123956E-5) +D000068__7 = Drift( L = 0.386407) +CV04_3 = VKicker( L = 0.2) +D000017__147 = Drift( L = 0.0638) +HQD_3__5 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__149 = Drift( L = 0.1559) +SD2_1__35 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__136 = Drift( L = 0.1042) +SD2_1__36 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__148 = Drift( L = 0.50037) +EDGE1_000__247 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__124 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__247 = Multipole( Kn1L = 4.07894736378E-6) +D000018__247 = Drift( L = 0.1193) +EDGE3_000__247 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__124 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__248 = Multipole( Kn1L = -4.07894736378E-6) +D000018__248 = Drift( L = 0.1193) +EDGE2_000__248 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__124 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__248 = Multipole( Kn1L = -4.4179123956E-5) +D000068__8 = Drift( L = 0.386407) +CH04_3 = HKicker( L = 0.2) +D000017__148 = Drift( L = 0.0638) +HQF_3__6 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__150 = Drift( L = 0.1559) +SF1_1__37 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__137 = Drift( L = 0.1042) +SF1_1__38 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__149 = Drift( L = 0.50037) +EDGE1_000__249 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__125 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__249 = Multipole( Kn1L = 4.07894736378E-6) +D000018__249 = Drift( L = 0.1193) +EDGE3_000__249 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__125 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__250 = Multipole( Kn1L = -4.07894736378E-6) +D000018__250 = Drift( L = 0.1193) +EDGE2_000__250 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__125 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__250 = Multipole( Kn1L = -4.4179123956E-5) +D000068__9 = Drift( L = 0.386407) +CV05_3 = VKicker( L = 0.2) +D000017__149 = Drift( L = 0.0638) +HQD_3__6 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__151 = Drift( L = 0.1559) +SD1_1__37 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__138 = Drift( L = 0.1042) +SD1_1__38 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__150 = Drift( L = 0.50037) +EDGE1_000__251 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__126 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__251 = Multipole( Kn1L = 4.07894736378E-6) +D000018__251 = Drift( L = 0.1193) +EDGE3_000__251 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__126 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__252 = Multipole( Kn1L = -4.07894736378E-6) +D000018__252 = Drift( L = 0.1193) +EDGE2_000__252 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__126 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__252 = Multipole( Kn1L = -4.4179123956E-5) +D000068__10 = Drift( L = 0.386407) +CH05_3 = HKicker( L = 0.2) +D000017__150 = Drift( L = 0.0638) +HQF_3__7 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__152 = Drift( L = 0.1559) +SF2_1__37 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__139 = Drift( L = 0.1042) +SF2_1__38 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__151 = Drift( L = 0.50037) +EDGE1_000__253 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__127 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__253 = Multipole( Kn1L = 4.07894736378E-6) +D000018__253 = Drift( L = 0.1193) +EDGE3_000__253 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__127 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__254 = Multipole( Kn1L = -4.07894736378E-6) +D000018__254 = Drift( L = 0.1193) +EDGE2_000__254 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__127 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__254 = Multipole( Kn1L = -4.4179123956E-5) +D000068__11 = Drift( L = 0.386407) +CV06_3 = VKicker( L = 0.2) +D000017__151 = Drift( L = 0.0638) +HQD_3__7 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__153 = Drift( L = 0.1559) +SD2_1__37 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__140 = Drift( L = 0.1042) +SD2_1__38 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__152 = Drift( L = 0.50037) +EDGE1_000__255 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__128 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__255 = Multipole( Kn1L = 4.07894736378E-6) +D000018__255 = Drift( L = 0.1193) +EDGE3_000__255 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__128 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__256 = Multipole( Kn1L = -4.07894736378E-6) +D000018__256 = Drift( L = 0.1193) +EDGE2_000__256 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__128 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__256 = Multipole( Kn1L = -4.4179123956E-5) +D000068__12 = Drift( L = 0.386407) +CH06_3 = HKicker( L = 0.2) +D000017__152 = Drift( L = 0.0638) +HQF_3__8 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__154 = Drift( L = 0.1559) +SF1_1__39 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__141 = Drift( L = 0.1042) +SF1_1__40 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__153 = Drift( L = 0.50037) +EDGE1_000__257 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__129 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__257 = Multipole( Kn1L = 4.07894736378E-6) +D000018__257 = Drift( L = 0.1193) +EDGE3_000__257 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__129 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__258 = Multipole( Kn1L = -4.07894736378E-6) +D000018__258 = Drift( L = 0.1193) +EDGE2_000__258 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__129 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__258 = Multipole( Kn1L = -4.4179123956E-5) +D000068__13 = Drift( L = 0.386407) +CV07_3 = VKicker( L = 0.2) +D000017__153 = Drift( L = 0.0638) +HQD_3__8 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__155 = Drift( L = 0.1559) +SD1_1__39 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__142 = Drift( L = 0.1042) +SD1_1__40 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__154 = Drift( L = 0.50037) +EDGE1_000__259 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__130 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__259 = Multipole( Kn1L = 4.07894736378E-6) +D000018__259 = Drift( L = 0.1193) +EDGE3_000__259 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__130 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__260 = Multipole( Kn1L = -4.07894736378E-6) +D000018__260 = Drift( L = 0.1193) +EDGE2_000__260 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__130 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__260 = Multipole( Kn1L = -4.4179123956E-5) +D000068__14 = Drift( L = 0.386407) +CH07_3 = HKicker( L = 0.2) +D000017__154 = Drift( L = 0.0638) +HQF_3__9 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__156 = Drift( L = 0.1559) +SF2_1__39 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__143 = Drift( L = 0.1042) +SF2_1__40 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__155 = Drift( L = 0.50037) +EDGE1_000__261 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__131 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__261 = Multipole( Kn1L = 4.07894736378E-6) +D000018__261 = Drift( L = 0.1193) +EDGE3_000__261 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__131 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__262 = Multipole( Kn1L = -4.07894736378E-6) +D000018__262 = Drift( L = 0.1193) +EDGE2_000__262 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__131 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__262 = Multipole( Kn1L = -4.4179123956E-5) +D000068__15 = Drift( L = 0.386407) +CV08_3 = VKicker( L = 0.2) +D000017__155 = Drift( L = 0.0638) +HQD_3__9 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__157 = Drift( L = 0.1559) +SD2_1__39 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__144 = Drift( L = 0.1042) +SD2_1__40 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__156 = Drift( L = 0.50037) +EDGE1_000__263 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__132 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__263 = Multipole( Kn1L = 4.07894736378E-6) +D000018__263 = Drift( L = 0.1193) +EDGE3_000__263 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__132 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__264 = Multipole( Kn1L = -4.07894736378E-6) +D000018__264 = Drift( L = 0.1193) +EDGE2_000__264 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__132 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__264 = Multipole( Kn1L = -4.4179123956E-5) +D000068__16 = Drift( L = 0.386407) +CH08_3 = HKicker( L = 0.2) +D000017__156 = Drift( L = 0.0638) +HQF_3__10 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__158 = Drift( L = 0.1559) +SF1_1__41 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__145 = Drift( L = 0.1042) +SF1_1__42 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__157 = Drift( L = 0.50037) +EDGE1_000__265 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__133 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__265 = Multipole( Kn1L = 4.07894736378E-6) +D000018__265 = Drift( L = 0.1193) +EDGE3_000__265 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__133 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__266 = Multipole( Kn1L = -4.07894736378E-6) +D000018__266 = Drift( L = 0.1193) +EDGE2_000__266 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__133 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__266 = Multipole( Kn1L = -4.4179123956E-5) +D000068__17 = Drift( L = 0.386407) +CV09_3 = VKicker( L = 0.2) +D000017__157 = Drift( L = 0.0638) +HQD_3__10 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__159 = Drift( L = 0.1559) +SD1_1__41 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__146 = Drift( L = 0.1042) +SD1_1__42 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__158 = Drift( L = 0.50037) +EDGE1_000__267 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__134 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__267 = Multipole( Kn1L = 4.07894736378E-6) +D000018__267 = Drift( L = 0.1193) +EDGE3_000__267 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__134 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__268 = Multipole( Kn1L = -4.07894736378E-6) +D000018__268 = Drift( L = 0.1193) +EDGE2_000__268 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__134 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__268 = Multipole( Kn1L = -4.4179123956E-5) +D000068__18 = Drift( L = 0.386407) +CH09_3 = HKicker( L = 0.2) +D000017__158 = Drift( L = 0.0638) +HQF_3__11 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__160 = Drift( L = 0.1559) +SF2_1__41 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__147 = Drift( L = 0.1042) +SF2_1__42 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__159 = Drift( L = 0.50037) +EDGE1_000__269 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__135 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__269 = Multipole( Kn1L = 4.07894736378E-6) +D000018__269 = Drift( L = 0.1193) +EDGE3_000__269 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__135 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__270 = Multipole( Kn1L = -4.07894736378E-6) +D000018__270 = Drift( L = 0.1193) +EDGE2_000__270 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__135 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__270 = Multipole( Kn1L = -4.4179123956E-5) +D000068__19 = Drift( L = 0.386407) +CV10_3 = VKicker( L = 0.2) +D000017__159 = Drift( L = 0.0638) +HQD_3__11 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__161 = Drift( L = 0.1559) +SD2_1__41 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__148 = Drift( L = 0.1042) +SD2_1__42 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__160 = Drift( L = 0.50037) +EDGE1_000__271 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__136 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__271 = Multipole( Kn1L = 4.07894736378E-6) +D000018__271 = Drift( L = 0.1193) +EDGE3_000__271 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__136 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__272 = Multipole( Kn1L = -4.07894736378E-6) +D000018__272 = Drift( L = 0.1193) +EDGE2_000__272 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__136 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__272 = Multipole( Kn1L = -4.4179123956E-5) +D000068__20 = Drift( L = 0.386407) +CH10_3 = HKicker( L = 0.2) +D000017__160 = Drift( L = 0.0638) +HQF_3__12 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__162 = Drift( L = 0.1559) +SF1_1__43 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__149 = Drift( L = 0.1042) +SF1_1__44 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__161 = Drift( L = 0.50037) +EDGE1_000__273 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__137 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__273 = Multipole( Kn1L = 4.07894736378E-6) +D000018__273 = Drift( L = 0.1193) +EDGE3_000__273 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__137 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__274 = Multipole( Kn1L = -4.07894736378E-6) +D000018__274 = Drift( L = 0.1193) +EDGE2_000__274 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__137 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__274 = Multipole( Kn1L = -4.4179123956E-5) +D000068__21 = Drift( L = 0.386407) +CV11_3 = VKicker( L = 0.2) +D000017__161 = Drift( L = 0.0638) +HQD_3__12 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__163 = Drift( L = 0.1559) +SD1_1__43 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__150 = Drift( L = 0.1042) +SD1_1__44 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__162 = Drift( L = 0.50037) +EDGE1_000__275 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__138 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__275 = Multipole( Kn1L = 4.07894736378E-6) +D000018__275 = Drift( L = 0.1193) +EDGE3_000__275 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__138 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__276 = Multipole( Kn1L = -4.07894736378E-6) +D000018__276 = Drift( L = 0.1193) +EDGE2_000__276 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__138 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__276 = Multipole( Kn1L = -4.4179123956E-5) +D000068__22 = Drift( L = 0.386407) +CH11_3 = HKicker( L = 0.2) +D000017__162 = Drift( L = 0.0638) +HQF_3__13 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__164 = Drift( L = 0.1559) +SF2_1__43 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__151 = Drift( L = 0.1042) +SF2_1__44 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__163 = Drift( L = 0.50037) +EDGE1_000__277 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__139 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__277 = Multipole( Kn1L = 4.07894736378E-6) +D000018__277 = Drift( L = 0.1193) +EDGE3_000__277 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__139 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__278 = Multipole( Kn1L = -4.07894736378E-6) +D000018__278 = Drift( L = 0.1193) +EDGE2_000__278 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__139 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__278 = Multipole( Kn1L = -4.4179123956E-5) +D000068__23 = Drift( L = 0.386407) +CV12_3 = VKicker( L = 0.2) +D000017__163 = Drift( L = 0.0638) +HQD_3__13 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__165 = Drift( L = 0.1559) +SD2_1__43 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__152 = Drift( L = 0.1042) +SD2_1__44 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__164 = Drift( L = 0.50037) +EDGE1_000__279 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__140 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__279 = Multipole( Kn1L = 4.07894736378E-6) +D000018__279 = Drift( L = 0.1193) +EDGE3_000__279 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__140 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__280 = Multipole( Kn1L = -4.07894736378E-6) +D000018__280 = Drift( L = 0.1193) +EDGE2_000__280 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__140 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__280 = Multipole( Kn1L = -4.4179123956E-5) +D000068__24 = Drift( L = 0.386407) +CH12_3 = HKicker( L = 0.2) +D000017__164 = Drift( L = 0.0638) +HQF_3__14 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__166 = Drift( L = 0.1559) +SF1_1__45 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__153 = Drift( L = 0.1042) +SF1_1__46 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__165 = Drift( L = 0.50037) +EDGE1_000__281 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__141 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__281 = Multipole( Kn1L = 4.07894736378E-6) +D000018__281 = Drift( L = 0.1193) +EDGE3_000__281 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__141 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__282 = Multipole( Kn1L = -4.07894736378E-6) +D000018__282 = Drift( L = 0.1193) +EDGE2_000__282 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__141 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__282 = Multipole( Kn1L = -4.4179123956E-5) +D000068__25 = Drift( L = 0.386407) +CV13_3 = VKicker( L = 0.2) +D000017__165 = Drift( L = 0.0638) +HQD_3__14 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__167 = Drift( L = 0.1559) +SD1_1__45 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__154 = Drift( L = 0.1042) +SD1_1__46 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__166 = Drift( L = 0.50037) +EDGE1_000__283 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__142 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__283 = Multipole( Kn1L = 4.07894736378E-6) +D000018__283 = Drift( L = 0.1193) +EDGE3_000__283 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__142 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__284 = Multipole( Kn1L = -4.07894736378E-6) +D000018__284 = Drift( L = 0.1193) +EDGE2_000__284 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__142 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__284 = Multipole( Kn1L = -4.4179123956E-5) +D000068__26 = Drift( L = 0.386407) +CH13_3 = HKicker( L = 0.2) +D000017__166 = Drift( L = 0.0638) +HQF_3__15 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__168 = Drift( L = 0.1559) +SF2_1__45 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__155 = Drift( L = 0.1042) +SF2_1__46 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__167 = Drift( L = 0.50037) +EDGE1_000__285 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__143 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__285 = Multipole( Kn1L = 4.07894736378E-6) +D000018__285 = Drift( L = 0.1193) +EDGE3_000__285 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__143 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__286 = Multipole( Kn1L = -4.07894736378E-6) +D000018__286 = Drift( L = 0.1193) +EDGE2_000__286 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__143 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__286 = Multipole( Kn1L = -4.4179123956E-5) +D000068__27 = Drift( L = 0.386407) +CV14_3 = VKicker( L = 0.2) +D000017__167 = Drift( L = 0.0638) +HQD_3__15 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__169 = Drift( L = 0.1559) +SD2_1__45 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__156 = Drift( L = 0.1042) +SD2_1__46 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__168 = Drift( L = 0.50037) +EDGE1_000__287 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__144 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__287 = Multipole( Kn1L = 4.07894736378E-6) +D000018__287 = Drift( L = 0.1193) +EDGE3_000__287 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__144 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__288 = Multipole( Kn1L = -4.07894736378E-6) +D000018__288 = Drift( L = 0.1193) +EDGE2_000__288 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__144 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__288 = Multipole( Kn1L = -4.4179123956E-5) +D000068__28 = Drift( L = 0.386407) +CH14_3 = HKicker( L = 0.2) +D000017__168 = Drift( L = 0.0638) +HQF_3__16 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__170 = Drift( L = 0.1559) +SF1_1__47 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000013__157 = Drift( L = 0.1042) +SF1_1__48 = Sextupole( L = 0.24, Kn2 = 1.2778843352549) +D000014__169 = Drift( L = 0.50037) +EDGE1_000__289 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__145 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__289 = Multipole( Kn1L = 4.07894736378E-6) +D000018__289 = Drift( L = 0.1193) +EDGE3_000__289 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__145 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__290 = Multipole( Kn1L = -4.07894736378E-6) +D000018__290 = Drift( L = 0.1193) +EDGE2_000__290 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__145 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__290 = Multipole( Kn1L = -4.4179123956E-5) +D000068__29 = Drift( L = 0.386407) +CV15_3 = VKicker( L = 0.2) +D000017__169 = Drift( L = 0.0638) +HQD_3__16 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__171 = Drift( L = 0.1559) +SD1_1__47 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000013__158 = Drift( L = 0.1042) +SD1_1__48 = Sextupole( L = 0.24, Kn2 = -3.3675331974214) +D000014__170 = Drift( L = 0.50037) +EDGE1_000__291 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__146 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__291 = Multipole( Kn1L = 4.07894736378E-6) +D000018__291 = Drift( L = 0.1193) +EDGE3_000__291 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__146 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__292 = Multipole( Kn1L = -4.07894736378E-6) +D000018__292 = Drift( L = 0.1193) +EDGE2_000__292 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__146 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__292 = Multipole( Kn1L = -4.4179123956E-5) +D000068__30 = Drift( L = 0.386407) +CH15_3 = HKicker( L = 0.2) +D000017__170 = Drift( L = 0.0638) +HQF_3__17 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__172 = Drift( L = 0.1559) +SF2_1__47 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000013__159 = Drift( L = 0.1042) +SF2_1__48 = Sextupole( L = 0.24, Kn2 = 1.7265866168549) +D000014__171 = Drift( L = 0.50037) +EDGE1_000__293 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__147 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__293 = Multipole( Kn1L = 4.07894736378E-6) +D000018__293 = Drift( L = 0.1193) +EDGE3_000__293 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__147 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__294 = Multipole( Kn1L = -4.07894736378E-6) +D000018__294 = Drift( L = 0.1193) +EDGE2_000__294 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__147 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__294 = Multipole( Kn1L = -4.4179123956E-5) +D000068__31 = Drift( L = 0.386407) +CV16_3 = VKicker( L = 0.2) +D000017__171 = Drift( L = 0.0638) +HQD_3__17 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__173 = Drift( L = 0.1559) +SD2_1__47 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000013__160 = Drift( L = 0.1042) +SD2_1__48 = Sextupole( L = 0.24, Kn2 = -3.4287727906214) +D000014__172 = Drift( L = 0.50037) +EDGE1_000__295 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__148 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__295 = Multipole( Kn1L = 4.07894736378E-6) +D000018__295 = Drift( L = 0.1193) +EDGE3_000__295 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__148 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__296 = Multipole( Kn1L = -4.07894736378E-6) +D000018__296 = Drift( L = 0.1193) +EDGE2_000__296 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__148 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__296 = Multipole( Kn1L = -4.4179123956E-5) +D000068__32 = Drift( L = 0.386407) +CH16_3 = HKicker( L = 0.2) +D000017__172 = Drift( L = 0.0638) +HQF_3__18 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__174 = Drift( L = 0.1559) +SF17_3 = Sextupole( L = 0.24) +D000014__173 = Drift( L = 0.50037) +DB23_3__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000067__3 = Drift( L = 1.442004) +CV17_3 = VKicker( L = 0.2) +D000017__173 = Drift( L = 0.0638) +HQD_3__18 = Quadrupole( L = 0.5, Kn1 = -0.3112230088,) +D000012__175 = Drift( L = 0.1559) +SD17_3 = Sextupole( L = 0.24) +D000014__174 = Drift( L = 0.50037) +DB23_3__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000067__4 = Drift( L = 1.442004) +CH17_3 = HKicker( L = 0.2) +D000017__174 = Drift( L = 0.0638) +HQF_3__19 = Quadrupole( L = 0.5, Kn1 = 0.3113990205,) +D000012__176 = Drift( L = 0.1559) +SF18_3 = Sextupole( L = 0.24) +D000069__1 = Drift( L = 4.065299) +HQD22_3 = Quadrupole( L = 0.6, Kn1 = -0.2554856666,) +D000069__2 = Drift( L = 4.065299) +HQF21_3 = Quadrupole( L = 0.6, Kn1 = 0.1978933106,) +D000032__43 = Drift( L = 0.535) +DB23_3__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__44 = Drift( L = 0.535) +HQD20_3 = Quadrupole( L = 0.6, Kn1 = -0.207628952) +D000032__45 = Drift( L = 0.535) +DB23_3__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__46 = Drift( L = 0.535) +HQF19_3 = Quadrupole( L = 0.6, Kn1 = 0.1950635038,) +D000070__1 = Drift( L = 4.543623) +HQD18_3 = Quadrupole( L = 0.6, Kn1 = -0.1791108016,) +D000070__2 = Drift( L = 4.543623) +HQF17_3 = Quadrupole( L = 0.6, Kn1 = 0.1829347368,) +D000070__3 = Drift( L = 4.543623) +HQD16_3 = Quadrupole( L = 0.6, Kn1 = -0.1453526612) +D000032__47 = Drift( L = 0.535) +DB23_3__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__48 = Drift( L = 0.535) +HQF15_3 = Quadrupole( L = 0.6, Kn1 = 0.1369224329) +D000032__49 = Drift( L = 0.535) +DB23_3__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__50 = Drift( L = 0.535) +HQD14_3 = Quadrupole( L = 0.6, Kn1 = -0.1449015186) +MCOLL_V1 = Marker() +D000071__1 = Drift( L = 11.224938) +HQF13_3 = Quadrupole( L = 0.6, Kn1 = 0.1268512382,) +D000071__2 = Drift( L = 11.224938) +MCOLL_V2 = Marker() +HQD12_3 = Quadrupole( L = 0.6, Kn1 = -0.1085522138,) +D000071__3 = Drift( L = 11.224938) +HQF11_3 = Quadrupole( L = 0.6, Kn1 = 0.1203850125,) +D000056__14 = Drift( L = 0.2) +SX41_4 = Sextupole( L = 0.24) +D000072__1 = Drift( L = 10.784938) +MCOLL_V3 = Marker() +HQD10_3 = Quadrupole( L = 0.6, Kn1 = -0.1222253567,) +D000056__15 = Drift( L = 0.2) +SX42_4 = Sextupole( L = 0.24) +D000072__2 = Drift( L = 10.784938) +HQF9_3 = Quadrupole( L = 0.6, Kn1 = 0.1171029044,) +D000056__16 = Drift( L = 0.2) +SX43_4 = Sextupole( L = 0.24) +D000056__17 = Drift( L = 0.2) +DB12_4P__4 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) +D000048__5 = Drift( L = 0.0975) +DB12_4P__5 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) +D000048__6 = Drift( L = 0.0975) +DB12_4P__6 = SBend( L = 3.0051000000005, g = 3.6299291204945E-3, e1 = 5.45415E-3, e2 = 5.45415E-3) +D000032__51 = Drift( L = 0.535) +HQD8_3 = Quadrupole( L = 0.6, Kn1 = -0.08962195033) +D000056__18 = Drift( L = 0.2) +SX44_4 = Sextupole( L = 0.24) +D000072__3 = Drift( L = 10.784938) +HQF7_3 = Quadrupole( L = 0.6, Kn1 = 0.1075244171,) +D000056__19 = Drift( L = 0.2) +SX45_4 = Sextupole( L = 0.24) +D000072__4 = Drift( L = 10.784938) +HQD6_3 = Quadrupole( L = 0.6, Kn1 = -0.1442054796) +D000056__20 = Drift( L = 0.2) +SX46_4 = Sextupole( L = 0.24) +D000073 = Drift( L = 5.172469) +IP4 = Marker() +D000074 = Drift( L = 4.758889) +SX47_4 = Sextupole( L = 0.24) +D000056__21 = Drift( L = 0.2) +HQD4_4 = Quadrupole( L = 0.6, Kn1 = 0.08272423335) +D000075__1 = Drift( L = 9.957779) +SX48_4 = Sextupole( L = 0.24) +D000056__22 = Drift( L = 0.2) +HQF5_4 = Quadrupole( L = 0.6, Kn1 = 0.07737902144) +D000075__2 = Drift( L = 9.957779) +SX49_4 = Sextupole( L = 0.24) +D000056__23 = Drift( L = 0.2) +HQD6_4 = Quadrupole( L = 0.6, Kn1 = -0.08977116391) +D000032__52 = Drift( L = 0.535) +DB12_4M__4 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) +D000048__7 = Drift( L = 0.0975) +DB12_4M__5 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) +D000048__8 = Drift( L = 0.0975) +DB12_4M__6 = SBend( L = 3.0051000000005, g = -3.6299291204945E-3, e1 = -5.45415E-3, e2 = -5.45415E-3) +D000056__24 = Drift( L = 0.2) +SX50_4 = Sextupole( L = 0.24) +D000056__25 = Drift( L = 0.2) +HQF7_4 = Quadrupole( L = 0.6, Kn1 = -0.0511651397,) +D000075__3 = Drift( L = 9.957779) +SX51_4 = Sextupole( L = 0.24) +D000056__26 = Drift( L = 0.2) +HQD8_4 = Quadrupole( L = 0.6, Kn1 = 0.1278181338,) +D000075__4 = Drift( L = 9.957779) +SX52_4 = Sextupole( L = 0.24) +D000056__27 = Drift( L = 0.2) +HQF9_4 = Quadrupole( L = 0.6, Kn1 = -0.1396142326) +D000076__1 = Drift( L = 10.397779) +HQD10_4 = Quadrupole( L = 0.6, Kn1 = 0.05939249134,) +D000076__2 = Drift( L = 10.397779) +HQF11_4 = Quadrupole( L = 0.6, Kn1 = 0.1718574708,) +D000032__53 = Drift( L = 0.535) +DB23_4__1 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__54 = Drift( L = 0.535) +HQD12_4 = Quadrupole( L = 0.6, Kn1 = -0.2619520638,) +D000032__55 = Drift( L = 0.535) +DB23_4__2 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__56 = Drift( L = 0.535) +HQF13_4 = Quadrupole( L = 0.6, Kn1 = 0.2845893896) +D000077__1 = Drift( L = 4.541529) +HQD14_4 = Quadrupole( L = 0.6, Kn1 = 0.1003750764,) +D000077__2 = Drift( L = 4.541529) +HQF15_4 = Quadrupole( L = 0.6, Kn1 = -0.1076656075,) +D000077__3 = Drift( L = 4.541529) +HQD16_4 = Quadrupole( L = 0.6, Kn1 = -0.1185804289,) +D000077__4 = Drift( L = 4.541529) +HQF17_4 = Quadrupole( L = 0.6, Kn1 = 0.1115918173,) +D000077__5 = Drift( L = 4.541529) +HQD18_4 = Quadrupole( L = 0.6, Kn1 = 0.1271940476,) +D000032__57 = Drift( L = 0.535) +DB23_4__3 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__58 = Drift( L = 0.535) +HQF19_4 = Quadrupole( L = 0.6, Kn1 = -0.2573861159,) +D000032__59 = Drift( L = 0.535) +DB23_4__4 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000032__60 = Drift( L = 0.535) +HQD20_4 = Quadrupole( L = 0.6, Kn1 = 0.1950308183,) +D000078__1 = Drift( L = 4.621244) +HQF21_4 = Quadrupole( L = 0.6, Kn1 = -0.03563213932,) +D000078__2 = Drift( L = 4.621244) +HQD22_4 = Quadrupole( L = 0.6, Kn1 = -0.3301534091,) +D000078__3 = Drift( L = 4.621244) +SFM1_5 = Sextupole( L = 0.24) +D000056__28 = Drift( L = 0.2) +HQF_5__1 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__175 = Drift( L = 0.0638) +CH00_5 = HKicker( L = 0.2) +D000079__1 = Drift( L = 1.367552) +DB23_4__5 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000014__175 = Drift( L = 0.50037) +SD00_5 = Sextupole( L = 0.24) +D000012__177 = Drift( L = 0.1559) +HQD_5__1 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__176 = Drift( L = 0.0638) +CV00_5 = VKicker( L = 0.2) +D000079__2 = Drift( L = 1.367552) +DB23_4__6 = SBend( L = 5.8047647843254, g = 3.9218064817153E-3, e1 = 0.011382582078, e2 = 0.011382582078) +D000014__176 = Drift( L = 0.50037) +SF00_5 = Sextupole( L = 0.24) +D000012__178 = Drift( L = 0.1559) +HQF_5__2 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__177 = Drift( L = 0.0638) +CH01_5 = HKicker( L = 0.2) +D000080__1 = Drift( L = 0.311955) +EDGE1_000__297 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__149 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__297 = Multipole( Kn1L = 4.07894736378E-6) +D000018__297 = Drift( L = 0.1193) +EDGE3_000__297 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__149 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__298 = Multipole( Kn1L = -4.07894736378E-6) +D000018__298 = Drift( L = 0.1193) +EDGE2_000__298 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__149 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__298 = Multipole( Kn1L = -4.4179123956E-5) +D000014__177 = Drift( L = 0.50037) +SD1_5__1 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000013__161 = Drift( L = 0.1042) +SD1_5__2 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000012__179 = Drift( L = 0.1559) +HQD_5__2 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__178 = Drift( L = 0.0638) +CV01_5 = VKicker( L = 0.2) +D000080__2 = Drift( L = 0.311955) +EDGE1_000__299 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__150 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__299 = Multipole( Kn1L = 4.07894736378E-6) +D000018__299 = Drift( L = 0.1193) +EDGE3_000__299 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__150 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__300 = Multipole( Kn1L = -4.07894736378E-6) +D000018__300 = Drift( L = 0.1193) +EDGE2_000__300 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__150 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__300 = Multipole( Kn1L = -4.4179123956E-5) +D000014__178 = Drift( L = 0.50037) +SF1_5__1 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000013__162 = Drift( L = 0.1042) +SF1_5__2 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000012__180 = Drift( L = 0.1559) +HQF_5__3 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__179 = Drift( L = 0.0638) +CH02_5 = HKicker( L = 0.2) +D000080__3 = Drift( L = 0.311955) +EDGE1_000__301 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__151 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__301 = Multipole( Kn1L = 4.07894736378E-6) +D000018__301 = Drift( L = 0.1193) +EDGE3_000__301 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__151 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__302 = Multipole( Kn1L = -4.07894736378E-6) +D000018__302 = Drift( L = 0.1193) +EDGE2_000__302 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__151 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__302 = Multipole( Kn1L = -4.4179123956E-5) +D000014__179 = Drift( L = 0.50037) +SD2_5__1 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000013__163 = Drift( L = 0.1042) +SD2_5__2 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000012__181 = Drift( L = 0.1559) +HQD_5__3 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__180 = Drift( L = 0.0638) +CV02_5 = VKicker( L = 0.2) +D000080__4 = Drift( L = 0.311955) +EDGE1_000__303 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__152 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__303 = Multipole( Kn1L = 4.07894736378E-6) +D000018__303 = Drift( L = 0.1193) +EDGE3_000__303 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__152 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__304 = Multipole( Kn1L = -4.07894736378E-6) +D000018__304 = Drift( L = 0.1193) +EDGE2_000__304 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__152 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__304 = Multipole( Kn1L = -4.4179123956E-5) +D000014__180 = Drift( L = 0.50037) +SF2_5__1 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000013__164 = Drift( L = 0.1042) +SF2_5__2 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000012__182 = Drift( L = 0.1559) +HQF_5__4 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__181 = Drift( L = 0.0638) +CH03_5 = HKicker( L = 0.2) +D000080__5 = Drift( L = 0.311955) +EDGE1_000__305 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__153 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__305 = Multipole( Kn1L = 4.07894736378E-6) +D000018__305 = Drift( L = 0.1193) +EDGE3_000__305 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__153 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__306 = Multipole( Kn1L = -4.07894736378E-6) +D000018__306 = Drift( L = 0.1193) +EDGE2_000__306 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__153 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__306 = Multipole( Kn1L = -4.4179123956E-5) +D000014__181 = Drift( L = 0.50037) +SD1_5__3 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000013__165 = Drift( L = 0.1042) +SD1_5__4 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000012__183 = Drift( L = 0.1559) +HQD_5__4 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__182 = Drift( L = 0.0638) +CV03_5 = VKicker( L = 0.2) +D000080__6 = Drift( L = 0.311955) +EDGE1_000__307 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__154 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__307 = Multipole( Kn1L = 4.07894736378E-6) +D000018__307 = Drift( L = 0.1193) +EDGE3_000__307 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__154 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__308 = Multipole( Kn1L = -4.07894736378E-6) +D000018__308 = Drift( L = 0.1193) +EDGE2_000__308 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__154 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__308 = Multipole( Kn1L = -4.4179123956E-5) +D000014__182 = Drift( L = 0.50037) +SF1_5__3 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000013__166 = Drift( L = 0.1042) +SF1_5__4 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000012__184 = Drift( L = 0.1559) +HQF_5__5 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__183 = Drift( L = 0.0638) +CH04_5 = HKicker( L = 0.2) +D000080__7 = Drift( L = 0.311955) +EDGE1_000__309 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__155 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__309 = Multipole( Kn1L = 4.07894736378E-6) +D000018__309 = Drift( L = 0.1193) +EDGE3_000__309 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__155 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__310 = Multipole( Kn1L = -4.07894736378E-6) +D000018__310 = Drift( L = 0.1193) +EDGE2_000__310 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__155 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__310 = Multipole( Kn1L = -4.4179123956E-5) +D000014__183 = Drift( L = 0.50037) +SD2_5__3 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000013__167 = Drift( L = 0.1042) +SD2_5__4 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000012__185 = Drift( L = 0.1559) +HQD_5__5 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__184 = Drift( L = 0.0638) +CV04_5 = VKicker( L = 0.2) +D000080__8 = Drift( L = 0.311955) +EDGE1_000__311 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__156 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__311 = Multipole( Kn1L = 4.07894736378E-6) +D000018__311 = Drift( L = 0.1193) +EDGE3_000__311 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__156 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__312 = Multipole( Kn1L = -4.07894736378E-6) +D000018__312 = Drift( L = 0.1193) +EDGE2_000__312 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__156 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__312 = Multipole( Kn1L = -4.4179123956E-5) +D000014__184 = Drift( L = 0.50037) +SF2_5__3 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000013__168 = Drift( L = 0.1042) +SF2_5__4 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000012__186 = Drift( L = 0.1559) +HQF_5__6 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__185 = Drift( L = 0.0638) +CH05_5 = HKicker( L = 0.2) +D000080__9 = Drift( L = 0.311955) +EDGE1_000__313 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__157 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__313 = Multipole( Kn1L = 4.07894736378E-6) +D000018__313 = Drift( L = 0.1193) +EDGE3_000__313 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__157 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__314 = Multipole( Kn1L = -4.07894736378E-6) +D000018__314 = Drift( L = 0.1193) +EDGE2_000__314 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__157 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__314 = Multipole( Kn1L = -4.4179123956E-5) +D000014__185 = Drift( L = 0.50037) +SD1_5__5 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000013__169 = Drift( L = 0.1042) +SD1_5__6 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000012__187 = Drift( L = 0.1559) +HQD_5__6 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__186 = Drift( L = 0.0638) +CV05_5 = VKicker( L = 0.2) +D000080__10 = Drift( L = 0.311955) +EDGE1_000__315 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__158 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__315 = Multipole( Kn1L = 4.07894736378E-6) +D000018__315 = Drift( L = 0.1193) +EDGE3_000__315 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__158 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__316 = Multipole( Kn1L = -4.07894736378E-6) +D000018__316 = Drift( L = 0.1193) +EDGE2_000__316 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__158 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__316 = Multipole( Kn1L = -4.4179123956E-5) +D000014__186 = Drift( L = 0.50037) +SF1_5__5 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000013__170 = Drift( L = 0.1042) +SF1_5__6 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000012__188 = Drift( L = 0.1559) +HQF_5__7 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__187 = Drift( L = 0.0638) +CH06_5 = HKicker( L = 0.2) +D000080__11 = Drift( L = 0.311955) +EDGE1_000__317 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__159 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__317 = Multipole( Kn1L = 4.07894736378E-6) +D000018__317 = Drift( L = 0.1193) +EDGE3_000__317 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__159 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__318 = Multipole( Kn1L = -4.07894736378E-6) +D000018__318 = Drift( L = 0.1193) +EDGE2_000__318 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__159 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__318 = Multipole( Kn1L = -4.4179123956E-5) +D000014__187 = Drift( L = 0.50037) +SD2_5__5 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000013__171 = Drift( L = 0.1042) +SD2_5__6 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000012__189 = Drift( L = 0.1559) +HQD_5__7 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__188 = Drift( L = 0.0638) +CV06_5 = VKicker( L = 0.2) +D000080__12 = Drift( L = 0.311955) +EDGE1_000__319 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__160 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__319 = Multipole( Kn1L = 4.07894736378E-6) +D000018__319 = Drift( L = 0.1193) +EDGE3_000__319 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__160 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__320 = Multipole( Kn1L = -4.07894736378E-6) +D000018__320 = Drift( L = 0.1193) +EDGE2_000__320 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__160 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__320 = Multipole( Kn1L = -4.4179123956E-5) +D000014__188 = Drift( L = 0.50037) +SF2_5__5 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000013__172 = Drift( L = 0.1042) +SF2_5__6 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000012__190 = Drift( L = 0.1559) +HQF_5__8 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__189 = Drift( L = 0.0638) +CH07_5 = HKicker( L = 0.2) +D000080__13 = Drift( L = 0.311955) +EDGE1_000__321 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__161 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__321 = Multipole( Kn1L = 4.07894736378E-6) +D000018__321 = Drift( L = 0.1193) +EDGE3_000__321 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__161 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__322 = Multipole( Kn1L = -4.07894736378E-6) +D000018__322 = Drift( L = 0.1193) +EDGE2_000__322 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__161 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__322 = Multipole( Kn1L = -4.4179123956E-5) +D000014__189 = Drift( L = 0.50037) +SD1_5__7 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000013__173 = Drift( L = 0.1042) +SD1_5__8 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000012__191 = Drift( L = 0.1559) +HQD_5__8 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__190 = Drift( L = 0.0638) +CV07_5 = VKicker( L = 0.2) +D000080__14 = Drift( L = 0.311955) +EDGE1_000__323 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__162 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__323 = Multipole( Kn1L = 4.07894736378E-6) +D000018__323 = Drift( L = 0.1193) +EDGE3_000__323 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__162 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__324 = Multipole( Kn1L = -4.07894736378E-6) +D000018__324 = Drift( L = 0.1193) +EDGE2_000__324 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__162 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__324 = Multipole( Kn1L = -4.4179123956E-5) +D000014__190 = Drift( L = 0.50037) +SF1_5__7 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000013__174 = Drift( L = 0.1042) +SF1_5__8 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000012__192 = Drift( L = 0.1559) +HQF_5__9 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__191 = Drift( L = 0.0638) +CH08_5 = HKicker( L = 0.2) +D000080__15 = Drift( L = 0.311955) +EDGE1_000__325 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__163 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__325 = Multipole( Kn1L = 4.07894736378E-6) +D000018__325 = Drift( L = 0.1193) +EDGE3_000__325 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__163 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__326 = Multipole( Kn1L = -4.07894736378E-6) +D000018__326 = Drift( L = 0.1193) +EDGE2_000__326 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__163 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__326 = Multipole( Kn1L = -4.4179123956E-5) +D000014__191 = Drift( L = 0.50037) +SD2_5__7 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000013__175 = Drift( L = 0.1042) +SD2_5__8 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000012__193 = Drift( L = 0.1559) +HQD_5__9 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__192 = Drift( L = 0.0638) +CV08_5 = VKicker( L = 0.2) +D000080__16 = Drift( L = 0.311955) +EDGE1_000__327 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__164 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__327 = Multipole( Kn1L = 4.07894736378E-6) +D000018__327 = Drift( L = 0.1193) +EDGE3_000__327 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__164 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__328 = Multipole( Kn1L = -4.07894736378E-6) +D000018__328 = Drift( L = 0.1193) +EDGE2_000__328 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__164 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__328 = Multipole( Kn1L = -4.4179123956E-5) +D000014__192 = Drift( L = 0.50037) +SF2_5__7 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000013__176 = Drift( L = 0.1042) +SF2_5__8 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000012__194 = Drift( L = 0.1559) +HQF_5__10 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__193 = Drift( L = 0.0638) +CH09_5 = HKicker( L = 0.2) +D000080__17 = Drift( L = 0.311955) +EDGE1_000__329 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__165 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__329 = Multipole( Kn1L = 4.07894736378E-6) +D000018__329 = Drift( L = 0.1193) +EDGE3_000__329 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__165 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__330 = Multipole( Kn1L = -4.07894736378E-6) +D000018__330 = Drift( L = 0.1193) +EDGE2_000__330 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__165 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__330 = Multipole( Kn1L = -4.4179123956E-5) +D000014__193 = Drift( L = 0.50037) +SD1_5__9 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000013__177 = Drift( L = 0.1042) +SD1_5__10 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000012__195 = Drift( L = 0.1559) +HQD_5__10 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__194 = Drift( L = 0.0638) +CV09_5 = VKicker( L = 0.2) +D000080__18 = Drift( L = 0.311955) +EDGE1_000__331 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__166 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__331 = Multipole( Kn1L = 4.07894736378E-6) +D000018__331 = Drift( L = 0.1193) +EDGE3_000__331 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__166 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__332 = Multipole( Kn1L = -4.07894736378E-6) +D000018__332 = Drift( L = 0.1193) +EDGE2_000__332 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__166 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__332 = Multipole( Kn1L = -4.4179123956E-5) +D000014__194 = Drift( L = 0.50037) +SF1_5__9 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000013__178 = Drift( L = 0.1042) +SF1_5__10 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000012__196 = Drift( L = 0.1559) +HQF_5__11 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__195 = Drift( L = 0.0638) +CH10_5 = HKicker( L = 0.2) +D000080__19 = Drift( L = 0.311955) +EDGE1_000__333 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__167 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__333 = Multipole( Kn1L = 4.07894736378E-6) +D000018__333 = Drift( L = 0.1193) +EDGE3_000__333 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__167 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__334 = Multipole( Kn1L = -4.07894736378E-6) +D000018__334 = Drift( L = 0.1193) +EDGE2_000__334 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__167 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__334 = Multipole( Kn1L = -4.4179123956E-5) +D000014__195 = Drift( L = 0.50037) +SD2_5__9 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000013__179 = Drift( L = 0.1042) +SD2_5__10 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000012__197 = Drift( L = 0.1559) +HQD_5__11 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__196 = Drift( L = 0.0638) +CV10_5 = VKicker( L = 0.2) +D000080__20 = Drift( L = 0.311955) +EDGE1_000__335 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__168 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__335 = Multipole( Kn1L = 4.07894736378E-6) +D000018__335 = Drift( L = 0.1193) +EDGE3_000__335 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__168 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__336 = Multipole( Kn1L = -4.07894736378E-6) +D000018__336 = Drift( L = 0.1193) +EDGE2_000__336 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__168 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__336 = Multipole( Kn1L = -4.4179123956E-5) +D000014__196 = Drift( L = 0.50037) +SF2_5__9 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000013__180 = Drift( L = 0.1042) +SF2_5__10 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000012__198 = Drift( L = 0.1559) +HQF_5__12 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__197 = Drift( L = 0.0638) +CH11_5 = HKicker( L = 0.2) +D000080__21 = Drift( L = 0.311955) +EDGE1_000__337 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__169 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__337 = Multipole( Kn1L = 4.07894736378E-6) +D000018__337 = Drift( L = 0.1193) +EDGE3_000__337 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__169 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__338 = Multipole( Kn1L = -4.07894736378E-6) +D000018__338 = Drift( L = 0.1193) +EDGE2_000__338 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__169 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__338 = Multipole( Kn1L = -4.4179123956E-5) +D000014__197 = Drift( L = 0.50037) +SD1_5__11 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000013__181 = Drift( L = 0.1042) +SD1_5__12 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000012__199 = Drift( L = 0.1559) +HQD_5__12 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__198 = Drift( L = 0.0638) +CV11_5 = VKicker( L = 0.2) +D000080__22 = Drift( L = 0.311955) +EDGE1_000__339 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__170 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__339 = Multipole( Kn1L = 4.07894736378E-6) +D000018__339 = Drift( L = 0.1193) +EDGE3_000__339 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__170 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__340 = Multipole( Kn1L = -4.07894736378E-6) +D000018__340 = Drift( L = 0.1193) +EDGE2_000__340 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__170 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__340 = Multipole( Kn1L = -4.4179123956E-5) +D000014__198 = Drift( L = 0.50037) +SF1_5__11 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000013__182 = Drift( L = 0.1042) +SF1_5__12 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000012__200 = Drift( L = 0.1559) +HQF_5__13 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__199 = Drift( L = 0.0638) +CH12_5 = HKicker( L = 0.2) +D000080__23 = Drift( L = 0.311955) +EDGE1_000__341 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__171 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__341 = Multipole( Kn1L = 4.07894736378E-6) +D000018__341 = Drift( L = 0.1193) +EDGE3_000__341 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__171 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__342 = Multipole( Kn1L = -4.07894736378E-6) +D000018__342 = Drift( L = 0.1193) +EDGE2_000__342 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__171 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__342 = Multipole( Kn1L = -4.4179123956E-5) +D000014__199 = Drift( L = 0.50037) +SD2_5__11 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000013__183 = Drift( L = 0.1042) +SD2_5__12 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000012__201 = Drift( L = 0.1559) +HQD_5__13 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__200 = Drift( L = 0.0638) +CV12_5 = VKicker( L = 0.2) +D000080__24 = Drift( L = 0.311955) +EDGE1_000__343 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__172 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__343 = Multipole( Kn1L = 4.07894736378E-6) +D000018__343 = Drift( L = 0.1193) +EDGE3_000__343 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__172 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__344 = Multipole( Kn1L = -4.07894736378E-6) +D000018__344 = Drift( L = 0.1193) +EDGE2_000__344 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__172 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__344 = Multipole( Kn1L = -4.4179123956E-5) +D000014__200 = Drift( L = 0.50037) +SF2_5__11 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000013__184 = Drift( L = 0.1042) +SF2_5__12 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000012__202 = Drift( L = 0.1559) +HQF_5__14 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__201 = Drift( L = 0.0638) +CH13_5 = HKicker( L = 0.2) +D000080__25 = Drift( L = 0.311955) +EDGE1_000__345 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__173 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__345 = Multipole( Kn1L = 4.07894736378E-6) +D000018__345 = Drift( L = 0.1193) +EDGE3_000__345 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__173 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__346 = Multipole( Kn1L = -4.07894736378E-6) +D000018__346 = Drift( L = 0.1193) +EDGE2_000__346 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__173 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__346 = Multipole( Kn1L = -4.4179123956E-5) +D000014__201 = Drift( L = 0.50037) +SD1_5__13 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000013__185 = Drift( L = 0.1042) +SD1_5__14 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000012__203 = Drift( L = 0.1559) +HQD_5__14 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__202 = Drift( L = 0.0638) +CV13_5 = VKicker( L = 0.2) +D000080__26 = Drift( L = 0.311955) +EDGE1_000__347 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__174 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__347 = Multipole( Kn1L = 4.07894736378E-6) +D000018__347 = Drift( L = 0.1193) +EDGE3_000__347 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__174 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__348 = Multipole( Kn1L = -4.07894736378E-6) +D000018__348 = Drift( L = 0.1193) +EDGE2_000__348 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__174 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__348 = Multipole( Kn1L = -4.4179123956E-5) +D000014__202 = Drift( L = 0.50037) +SF1_5__13 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000013__186 = Drift( L = 0.1042) +SF1_5__14 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000012__204 = Drift( L = 0.1559) +HQF_5__15 = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__203 = Drift( L = 0.0638) +CH14_5 = HKicker( L = 0.2) +D000080__27 = Drift( L = 0.311955) +EDGE1_000__349 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__175 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__349 = Multipole( Kn1L = 4.07894736378E-6) +D000018__349 = Drift( L = 0.1193) +EDGE3_000__349 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__175 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__350 = Multipole( Kn1L = -4.07894736378E-6) +D000018__350 = Drift( L = 0.1193) +EDGE2_000__350 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__175 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__350 = Multipole( Kn1L = -4.4179123956E-5) +D000014__203 = Drift( L = 0.50037) +SD2_5__13 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000013__187 = Drift( L = 0.1042) +SD2_5__14 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000012__205 = Drift( L = 0.1559) +HQD_5__15 = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__204 = Drift( L = 0.0638) +CV14_5 = VKicker( L = 0.2) +D000080__28 = Drift( L = 0.311955) +EDGE1_000__351 = Multipole( Kn1L = -4.4179123956E-5) +D01A_000__176 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE2_000__351 = Multipole( Kn1L = 4.07894736378E-6) +D000018__351 = Drift( L = 0.1193) +EDGE3_000__351 = Multipole( Kn1L = -4.07894736378E-6) +D23_000__176 = SBend( L = 0.611400127063, g = 3.6528025370199E-3) +EDGE3_000__352 = Multipole( Kn1L = -4.07894736378E-6) +D000018__352 = Drift( L = 0.1193) +EDGE2_000__352 = Multipole( Kn1L = 4.07894736378E-6) +D01B_000__176 = SBend( L = 3.005180646695, g = 3.65280253687E-3) +EDGE1_000__352 = Multipole( Kn1L = -4.4179123956E-5) +D000014__204 = Drift( L = 0.50037) +SF2_5__13 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000013__188 = Drift( L = 0.1042) +SF2_5__14 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000012__206 = Drift( L = 0.1559) +HQF_5C = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__205 = Drift( L = 0.0638) +CH15_5 = HKicker( L = 0.2) +D000080__29 = Drift( L = 0.311955) +EDGE1_001__1 = Multipole( Kn1L = -3.71750681571E-5) +D01A_001__1 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) +EDGE2_001__1 = Multipole( Kn1L = 3.43231997011E-6) +D000029__9 = Drift( L = 0.1193) +EDGE3_001__1 = Multipole( Kn1L = -3.43231997011E-6) +D23_001__1 = SBend( L = 0.61140010692, g = 3.3507810471287E-3) +EDGE3_001__2 = Multipole( Kn1L = -3.43231997011E-6) +D000029__10 = Drift( L = 0.1193) +EDGE2_001__2 = Multipole( Kn1L = 3.43231997011E-6) +D01B_001__1 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) +EDGE1_001__2 = Multipole( Kn1L = -3.71750681571E-5) +D000014__205 = Drift( L = 0.50037) +SD1_5__15 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000013__189 = Drift( L = 0.1042) +SD1_5__16 = Sextupole( L = 0.24, Kn2 = -1.2585512508) +D000012__207 = Drift( L = 0.1559) +HQD_5C = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__206 = Drift( L = 0.0638) +CV15_5 = VKicker( L = 0.2) +D000080__30 = Drift( L = 0.311955) +EDGE1_001__3 = Multipole( Kn1L = -3.71750681571E-5) +D01A_001__2 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) +EDGE2_001__3 = Multipole( Kn1L = 3.43231997011E-6) +D000029__11 = Drift( L = 0.1193) +EDGE3_001__3 = Multipole( Kn1L = -3.43231997011E-6) +D23_001__2 = SBend( L = 0.61140010692, g = 3.3507810471287E-3) +EDGE3_001__4 = Multipole( Kn1L = -3.43231997011E-6) +D000029__12 = Drift( L = 0.1193) +EDGE2_001__4 = Multipole( Kn1L = 3.43231997011E-6) +D01B_001__2 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) +EDGE1_001__4 = Multipole( Kn1L = -3.71750681571E-5) +D000014__206 = Drift( L = 0.50037) +SF1_5__15 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000013__190 = Drift( L = 0.1042) +SF1_5__16 = Sextupole( L = 0.24, Kn2 = 3.1529470258) +D000012__208 = Drift( L = 0.1559) +HQF_5B = Quadrupole( L = 0.5, Kn1 = 0.3139735856,) +D000017__207 = Drift( L = 0.0638) +CH16_5 = HKicker( L = 0.2) +D000080__31 = Drift( L = 0.311955) +EDGE1_001__5 = Multipole( Kn1L = -3.71750681571E-5) +D01A_001__3 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) +EDGE2_001__5 = Multipole( Kn1L = 3.43231997011E-6) +D000029__13 = Drift( L = 0.1193) +EDGE3_001__5 = Multipole( Kn1L = -3.43231997011E-6) +D23_001__3 = SBend( L = 0.61140010692, g = 3.3507810471287E-3) +EDGE3_001__6 = Multipole( Kn1L = -3.43231997011E-6) +D000029__14 = Drift( L = 0.1193) +EDGE2_001__6 = Multipole( Kn1L = 3.43231997011E-6) +D01B_001__3 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) +EDGE1_001__6 = Multipole( Kn1L = -3.71750681571E-5) +D000014__207 = Drift( L = 0.50037) +SD2_5__15 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000013__191 = Drift( L = 0.1042) +SD2_5__16 = Sextupole( L = 0.24, Kn2 = -6.1246897208) +D000012__209 = Drift( L = 0.1559) +HQD_5B = Quadrupole( L = 0.5, Kn1 = -0.3137968224,) +D000017__208 = Drift( L = 0.0638) +CV16_5 = VKicker( L = 0.2) +D000080__32 = Drift( L = 0.311955) +EDGE1_001__7 = Multipole( Kn1L = -3.71750681571E-5) +D01A_001__4 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) +EDGE2_001__7 = Multipole( Kn1L = 3.43231997011E-6) +D000029__15 = Drift( L = 0.1193) +EDGE3_001__7 = Multipole( Kn1L = -3.43231997011E-6) +D23_001__4 = SBend( L = 0.61140010692, g = 3.3507810471287E-3) +EDGE3_001__8 = Multipole( Kn1L = -3.43231997011E-6) +D000029__16 = Drift( L = 0.1193) +EDGE2_001__8 = Multipole( Kn1L = 3.43231997011E-6) +D01B_001__4 = SBend( L = 3.005167861233, g = 3.3507810471753E-3) +EDGE1_001__8 = Multipole( Kn1L = -3.71750681571E-5) +D000014__208 = Drift( L = 0.50037) +SF2_5__15 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000013__192 = Drift( L = 0.1042) +SF2_5__16 = Sextupole( L = 0.24, Kn2 = 1.7622709942) +D000012__210 = Drift( L = 0.1559) +HQF_5A = Quadrupole( L = 0.5, Kn1 = 0.3153779824,) +D000011__4 = Drift( L = 1.1) +HQD_5A = Quadrupole( L = 0.5, Kn1 = -0.1030417826) +D000008__25 = Drift( L = 0.85) +MROT1__4 = Marker() +HSOL5_6__3 = Solenoid( L = 1.8) +D000008__26 = Drift( L = 0.85) +HQSS1_5 = Quadrupole( L = 0.6480402, Kn1 = -0.4317684894,) +D000009__31 = Drift( L = 0.25) +HQSS2_5 = Quadrupole( L = 0.9550568, Kn1 = -0.1999111594,) +D000009__32 = Drift( L = 0.25) +HQSS3_5 = Quadrupole( L = 1.634532, Kn1 = 0.3708753774) +D000009__33 = Drift( L = 0.25) +HQSS4_5 = Quadrupole( L = 1.020723, Kn1 = -0.288327878) +D000009__34 = Drift( L = 0.25) +HQSS5_5 = Quadrupole( L = 0.6861532, Kn1 = -0.1632518563,) +D000008__27 = Drift( L = 0.85) +HSOL5_6__4 = Solenoid( L = 1.8) +MROT2__4 = Marker() +D000008__28 = Drift( L = 0.85) +HQFF1_5 = Quadrupole( L = 0.8, Kn1 = -0.3422170623,) +D000081__1 = Drift( L = 0.566391) +DB23_5__1 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000081__2 = Drift( L = 0.566391) +QFF2_5 = Quadrupole( L = 1.2, Kn1 = 0.191103341,) +D000081__3 = Drift( L = 0.566391) +DB23_5__2 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000081__4 = Drift( L = 0.566391) +QFF3_5 = Quadrupole( L = 1.2, Kn1 = -0.1586177022,) +D000081__5 = Drift( L = 0.566391) +DB23_5__3 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000081__6 = Drift( L = 0.566391) +QFF4_5 = Quadrupole( L = 1, Kn1 = 0.3022856494,) +D000081__7 = Drift( L = 0.566391) +DB23_5__4 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000081__8 = Drift( L = 0.566391) +HQFF5_5 = Quadrupole( L = 0.6, Kn1 = -0.3354145962,) +D000081__9 = Drift( L = 0.566391) +DB23_5__5 = SBend( L = 3.8000605852935, g = 5.1475963740429E-3, e1 = 9.780589045E-3, e2 = 9.780589045E-3) +D000081__10 = Drift( L = 0.566391) +MFF_5 = Marker() +HQFF6_5 = Quadrupole( L = 0.5, Kn1 = 0.2871373468,) +D000008__29 = Drift( L = 0.85) +MROT3__4 = Marker() +HSOL20_6__3 = Solenoid( L = 5.5, Ksol = 0.142634259959) +D000008__30 = Drift( L = 0.85) +HQLS1_5 = Quadrupole( L = 0.9819319, Kn1 = 0.4980048) +D000009__35 = Drift( L = 0.25) +HQLS2_5 = Quadrupole( L = 1.469939, Kn1 = -0.4983425) +D000009__36 = Drift( L = 0.25) +HQLS3_5 = Quadrupole( L = 1.530059, Kn1 = 0.3253198) +D000009__37 = Drift( L = 0.25) +HQLS4_5 = Quadrupole( L = 0.5187944, Kn1 = 0.498934) +D000009__38 = Drift( L = 0.25) +HQLS5_5 = Quadrupole( L = 1.530059, Kn1 = 0.3253198) +D000009__39 = Drift( L = 0.25) +HQLS6_5 = Quadrupole( L = 1.469939, Kn1 = -0.4983425) +D000009__40 = Drift( L = 0.25) +HQLS7_5 = Quadrupole( L = 0.9819319, Kn1 = 0.4980048) +D000008__31 = Drift( L = 0.85) +HSOL20_6__4 = Solenoid( L = 5.5, Ksol = 0.142634259959) +MROT4__4 = Marker() +D000008__32 = Drift( L = 0.85) +MLRF_6 = Marker() +Q12EF_6 = Quadrupole( L = 1.2, Kn1 = 0.05667673526,) +D000006__30 = Drift( L = 0.4) +D3EF_6__1 = SBend( L = 3.8000341971292, g = 3.8674060652146E-3, e1 = 7.348137651E-3, e2 = 7.348137651E-3) +D000006__31 = Drift( L = 0.4) +Q11EF_6 = Quadrupole( L = 1.2, Kn1 = -0.12274232) +D000006__32 = Drift( L = 0.4) +D3EF_6__2 = SBend( L = 3.8000341971292, g = 3.8674060652146E-3, e1 = 7.348137651E-3, e2 = 7.348137651E-3) +D000006__33 = Drift( L = 0.4) +Q10EF_6 = Quadrupole( L = 1.2, Kn1 = 0.1325250342) +D000006__34 = Drift( L = 0.4) +D3EF_6__3 = SBend( L = 3.8000341971292, g = 3.8674060652146E-3, e1 = 7.348137651E-3, e2 = 7.348137651E-3) +D000006__35 = Drift( L = 0.4) +Q9EF_6 = Quadrupole( L = 1.2, Kn1 = 0.06324195501) +D000006__36 = Drift( L = 0.4) +D3EF_6__4 = SBend( L = 3.8000341971292, g = 3.8674060652146E-3, e1 = 7.348137651E-3, e2 = 7.348137651E-3) +D000006__37 = Drift( L = 0.4) +Q8EF_6 = Quadrupole( L = 1.2, Kn1 = -0.1305514285) +D000005__15 = Drift( L = 4.6) +Q7EF_6 = Quadrupole( L = 1.2, Kn1 = 0.2370467134,) +D000005__16 = Drift( L = 4.6) +Q6EF_6 = Quadrupole( L = 1.2, Kn1 = -0.2243033401) +D000005__17 = Drift( L = 4.6) +Q5EF_6 = Quadrupole( L = 1.2, Kn1 = 0.2358711172) +D000005__18 = Drift( L = 4.6) +Q4EF_6 = Quadrupole( L = 1.2, Kn1 = -0.1541105329) +D000082 = Drift( L = 12.410188) +Q3EF_6 = Quadrupole( L = 0.6, Kn1 = 0.1207364787,) +D000007__33 = Drift( L = 0.3) +RF_CRAB__4 = Drift( L = 4) +D000007__34 = Drift( L = 0.3) +Q2EF_6 = Quadrupole( L = 0.6, Kn1 = -0.07669023958) +D000006__38 = Drift( L = 0.4) +D1EF_6 = SBend( L = 3.8000633341148, g = -5.263071944473E-3, e1 = -0.0100000033605, e2 = -0.0100000033605) +D000083 = Drift( L = 20.3) +MCOLL_MASK = Marker() +Q1EF_6 = Quadrupole( L = 1.61, Kn1 = 0.1003916016) +D000022__2 = Drift( L = 3.76) +Q0EF_6 = Quadrupole( L = 1.2, Kn1 = -0.2168808898) +D000023__2 = Drift( L = 5.8) +IP6__2 = Marker() end -ring = Beamline( - [IP6__1, D000001__1, Q1ER_6, D000002__1, Q2ER_6, D000002__2, D2ER_6, D000003__1, Q3ER_6, - D000004, Q4ER_6, D000005__1, Q5ER_6, D000006__1, D3ER_6, D000006__2, Q6ER_6, D000005__2, Q7ER_6, - D000005__3, Q9ER_6, D000007__1, RF_CRAB__1, D000007__2, Q10ER_6, D000005__4, Q11ER_6, D000006__3, - D5ER_6__1, D000006__4, Q12ER_6, D000006__5, D5ER_6__2, D000006__6, Q13ER_6, D000006__7, D5ER_6__3, - D000006__8, Q14ER_6, D000006__9, D5ER_6__4, D000006__10, Q15ER_6, MLRR_6, D000008__1, MROT4__1, - HSOL20_6__1, D000008__2, HQLS7_6, D000009__1, HQLS6_6, D000009__2, HQLS5_6, D000009__3, HQLS4_6, - D000009__4, HQLS3_6, D000009__5, HQLS2_6, D000009__6, HQLS1_6, D000008__3, HSOL20_6__2, MROT3__1, - D000008__4, HQFF6_6, MFF_6, D000010__1, DB23_6__1, D000010__2, HQFF5_6, D000010__3, DB23_6__2, - D000010__4, QFF4_6, D000010__5, DB23_6__3, D000010__6, QFF3_6, D000010__7, DB23_6__4, D000010__8, - QFF2_6, D000010__9, DB23_6__5, D000010__10, QFF1_6, D000008__5, MROT2__1, HSOL5_6__1, D000008__6, - HQSS5_6, D000009__7, HQSS4_6, D000009__8, HQSS3_6, D000009__9, HQSS2_6, D000009__10, HQSS1_6, - D000008__7, HSOL5_6__2, MROT1__1, D000008__8, HQD_6A, D000011__1, HQF_6A, D000012__1, SF1_7__1, - D000013__1, SF1_7__2, D000014__1, EDGE1_002__1, D01A_002__1, EDGE2_002__1, D000015__1, EDGE3_002__1, - D23_002__1, EDGE3_002__2, D000015__2, EDGE2_002__2, D01B_002__1, EDGE1_002__2, D000016__1, CV01_7, - D000017__1, HQD_6B, D000012__2, SD1_7__1, D000013__2, SD1_7__2, D000014__2, EDGE1_002__3, D01A_002__2, - EDGE2_002__3, D000015__3, EDGE3_002__3, D23_002__2, EDGE3_002__4, D000015__4, EDGE2_002__4, D01B_002__2, - EDGE1_002__4, D000016__2, CH01_7, D000017__2, HQF_6B, D000012__3, SF2_7__1, D000013__3, SF2_7__2, - D000014__3, EDGE1_002__5, D01A_002__3, EDGE2_002__5, D000015__5, EDGE3_002__5, D23_002__3, EDGE3_002__6, - D000015__6, EDGE2_002__6, D01B_002__3, EDGE1_002__6, D000016__3, CV02_7, D000017__3, HQD_6C, D000012__4, - SD2_7__1, D000013__4, SD2_7__2, D000014__4, EDGE1_002__7, D01A_002__4, EDGE2_002__7, D000015__7, - EDGE3_002__7, D23_002__4, EDGE3_002__8, D000015__8, EDGE2_002__8, D01B_002__4, EDGE1_002__8, D000016__4, - CH02_7, D000017__4, HQF_6C, D000012__5, SF1_7__3, D000013__5, SF1_7__4, D000014__5, EDGE1_000__1, - D01A_000__1, EDGE2_000__1, D000018__1, EDGE3_000__1, D23_000__1, EDGE3_000__2, D000018__2, EDGE2_000__2, - D01B_000__1, EDGE1_000__2, D000016__5, CV03_7, D000017__5, HQD_7__1, D000012__6, SD1_7__3, D000013__6, - SD1_7__4, D000014__6, EDGE1_000__3, D01A_000__2, EDGE2_000__3, D000018__3, EDGE3_000__3, D23_000__2, - EDGE3_000__4, D000018__4, EDGE2_000__4, D01B_000__2, EDGE1_000__4, D000016__6, CH03_7, D000017__6, - HQF_7__1, D000012__7, SF2_7__3, D000013__7, SF2_7__4, D000014__7, EDGE1_000__5, D01A_000__3, - EDGE2_000__5, D000018__5, EDGE3_000__5, D23_000__3, EDGE3_000__6, D000018__6, EDGE2_000__6, D01B_000__3, - EDGE1_000__6, D000016__7, CV04_7, D000017__7, HQD_7__2, D000012__8, SD2_7__3, D000013__8, SD2_7__4, - D000014__8, EDGE1_000__7, D01A_000__4, EDGE2_000__7, D000018__7, EDGE3_000__7, D23_000__4, EDGE3_000__8, - D000018__8, EDGE2_000__8, D01B_000__4, EDGE1_000__8, D000016__8, CH04_7, D000017__8, HQF_7__2, - D000012__9, SF1_7__5, D000013__9, SF1_7__6, D000014__9, EDGE1_000__9, D01A_000__5, EDGE2_000__9, - D000018__9, EDGE3_000__9, D23_000__5, EDGE3_000__10, D000018__10, EDGE2_000__10, D01B_000__5, - EDGE1_000__10, D000016__9, CV05_7, D000017__9, HQD_7__3, D000012__10, SD1_7__5, D000013__10, SD1_7__6, - D000014__10, EDGE1_000__11, D01A_000__6, EDGE2_000__11, D000018__11, EDGE3_000__11, D23_000__6, - EDGE3_000__12, D000018__12, EDGE2_000__12, D01B_000__6, EDGE1_000__12, D000016__10, CH05_7, D000017__10, - HQF_7__3, D000012__11, SF2_7__5, D000013__11, SF2_7__6, D000014__11, EDGE1_000__13, D01A_000__7, - EDGE2_000__13, D000018__13, EDGE3_000__13, D23_000__7, EDGE3_000__14, D000018__14, EDGE2_000__14, - D01B_000__7, EDGE1_000__14, D000016__11, CV06_7, D000017__11, HQD_7__4, D000012__12, SD2_7__5, - D000013__12, SD2_7__6, D000014__12, EDGE1_000__15, D01A_000__8, EDGE2_000__15, D000018__15, - EDGE3_000__15, D23_000__8, EDGE3_000__16, D000018__16, EDGE2_000__16, D01B_000__8, EDGE1_000__16, - D000016__12, CH06_7, D000017__12, HQF_7__4, D000012__13, SF1_7__7, D000013__13, SF1_7__8, D000014__13, - EDGE1_000__17, D01A_000__9, EDGE2_000__17, D000018__17, EDGE3_000__17, D23_000__9, EDGE3_000__18, - D000018__18, EDGE2_000__18, D01B_000__9, EDGE1_000__18, D000016__13, CV07_7, D000017__13, HQD_7__5, - D000012__14, SD1_7__7, D000013__14, SD1_7__8, D000014__14, EDGE1_000__19, D01A_000__10, EDGE2_000__19, - D000018__19, EDGE3_000__19, D23_000__10, EDGE3_000__20, D000018__20, EDGE2_000__20, D01B_000__10, - EDGE1_000__20, D000016__14, CH07_7, D000017__14, HQF_7__5, D000012__15, SF2_7__7, D000013__15, SF2_7__8, - D000014__15, EDGE1_000__21, D01A_000__11, EDGE2_000__21, D000018__21, EDGE3_000__21, D23_000__11, - EDGE3_000__22, D000018__22, EDGE2_000__22, D01B_000__11, EDGE1_000__22, D000016__15, CV08_7, - D000017__15, HQD_7__6, D000012__16, SD2_7__7, D000013__16, SD2_7__8, D000014__16, EDGE1_000__23, - D01A_000__12, EDGE2_000__23, D000018__23, EDGE3_000__23, D23_000__12, EDGE3_000__24, D000018__24, - EDGE2_000__24, D01B_000__12, EDGE1_000__24, D000016__16, CH08_7, D000017__16, HQF_7__6, D000012__17, - SF1_7__9, D000013__17, SF1_7__10, D000014__17, EDGE1_000__25, D01A_000__13, EDGE2_000__25, D000018__25, - EDGE3_000__25, D23_000__13, EDGE3_000__26, D000018__26, EDGE2_000__26, D01B_000__13, EDGE1_000__26, - D000016__17, CV09_7, D000017__17, HQD_7__7, D000012__18, SD1_7__9, D000013__18, SD1_7__10, D000014__18, - EDGE1_000__27, D01A_000__14, EDGE2_000__27, D000018__27, EDGE3_000__27, D23_000__14, EDGE3_000__28, - D000018__28, EDGE2_000__28, D01B_000__14, EDGE1_000__28, D000016__18, CH09_7, D000017__18, HQF_7__7, - D000012__19, SF2_7__9, D000013__19, SF2_7__10, D000014__19, EDGE1_000__29, D01A_000__15, EDGE2_000__29, - D000018__29, EDGE3_000__29, D23_000__15, EDGE3_000__30, D000018__30, EDGE2_000__30, D01B_000__15, - EDGE1_000__30, D000016__19, CV10_7, D000017__19, HQD_7__8, D000012__20, SD2_7__9, D000013__20, - SD2_7__10, D000014__20, EDGE1_000__31, D01A_000__16, EDGE2_000__31, D000018__31, EDGE3_000__31, - D23_000__16, EDGE3_000__32, D000018__32, EDGE2_000__32, D01B_000__16, EDGE1_000__32, D000016__20, - CH10_7, D000017__20, HQF_7__8, D000012__21, SF1_7__11, D000013__21, SF1_7__12, D000014__21, - EDGE1_000__33, D01A_000__17, EDGE2_000__33, D000018__33, EDGE3_000__33, D23_000__17, EDGE3_000__34, - D000018__34, EDGE2_000__34, D01B_000__17, EDGE1_000__34, D000016__21, CV11_7, D000017__21, HQD_7__9, - D000012__22, SD1_7__11, D000013__22, SD1_7__12, D000014__22, EDGE1_000__35, D01A_000__18, EDGE2_000__35, - D000018__35, EDGE3_000__35, D23_000__18, EDGE3_000__36, D000018__36, EDGE2_000__36, D01B_000__18, - EDGE1_000__36, D000016__22, CH11_7, D000017__22, HQF_7__9, D000012__23, SF2_7__11, D000013__23, - SF2_7__12, D000014__23, EDGE1_000__37, D01A_000__19, EDGE2_000__37, D000018__37, EDGE3_000__37, - D23_000__19, EDGE3_000__38, D000018__38, EDGE2_000__38, D01B_000__19, EDGE1_000__38, D000016__23, - CV12_7, D000017__23, HQD_7__10, D000012__24, SD2_7__11, D000013__24, SD2_7__12, D000014__24, - EDGE1_000__39, D01A_000__20, EDGE2_000__39, D000018__39, EDGE3_000__39, D23_000__20, EDGE3_000__40, - D000018__40, EDGE2_000__40, D01B_000__20, EDGE1_000__40, D000016__24, CH12_7, D000017__24, HQF_7__10, - D000012__25, SF1_7__13, D000013__25, SF1_7__14, D000014__25, EDGE1_000__41, D01A_000__21, EDGE2_000__41, - D000018__41, EDGE3_000__41, D23_000__21, EDGE3_000__42, D000018__42, EDGE2_000__42, D01B_000__21, - EDGE1_000__42, D000016__25, CV13_7, D000017__25, HQD_7__11, D000012__26, SD1_7__13, D000013__26, - SD1_7__14, D000014__26, EDGE1_000__43, D01A_000__22, EDGE2_000__43, D000018__43, EDGE3_000__43, - D23_000__22, EDGE3_000__44, D000018__44, EDGE2_000__44, D01B_000__22, EDGE1_000__44, D000016__26, - CH13_7, D000017__26, HQF_7__11, D000012__27, SF2_7__13, D000013__27, SF2_7__14, D000014__27, - EDGE1_000__45, D01A_000__23, EDGE2_000__45, D000018__45, EDGE3_000__45, D23_000__23, EDGE3_000__46, - D000018__46, EDGE2_000__46, D01B_000__23, EDGE1_000__46, D000016__27, CV14_7, D000017__27, HQD_7__12, - D000012__28, SD2_7__13, D000013__28, SD2_7__14, D000014__28, EDGE1_000__47, D01A_000__24, EDGE2_000__47, - D000018__47, EDGE3_000__47, D23_000__24, EDGE3_000__48, D000018__48, EDGE2_000__48, D01B_000__24, - EDGE1_000__48, D000016__28, CH14_7, D000017__28, HQF_7C, D000012__29, SF1_7__15, D000013__29, SF1_7__16, - D000014__29, EDGE1_003__1, D01A_003__1, EDGE2_003__1, D000015__9, EDGE3_003__1, D23_003__1, - EDGE3_003__2, D000015__10, EDGE2_003__2, D01B_003__1, EDGE1_003__2, D000016__29, CV15_7, D000017__29, - HQD_7C, D000012__30, SD1_7__15, D000013__30, SD1_7__16, D000014__30, EDGE1_003__3, D01A_003__2, - EDGE2_003__3, D000015__11, EDGE3_003__3, D23_003__2, EDGE3_003__4, D000015__12, EDGE2_003__4, - D01B_003__2, EDGE1_003__4, D000016__30, CH15_7, D000017__30, HQF_7B, D000012__31, SF2_7__15, - D000013__31, SF2_7__16, D000014__31, EDGE1_003__5, D01A_003__3, EDGE2_003__5, D000015__13, EDGE3_003__5, - D23_003__3, EDGE3_003__6, D000015__14, EDGE2_003__6, D01B_003__3, EDGE1_003__6, D000016__31, CV16_7, - D000017__31, HQD_7B, D000012__32, SD2_7__15, D000013__32, SD2_7__16, D000014__32, EDGE1_003__7, - D01A_003__4, EDGE2_003__7, D000015__15, EDGE3_003__7, D23_003__4, EDGE3_003__8, D000015__16, - EDGE2_003__8, D01B_003__4, EDGE1_003__8, D000016__32, CH16_7, D000017__32, HQF_7A, D000011__2, HQD_7A, - D000008__9, MROT1__2, HSOL5_8__1, D000008__10, HQSS1_7, D000009__11, HQSS2_7, D000009__12, HQSS3_7, - D000009__13, HQSS4_7, D000009__14, HQSS5_7, D000008__11, HSOL5_8__2, MROT2__2, D000008__12, HQFF1_7, - D000019__1, DB23_7__1, D000019__2, QFF2_7, D000019__3, DB23_7__2, D000019__4, QFF3_7, D000019__5, - DB23_7__3, D000019__6, QFF4_7, D000019__7, DB23_7__4, D000019__8, HQFF5_7, D000019__9, DB23_7__5, - D000019__10, MFF_7, HQFF6_7, D000008__13, MROT3__2, HSOL20_8__1, D000008__14, HQLS1_7, D000009__15, - HQLS2_7, D000009__16, HQLS3_7, D000009__17, HQLS4_7, D000009__18, HQLS5_7, D000009__19, HQLS6_7, - D000009__20, HQLS7_7, D000008__15, HSOL20_8__2, MROT4__2, D000008__16, MLRF_8, Q14EF_8, D000006__11, - D3EF_8__1, D000006__12, Q13EF_8, D000006__13, D3EF_8__2, D000006__14, Q12EF_8, D000006__15, D3EF_8__3, - D000006__16, Q11EF_8, D000006__17, D2EF_8, D000006__18, Q10EF_8, D000005__5, Q9EF_8, D000005__6, Q8EF_8, - D000005__7, Q7EF_8, D000005__8, Q6EF_8, D000005__9, Q5EF_8, D000005__10, Q4EF_8, D000020, Q3EF_8, - D000007__3, RF_CRAB__2, D000007__4, Q2EF_8, D000006__19, D1EF_8__1, D000006__20, D1EF_8__2, D000021, - Q1EF_8, D000022__1, Q0EF_8, D000023__1, IP8, D000001__2, Q1ER_8, D000002__3, Q2ER_8, D000002__4, D2ER_8, - D000003__2, Q3ER_8, D000006__21, D3ER_8, D000024, Q4ER_8, D000025, Q5ER_8, D000026, Q6ER_8, D000005__11, - Q7ER_8, D000005__12, Q8ER_8, D000005__13, Q9ER_8, D000007__5, RF_CRAB__3, D000007__6, Q10ER_8, - D000005__14, Q11ER_8, D000006__22, D4ER_8, D000006__23, Q12ER_8, D000006__24, D5ER_8__1, D000006__25, - Q13ER_8, D000006__26, D5ER_8__2, D000006__27, Q14ER_8, D000006__28, D5ER_8__3, D000006__29, Q15ER_8, - MLRR_8, D000008__17, MROT4__3, HSOL20_8__3, D000008__18, HQLS7_8, D000009__21, HQLS6_8, D000009__22, - HQLS5_8, D000009__23, HQLS4_8, D000009__24, HQLS3_8, D000009__25, HQLS2_8, D000009__26, HQLS1_8, - D000008__19, HSOL20_8__4, MROT3__3, D000008__20, HQFF6_8, MFF_8, D000027__1, DB23_8__1, D000027__2, - HQFF5_8, D000027__3, DB23_8__2, D000027__4, QFF4_8, D000027__5, DB23_8__3, D000027__6, QFF3_8, - D000027__7, DB23_8__4, D000027__8, QFF2_8, D000027__9, DB23_8__5, D000027__10, QFF1_8, D000008__21, - MROT2__3, HSOL5_8__3, D000008__22, HQSS5_8, D000009__27, HQSS4_8, D000009__28, HQSS3_8, D000009__29, - HQSS2_8, D000009__30, HQSS1_8, D000008__23, HSOL5_8__4, MROT1__3, D000008__24, HQD_8A, D000011__3, - HQF_8A, D000017__33, CH01_9, D000028__1, EDGE1_004__1, D01A_004__1, EDGE2_004__1, D000029__1, - EDGE3_004__1, D23_004__1, EDGE3_004__2, D000029__2, EDGE2_004__2, D01B_004__1, EDGE1_004__2, - D000014__33, SD1_9__1, D000013__33, SD1_9__2, D000012__33, HQD_8B, D000017__34, CV01_9, D000028__2, - EDGE1_004__3, D01A_004__2, EDGE2_004__3, D000029__3, EDGE3_004__3, D23_004__2, EDGE3_004__4, D000029__4, - EDGE2_004__4, D01B_004__2, EDGE1_004__4, D000014__34, SF1_9__1, D000013__34, SF1_9__2, D000012__34, - HQF_8B, D000017__35, CH02_9, D000028__3, EDGE1_004__5, D01A_004__3, EDGE2_004__5, D000029__5, - EDGE3_004__5, D23_004__3, EDGE3_004__6, D000029__6, EDGE2_004__6, D01B_004__3, EDGE1_004__6, - D000014__35, SD2_9__1, D000013__35, SD2_9__2, D000012__35, HQD_8C, D000017__36, CV02_9, D000028__4, - EDGE1_004__7, D01A_004__4, EDGE2_004__7, D000029__7, EDGE3_004__7, D23_004__4, EDGE3_004__8, D000029__8, - EDGE2_004__8, D01B_004__4, EDGE1_004__8, D000014__36, SF2_9__1, D000013__36, SF2_9__2, D000012__36, - HQF_8C, D000017__37, CH03_9, D000028__5, EDGE1_000__49, D01A_000__25, EDGE2_000__49, D000018__49, - EDGE3_000__49, D23_000__25, EDGE3_000__50, D000018__50, EDGE2_000__50, D01B_000__25, EDGE1_000__50, - D000014__37, SD1_9__3, D000013__37, SD1_9__4, D000012__37, HQD_9__1, D000017__38, CV03_9, D000028__6, - EDGE1_000__51, D01A_000__26, EDGE2_000__51, D000018__51, EDGE3_000__51, D23_000__26, EDGE3_000__52, - D000018__52, EDGE2_000__52, D01B_000__26, EDGE1_000__52, D000014__38, SF1_9__3, D000013__38, SF1_9__4, - D000012__38, HQF_9__1, D000017__39, CH04_9, D000028__7, EDGE1_000__53, D01A_000__27, EDGE2_000__53, - D000018__53, EDGE3_000__53, D23_000__27, EDGE3_000__54, D000018__54, EDGE2_000__54, D01B_000__27, - EDGE1_000__54, D000014__39, SD2_9__3, D000013__39, SD2_9__4, D000012__39, HQD_9__2, D000017__40, CV04_9, - D000028__8, EDGE1_000__55, D01A_000__28, EDGE2_000__55, D000018__55, EDGE3_000__55, D23_000__28, - EDGE3_000__56, D000018__56, EDGE2_000__56, D01B_000__28, EDGE1_000__56, D000014__40, SF2_9__3, - D000013__40, SF2_9__4, D000012__40, HQF_9__2, D000017__41, CH05_9, D000028__9, EDGE1_000__57, - D01A_000__29, EDGE2_000__57, D000018__57, EDGE3_000__57, D23_000__29, EDGE3_000__58, D000018__58, - EDGE2_000__58, D01B_000__29, EDGE1_000__58, D000014__41, SD1_9__5, D000013__41, SD1_9__6, D000012__41, - HQD_9__3, D000017__42, CV05_9, D000028__10, EDGE1_000__59, D01A_000__30, EDGE2_000__59, D000018__59, - EDGE3_000__59, D23_000__30, EDGE3_000__60, D000018__60, EDGE2_000__60, D01B_000__30, EDGE1_000__60, - D000014__42, SF1_9__5, D000013__42, SF1_9__6, D000012__42, HQF_9__3, D000017__43, CH06_9, D000028__11, - EDGE1_000__61, D01A_000__31, EDGE2_000__61, D000018__61, EDGE3_000__61, D23_000__31, EDGE3_000__62, - D000018__62, EDGE2_000__62, D01B_000__31, EDGE1_000__62, D000014__43, SD2_9__5, D000013__43, SD2_9__6, - D000012__43, HQD_9__4, D000017__44, CV06_9, D000028__12, EDGE1_000__63, D01A_000__32, EDGE2_000__63, - D000018__63, EDGE3_000__63, D23_000__32, EDGE3_000__64, D000018__64, EDGE2_000__64, D01B_000__32, - EDGE1_000__64, D000014__44, SF2_9__5, D000013__44, SF2_9__6, D000012__44, HQF_9__4, D000017__45, CH07_9, - D000028__13, EDGE1_000__65, D01A_000__33, EDGE2_000__65, D000018__65, EDGE3_000__65, D23_000__33, - EDGE3_000__66, D000018__66, EDGE2_000__66, D01B_000__33, EDGE1_000__66, D000014__45, SD1_9__7, - D000013__45, SD1_9__8, D000012__45, HQD_9__5, D000017__46, CV07_9, D000028__14, EDGE1_000__67, - D01A_000__34, EDGE2_000__67, D000018__67, EDGE3_000__67, D23_000__34, EDGE3_000__68, D000018__68, - EDGE2_000__68, D01B_000__34, EDGE1_000__68, D000014__46, SF1_9__7, D000013__46, SF1_9__8, D000012__46, - HQF_9__5, D000017__47, CH08_9, D000028__15, EDGE1_000__69, D01A_000__35, EDGE2_000__69, D000018__69, - EDGE3_000__69, D23_000__35, EDGE3_000__70, D000018__70, EDGE2_000__70, D01B_000__35, EDGE1_000__70, - D000014__47, SD2_9__7, D000013__47, SD2_9__8, D000012__47, HQD_9__6, D000017__48, CV08_9, D000028__16, - EDGE1_000__71, D01A_000__36, EDGE2_000__71, D000018__71, EDGE3_000__71, D23_000__36, EDGE3_000__72, - D000018__72, EDGE2_000__72, D01B_000__36, EDGE1_000__72, D000014__48, SF2_9__7, D000013__48, SF2_9__8, - D000012__48, HQF_9__6, D000017__49, CH09_9, D000028__17, EDGE1_000__73, D01A_000__37, EDGE2_000__73, - D000018__73, EDGE3_000__73, D23_000__37, EDGE3_000__74, D000018__74, EDGE2_000__74, D01B_000__37, - EDGE1_000__74, D000014__49, SD1_9__9, D000013__49, SD1_9__10, D000012__49, HQD_9__7, D000017__50, - CV09_9, D000028__18, EDGE1_000__75, D01A_000__38, EDGE2_000__75, D000018__75, EDGE3_000__75, - D23_000__38, EDGE3_000__76, D000018__76, EDGE2_000__76, D01B_000__38, EDGE1_000__76, D000014__50, - SF1_9__9, D000013__50, SF1_9__10, D000012__50, HQF_9__7, D000017__51, CH10_9, D000028__19, - EDGE1_000__77, D01A_000__39, EDGE2_000__77, D000018__77, EDGE3_000__77, D23_000__39, EDGE3_000__78, - D000018__78, EDGE2_000__78, D01B_000__39, EDGE1_000__78, D000014__51, SD2_9__9, D000013__51, SD2_9__10, - D000012__51, HQD_9__8, D000017__52, CV10_9, D000028__20, EDGE1_000__79, D01A_000__40, EDGE2_000__79, - D000018__79, EDGE3_000__79, D23_000__40, EDGE3_000__80, D000018__80, EDGE2_000__80, D01B_000__40, - EDGE1_000__80, D000014__52, SF2_9__9, D000013__52, SF2_9__10, D000012__52, HQF_9__8, D000017__53, - CH11_9, D000028__21, EDGE1_000__81, D01A_000__41, EDGE2_000__81, D000018__81, EDGE3_000__81, - D23_000__41, EDGE3_000__82, D000018__82, EDGE2_000__82, D01B_000__41, EDGE1_000__82, D000014__53, - SD1_9__11, D000013__53, SD1_9__12, D000012__53, HQD_9__9, D000017__54, CV11_9, D000028__22, - EDGE1_000__83, D01A_000__42, EDGE2_000__83, D000018__83, EDGE3_000__83, D23_000__42, EDGE3_000__84, - D000018__84, EDGE2_000__84, D01B_000__42, EDGE1_000__84, D000014__54, SF1_9__11, D000013__54, SF1_9__12, - D000012__54, HQF_9__9, D000017__55, CH12_9, D000028__23, EDGE1_000__85, D01A_000__43, EDGE2_000__85, - D000018__85, EDGE3_000__85, D23_000__43, EDGE3_000__86, D000018__86, EDGE2_000__86, D01B_000__43, - EDGE1_000__86, D000014__55, SD2_9__11, D000013__55, SD2_9__12, D000012__55, HQD_9__10, D000017__56, - CV12_9, D000028__24, EDGE1_000__87, D01A_000__44, EDGE2_000__87, D000018__87, EDGE3_000__87, - D23_000__44, EDGE3_000__88, D000018__88, EDGE2_000__88, D01B_000__44, EDGE1_000__88, D000014__56, - SF2_9__11, D000013__56, SF2_9__12, D000012__56, HQF_9__10, D000017__57, CH13_9, D000028__25, - EDGE1_000__89, D01A_000__45, EDGE2_000__89, D000018__89, EDGE3_000__89, D23_000__45, EDGE3_000__90, - D000018__90, EDGE2_000__90, D01B_000__45, EDGE1_000__90, D000014__57, SD1_9__13, D000013__57, SD1_9__14, - D000012__57, HQD_9__11, D000017__58, CV13_9, D000028__26, EDGE1_000__91, D01A_000__46, EDGE2_000__91, - D000018__91, EDGE3_000__91, D23_000__46, EDGE3_000__92, D000018__92, EDGE2_000__92, D01B_000__46, - EDGE1_000__92, D000014__58, SF1_9__13, D000013__58, SF1_9__14, D000012__58, HQF_9__11, D000017__59, - CH14_9, D000028__27, EDGE1_000__93, D01A_000__47, EDGE2_000__93, D000018__93, EDGE3_000__93, - D23_000__47, EDGE3_000__94, D000018__94, EDGE2_000__94, D01B_000__47, EDGE1_000__94, D000014__59, - SD2_9__13, D000013__59, SD2_9__14, D000012__59, HQD_9__12, D000017__60, CV14_9, D000028__28, - EDGE1_000__95, D01A_000__48, EDGE2_000__95, D000018__95, EDGE3_000__95, D23_000__48, EDGE3_000__96, - D000018__96, EDGE2_000__96, D01B_000__48, EDGE1_000__96, D000014__60, SF2_9__13, D000013__60, SF2_9__14, - D000012__60, HQF_9__12, D000017__61, CH15_9, D000028__29, EDGE1_000__97, D01A_000__49, EDGE2_000__97, - D000018__97, EDGE3_000__97, D23_000__49, EDGE3_000__98, D000018__98, EDGE2_000__98, D01B_000__49, - EDGE1_000__98, D000014__61, SD1_9__15, D000013__61, SD1_9__16, D000012__61, HQD_9__13, D000017__62, - CV15_9, D000028__30, EDGE1_000__99, D01A_000__50, EDGE2_000__99, D000018__99, EDGE3_000__99, - D23_000__50, EDGE3_000__100, D000018__100, EDGE2_000__100, D01B_000__50, EDGE1_000__100, D000014__62, - SF1_9__15, D000013__62, SF1_9__16, D000012__62, HQF_9__13, D000017__63, CH16_9, D000028__31, - EDGE1_000__101, D01A_000__51, EDGE2_000__101, D000018__101, EDGE3_000__101, D23_000__51, EDGE3_000__102, - D000018__102, EDGE2_000__102, D01B_000__51, EDGE1_000__102, D000014__63, SD2_9__15, D000013__63, - SD2_9__16, D000012__63, HQD_9__14, D000017__64, CV16_9, D000028__32, EDGE1_000__103, D01A_000__52, - EDGE2_000__103, D000018__103, EDGE3_000__103, D23_000__52, EDGE3_000__104, D000018__104, EDGE2_000__104, - D01B_000__52, EDGE1_000__104, D000014__64, SF2_9__15, D000013__64, SF2_9__16, D000012__64, HQF_9__14, - D000017__65, CH17_9, D000030__1, DB23_9__1, D000014__65, SD17_9, D000012__65, HQD_9__15, D000017__66, - CV17_9, D000030__2, DB23_9__2, D000014__66, SF17_9, D000012__66, HQF_9__15, D000031__1, HQM22_9, - D000031__2, HQM21_9, D000032__1, DB23_9__3, D000032__2, HQM20_9, D000032__3, DB23_9__4, D000032__4, - HQM19_9, D000033__1, HQM18_9, D000033__2, HQM17_9, D000033__3, HQM16_9, D000033__4, HQM15_9, D000033__5, - HQM14_9, D000033__6, HQM13_9, D000032__5, DB23_9__5, D000032__6, HQM12_9, D000032__7, DB23_9__6, - D000034, HQFSS_10__1, D000035__1, HQDSS_10__1, D000035__2, HQFSS_10__2, D000035__3, HQDSS_10__2, - D000036, HQFLSS_10__1, D000007__7, RF0__1, D000007__8, RF0__2, D000007__9, HQDLSS_10__1, D000007__10, - RF0__3, D000007__11, RF0__4, D000007__12, HQFLSS_10__2, D000007__13, RF0__5, D000007__14, RF0__6, - D000007__15, HQDLSS_10__2, D000007__16, RF0__7, D000007__17, RF0__8, D000007__18, HQFLSS_10__3, - D000007__19, RF0__9, D000037, RF0__10, D000007__20, HQDLSS_10__3, D000007__21, RF0__11, D000007__22, - RF0__12, D000007__23, HQFLSS_10__4, D000007__24, RF0__13, D000007__25, RF0__14, D000007__26, - HQDLSS_10__4, D000007__27, RF0__15, D000007__28, RF0__16, D000007__29, HQFLSS_10__5, D000007__30, - RF0__17, D000007__31, RF0__18, D000007__32, HQDLSS_10__5, D000035__4, HQFSS_10__3, D000035__5, - HQDSS_10__3, D000035__6, HQFSS_10__4, D000035__7, HQDSS_10__4, D000038, DB23_10__1, D000032__8, - HQM12_10, D000032__9, DB23_10__2, D000032__10, HQM13_10, D000039__1, HQM14_10, D000039__2, HQM15_10, - D000039__3, HQM16_10, D000039__4, HQM17_10, D000039__5, HQM18_10, D000039__6, HQM19_10, D000039__7, - HQM20_10, D000032__11, DB23_10__3, D000032__12, HQM21_10, D000032__13, DB23_10__4, D000032__14, - HQM22_10, D000040, HQF_11__1, D000012__67, SF00_11, D000014__67, DB23_10__5, D000041__1, CV00_11, - D000017__67, HQD_11__1, D000012__68, SD00_11, D000014__68, DB23_10__6, D000041__2, CH00_11, D000017__68, - HQF_11__2, D000012__69, SF1_1__1, D000013__65, SF1_1__2, D000014__69, EDGE1_000__105, D01A_000__53, - EDGE2_000__105, D000018__105, EDGE3_000__105, D23_000__53, EDGE3_000__106, D000018__106, EDGE2_000__106, - D01B_000__53, EDGE1_000__106, D000042__1, CV01_11, D000017__69, HQD_11__2, D000012__70, SD1_1__1, - D000013__66, SD1_1__2, D000014__70, EDGE1_000__107, D01A_000__54, EDGE2_000__107, D000018__107, - EDGE3_000__107, D23_000__54, EDGE3_000__108, D000018__108, EDGE2_000__108, D01B_000__54, EDGE1_000__108, - D000042__2, CH01_11, D000017__70, HQF_11__3, D000012__71, SF2_1__1, D000013__67, SF2_1__2, D000014__71, - EDGE1_000__109, D01A_000__55, EDGE2_000__109, D000018__109, EDGE3_000__109, D23_000__55, EDGE3_000__110, - D000018__110, EDGE2_000__110, D01B_000__55, EDGE1_000__110, D000042__3, CV02_11, D000017__71, HQD_11__3, - D000012__72, SD2_1__1, D000013__68, SD2_1__2, D000014__72, EDGE1_000__111, D01A_000__56, EDGE2_000__111, - D000018__111, EDGE3_000__111, D23_000__56, EDGE3_000__112, D000018__112, EDGE2_000__112, D01B_000__56, - EDGE1_000__112, D000042__4, CH02_11, D000017__72, HQF_11__4, D000012__73, SF1_1__3, D000013__69, - SF1_1__4, D000014__73, EDGE1_000__113, D01A_000__57, EDGE2_000__113, D000018__113, EDGE3_000__113, - D23_000__57, EDGE3_000__114, D000018__114, EDGE2_000__114, D01B_000__57, EDGE1_000__114, D000042__5, - CV03_11, D000017__73, HQD_11__4, D000012__74, SD1_1__3, D000013__70, SD1_1__4, D000014__74, - EDGE1_000__115, D01A_000__58, EDGE2_000__115, D000018__115, EDGE3_000__115, D23_000__58, EDGE3_000__116, - D000018__116, EDGE2_000__116, D01B_000__58, EDGE1_000__116, D000042__6, CH03_11, D000017__74, HQF_11__5, - D000012__75, SF2_1__3, D000013__71, SF2_1__4, D000014__75, EDGE1_000__117, D01A_000__59, EDGE2_000__117, - D000018__117, EDGE3_000__117, D23_000__59, EDGE3_000__118, D000018__118, EDGE2_000__118, D01B_000__59, - EDGE1_000__118, D000042__7, CV04_11, D000017__75, HQD_11__5, D000012__76, SD2_1__3, D000013__72, - SD2_1__4, D000014__76, EDGE1_000__119, D01A_000__60, EDGE2_000__119, D000018__119, EDGE3_000__119, - D23_000__60, EDGE3_000__120, D000018__120, EDGE2_000__120, D01B_000__60, EDGE1_000__120, D000042__8, - CH04_11, D000017__76, HQF_11__6, D000012__77, SF1_1__5, D000013__73, SF1_1__6, D000014__77, - EDGE1_000__121, D01A_000__61, EDGE2_000__121, D000018__121, EDGE3_000__121, D23_000__61, EDGE3_000__122, - D000018__122, EDGE2_000__122, D01B_000__61, EDGE1_000__122, D000042__9, CV05_11, D000017__77, HQD_11__6, - D000012__78, SD1_1__5, D000013__74, SD1_1__6, D000014__78, EDGE1_000__123, D01A_000__62, EDGE2_000__123, - D000018__123, EDGE3_000__123, D23_000__62, EDGE3_000__124, D000018__124, EDGE2_000__124, D01B_000__62, - EDGE1_000__124, D000042__10, CH05_11, D000017__78, HQF_11__7, D000012__79, SF2_1__5, D000013__75, - SF2_1__6, D000014__79, EDGE1_000__125, D01A_000__63, EDGE2_000__125, D000018__125, EDGE3_000__125, - D23_000__63, EDGE3_000__126, D000018__126, EDGE2_000__126, D01B_000__63, EDGE1_000__126, D000042__11, - CV06_11, D000017__79, HQD_11__7, D000012__80, SD2_1__5, D000013__76, SD2_1__6, D000014__80, - EDGE1_000__127, D01A_000__64, EDGE2_000__127, D000018__127, EDGE3_000__127, D23_000__64, EDGE3_000__128, - D000018__128, EDGE2_000__128, D01B_000__64, EDGE1_000__128, D000042__12, CH06_11, D000017__80, - HQF_11__8, D000012__81, SF1_1__7, D000013__77, SF1_1__8, D000014__81, EDGE1_000__129, D01A_000__65, - EDGE2_000__129, D000018__129, EDGE3_000__129, D23_000__65, EDGE3_000__130, D000018__130, EDGE2_000__130, - D01B_000__65, EDGE1_000__130, D000042__13, CV07_11, D000017__81, HQD_11__8, D000012__82, SD1_1__7, - D000013__78, SD1_1__8, D000014__82, EDGE1_000__131, D01A_000__66, EDGE2_000__131, D000018__131, - EDGE3_000__131, D23_000__66, EDGE3_000__132, D000018__132, EDGE2_000__132, D01B_000__66, EDGE1_000__132, - D000042__14, CH07_11, D000017__82, HQF_11__9, D000012__83, SF2_1__7, D000013__79, SF2_1__8, D000014__83, - EDGE1_000__133, D01A_000__67, EDGE2_000__133, D000018__133, EDGE3_000__133, D23_000__67, EDGE3_000__134, - D000018__134, EDGE2_000__134, D01B_000__67, EDGE1_000__134, D000042__15, CV08_11, D000017__83, - HQD_11__9, D000012__84, SD2_1__7, D000013__80, SD2_1__8, D000014__84, EDGE1_000__135, D01A_000__68, - EDGE2_000__135, D000018__135, EDGE3_000__135, D23_000__68, EDGE3_000__136, D000018__136, EDGE2_000__136, - D01B_000__68, EDGE1_000__136, D000042__16, CH08_11, D000017__84, HQF_11__10, D000012__85, SF1_1__9, - D000013__81, SF1_1__10, D000014__85, EDGE1_000__137, D01A_000__69, EDGE2_000__137, D000018__137, - EDGE3_000__137, D23_000__69, EDGE3_000__138, D000018__138, EDGE2_000__138, D01B_000__69, EDGE1_000__138, - D000042__17, CV09_11, D000017__85, HQD_11__10, D000012__86, SD1_1__9, D000013__82, SD1_1__10, - D000014__86, EDGE1_000__139, D01A_000__70, EDGE2_000__139, D000018__139, EDGE3_000__139, D23_000__70, - EDGE3_000__140, D000018__140, EDGE2_000__140, D01B_000__70, EDGE1_000__140, D000042__18, CH09_11, - D000017__86, HQF_11__11, D000012__87, SF2_1__9, D000013__83, SF2_1__10, D000014__87, EDGE1_000__141, - D01A_000__71, EDGE2_000__141, D000018__141, EDGE3_000__141, D23_000__71, EDGE3_000__142, D000018__142, - EDGE2_000__142, D01B_000__71, EDGE1_000__142, D000042__19, CV10_11, D000017__87, HQD_11__11, - D000012__88, SD2_1__9, D000013__84, SD2_1__10, D000014__88, EDGE1_000__143, D01A_000__72, - EDGE2_000__143, D000018__143, EDGE3_000__143, D23_000__72, EDGE3_000__144, D000018__144, EDGE2_000__144, - D01B_000__72, EDGE1_000__144, D000042__20, CH10_11, D000017__88, HQF_11__12, D000012__89, SF1_1__11, - D000013__85, SF1_1__12, D000014__89, EDGE1_000__145, D01A_000__73, EDGE2_000__145, D000018__145, - EDGE3_000__145, D23_000__73, EDGE3_000__146, D000018__146, EDGE2_000__146, D01B_000__73, EDGE1_000__146, - D000042__21, CV11_11, D000017__89, HQD_11__12, D000012__90, SD1_1__11, D000013__86, SD1_1__12, - D000014__90, EDGE1_000__147, D01A_000__74, EDGE2_000__147, D000018__147, EDGE3_000__147, D23_000__74, - EDGE3_000__148, D000018__148, EDGE2_000__148, D01B_000__74, EDGE1_000__148, D000042__22, CH11_11, - D000017__90, HQF_11__13, D000012__91, SF2_1__11, D000013__87, SF2_1__12, D000014__91, EDGE1_000__149, - D01A_000__75, EDGE2_000__149, D000018__149, EDGE3_000__149, D23_000__75, EDGE3_000__150, D000018__150, - EDGE2_000__150, D01B_000__75, EDGE1_000__150, D000042__23, CV12_11, D000017__91, HQD_11__13, - D000012__92, SD2_1__11, D000013__88, SD2_1__12, D000014__92, EDGE1_000__151, D01A_000__76, - EDGE2_000__151, D000018__151, EDGE3_000__151, D23_000__76, EDGE3_000__152, D000018__152, EDGE2_000__152, - D01B_000__76, EDGE1_000__152, D000042__24, CH12_11, D000017__92, HQF_11__14, D000012__93, SF1_1__13, - D000013__89, SF1_1__14, D000014__93, EDGE1_000__153, D01A_000__77, EDGE2_000__153, D000018__153, - EDGE3_000__153, D23_000__77, EDGE3_000__154, D000018__154, EDGE2_000__154, D01B_000__77, EDGE1_000__154, - D000042__25, CV13_11, D000017__93, HQD_11__14, D000012__94, SD1_1__13, D000013__90, SD1_1__14, - D000014__94, EDGE1_000__155, D01A_000__78, EDGE2_000__155, D000018__155, EDGE3_000__155, D23_000__78, - EDGE3_000__156, D000018__156, EDGE2_000__156, D01B_000__78, EDGE1_000__156, D000042__26, CH13_11, - D000017__94, HQF_11__15, D000012__95, SF2_1__13, D000013__91, SF2_1__14, D000014__95, EDGE1_000__157, - D01A_000__79, EDGE2_000__157, D000018__157, EDGE3_000__157, D23_000__79, EDGE3_000__158, D000018__158, - EDGE2_000__158, D01B_000__79, EDGE1_000__158, D000042__27, CV14_11, D000017__95, HQD_11__15, - D000012__96, SD2_1__13, D000013__92, SD2_1__14, D000014__96, EDGE1_000__159, D01A_000__80, - EDGE2_000__159, D000018__159, EDGE3_000__159, D23_000__80, EDGE3_000__160, D000018__160, EDGE2_000__160, - D01B_000__80, EDGE1_000__160, D000042__28, CH14_11, D000017__96, HQF_11__16, D000012__97, SF1_1__15, - D000013__93, SF1_1__16, D000014__97, EDGE1_000__161, D01A_000__81, EDGE2_000__161, D000018__161, - EDGE3_000__161, D23_000__81, EDGE3_000__162, D000018__162, EDGE2_000__162, D01B_000__81, EDGE1_000__162, - D000042__29, CV15_11, D000017__97, HQD_11__16, D000012__98, SD1_1__15, D000013__94, SD1_1__16, - D000014__98, EDGE1_000__163, D01A_000__82, EDGE2_000__163, D000018__163, EDGE3_000__163, D23_000__82, - EDGE3_000__164, D000018__164, EDGE2_000__164, D01B_000__82, EDGE1_000__164, D000042__30, CH15_11, - D000017__98, HQF_11__17, D000012__99, SF2_1__15, D000013__95, SF2_1__16, D000014__99, EDGE1_000__165, - D01A_000__83, EDGE2_000__165, D000018__165, EDGE3_000__165, D23_000__83, EDGE3_000__166, D000018__166, - EDGE2_000__166, D01B_000__83, EDGE1_000__166, D000042__31, CV16_11, D000017__99, HQD_11__17, - D000012__100, SD2_1__15, D000013__96, SD2_1__16, D000014__100, EDGE1_000__167, D01A_000__84, - EDGE2_000__167, D000018__167, EDGE3_000__167, D23_000__84, EDGE3_000__168, D000018__168, EDGE2_000__168, - D01B_000__84, EDGE1_000__168, D000042__32, CH16_11, D000017__100, HQF_11__18, D000012__101, SF17_11, - D000014__101, DB23_11__1, D000043__1, CV17_11, D000017__101, HQD_11__18, D000012__102, SD17_11, - D000014__102, DB23_11__2, D000043__2, CH17_11, D000017__102, HQF_11__19, D000012__103, SF18_11, - D000044__1, HQM22_11, D000044__2, HQM21_11, D000032__15, DB23_11__3, D000032__16, HQM20_11, D000032__17, - DB23_11__4, D000032__18, HQM19_11, D000045__1, HQM18_11, D000045__2, HQM17_11, D000045__3, HQM16_11, - D000045__4, HQM15_11, D000045__5, HQM14_11, D000045__6, HQM13_11, D000032__19, DB23_11__5, D000032__20, - HQM12_11, D000032__21, DB23_11__6, D000046__1, HQFSS_12__1, D000047__1, HQDSS_12__1, D000047__2, - HQFSS_12__2, D000047__3, HQDSS_12__2, D000046__2, DB12_4M__1, D000048__1, DB12_4M__2, D000048__2, - DB12_4M__3, D000049, HQFSS_12__3, D000047__4, HQDSS_12__3, D000047__5, HQFSS_12__4, D000050, IP12, - D000051, HQDSS_12__4, D000047__6, HQFSS_12__5, D000047__7, HQDSS_12__5, D000047__8, HQFSS_12__6, - D000052, DB12_4P__1, D000048__3, DB12_4P__2, D000048__4, DB12_4P__3, D000053__1, HQDSS_12__6, MKICK_INJ, - D000047__9, HQFSS_12__7, D000047__10, HQDSS_12__7, D000047__11, MCOLL_INJ, HQFSS_12__8, D000053__2, - DB23_12__1, D000032__22, HQM14_12, D000032__23, DB23_12__2, D000032__24, HQM15_12, D000054__1, HQM16_12, - D000054__2, HQM17_12, D000054__3, HQM18_12, D000054__4, HQM19_12, D000032__25, DB23_12__3, D000032__26, - HQM20_12, D000032__27, DB23_12__4, D000032__28, HQM21_12, D000055__1, HQM22_12, D000055__2, SFM1_1, - D000056__1, HQF_1__1, D000017__103, CH00_1, D000057__1, DB23_12__5, D000014__103, SD00_1, D000012__104, - HQD_1__1, D000017__104, CV00_1, D000057__2, DB23_12__6, D000014__104, SF00_1, D000012__105, HQF_1__2, - D000017__105, CH01_1, D000058__1, EDGE1_000__169, D01A_000__85, EDGE2_000__169, D000018__169, - EDGE3_000__169, D23_000__85, EDGE3_000__170, D000018__170, EDGE2_000__170, D01B_000__85, EDGE1_000__170, - D000014__105, SD1_1__17, D000013__97, SD1_1__18, D000012__106, HQD_1__2, D000017__106, CV01_1, - D000058__2, EDGE1_000__171, D01A_000__86, EDGE2_000__171, D000018__171, EDGE3_000__171, D23_000__86, - EDGE3_000__172, D000018__172, EDGE2_000__172, D01B_000__86, EDGE1_000__172, D000014__106, SF1_1__17, - D000013__98, SF1_1__18, D000012__107, HQF_1__3, D000017__107, CH02_1, D000058__3, EDGE1_000__173, - D01A_000__87, EDGE2_000__173, D000018__173, EDGE3_000__173, D23_000__87, EDGE3_000__174, D000018__174, - EDGE2_000__174, D01B_000__87, EDGE1_000__174, D000014__107, SD2_1__17, D000013__99, SD2_1__18, - D000012__108, HQD_1__3, D000017__108, CV02_1, D000058__4, EDGE1_000__175, D01A_000__88, EDGE2_000__175, - D000018__175, EDGE3_000__175, D23_000__88, EDGE3_000__176, D000018__176, EDGE2_000__176, D01B_000__88, - EDGE1_000__176, D000014__108, SF2_1__17, D000013__100, SF2_1__18, D000012__109, HQF_1__4, D000017__109, - CH03_1, D000058__5, EDGE1_000__177, D01A_000__89, EDGE2_000__177, D000018__177, EDGE3_000__177, - D23_000__89, EDGE3_000__178, D000018__178, EDGE2_000__178, D01B_000__89, EDGE1_000__178, D000014__109, - SD1_1__19, D000013__101, SD1_1__20, D000012__110, HQD_1__4, D000017__110, CV03_1, D000058__6, - EDGE1_000__179, D01A_000__90, EDGE2_000__179, D000018__179, EDGE3_000__179, D23_000__90, EDGE3_000__180, - D000018__180, EDGE2_000__180, D01B_000__90, EDGE1_000__180, D000014__110, SF1_1__19, D000013__102, - SF1_1__20, D000012__111, HQF_1__5, D000017__111, CH04_1, D000058__7, EDGE1_000__181, D01A_000__91, - EDGE2_000__181, D000018__181, EDGE3_000__181, D23_000__91, EDGE3_000__182, D000018__182, EDGE2_000__182, - D01B_000__91, EDGE1_000__182, D000014__111, SD2_1__19, D000013__103, SD2_1__20, D000012__112, HQD_1__5, - D000017__112, CV04_1, D000058__8, EDGE1_000__183, D01A_000__92, EDGE2_000__183, D000018__183, - EDGE3_000__183, D23_000__92, EDGE3_000__184, D000018__184, EDGE2_000__184, D01B_000__92, EDGE1_000__184, - D000014__112, SF2_1__19, D000013__104, SF2_1__20, D000012__113, HQF_1__6, D000017__113, CH05_1, - D000058__9, EDGE1_000__185, D01A_000__93, EDGE2_000__185, D000018__185, EDGE3_000__185, D23_000__93, - EDGE3_000__186, D000018__186, EDGE2_000__186, D01B_000__93, EDGE1_000__186, D000014__113, SD1_1__21, - D000013__105, SD1_1__22, D000012__114, HQD_1__6, D000017__114, CV05_1, D000058__10, EDGE1_000__187, - D01A_000__94, EDGE2_000__187, D000018__187, EDGE3_000__187, D23_000__94, EDGE3_000__188, D000018__188, - EDGE2_000__188, D01B_000__94, EDGE1_000__188, D000014__114, SF1_1__21, D000013__106, SF1_1__22, - D000012__115, HQF_1__7, D000017__115, CH06_1, D000058__11, EDGE1_000__189, D01A_000__95, EDGE2_000__189, - D000018__189, EDGE3_000__189, D23_000__95, EDGE3_000__190, D000018__190, EDGE2_000__190, D01B_000__95, - EDGE1_000__190, D000014__115, SD2_1__21, D000013__107, SD2_1__22, D000012__116, HQD_1__7, D000017__116, - CV06_1, D000058__12, EDGE1_000__191, D01A_000__96, EDGE2_000__191, D000018__191, EDGE3_000__191, - D23_000__96, EDGE3_000__192, D000018__192, EDGE2_000__192, D01B_000__96, EDGE1_000__192, D000014__116, - SF2_1__21, D000013__108, SF2_1__22, D000012__117, HQF_1__8, D000017__117, CH07_1, D000058__13, - EDGE1_000__193, D01A_000__97, EDGE2_000__193, D000018__193, EDGE3_000__193, D23_000__97, EDGE3_000__194, - D000018__194, EDGE2_000__194, D01B_000__97, EDGE1_000__194, D000014__117, SD1_1__23, D000013__109, - SD1_1__24, D000012__118, HQD_1__8, D000017__118, CV07_1, D000058__14, EDGE1_000__195, D01A_000__98, - EDGE2_000__195, D000018__195, EDGE3_000__195, D23_000__98, EDGE3_000__196, D000018__196, EDGE2_000__196, - D01B_000__98, EDGE1_000__196, D000014__118, SF1_1__23, D000013__110, SF1_1__24, D000012__119, HQF_1__9, - D000017__119, CH08_1, D000058__15, EDGE1_000__197, D01A_000__99, EDGE2_000__197, D000018__197, - EDGE3_000__197, D23_000__99, EDGE3_000__198, D000018__198, EDGE2_000__198, D01B_000__99, EDGE1_000__198, - D000014__119, SD2_1__23, D000013__111, SD2_1__24, D000012__120, HQD_1__9, D000017__120, CV08_1, - D000058__16, EDGE1_000__199, D01A_000__100, EDGE2_000__199, D000018__199, EDGE3_000__199, D23_000__100, - EDGE3_000__200, D000018__200, EDGE2_000__200, D01B_000__100, EDGE1_000__200, D000014__120, SF2_1__23, - D000013__112, SF2_1__24, D000012__121, HQF_1__10, D000017__121, CH09_1, D000058__17, EDGE1_000__201, - D01A_000__101, EDGE2_000__201, D000018__201, EDGE3_000__201, D23_000__101, EDGE3_000__202, D000018__202, - EDGE2_000__202, D01B_000__101, EDGE1_000__202, D000014__121, SD1_1__25, D000013__113, SD1_1__26, - D000012__122, HQD_1__10, D000017__122, CV09_1, D000058__18, EDGE1_000__203, D01A_000__102, - EDGE2_000__203, D000018__203, EDGE3_000__203, D23_000__102, EDGE3_000__204, D000018__204, - EDGE2_000__204, D01B_000__102, EDGE1_000__204, D000014__122, SF1_1__25, D000013__114, SF1_1__26, - D000012__123, HQF_1__11, D000017__123, CH10_1, D000058__19, EDGE1_000__205, D01A_000__103, - EDGE2_000__205, D000018__205, EDGE3_000__205, D23_000__103, EDGE3_000__206, D000018__206, - EDGE2_000__206, D01B_000__103, EDGE1_000__206, D000014__123, SD2_1__25, D000013__115, SD2_1__26, - D000012__124, HQD_1__11, D000017__124, CV10_1, D000058__20, EDGE1_000__207, D01A_000__104, - EDGE2_000__207, D000018__207, EDGE3_000__207, D23_000__104, EDGE3_000__208, D000018__208, - EDGE2_000__208, D01B_000__104, EDGE1_000__208, D000014__124, SF2_1__25, D000013__116, SF2_1__26, - D000012__125, HQF_1__12, D000017__125, CH11_1, D000058__21, EDGE1_000__209, D01A_000__105, - EDGE2_000__209, D000018__209, EDGE3_000__209, D23_000__105, EDGE3_000__210, D000018__210, - EDGE2_000__210, D01B_000__105, EDGE1_000__210, D000014__125, SD1_1__27, D000013__117, SD1_1__28, - D000012__126, HQD_1__12, D000017__126, CV11_1, D000058__22, EDGE1_000__211, D01A_000__106, - EDGE2_000__211, D000018__211, EDGE3_000__211, D23_000__106, EDGE3_000__212, D000018__212, - EDGE2_000__212, D01B_000__106, EDGE1_000__212, D000014__126, SF1_1__27, D000013__118, SF1_1__28, - D000012__127, HQF_1__13, D000017__127, CH12_1, D000058__23, EDGE1_000__213, D01A_000__107, - EDGE2_000__213, D000018__213, EDGE3_000__213, D23_000__107, EDGE3_000__214, D000018__214, - EDGE2_000__214, D01B_000__107, EDGE1_000__214, D000014__127, SD2_1__27, D000013__119, SD2_1__28, - D000012__128, HQD_1__13, D000017__128, CV12_1, D000058__24, EDGE1_000__215, D01A_000__108, - EDGE2_000__215, D000018__215, EDGE3_000__215, D23_000__108, EDGE3_000__216, D000018__216, - EDGE2_000__216, D01B_000__108, EDGE1_000__216, D000014__128, SF2_1__27, D000013__120, SF2_1__28, - D000012__129, HQF_1__14, D000017__129, CH13_1, D000058__25, EDGE1_000__217, D01A_000__109, - EDGE2_000__217, D000018__217, EDGE3_000__217, D23_000__109, EDGE3_000__218, D000018__218, - EDGE2_000__218, D01B_000__109, EDGE1_000__218, D000014__129, SD1_1__29, D000013__121, SD1_1__30, - D000012__130, HQD_1__14, D000017__130, CV13_1, D000058__26, EDGE1_000__219, D01A_000__110, - EDGE2_000__219, D000018__219, EDGE3_000__219, D23_000__110, EDGE3_000__220, D000018__220, - EDGE2_000__220, D01B_000__110, EDGE1_000__220, D000014__130, SF1_1__29, D000013__122, SF1_1__30, - D000012__131, HQF_1__15, D000017__131, CH14_1, D000058__27, EDGE1_000__221, D01A_000__111, - EDGE2_000__221, D000018__221, EDGE3_000__221, D23_000__111, EDGE3_000__222, D000018__222, - EDGE2_000__222, D01B_000__111, EDGE1_000__222, D000014__131, SD2_1__29, D000013__123, SD2_1__30, - D000012__132, HQD_1__15, D000017__132, CV14_1, D000058__28, EDGE1_000__223, D01A_000__112, - EDGE2_000__223, D000018__223, EDGE3_000__223, D23_000__112, EDGE3_000__224, D000018__224, - EDGE2_000__224, D01B_000__112, EDGE1_000__224, D000014__132, SF2_1__29, D000013__124, SF2_1__30, - D000012__133, HQF_1__16, D000017__133, CH15_1, D000058__29, EDGE1_000__225, D01A_000__113, - EDGE2_000__225, D000018__225, EDGE3_000__225, D23_000__113, EDGE3_000__226, D000018__226, - EDGE2_000__226, D01B_000__113, EDGE1_000__226, D000014__133, SD1_1__31, D000013__125, SD1_1__32, - D000012__134, HQD_1__16, D000017__134, CV15_1, D000058__30, EDGE1_000__227, D01A_000__114, - EDGE2_000__227, D000018__227, EDGE3_000__227, D23_000__114, EDGE3_000__228, D000018__228, - EDGE2_000__228, D01B_000__114, EDGE1_000__228, D000014__134, SF1_1__31, D000013__126, SF1_1__32, - D000012__135, HQF_1__17, D000017__135, CH16_1, D000058__31, EDGE1_000__229, D01A_000__115, - EDGE2_000__229, D000018__229, EDGE3_000__229, D23_000__115, EDGE3_000__230, D000018__230, - EDGE2_000__230, D01B_000__115, EDGE1_000__230, D000014__135, SD2_1__31, D000013__127, SD2_1__32, - D000012__136, HQD_1__17, D000017__136, CV16_1, D000058__32, EDGE1_000__231, D01A_000__116, - EDGE2_000__231, D000018__231, EDGE3_000__231, D23_000__116, EDGE3_000__232, D000018__232, - EDGE2_000__232, D01B_000__116, EDGE1_000__232, D000014__136, SF2_1__31, D000013__128, SF2_1__32, - D000012__137, HQF_1__18, D000017__137, CH17_1, D000057__3, DB23_1__1, D000014__137, SD17_1, - D000012__138, HQD_1__18, D000017__138, CV17_1, D000057__4, DB23_1__2, D000014__138, SF17_1, - D000012__139, HQF_1__19, D000059__1, HQM22_1, D000059__2, HQM21_1, D000059__3, HQM20_1, D000059__4, - HQM19_1, D000059__5, HQM18_1, D000032__29, DB23_1__3, D000032__30, HQM17_1, D000032__31, DB23_1__4, - D000032__32, HQM16_1, D000060__1, HQM15_1, D000060__2, HQM14_1, D000060__3, HQM13_1, D000032__33, - DB23_1__5, D000032__34, HQM12_1, D000032__35, DB23_1__6, D000061__1, HQDSS_2__1, D000062__1, SX41_2, - D000056__2, HQFSS_2__1, D000062__2, SX42_2, D000056__3, HQDSS_2__2, MCOLL_H1, D000062__3, SX43_2, - D000056__4, HQFSS_2__2, D000062__4, MCOLL_H2, SX44_2, D000056__5, HQDSS_2__3, D000062__5, SX45_2, - D000056__6, HQFSS_2__3, D000062__6, MCOLL_H3, SX46_2, D000056__7, HQDSS_2__4, D000063, IP2, D000064, - HQFSS_2__4, D000056__8, SX47_2, D000062__7, HQDSS_2__5, D000056__9, SX48_2, D000062__8, HQFSS_2__5, - D000056__10, SX49_2, D000062__9, HQDSS_2__6, D000056__11, SX50_2, MLAMB, D000062__10, HQFSS_2__6, - D000056__12, SX51_2, D000062__11, HQDSS_2__7, D000056__13, SX52_2, D000062__12, HQFSS_2__7, D000061__2, - DB23_2__1, D000032__36, HQM12_2, D000032__37, DB23_2__2, D000032__38, HQM13_2, D000065__1, HQM14_2, - D000065__2, HQM15_2, D000065__3, HQM16_2, D000032__39, DB23_2__3, D000032__40, HQM17_2, D000032__41, - DB23_2__4, D000032__42, HQM18_2, D000066__1, HQM19_2, D000066__2, HQM20_2, D000066__3, HQM21_2, - D000066__4, HQM22_2, D000066__5, HQF_3__1, D000012__140, SF00_3, D000014__139, DB23_2__5, D000067__1, - CV00_3, D000017__139, HQD_3__1, D000012__141, SD00_3, D000014__140, DB23_2__6, D000067__2, CH00_3, - D000017__140, HQF_3__2, D000012__142, SF1_1__33, D000013__129, SF1_1__34, D000014__141, EDGE1_000__233, - D01A_000__117, EDGE2_000__233, D000018__233, EDGE3_000__233, D23_000__117, EDGE3_000__234, D000018__234, - EDGE2_000__234, D01B_000__117, EDGE1_000__234, D000068__1, CV01_3, D000017__141, HQD_3__2, D000012__143, - SD1_1__33, D000013__130, SD1_1__34, D000014__142, EDGE1_000__235, D01A_000__118, EDGE2_000__235, - D000018__235, EDGE3_000__235, D23_000__118, EDGE3_000__236, D000018__236, EDGE2_000__236, D01B_000__118, - EDGE1_000__236, D000068__2, CH01_3, D000017__142, HQF_3__3, D000012__144, SF2_1__33, D000013__131, - SF2_1__34, D000014__143, EDGE1_000__237, D01A_000__119, EDGE2_000__237, D000018__237, EDGE3_000__237, - D23_000__119, EDGE3_000__238, D000018__238, EDGE2_000__238, D01B_000__119, EDGE1_000__238, D000068__3, - CV02_3, D000017__143, HQD_3__3, D000012__145, SD2_1__33, D000013__132, SD2_1__34, D000014__144, - EDGE1_000__239, D01A_000__120, EDGE2_000__239, D000018__239, EDGE3_000__239, D23_000__120, - EDGE3_000__240, D000018__240, EDGE2_000__240, D01B_000__120, EDGE1_000__240, D000068__4, CH02_3, - D000017__144, HQF_3__4, D000012__146, SF1_1__35, D000013__133, SF1_1__36, D000014__145, EDGE1_000__241, - D01A_000__121, EDGE2_000__241, D000018__241, EDGE3_000__241, D23_000__121, EDGE3_000__242, D000018__242, - EDGE2_000__242, D01B_000__121, EDGE1_000__242, D000068__5, CV03_3, D000017__145, HQD_3__4, D000012__147, - SD1_1__35, D000013__134, SD1_1__36, D000014__146, EDGE1_000__243, D01A_000__122, EDGE2_000__243, - D000018__243, EDGE3_000__243, D23_000__122, EDGE3_000__244, D000018__244, EDGE2_000__244, D01B_000__122, - EDGE1_000__244, D000068__6, CH03_3, D000017__146, HQF_3__5, D000012__148, SF2_1__35, D000013__135, - SF2_1__36, D000014__147, EDGE1_000__245, D01A_000__123, EDGE2_000__245, D000018__245, EDGE3_000__245, - D23_000__123, EDGE3_000__246, D000018__246, EDGE2_000__246, D01B_000__123, EDGE1_000__246, D000068__7, - CV04_3, D000017__147, HQD_3__5, D000012__149, SD2_1__35, D000013__136, SD2_1__36, D000014__148, - EDGE1_000__247, D01A_000__124, EDGE2_000__247, D000018__247, EDGE3_000__247, D23_000__124, - EDGE3_000__248, D000018__248, EDGE2_000__248, D01B_000__124, EDGE1_000__248, D000068__8, CH04_3, - D000017__148, HQF_3__6, D000012__150, SF1_1__37, D000013__137, SF1_1__38, D000014__149, EDGE1_000__249, - D01A_000__125, EDGE2_000__249, D000018__249, EDGE3_000__249, D23_000__125, EDGE3_000__250, D000018__250, - EDGE2_000__250, D01B_000__125, EDGE1_000__250, D000068__9, CV05_3, D000017__149, HQD_3__6, D000012__151, - SD1_1__37, D000013__138, SD1_1__38, D000014__150, EDGE1_000__251, D01A_000__126, EDGE2_000__251, - D000018__251, EDGE3_000__251, D23_000__126, EDGE3_000__252, D000018__252, EDGE2_000__252, D01B_000__126, - EDGE1_000__252, D000068__10, CH05_3, D000017__150, HQF_3__7, D000012__152, SF2_1__37, D000013__139, - SF2_1__38, D000014__151, EDGE1_000__253, D01A_000__127, EDGE2_000__253, D000018__253, EDGE3_000__253, - D23_000__127, EDGE3_000__254, D000018__254, EDGE2_000__254, D01B_000__127, EDGE1_000__254, D000068__11, - CV06_3, D000017__151, HQD_3__7, D000012__153, SD2_1__37, D000013__140, SD2_1__38, D000014__152, - EDGE1_000__255, D01A_000__128, EDGE2_000__255, D000018__255, EDGE3_000__255, D23_000__128, - EDGE3_000__256, D000018__256, EDGE2_000__256, D01B_000__128, EDGE1_000__256, D000068__12, CH06_3, - D000017__152, HQF_3__8, D000012__154, SF1_1__39, D000013__141, SF1_1__40, D000014__153, EDGE1_000__257, - D01A_000__129, EDGE2_000__257, D000018__257, EDGE3_000__257, D23_000__129, EDGE3_000__258, D000018__258, - EDGE2_000__258, D01B_000__129, EDGE1_000__258, D000068__13, CV07_3, D000017__153, HQD_3__8, - D000012__155, SD1_1__39, D000013__142, SD1_1__40, D000014__154, EDGE1_000__259, D01A_000__130, - EDGE2_000__259, D000018__259, EDGE3_000__259, D23_000__130, EDGE3_000__260, D000018__260, - EDGE2_000__260, D01B_000__130, EDGE1_000__260, D000068__14, CH07_3, D000017__154, HQF_3__9, - D000012__156, SF2_1__39, D000013__143, SF2_1__40, D000014__155, EDGE1_000__261, D01A_000__131, - EDGE2_000__261, D000018__261, EDGE3_000__261, D23_000__131, EDGE3_000__262, D000018__262, - EDGE2_000__262, D01B_000__131, EDGE1_000__262, D000068__15, CV08_3, D000017__155, HQD_3__9, - D000012__157, SD2_1__39, D000013__144, SD2_1__40, D000014__156, EDGE1_000__263, D01A_000__132, - EDGE2_000__263, D000018__263, EDGE3_000__263, D23_000__132, EDGE3_000__264, D000018__264, - EDGE2_000__264, D01B_000__132, EDGE1_000__264, D000068__16, CH08_3, D000017__156, HQF_3__10, - D000012__158, SF1_1__41, D000013__145, SF1_1__42, D000014__157, EDGE1_000__265, D01A_000__133, - EDGE2_000__265, D000018__265, EDGE3_000__265, D23_000__133, EDGE3_000__266, D000018__266, - EDGE2_000__266, D01B_000__133, EDGE1_000__266, D000068__17, CV09_3, D000017__157, HQD_3__10, - D000012__159, SD1_1__41, D000013__146, SD1_1__42, D000014__158, EDGE1_000__267, D01A_000__134, - EDGE2_000__267, D000018__267, EDGE3_000__267, D23_000__134, EDGE3_000__268, D000018__268, - EDGE2_000__268, D01B_000__134, EDGE1_000__268, D000068__18, CH09_3, D000017__158, HQF_3__11, - D000012__160, SF2_1__41, D000013__147, SF2_1__42, D000014__159, EDGE1_000__269, D01A_000__135, - EDGE2_000__269, D000018__269, EDGE3_000__269, D23_000__135, EDGE3_000__270, D000018__270, - EDGE2_000__270, D01B_000__135, EDGE1_000__270, D000068__19, CV10_3, D000017__159, HQD_3__11, - D000012__161, SD2_1__41, D000013__148, SD2_1__42, D000014__160, EDGE1_000__271, D01A_000__136, - EDGE2_000__271, D000018__271, EDGE3_000__271, D23_000__136, EDGE3_000__272, D000018__272, - EDGE2_000__272, D01B_000__136, EDGE1_000__272, D000068__20, CH10_3, D000017__160, HQF_3__12, - D000012__162, SF1_1__43, D000013__149, SF1_1__44, D000014__161, EDGE1_000__273, D01A_000__137, - EDGE2_000__273, D000018__273, EDGE3_000__273, D23_000__137, EDGE3_000__274, D000018__274, - EDGE2_000__274, D01B_000__137, EDGE1_000__274, D000068__21, CV11_3, D000017__161, HQD_3__12, - D000012__163, SD1_1__43, D000013__150, SD1_1__44, D000014__162, EDGE1_000__275, D01A_000__138, - EDGE2_000__275, D000018__275, EDGE3_000__275, D23_000__138, EDGE3_000__276, D000018__276, - EDGE2_000__276, D01B_000__138, EDGE1_000__276, D000068__22, CH11_3, D000017__162, HQF_3__13, - D000012__164, SF2_1__43, D000013__151, SF2_1__44, D000014__163, EDGE1_000__277, D01A_000__139, - EDGE2_000__277, D000018__277, EDGE3_000__277, D23_000__139, EDGE3_000__278, D000018__278, - EDGE2_000__278, D01B_000__139, EDGE1_000__278, D000068__23, CV12_3, D000017__163, HQD_3__13, - D000012__165, SD2_1__43, D000013__152, SD2_1__44, D000014__164, EDGE1_000__279, D01A_000__140, - EDGE2_000__279, D000018__279, EDGE3_000__279, D23_000__140, EDGE3_000__280, D000018__280, - EDGE2_000__280, D01B_000__140, EDGE1_000__280, D000068__24, CH12_3, D000017__164, HQF_3__14, - D000012__166, SF1_1__45, D000013__153, SF1_1__46, D000014__165, EDGE1_000__281, D01A_000__141, - EDGE2_000__281, D000018__281, EDGE3_000__281, D23_000__141, EDGE3_000__282, D000018__282, - EDGE2_000__282, D01B_000__141, EDGE1_000__282, D000068__25, CV13_3, D000017__165, HQD_3__14, - D000012__167, SD1_1__45, D000013__154, SD1_1__46, D000014__166, EDGE1_000__283, D01A_000__142, - EDGE2_000__283, D000018__283, EDGE3_000__283, D23_000__142, EDGE3_000__284, D000018__284, - EDGE2_000__284, D01B_000__142, EDGE1_000__284, D000068__26, CH13_3, D000017__166, HQF_3__15, - D000012__168, SF2_1__45, D000013__155, SF2_1__46, D000014__167, EDGE1_000__285, D01A_000__143, - EDGE2_000__285, D000018__285, EDGE3_000__285, D23_000__143, EDGE3_000__286, D000018__286, - EDGE2_000__286, D01B_000__143, EDGE1_000__286, D000068__27, CV14_3, D000017__167, HQD_3__15, - D000012__169, SD2_1__45, D000013__156, SD2_1__46, D000014__168, EDGE1_000__287, D01A_000__144, - EDGE2_000__287, D000018__287, EDGE3_000__287, D23_000__144, EDGE3_000__288, D000018__288, - EDGE2_000__288, D01B_000__144, EDGE1_000__288, D000068__28, CH14_3, D000017__168, HQF_3__16, - D000012__170, SF1_1__47, D000013__157, SF1_1__48, D000014__169, EDGE1_000__289, D01A_000__145, - EDGE2_000__289, D000018__289, EDGE3_000__289, D23_000__145, EDGE3_000__290, D000018__290, - EDGE2_000__290, D01B_000__145, EDGE1_000__290, D000068__29, CV15_3, D000017__169, HQD_3__16, - D000012__171, SD1_1__47, D000013__158, SD1_1__48, D000014__170, EDGE1_000__291, D01A_000__146, - EDGE2_000__291, D000018__291, EDGE3_000__291, D23_000__146, EDGE3_000__292, D000018__292, - EDGE2_000__292, D01B_000__146, EDGE1_000__292, D000068__30, CH15_3, D000017__170, HQF_3__17, - D000012__172, SF2_1__47, D000013__159, SF2_1__48, D000014__171, EDGE1_000__293, D01A_000__147, - EDGE2_000__293, D000018__293, EDGE3_000__293, D23_000__147, EDGE3_000__294, D000018__294, - EDGE2_000__294, D01B_000__147, EDGE1_000__294, D000068__31, CV16_3, D000017__171, HQD_3__17, - D000012__173, SD2_1__47, D000013__160, SD2_1__48, D000014__172, EDGE1_000__295, D01A_000__148, - EDGE2_000__295, D000018__295, EDGE3_000__295, D23_000__148, EDGE3_000__296, D000018__296, - EDGE2_000__296, D01B_000__148, EDGE1_000__296, D000068__32, CH16_3, D000017__172, HQF_3__18, - D000012__174, SF17_3, D000014__173, DB23_3__1, D000067__3, CV17_3, D000017__173, HQD_3__18, - D000012__175, SD17_3, D000014__174, DB23_3__2, D000067__4, CH17_3, D000017__174, HQF_3__19, - D000012__176, SF18_3, D000069__1, HQD22_3, D000069__2, HQF21_3, D000032__43, DB23_3__3, D000032__44, - HQD20_3, D000032__45, DB23_3__4, D000032__46, HQF19_3, D000070__1, HQD18_3, D000070__2, HQF17_3, - D000070__3, HQD16_3, D000032__47, DB23_3__5, D000032__48, HQF15_3, D000032__49, DB23_3__6, D000032__50, - HQD14_3, MCOLL_V1, D000071__1, HQF13_3, D000071__2, MCOLL_V2, HQD12_3, D000071__3, HQF11_3, D000056__14, - SX41_4, D000072__1, MCOLL_V3, HQD10_3, D000056__15, SX42_4, D000072__2, HQF9_3, D000056__16, SX43_4, - D000056__17, DB12_4P__4, D000048__5, DB12_4P__5, D000048__6, DB12_4P__6, D000032__51, HQD8_3, - D000056__18, SX44_4, D000072__3, HQF7_3, D000056__19, SX45_4, D000072__4, HQD6_3, D000056__20, SX46_4, - D000073, IP4, D000074, SX47_4, D000056__21, HQD4_4, D000075__1, SX48_4, D000056__22, HQF5_4, D000075__2, - SX49_4, D000056__23, HQD6_4, D000032__52, DB12_4M__4, D000048__7, DB12_4M__5, D000048__8, DB12_4M__6, - D000056__24, SX50_4, D000056__25, HQF7_4, D000075__3, SX51_4, D000056__26, HQD8_4, D000075__4, SX52_4, - D000056__27, HQF9_4, D000076__1, HQD10_4, D000076__2, HQF11_4, D000032__53, DB23_4__1, D000032__54, - HQD12_4, D000032__55, DB23_4__2, D000032__56, HQF13_4, D000077__1, HQD14_4, D000077__2, HQF15_4, - D000077__3, HQD16_4, D000077__4, HQF17_4, D000077__5, HQD18_4, D000032__57, DB23_4__3, D000032__58, - HQF19_4, D000032__59, DB23_4__4, D000032__60, HQD20_4, D000078__1, HQF21_4, D000078__2, HQD22_4, - D000078__3, SFM1_5, D000056__28, HQF_5__1, D000017__175, CH00_5, D000079__1, DB23_4__5, D000014__175, - SD00_5, D000012__177, HQD_5__1, D000017__176, CV00_5, D000079__2, DB23_4__6, D000014__176, SF00_5, - D000012__178, HQF_5__2, D000017__177, CH01_5, D000080__1, EDGE1_000__297, D01A_000__149, EDGE2_000__297, - D000018__297, EDGE3_000__297, D23_000__149, EDGE3_000__298, D000018__298, EDGE2_000__298, D01B_000__149, - EDGE1_000__298, D000014__177, SD1_5__1, D000013__161, SD1_5__2, D000012__179, HQD_5__2, D000017__178, - CV01_5, D000080__2, EDGE1_000__299, D01A_000__150, EDGE2_000__299, D000018__299, EDGE3_000__299, - D23_000__150, EDGE3_000__300, D000018__300, EDGE2_000__300, D01B_000__150, EDGE1_000__300, D000014__178, - SF1_5__1, D000013__162, SF1_5__2, D000012__180, HQF_5__3, D000017__179, CH02_5, D000080__3, - EDGE1_000__301, D01A_000__151, EDGE2_000__301, D000018__301, EDGE3_000__301, D23_000__151, - EDGE3_000__302, D000018__302, EDGE2_000__302, D01B_000__151, EDGE1_000__302, D000014__179, SD2_5__1, - D000013__163, SD2_5__2, D000012__181, HQD_5__3, D000017__180, CV02_5, D000080__4, EDGE1_000__303, - D01A_000__152, EDGE2_000__303, D000018__303, EDGE3_000__303, D23_000__152, EDGE3_000__304, D000018__304, - EDGE2_000__304, D01B_000__152, EDGE1_000__304, D000014__180, SF2_5__1, D000013__164, SF2_5__2, - D000012__182, HQF_5__4, D000017__181, CH03_5, D000080__5, EDGE1_000__305, D01A_000__153, EDGE2_000__305, - D000018__305, EDGE3_000__305, D23_000__153, EDGE3_000__306, D000018__306, EDGE2_000__306, D01B_000__153, - EDGE1_000__306, D000014__181, SD1_5__3, D000013__165, SD1_5__4, D000012__183, HQD_5__4, D000017__182, - CV03_5, D000080__6, EDGE1_000__307, D01A_000__154, EDGE2_000__307, D000018__307, EDGE3_000__307, - D23_000__154, EDGE3_000__308, D000018__308, EDGE2_000__308, D01B_000__154, EDGE1_000__308, D000014__182, - SF1_5__3, D000013__166, SF1_5__4, D000012__184, HQF_5__5, D000017__183, CH04_5, D000080__7, - EDGE1_000__309, D01A_000__155, EDGE2_000__309, D000018__309, EDGE3_000__309, D23_000__155, - EDGE3_000__310, D000018__310, EDGE2_000__310, D01B_000__155, EDGE1_000__310, D000014__183, SD2_5__3, - D000013__167, SD2_5__4, D000012__185, HQD_5__5, D000017__184, CV04_5, D000080__8, EDGE1_000__311, - D01A_000__156, EDGE2_000__311, D000018__311, EDGE3_000__311, D23_000__156, EDGE3_000__312, D000018__312, - EDGE2_000__312, D01B_000__156, EDGE1_000__312, D000014__184, SF2_5__3, D000013__168, SF2_5__4, - D000012__186, HQF_5__6, D000017__185, CH05_5, D000080__9, EDGE1_000__313, D01A_000__157, EDGE2_000__313, - D000018__313, EDGE3_000__313, D23_000__157, EDGE3_000__314, D000018__314, EDGE2_000__314, D01B_000__157, - EDGE1_000__314, D000014__185, SD1_5__5, D000013__169, SD1_5__6, D000012__187, HQD_5__6, D000017__186, - CV05_5, D000080__10, EDGE1_000__315, D01A_000__158, EDGE2_000__315, D000018__315, EDGE3_000__315, - D23_000__158, EDGE3_000__316, D000018__316, EDGE2_000__316, D01B_000__158, EDGE1_000__316, D000014__186, - SF1_5__5, D000013__170, SF1_5__6, D000012__188, HQF_5__7, D000017__187, CH06_5, D000080__11, - EDGE1_000__317, D01A_000__159, EDGE2_000__317, D000018__317, EDGE3_000__317, D23_000__159, - EDGE3_000__318, D000018__318, EDGE2_000__318, D01B_000__159, EDGE1_000__318, D000014__187, SD2_5__5, - D000013__171, SD2_5__6, D000012__189, HQD_5__7, D000017__188, CV06_5, D000080__12, EDGE1_000__319, - D01A_000__160, EDGE2_000__319, D000018__319, EDGE3_000__319, D23_000__160, EDGE3_000__320, D000018__320, - EDGE2_000__320, D01B_000__160, EDGE1_000__320, D000014__188, SF2_5__5, D000013__172, SF2_5__6, - D000012__190, HQF_5__8, D000017__189, CH07_5, D000080__13, EDGE1_000__321, D01A_000__161, - EDGE2_000__321, D000018__321, EDGE3_000__321, D23_000__161, EDGE3_000__322, D000018__322, - EDGE2_000__322, D01B_000__161, EDGE1_000__322, D000014__189, SD1_5__7, D000013__173, SD1_5__8, - D000012__191, HQD_5__8, D000017__190, CV07_5, D000080__14, EDGE1_000__323, D01A_000__162, - EDGE2_000__323, D000018__323, EDGE3_000__323, D23_000__162, EDGE3_000__324, D000018__324, - EDGE2_000__324, D01B_000__162, EDGE1_000__324, D000014__190, SF1_5__7, D000013__174, SF1_5__8, - D000012__192, HQF_5__9, D000017__191, CH08_5, D000080__15, EDGE1_000__325, D01A_000__163, - EDGE2_000__325, D000018__325, EDGE3_000__325, D23_000__163, EDGE3_000__326, D000018__326, - EDGE2_000__326, D01B_000__163, EDGE1_000__326, D000014__191, SD2_5__7, D000013__175, SD2_5__8, - D000012__193, HQD_5__9, D000017__192, CV08_5, D000080__16, EDGE1_000__327, D01A_000__164, - EDGE2_000__327, D000018__327, EDGE3_000__327, D23_000__164, EDGE3_000__328, D000018__328, - EDGE2_000__328, D01B_000__164, EDGE1_000__328, D000014__192, SF2_5__7, D000013__176, SF2_5__8, - D000012__194, HQF_5__10, D000017__193, CH09_5, D000080__17, EDGE1_000__329, D01A_000__165, - EDGE2_000__329, D000018__329, EDGE3_000__329, D23_000__165, EDGE3_000__330, D000018__330, - EDGE2_000__330, D01B_000__165, EDGE1_000__330, D000014__193, SD1_5__9, D000013__177, SD1_5__10, - D000012__195, HQD_5__10, D000017__194, CV09_5, D000080__18, EDGE1_000__331, D01A_000__166, - EDGE2_000__331, D000018__331, EDGE3_000__331, D23_000__166, EDGE3_000__332, D000018__332, - EDGE2_000__332, D01B_000__166, EDGE1_000__332, D000014__194, SF1_5__9, D000013__178, SF1_5__10, - D000012__196, HQF_5__11, D000017__195, CH10_5, D000080__19, EDGE1_000__333, D01A_000__167, - EDGE2_000__333, D000018__333, EDGE3_000__333, D23_000__167, EDGE3_000__334, D000018__334, - EDGE2_000__334, D01B_000__167, EDGE1_000__334, D000014__195, SD2_5__9, D000013__179, SD2_5__10, - D000012__197, HQD_5__11, D000017__196, CV10_5, D000080__20, EDGE1_000__335, D01A_000__168, - EDGE2_000__335, D000018__335, EDGE3_000__335, D23_000__168, EDGE3_000__336, D000018__336, - EDGE2_000__336, D01B_000__168, EDGE1_000__336, D000014__196, SF2_5__9, D000013__180, SF2_5__10, - D000012__198, HQF_5__12, D000017__197, CH11_5, D000080__21, EDGE1_000__337, D01A_000__169, - EDGE2_000__337, D000018__337, EDGE3_000__337, D23_000__169, EDGE3_000__338, D000018__338, - EDGE2_000__338, D01B_000__169, EDGE1_000__338, D000014__197, SD1_5__11, D000013__181, SD1_5__12, - D000012__199, HQD_5__12, D000017__198, CV11_5, D000080__22, EDGE1_000__339, D01A_000__170, - EDGE2_000__339, D000018__339, EDGE3_000__339, D23_000__170, EDGE3_000__340, D000018__340, - EDGE2_000__340, D01B_000__170, EDGE1_000__340, D000014__198, SF1_5__11, D000013__182, SF1_5__12, - D000012__200, HQF_5__13, D000017__199, CH12_5, D000080__23, EDGE1_000__341, D01A_000__171, - EDGE2_000__341, D000018__341, EDGE3_000__341, D23_000__171, EDGE3_000__342, D000018__342, - EDGE2_000__342, D01B_000__171, EDGE1_000__342, D000014__199, SD2_5__11, D000013__183, SD2_5__12, - D000012__201, HQD_5__13, D000017__200, CV12_5, D000080__24, EDGE1_000__343, D01A_000__172, - EDGE2_000__343, D000018__343, EDGE3_000__343, D23_000__172, EDGE3_000__344, D000018__344, - EDGE2_000__344, D01B_000__172, EDGE1_000__344, D000014__200, SF2_5__11, D000013__184, SF2_5__12, - D000012__202, HQF_5__14, D000017__201, CH13_5, D000080__25, EDGE1_000__345, D01A_000__173, - EDGE2_000__345, D000018__345, EDGE3_000__345, D23_000__173, EDGE3_000__346, D000018__346, - EDGE2_000__346, D01B_000__173, EDGE1_000__346, D000014__201, SD1_5__13, D000013__185, SD1_5__14, - D000012__203, HQD_5__14, D000017__202, CV13_5, D000080__26, EDGE1_000__347, D01A_000__174, - EDGE2_000__347, D000018__347, EDGE3_000__347, D23_000__174, EDGE3_000__348, D000018__348, - EDGE2_000__348, D01B_000__174, EDGE1_000__348, D000014__202, SF1_5__13, D000013__186, SF1_5__14, - D000012__204, HQF_5__15, D000017__203, CH14_5, D000080__27, EDGE1_000__349, D01A_000__175, - EDGE2_000__349, D000018__349, EDGE3_000__349, D23_000__175, EDGE3_000__350, D000018__350, - EDGE2_000__350, D01B_000__175, EDGE1_000__350, D000014__203, SD2_5__13, D000013__187, SD2_5__14, - D000012__205, HQD_5__15, D000017__204, CV14_5, D000080__28, EDGE1_000__351, D01A_000__176, - EDGE2_000__351, D000018__351, EDGE3_000__351, D23_000__176, EDGE3_000__352, D000018__352, - EDGE2_000__352, D01B_000__176, EDGE1_000__352, D000014__204, SF2_5__13, D000013__188, SF2_5__14, - D000012__206, HQF_5C, D000017__205, CH15_5, D000080__29, EDGE1_001__1, D01A_001__1, EDGE2_001__1, - D000029__9, EDGE3_001__1, D23_001__1, EDGE3_001__2, D000029__10, EDGE2_001__2, D01B_001__1, - EDGE1_001__2, D000014__205, SD1_5__15, D000013__189, SD1_5__16, D000012__207, HQD_5C, D000017__206, - CV15_5, D000080__30, EDGE1_001__3, D01A_001__2, EDGE2_001__3, D000029__11, EDGE3_001__3, D23_001__2, - EDGE3_001__4, D000029__12, EDGE2_001__4, D01B_001__2, EDGE1_001__4, D000014__206, SF1_5__15, - D000013__190, SF1_5__16, D000012__208, HQF_5B, D000017__207, CH16_5, D000080__31, EDGE1_001__5, - D01A_001__3, EDGE2_001__5, D000029__13, EDGE3_001__5, D23_001__3, EDGE3_001__6, D000029__14, - EDGE2_001__6, D01B_001__3, EDGE1_001__6, D000014__207, SD2_5__15, D000013__191, SD2_5__16, D000012__209, - HQD_5B, D000017__208, CV16_5, D000080__32, EDGE1_001__7, D01A_001__4, EDGE2_001__7, D000029__15, - EDGE3_001__7, D23_001__4, EDGE3_001__8, D000029__16, EDGE2_001__8, D01B_001__4, EDGE1_001__8, - D000014__208, SF2_5__15, D000013__192, SF2_5__16, D000012__210, HQF_5A, D000011__4, HQD_5A, D000008__25, - MROT1__4, HSOL5_6__3, D000008__26, HQSS1_5, D000009__31, HQSS2_5, D000009__32, HQSS3_5, D000009__33, - HQSS4_5, D000009__34, HQSS5_5, D000008__27, HSOL5_6__4, MROT2__4, D000008__28, HQFF1_5, D000081__1, - DB23_5__1, D000081__2, QFF2_5, D000081__3, DB23_5__2, D000081__4, QFF3_5, D000081__5, DB23_5__3, - D000081__6, QFF4_5, D000081__7, DB23_5__4, D000081__8, HQFF5_5, D000081__9, DB23_5__5, D000081__10, - MFF_5, HQFF6_5, D000008__29, MROT3__4, HSOL20_6__3, D000008__30, HQLS1_5, D000009__35, HQLS2_5, - D000009__36, HQLS3_5, D000009__37, HQLS4_5, D000009__38, HQLS5_5, D000009__39, HQLS6_5, D000009__40, - HQLS7_5, D000008__31, HSOL20_6__4, MROT4__4, D000008__32, MLRF_6, Q12EF_6, D000006__30, D3EF_6__1, - D000006__31, Q11EF_6, D000006__32, D3EF_6__2, D000006__33, Q10EF_6, D000006__34, D3EF_6__3, D000006__35, - Q9EF_6, D000006__36, D3EF_6__4, D000006__37, Q8EF_6, D000005__15, Q7EF_6, D000005__16, Q6EF_6, - D000005__17, Q5EF_6, D000005__18, Q4EF_6, D000082, Q3EF_6, D000007__33, RF_CRAB__4, D000007__34, Q2EF_6, - D000006__38, D1EF_6, D000083, MCOLL_MASK, Q1EF_6, D000022__2, Q0EF_6, D000023__2, IP6__2], - R_ref=-59.52872449027632, species_ref=Species("electron")) +ring = Beamline([ IP6__1, D000001__1, Q1ER_6, D000002__1, Q2ER_6, D000002__2, D2ER_6, D000003__1, Q3ER_6, +D000004, Q4ER_6, D000005__1, Q5ER_6, D000006__1, D3ER_6, D000006__2, Q6ER_6, D000005__2, Q7ER_6, +D000005__3, Q9ER_6, D000007__1, RF_CRAB__1, D000007__2, Q10ER_6, D000005__4, Q11ER_6, D000006__3, +D5ER_6__1, D000006__4, Q12ER_6, D000006__5, D5ER_6__2, D000006__6, Q13ER_6, D000006__7, D5ER_6__3, +D000006__8, Q14ER_6, D000006__9, D5ER_6__4, D000006__10, Q15ER_6, MLRR_6, D000008__1, MROT4__1, +HSOL20_6__1, D000008__2, HQLS7_6, D000009__1, HQLS6_6, D000009__2, HQLS5_6, D000009__3, HQLS4_6, +D000009__4, HQLS3_6, D000009__5, HQLS2_6, D000009__6, HQLS1_6, D000008__3, HSOL20_6__2, MROT3__1, +D000008__4, HQFF6_6, MFF_6, D000010__1, DB23_6__1, D000010__2, HQFF5_6, D000010__3, DB23_6__2, +D000010__4, QFF4_6, D000010__5, DB23_6__3, D000010__6, QFF3_6, D000010__7, DB23_6__4, D000010__8, +QFF2_6, D000010__9, DB23_6__5, D000010__10, QFF1_6, D000008__5, MROT2__1, HSOL5_6__1, D000008__6, +HQSS5_6, D000009__7, HQSS4_6, D000009__8, HQSS3_6, D000009__9, HQSS2_6, D000009__10, HQSS1_6, +D000008__7, HSOL5_6__2, MROT1__1, D000008__8, HQD_6A, D000011__1, HQF_6A, D000012__1, SF1_7__1, +D000013__1, SF1_7__2, D000014__1, EDGE1_002__1, D01A_002__1, EDGE2_002__1, D000015__1, EDGE3_002__1, +D23_002__1, EDGE3_002__2, D000015__2, EDGE2_002__2, D01B_002__1, EDGE1_002__2, D000016__1, CV01_7, +D000017__1, HQD_6B, D000012__2, SD1_7__1, D000013__2, SD1_7__2, D000014__2, EDGE1_002__3, D01A_002__2, +EDGE2_002__3, D000015__3, EDGE3_002__3, D23_002__2, EDGE3_002__4, D000015__4, EDGE2_002__4, D01B_002__2, +EDGE1_002__4, D000016__2, CH01_7, D000017__2, HQF_6B, D000012__3, SF2_7__1, D000013__3, SF2_7__2, +D000014__3, EDGE1_002__5, D01A_002__3, EDGE2_002__5, D000015__5, EDGE3_002__5, D23_002__3, EDGE3_002__6, +D000015__6, EDGE2_002__6, D01B_002__3, EDGE1_002__6, D000016__3, CV02_7, D000017__3, HQD_6C, D000012__4, +SD2_7__1, D000013__4, SD2_7__2, D000014__4, EDGE1_002__7, D01A_002__4, EDGE2_002__7, D000015__7, +EDGE3_002__7, D23_002__4, EDGE3_002__8, D000015__8, EDGE2_002__8, D01B_002__4, EDGE1_002__8, D000016__4, +CH02_7, D000017__4, HQF_6C, D000012__5, SF1_7__3, D000013__5, SF1_7__4, D000014__5, EDGE1_000__1, +D01A_000__1, EDGE2_000__1, D000018__1, EDGE3_000__1, D23_000__1, EDGE3_000__2, D000018__2, EDGE2_000__2, +D01B_000__1, EDGE1_000__2, D000016__5, CV03_7, D000017__5, HQD_7__1, D000012__6, SD1_7__3, D000013__6, +SD1_7__4, D000014__6, EDGE1_000__3, D01A_000__2, EDGE2_000__3, D000018__3, EDGE3_000__3, D23_000__2, +EDGE3_000__4, D000018__4, EDGE2_000__4, D01B_000__2, EDGE1_000__4, D000016__6, CH03_7, D000017__6, +HQF_7__1, D000012__7, SF2_7__3, D000013__7, SF2_7__4, D000014__7, EDGE1_000__5, D01A_000__3, +EDGE2_000__5, D000018__5, EDGE3_000__5, D23_000__3, EDGE3_000__6, D000018__6, EDGE2_000__6, D01B_000__3, +EDGE1_000__6, D000016__7, CV04_7, D000017__7, HQD_7__2, D000012__8, SD2_7__3, D000013__8, SD2_7__4, +D000014__8, EDGE1_000__7, D01A_000__4, EDGE2_000__7, D000018__7, EDGE3_000__7, D23_000__4, EDGE3_000__8, +D000018__8, EDGE2_000__8, D01B_000__4, EDGE1_000__8, D000016__8, CH04_7, D000017__8, HQF_7__2, +D000012__9, SF1_7__5, D000013__9, SF1_7__6, D000014__9, EDGE1_000__9, D01A_000__5, EDGE2_000__9, +D000018__9, EDGE3_000__9, D23_000__5, EDGE3_000__10, D000018__10, EDGE2_000__10, D01B_000__5, +EDGE1_000__10, D000016__9, CV05_7, D000017__9, HQD_7__3, D000012__10, SD1_7__5, D000013__10, SD1_7__6, +D000014__10, EDGE1_000__11, D01A_000__6, EDGE2_000__11, D000018__11, EDGE3_000__11, D23_000__6, +EDGE3_000__12, D000018__12, EDGE2_000__12, D01B_000__6, EDGE1_000__12, D000016__10, CH05_7, D000017__10, +HQF_7__3, D000012__11, SF2_7__5, D000013__11, SF2_7__6, D000014__11, EDGE1_000__13, D01A_000__7, +EDGE2_000__13, D000018__13, EDGE3_000__13, D23_000__7, EDGE3_000__14, D000018__14, EDGE2_000__14, +D01B_000__7, EDGE1_000__14, D000016__11, CV06_7, D000017__11, HQD_7__4, D000012__12, SD2_7__5, +D000013__12, SD2_7__6, D000014__12, EDGE1_000__15, D01A_000__8, EDGE2_000__15, D000018__15, +EDGE3_000__15, D23_000__8, EDGE3_000__16, D000018__16, EDGE2_000__16, D01B_000__8, EDGE1_000__16, +D000016__12, CH06_7, D000017__12, HQF_7__4, D000012__13, SF1_7__7, D000013__13, SF1_7__8, D000014__13, +EDGE1_000__17, D01A_000__9, EDGE2_000__17, D000018__17, EDGE3_000__17, D23_000__9, EDGE3_000__18, +D000018__18, EDGE2_000__18, D01B_000__9, EDGE1_000__18, D000016__13, CV07_7, D000017__13, HQD_7__5, +D000012__14, SD1_7__7, D000013__14, SD1_7__8, D000014__14, EDGE1_000__19, D01A_000__10, EDGE2_000__19, +D000018__19, EDGE3_000__19, D23_000__10, EDGE3_000__20, D000018__20, EDGE2_000__20, D01B_000__10, +EDGE1_000__20, D000016__14, CH07_7, D000017__14, HQF_7__5, D000012__15, SF2_7__7, D000013__15, SF2_7__8, +D000014__15, EDGE1_000__21, D01A_000__11, EDGE2_000__21, D000018__21, EDGE3_000__21, D23_000__11, +EDGE3_000__22, D000018__22, EDGE2_000__22, D01B_000__11, EDGE1_000__22, D000016__15, CV08_7, +D000017__15, HQD_7__6, D000012__16, SD2_7__7, D000013__16, SD2_7__8, D000014__16, EDGE1_000__23, +D01A_000__12, EDGE2_000__23, D000018__23, EDGE3_000__23, D23_000__12, EDGE3_000__24, D000018__24, +EDGE2_000__24, D01B_000__12, EDGE1_000__24, D000016__16, CH08_7, D000017__16, HQF_7__6, D000012__17, +SF1_7__9, D000013__17, SF1_7__10, D000014__17, EDGE1_000__25, D01A_000__13, EDGE2_000__25, D000018__25, +EDGE3_000__25, D23_000__13, EDGE3_000__26, D000018__26, EDGE2_000__26, D01B_000__13, EDGE1_000__26, +D000016__17, CV09_7, D000017__17, HQD_7__7, D000012__18, SD1_7__9, D000013__18, SD1_7__10, D000014__18, +EDGE1_000__27, D01A_000__14, EDGE2_000__27, D000018__27, EDGE3_000__27, D23_000__14, EDGE3_000__28, +D000018__28, EDGE2_000__28, D01B_000__14, EDGE1_000__28, D000016__18, CH09_7, D000017__18, HQF_7__7, +D000012__19, SF2_7__9, D000013__19, SF2_7__10, D000014__19, EDGE1_000__29, D01A_000__15, EDGE2_000__29, +D000018__29, EDGE3_000__29, D23_000__15, EDGE3_000__30, D000018__30, EDGE2_000__30, D01B_000__15, +EDGE1_000__30, D000016__19, CV10_7, D000017__19, HQD_7__8, D000012__20, SD2_7__9, D000013__20, +SD2_7__10, D000014__20, EDGE1_000__31, D01A_000__16, EDGE2_000__31, D000018__31, EDGE3_000__31, +D23_000__16, EDGE3_000__32, D000018__32, EDGE2_000__32, D01B_000__16, EDGE1_000__32, D000016__20, +CH10_7, D000017__20, HQF_7__8, D000012__21, SF1_7__11, D000013__21, SF1_7__12, D000014__21, +EDGE1_000__33, D01A_000__17, EDGE2_000__33, D000018__33, EDGE3_000__33, D23_000__17, EDGE3_000__34, +D000018__34, EDGE2_000__34, D01B_000__17, EDGE1_000__34, D000016__21, CV11_7, D000017__21, HQD_7__9, +D000012__22, SD1_7__11, D000013__22, SD1_7__12, D000014__22, EDGE1_000__35, D01A_000__18, EDGE2_000__35, +D000018__35, EDGE3_000__35, D23_000__18, EDGE3_000__36, D000018__36, EDGE2_000__36, D01B_000__18, +EDGE1_000__36, D000016__22, CH11_7, D000017__22, HQF_7__9, D000012__23, SF2_7__11, D000013__23, +SF2_7__12, D000014__23, EDGE1_000__37, D01A_000__19, EDGE2_000__37, D000018__37, EDGE3_000__37, +D23_000__19, EDGE3_000__38, D000018__38, EDGE2_000__38, D01B_000__19, EDGE1_000__38, D000016__23, +CV12_7, D000017__23, HQD_7__10, D000012__24, SD2_7__11, D000013__24, SD2_7__12, D000014__24, +EDGE1_000__39, D01A_000__20, EDGE2_000__39, D000018__39, EDGE3_000__39, D23_000__20, EDGE3_000__40, +D000018__40, EDGE2_000__40, D01B_000__20, EDGE1_000__40, D000016__24, CH12_7, D000017__24, HQF_7__10, +D000012__25, SF1_7__13, D000013__25, SF1_7__14, D000014__25, EDGE1_000__41, D01A_000__21, EDGE2_000__41, +D000018__41, EDGE3_000__41, D23_000__21, EDGE3_000__42, D000018__42, EDGE2_000__42, D01B_000__21, +EDGE1_000__42, D000016__25, CV13_7, D000017__25, HQD_7__11, D000012__26, SD1_7__13, D000013__26, +SD1_7__14, D000014__26, EDGE1_000__43, D01A_000__22, EDGE2_000__43, D000018__43, EDGE3_000__43, +D23_000__22, EDGE3_000__44, D000018__44, EDGE2_000__44, D01B_000__22, EDGE1_000__44, D000016__26, +CH13_7, D000017__26, HQF_7__11, D000012__27, SF2_7__13, D000013__27, SF2_7__14, D000014__27, +EDGE1_000__45, D01A_000__23, EDGE2_000__45, D000018__45, EDGE3_000__45, D23_000__23, EDGE3_000__46, +D000018__46, EDGE2_000__46, D01B_000__23, EDGE1_000__46, D000016__27, CV14_7, D000017__27, HQD_7__12, +D000012__28, SD2_7__13, D000013__28, SD2_7__14, D000014__28, EDGE1_000__47, D01A_000__24, EDGE2_000__47, +D000018__47, EDGE3_000__47, D23_000__24, EDGE3_000__48, D000018__48, EDGE2_000__48, D01B_000__24, +EDGE1_000__48, D000016__28, CH14_7, D000017__28, HQF_7C, D000012__29, SF1_7__15, D000013__29, SF1_7__16, +D000014__29, EDGE1_003__1, D01A_003__1, EDGE2_003__1, D000015__9, EDGE3_003__1, D23_003__1, +EDGE3_003__2, D000015__10, EDGE2_003__2, D01B_003__1, EDGE1_003__2, D000016__29, CV15_7, D000017__29, +HQD_7C, D000012__30, SD1_7__15, D000013__30, SD1_7__16, D000014__30, EDGE1_003__3, D01A_003__2, +EDGE2_003__3, D000015__11, EDGE3_003__3, D23_003__2, EDGE3_003__4, D000015__12, EDGE2_003__4, +D01B_003__2, EDGE1_003__4, D000016__30, CH15_7, D000017__30, HQF_7B, D000012__31, SF2_7__15, +D000013__31, SF2_7__16, D000014__31, EDGE1_003__5, D01A_003__3, EDGE2_003__5, D000015__13, EDGE3_003__5, +D23_003__3, EDGE3_003__6, D000015__14, EDGE2_003__6, D01B_003__3, EDGE1_003__6, D000016__31, CV16_7, +D000017__31, HQD_7B, D000012__32, SD2_7__15, D000013__32, SD2_7__16, D000014__32, EDGE1_003__7, +D01A_003__4, EDGE2_003__7, D000015__15, EDGE3_003__7, D23_003__4, EDGE3_003__8, D000015__16, +EDGE2_003__8, D01B_003__4, EDGE1_003__8, D000016__32, CH16_7, D000017__32, HQF_7A, D000011__2, HQD_7A, +D000008__9, MROT1__2, HSOL5_8__1, D000008__10, HQSS1_7, D000009__11, HQSS2_7, D000009__12, HQSS3_7, +D000009__13, HQSS4_7, D000009__14, HQSS5_7, D000008__11, HSOL5_8__2, MROT2__2, D000008__12, HQFF1_7, +D000019__1, DB23_7__1, D000019__2, QFF2_7, D000019__3, DB23_7__2, D000019__4, QFF3_7, D000019__5, +DB23_7__3, D000019__6, QFF4_7, D000019__7, DB23_7__4, D000019__8, HQFF5_7, D000019__9, DB23_7__5, +D000019__10, MFF_7, HQFF6_7, D000008__13, MROT3__2, HSOL20_8__1, D000008__14, HQLS1_7, D000009__15, +HQLS2_7, D000009__16, HQLS3_7, D000009__17, HQLS4_7, D000009__18, HQLS5_7, D000009__19, HQLS6_7, +D000009__20, HQLS7_7, D000008__15, HSOL20_8__2, MROT4__2, D000008__16, MLRF_8, Q14EF_8, D000006__11, +D3EF_8__1, D000006__12, Q13EF_8, D000006__13, D3EF_8__2, D000006__14, Q12EF_8, D000006__15, D3EF_8__3, +D000006__16, Q11EF_8, D000006__17, D2EF_8, D000006__18, Q10EF_8, D000005__5, Q9EF_8, D000005__6, Q8EF_8, +D000005__7, Q7EF_8, D000005__8, Q6EF_8, D000005__9, Q5EF_8, D000005__10, Q4EF_8, D000020, Q3EF_8, +D000007__3, RF_CRAB__2, D000007__4, Q2EF_8, D000006__19, D1EF_8__1, D000006__20, D1EF_8__2, D000021, +Q1EF_8, D000022__1, Q0EF_8, D000023__1, IP8, D000001__2, Q1ER_8, D000002__3, Q2ER_8, D000002__4, D2ER_8, +D000003__2, Q3ER_8, D000006__21, D3ER_8, D000024, Q4ER_8, D000025, Q5ER_8, D000026, Q6ER_8, D000005__11, +Q7ER_8, D000005__12, Q8ER_8, D000005__13, Q9ER_8, D000007__5, RF_CRAB__3, D000007__6, Q10ER_8, +D000005__14, Q11ER_8, D000006__22, D4ER_8, D000006__23, Q12ER_8, D000006__24, D5ER_8__1, D000006__25, +Q13ER_8, D000006__26, D5ER_8__2, D000006__27, Q14ER_8, D000006__28, D5ER_8__3, D000006__29, Q15ER_8, +MLRR_8, D000008__17, MROT4__3, HSOL20_8__3, D000008__18, HQLS7_8, D000009__21, HQLS6_8, D000009__22, +HQLS5_8, D000009__23, HQLS4_8, D000009__24, HQLS3_8, D000009__25, HQLS2_8, D000009__26, HQLS1_8, +D000008__19, HSOL20_8__4, MROT3__3, D000008__20, HQFF6_8, MFF_8, D000027__1, DB23_8__1, D000027__2, +HQFF5_8, D000027__3, DB23_8__2, D000027__4, QFF4_8, D000027__5, DB23_8__3, D000027__6, QFF3_8, +D000027__7, DB23_8__4, D000027__8, QFF2_8, D000027__9, DB23_8__5, D000027__10, QFF1_8, D000008__21, +MROT2__3, HSOL5_8__3, D000008__22, HQSS5_8, D000009__27, HQSS4_8, D000009__28, HQSS3_8, D000009__29, +HQSS2_8, D000009__30, HQSS1_8, D000008__23, HSOL5_8__4, MROT1__3, D000008__24, HQD_8A, D000011__3, +HQF_8A, D000017__33, CH01_9, D000028__1, EDGE1_004__1, D01A_004__1, EDGE2_004__1, D000029__1, +EDGE3_004__1, D23_004__1, EDGE3_004__2, D000029__2, EDGE2_004__2, D01B_004__1, EDGE1_004__2, +D000014__33, SD1_9__1, D000013__33, SD1_9__2, D000012__33, HQD_8B, D000017__34, CV01_9, D000028__2, +EDGE1_004__3, D01A_004__2, EDGE2_004__3, D000029__3, EDGE3_004__3, D23_004__2, EDGE3_004__4, D000029__4, +EDGE2_004__4, D01B_004__2, EDGE1_004__4, D000014__34, SF1_9__1, D000013__34, SF1_9__2, D000012__34, +HQF_8B, D000017__35, CH02_9, D000028__3, EDGE1_004__5, D01A_004__3, EDGE2_004__5, D000029__5, +EDGE3_004__5, D23_004__3, EDGE3_004__6, D000029__6, EDGE2_004__6, D01B_004__3, EDGE1_004__6, +D000014__35, SD2_9__1, D000013__35, SD2_9__2, D000012__35, HQD_8C, D000017__36, CV02_9, D000028__4, +EDGE1_004__7, D01A_004__4, EDGE2_004__7, D000029__7, EDGE3_004__7, D23_004__4, EDGE3_004__8, D000029__8, +EDGE2_004__8, D01B_004__4, EDGE1_004__8, D000014__36, SF2_9__1, D000013__36, SF2_9__2, D000012__36, +HQF_8C, D000017__37, CH03_9, D000028__5, EDGE1_000__49, D01A_000__25, EDGE2_000__49, D000018__49, +EDGE3_000__49, D23_000__25, EDGE3_000__50, D000018__50, EDGE2_000__50, D01B_000__25, EDGE1_000__50, +D000014__37, SD1_9__3, D000013__37, SD1_9__4, D000012__37, HQD_9__1, D000017__38, CV03_9, D000028__6, +EDGE1_000__51, D01A_000__26, EDGE2_000__51, D000018__51, EDGE3_000__51, D23_000__26, EDGE3_000__52, +D000018__52, EDGE2_000__52, D01B_000__26, EDGE1_000__52, D000014__38, SF1_9__3, D000013__38, SF1_9__4, +D000012__38, HQF_9__1, D000017__39, CH04_9, D000028__7, EDGE1_000__53, D01A_000__27, EDGE2_000__53, +D000018__53, EDGE3_000__53, D23_000__27, EDGE3_000__54, D000018__54, EDGE2_000__54, D01B_000__27, +EDGE1_000__54, D000014__39, SD2_9__3, D000013__39, SD2_9__4, D000012__39, HQD_9__2, D000017__40, CV04_9, +D000028__8, EDGE1_000__55, D01A_000__28, EDGE2_000__55, D000018__55, EDGE3_000__55, D23_000__28, +EDGE3_000__56, D000018__56, EDGE2_000__56, D01B_000__28, EDGE1_000__56, D000014__40, SF2_9__3, +D000013__40, SF2_9__4, D000012__40, HQF_9__2, D000017__41, CH05_9, D000028__9, EDGE1_000__57, +D01A_000__29, EDGE2_000__57, D000018__57, EDGE3_000__57, D23_000__29, EDGE3_000__58, D000018__58, +EDGE2_000__58, D01B_000__29, EDGE1_000__58, D000014__41, SD1_9__5, D000013__41, SD1_9__6, D000012__41, +HQD_9__3, D000017__42, CV05_9, D000028__10, EDGE1_000__59, D01A_000__30, EDGE2_000__59, D000018__59, +EDGE3_000__59, D23_000__30, EDGE3_000__60, D000018__60, EDGE2_000__60, D01B_000__30, EDGE1_000__60, +D000014__42, SF1_9__5, D000013__42, SF1_9__6, D000012__42, HQF_9__3, D000017__43, CH06_9, D000028__11, +EDGE1_000__61, D01A_000__31, EDGE2_000__61, D000018__61, EDGE3_000__61, D23_000__31, EDGE3_000__62, +D000018__62, EDGE2_000__62, D01B_000__31, EDGE1_000__62, D000014__43, SD2_9__5, D000013__43, SD2_9__6, +D000012__43, HQD_9__4, D000017__44, CV06_9, D000028__12, EDGE1_000__63, D01A_000__32, EDGE2_000__63, +D000018__63, EDGE3_000__63, D23_000__32, EDGE3_000__64, D000018__64, EDGE2_000__64, D01B_000__32, +EDGE1_000__64, D000014__44, SF2_9__5, D000013__44, SF2_9__6, D000012__44, HQF_9__4, D000017__45, CH07_9, +D000028__13, EDGE1_000__65, D01A_000__33, EDGE2_000__65, D000018__65, EDGE3_000__65, D23_000__33, +EDGE3_000__66, D000018__66, EDGE2_000__66, D01B_000__33, EDGE1_000__66, D000014__45, SD1_9__7, +D000013__45, SD1_9__8, D000012__45, HQD_9__5, D000017__46, CV07_9, D000028__14, EDGE1_000__67, +D01A_000__34, EDGE2_000__67, D000018__67, EDGE3_000__67, D23_000__34, EDGE3_000__68, D000018__68, +EDGE2_000__68, D01B_000__34, EDGE1_000__68, D000014__46, SF1_9__7, D000013__46, SF1_9__8, D000012__46, +HQF_9__5, D000017__47, CH08_9, D000028__15, EDGE1_000__69, D01A_000__35, EDGE2_000__69, D000018__69, +EDGE3_000__69, D23_000__35, EDGE3_000__70, D000018__70, EDGE2_000__70, D01B_000__35, EDGE1_000__70, +D000014__47, SD2_9__7, D000013__47, SD2_9__8, D000012__47, HQD_9__6, D000017__48, CV08_9, D000028__16, +EDGE1_000__71, D01A_000__36, EDGE2_000__71, D000018__71, EDGE3_000__71, D23_000__36, EDGE3_000__72, +D000018__72, EDGE2_000__72, D01B_000__36, EDGE1_000__72, D000014__48, SF2_9__7, D000013__48, SF2_9__8, +D000012__48, HQF_9__6, D000017__49, CH09_9, D000028__17, EDGE1_000__73, D01A_000__37, EDGE2_000__73, +D000018__73, EDGE3_000__73, D23_000__37, EDGE3_000__74, D000018__74, EDGE2_000__74, D01B_000__37, +EDGE1_000__74, D000014__49, SD1_9__9, D000013__49, SD1_9__10, D000012__49, HQD_9__7, D000017__50, +CV09_9, D000028__18, EDGE1_000__75, D01A_000__38, EDGE2_000__75, D000018__75, EDGE3_000__75, +D23_000__38, EDGE3_000__76, D000018__76, EDGE2_000__76, D01B_000__38, EDGE1_000__76, D000014__50, +SF1_9__9, D000013__50, SF1_9__10, D000012__50, HQF_9__7, D000017__51, CH10_9, D000028__19, +EDGE1_000__77, D01A_000__39, EDGE2_000__77, D000018__77, EDGE3_000__77, D23_000__39, EDGE3_000__78, +D000018__78, EDGE2_000__78, D01B_000__39, EDGE1_000__78, D000014__51, SD2_9__9, D000013__51, SD2_9__10, +D000012__51, HQD_9__8, D000017__52, CV10_9, D000028__20, EDGE1_000__79, D01A_000__40, EDGE2_000__79, +D000018__79, EDGE3_000__79, D23_000__40, EDGE3_000__80, D000018__80, EDGE2_000__80, D01B_000__40, +EDGE1_000__80, D000014__52, SF2_9__9, D000013__52, SF2_9__10, D000012__52, HQF_9__8, D000017__53, +CH11_9, D000028__21, EDGE1_000__81, D01A_000__41, EDGE2_000__81, D000018__81, EDGE3_000__81, +D23_000__41, EDGE3_000__82, D000018__82, EDGE2_000__82, D01B_000__41, EDGE1_000__82, D000014__53, +SD1_9__11, D000013__53, SD1_9__12, D000012__53, HQD_9__9, D000017__54, CV11_9, D000028__22, +EDGE1_000__83, D01A_000__42, EDGE2_000__83, D000018__83, EDGE3_000__83, D23_000__42, EDGE3_000__84, +D000018__84, EDGE2_000__84, D01B_000__42, EDGE1_000__84, D000014__54, SF1_9__11, D000013__54, SF1_9__12, +D000012__54, HQF_9__9, D000017__55, CH12_9, D000028__23, EDGE1_000__85, D01A_000__43, EDGE2_000__85, +D000018__85, EDGE3_000__85, D23_000__43, EDGE3_000__86, D000018__86, EDGE2_000__86, D01B_000__43, +EDGE1_000__86, D000014__55, SD2_9__11, D000013__55, SD2_9__12, D000012__55, HQD_9__10, D000017__56, +CV12_9, D000028__24, EDGE1_000__87, D01A_000__44, EDGE2_000__87, D000018__87, EDGE3_000__87, +D23_000__44, EDGE3_000__88, D000018__88, EDGE2_000__88, D01B_000__44, EDGE1_000__88, D000014__56, +SF2_9__11, D000013__56, SF2_9__12, D000012__56, HQF_9__10, D000017__57, CH13_9, D000028__25, +EDGE1_000__89, D01A_000__45, EDGE2_000__89, D000018__89, EDGE3_000__89, D23_000__45, EDGE3_000__90, +D000018__90, EDGE2_000__90, D01B_000__45, EDGE1_000__90, D000014__57, SD1_9__13, D000013__57, SD1_9__14, +D000012__57, HQD_9__11, D000017__58, CV13_9, D000028__26, EDGE1_000__91, D01A_000__46, EDGE2_000__91, +D000018__91, EDGE3_000__91, D23_000__46, EDGE3_000__92, D000018__92, EDGE2_000__92, D01B_000__46, +EDGE1_000__92, D000014__58, SF1_9__13, D000013__58, SF1_9__14, D000012__58, HQF_9__11, D000017__59, +CH14_9, D000028__27, EDGE1_000__93, D01A_000__47, EDGE2_000__93, D000018__93, EDGE3_000__93, +D23_000__47, EDGE3_000__94, D000018__94, EDGE2_000__94, D01B_000__47, EDGE1_000__94, D000014__59, +SD2_9__13, D000013__59, SD2_9__14, D000012__59, HQD_9__12, D000017__60, CV14_9, D000028__28, +EDGE1_000__95, D01A_000__48, EDGE2_000__95, D000018__95, EDGE3_000__95, D23_000__48, EDGE3_000__96, +D000018__96, EDGE2_000__96, D01B_000__48, EDGE1_000__96, D000014__60, SF2_9__13, D000013__60, SF2_9__14, +D000012__60, HQF_9__12, D000017__61, CH15_9, D000028__29, EDGE1_000__97, D01A_000__49, EDGE2_000__97, +D000018__97, EDGE3_000__97, D23_000__49, EDGE3_000__98, D000018__98, EDGE2_000__98, D01B_000__49, +EDGE1_000__98, D000014__61, SD1_9__15, D000013__61, SD1_9__16, D000012__61, HQD_9__13, D000017__62, +CV15_9, D000028__30, EDGE1_000__99, D01A_000__50, EDGE2_000__99, D000018__99, EDGE3_000__99, +D23_000__50, EDGE3_000__100, D000018__100, EDGE2_000__100, D01B_000__50, EDGE1_000__100, D000014__62, +SF1_9__15, D000013__62, SF1_9__16, D000012__62, HQF_9__13, D000017__63, CH16_9, D000028__31, +EDGE1_000__101, D01A_000__51, EDGE2_000__101, D000018__101, EDGE3_000__101, D23_000__51, EDGE3_000__102, +D000018__102, EDGE2_000__102, D01B_000__51, EDGE1_000__102, D000014__63, SD2_9__15, D000013__63, +SD2_9__16, D000012__63, HQD_9__14, D000017__64, CV16_9, D000028__32, EDGE1_000__103, D01A_000__52, +EDGE2_000__103, D000018__103, EDGE3_000__103, D23_000__52, EDGE3_000__104, D000018__104, EDGE2_000__104, +D01B_000__52, EDGE1_000__104, D000014__64, SF2_9__15, D000013__64, SF2_9__16, D000012__64, HQF_9__14, +D000017__65, CH17_9, D000030__1, DB23_9__1, D000014__65, SD17_9, D000012__65, HQD_9__15, D000017__66, +CV17_9, D000030__2, DB23_9__2, D000014__66, SF17_9, D000012__66, HQF_9__15, D000031__1, HQM22_9, +D000031__2, HQM21_9, D000032__1, DB23_9__3, D000032__2, HQM20_9, D000032__3, DB23_9__4, D000032__4, +HQM19_9, D000033__1, HQM18_9, D000033__2, HQM17_9, D000033__3, HQM16_9, D000033__4, HQM15_9, D000033__5, +HQM14_9, D000033__6, HQM13_9, D000032__5, DB23_9__5, D000032__6, HQM12_9, D000032__7, DB23_9__6, +D000034, HQFSS_10__1, D000035__1, HQDSS_10__1, D000035__2, HQFSS_10__2, D000035__3, HQDSS_10__2, +D000036, HQFLSS_10__1, D000007__7, RF0__1, D000007__8, RF0__2, D000007__9, HQDLSS_10__1, D000007__10, +RF0__3, D000007__11, RF0__4, D000007__12, HQFLSS_10__2, D000007__13, RF0__5, D000007__14, RF0__6, +D000007__15, HQDLSS_10__2, D000007__16, RF0__7, D000007__17, RF0__8, D000007__18, HQFLSS_10__3, +D000007__19, RF0__9, D000037, RF0__10, D000007__20, HQDLSS_10__3, D000007__21, RF0__11, D000007__22, +RF0__12, D000007__23, HQFLSS_10__4, D000007__24, RF0__13, D000007__25, RF0__14, D000007__26, +HQDLSS_10__4, D000007__27, RF0__15, D000007__28, RF0__16, D000007__29, HQFLSS_10__5, D000007__30, +RF0__17, D000007__31, RF0__18, D000007__32, HQDLSS_10__5, D000035__4, HQFSS_10__3, D000035__5, +HQDSS_10__3, D000035__6, HQFSS_10__4, D000035__7, HQDSS_10__4, D000038, DB23_10__1, D000032__8, +HQM12_10, D000032__9, DB23_10__2, D000032__10, HQM13_10, D000039__1, HQM14_10, D000039__2, HQM15_10, +D000039__3, HQM16_10, D000039__4, HQM17_10, D000039__5, HQM18_10, D000039__6, HQM19_10, D000039__7, +HQM20_10, D000032__11, DB23_10__3, D000032__12, HQM21_10, D000032__13, DB23_10__4, D000032__14, +HQM22_10, D000040, HQF_11__1, D000012__67, SF00_11, D000014__67, DB23_10__5, D000041__1, CV00_11, +D000017__67, HQD_11__1, D000012__68, SD00_11, D000014__68, DB23_10__6, D000041__2, CH00_11, D000017__68, +HQF_11__2, D000012__69, SF1_1__1, D000013__65, SF1_1__2, D000014__69, EDGE1_000__105, D01A_000__53, +EDGE2_000__105, D000018__105, EDGE3_000__105, D23_000__53, EDGE3_000__106, D000018__106, EDGE2_000__106, +D01B_000__53, EDGE1_000__106, D000042__1, CV01_11, D000017__69, HQD_11__2, D000012__70, SD1_1__1, +D000013__66, SD1_1__2, D000014__70, EDGE1_000__107, D01A_000__54, EDGE2_000__107, D000018__107, +EDGE3_000__107, D23_000__54, EDGE3_000__108, D000018__108, EDGE2_000__108, D01B_000__54, EDGE1_000__108, +D000042__2, CH01_11, D000017__70, HQF_11__3, D000012__71, SF2_1__1, D000013__67, SF2_1__2, D000014__71, +EDGE1_000__109, D01A_000__55, EDGE2_000__109, D000018__109, EDGE3_000__109, D23_000__55, EDGE3_000__110, +D000018__110, EDGE2_000__110, D01B_000__55, EDGE1_000__110, D000042__3, CV02_11, D000017__71, HQD_11__3, +D000012__72, SD2_1__1, D000013__68, SD2_1__2, D000014__72, EDGE1_000__111, D01A_000__56, EDGE2_000__111, +D000018__111, EDGE3_000__111, D23_000__56, EDGE3_000__112, D000018__112, EDGE2_000__112, D01B_000__56, +EDGE1_000__112, D000042__4, CH02_11, D000017__72, HQF_11__4, D000012__73, SF1_1__3, D000013__69, +SF1_1__4, D000014__73, EDGE1_000__113, D01A_000__57, EDGE2_000__113, D000018__113, EDGE3_000__113, +D23_000__57, EDGE3_000__114, D000018__114, EDGE2_000__114, D01B_000__57, EDGE1_000__114, D000042__5, +CV03_11, D000017__73, HQD_11__4, D000012__74, SD1_1__3, D000013__70, SD1_1__4, D000014__74, +EDGE1_000__115, D01A_000__58, EDGE2_000__115, D000018__115, EDGE3_000__115, D23_000__58, EDGE3_000__116, +D000018__116, EDGE2_000__116, D01B_000__58, EDGE1_000__116, D000042__6, CH03_11, D000017__74, HQF_11__5, +D000012__75, SF2_1__3, D000013__71, SF2_1__4, D000014__75, EDGE1_000__117, D01A_000__59, EDGE2_000__117, +D000018__117, EDGE3_000__117, D23_000__59, EDGE3_000__118, D000018__118, EDGE2_000__118, D01B_000__59, +EDGE1_000__118, D000042__7, CV04_11, D000017__75, HQD_11__5, D000012__76, SD2_1__3, D000013__72, +SD2_1__4, D000014__76, EDGE1_000__119, D01A_000__60, EDGE2_000__119, D000018__119, EDGE3_000__119, +D23_000__60, EDGE3_000__120, D000018__120, EDGE2_000__120, D01B_000__60, EDGE1_000__120, D000042__8, +CH04_11, D000017__76, HQF_11__6, D000012__77, SF1_1__5, D000013__73, SF1_1__6, D000014__77, +EDGE1_000__121, D01A_000__61, EDGE2_000__121, D000018__121, EDGE3_000__121, D23_000__61, EDGE3_000__122, +D000018__122, EDGE2_000__122, D01B_000__61, EDGE1_000__122, D000042__9, CV05_11, D000017__77, HQD_11__6, +D000012__78, SD1_1__5, D000013__74, SD1_1__6, D000014__78, EDGE1_000__123, D01A_000__62, EDGE2_000__123, +D000018__123, EDGE3_000__123, D23_000__62, EDGE3_000__124, D000018__124, EDGE2_000__124, D01B_000__62, +EDGE1_000__124, D000042__10, CH05_11, D000017__78, HQF_11__7, D000012__79, SF2_1__5, D000013__75, +SF2_1__6, D000014__79, EDGE1_000__125, D01A_000__63, EDGE2_000__125, D000018__125, EDGE3_000__125, +D23_000__63, EDGE3_000__126, D000018__126, EDGE2_000__126, D01B_000__63, EDGE1_000__126, D000042__11, +CV06_11, D000017__79, HQD_11__7, D000012__80, SD2_1__5, D000013__76, SD2_1__6, D000014__80, +EDGE1_000__127, D01A_000__64, EDGE2_000__127, D000018__127, EDGE3_000__127, D23_000__64, EDGE3_000__128, +D000018__128, EDGE2_000__128, D01B_000__64, EDGE1_000__128, D000042__12, CH06_11, D000017__80, +HQF_11__8, D000012__81, SF1_1__7, D000013__77, SF1_1__8, D000014__81, EDGE1_000__129, D01A_000__65, +EDGE2_000__129, D000018__129, EDGE3_000__129, D23_000__65, EDGE3_000__130, D000018__130, EDGE2_000__130, +D01B_000__65, EDGE1_000__130, D000042__13, CV07_11, D000017__81, HQD_11__8, D000012__82, SD1_1__7, +D000013__78, SD1_1__8, D000014__82, EDGE1_000__131, D01A_000__66, EDGE2_000__131, D000018__131, +EDGE3_000__131, D23_000__66, EDGE3_000__132, D000018__132, EDGE2_000__132, D01B_000__66, EDGE1_000__132, +D000042__14, CH07_11, D000017__82, HQF_11__9, D000012__83, SF2_1__7, D000013__79, SF2_1__8, D000014__83, +EDGE1_000__133, D01A_000__67, EDGE2_000__133, D000018__133, EDGE3_000__133, D23_000__67, EDGE3_000__134, +D000018__134, EDGE2_000__134, D01B_000__67, EDGE1_000__134, D000042__15, CV08_11, D000017__83, +HQD_11__9, D000012__84, SD2_1__7, D000013__80, SD2_1__8, D000014__84, EDGE1_000__135, D01A_000__68, +EDGE2_000__135, D000018__135, EDGE3_000__135, D23_000__68, EDGE3_000__136, D000018__136, EDGE2_000__136, +D01B_000__68, EDGE1_000__136, D000042__16, CH08_11, D000017__84, HQF_11__10, D000012__85, SF1_1__9, +D000013__81, SF1_1__10, D000014__85, EDGE1_000__137, D01A_000__69, EDGE2_000__137, D000018__137, +EDGE3_000__137, D23_000__69, EDGE3_000__138, D000018__138, EDGE2_000__138, D01B_000__69, EDGE1_000__138, +D000042__17, CV09_11, D000017__85, HQD_11__10, D000012__86, SD1_1__9, D000013__82, SD1_1__10, +D000014__86, EDGE1_000__139, D01A_000__70, EDGE2_000__139, D000018__139, EDGE3_000__139, D23_000__70, +EDGE3_000__140, D000018__140, EDGE2_000__140, D01B_000__70, EDGE1_000__140, D000042__18, CH09_11, +D000017__86, HQF_11__11, D000012__87, SF2_1__9, D000013__83, SF2_1__10, D000014__87, EDGE1_000__141, +D01A_000__71, EDGE2_000__141, D000018__141, EDGE3_000__141, D23_000__71, EDGE3_000__142, D000018__142, +EDGE2_000__142, D01B_000__71, EDGE1_000__142, D000042__19, CV10_11, D000017__87, HQD_11__11, +D000012__88, SD2_1__9, D000013__84, SD2_1__10, D000014__88, EDGE1_000__143, D01A_000__72, +EDGE2_000__143, D000018__143, EDGE3_000__143, D23_000__72, EDGE3_000__144, D000018__144, EDGE2_000__144, +D01B_000__72, EDGE1_000__144, D000042__20, CH10_11, D000017__88, HQF_11__12, D000012__89, SF1_1__11, +D000013__85, SF1_1__12, D000014__89, EDGE1_000__145, D01A_000__73, EDGE2_000__145, D000018__145, +EDGE3_000__145, D23_000__73, EDGE3_000__146, D000018__146, EDGE2_000__146, D01B_000__73, EDGE1_000__146, +D000042__21, CV11_11, D000017__89, HQD_11__12, D000012__90, SD1_1__11, D000013__86, SD1_1__12, +D000014__90, EDGE1_000__147, D01A_000__74, EDGE2_000__147, D000018__147, EDGE3_000__147, D23_000__74, +EDGE3_000__148, D000018__148, EDGE2_000__148, D01B_000__74, EDGE1_000__148, D000042__22, CH11_11, +D000017__90, HQF_11__13, D000012__91, SF2_1__11, D000013__87, SF2_1__12, D000014__91, EDGE1_000__149, +D01A_000__75, EDGE2_000__149, D000018__149, EDGE3_000__149, D23_000__75, EDGE3_000__150, D000018__150, +EDGE2_000__150, D01B_000__75, EDGE1_000__150, D000042__23, CV12_11, D000017__91, HQD_11__13, +D000012__92, SD2_1__11, D000013__88, SD2_1__12, D000014__92, EDGE1_000__151, D01A_000__76, +EDGE2_000__151, D000018__151, EDGE3_000__151, D23_000__76, EDGE3_000__152, D000018__152, EDGE2_000__152, +D01B_000__76, EDGE1_000__152, D000042__24, CH12_11, D000017__92, HQF_11__14, D000012__93, SF1_1__13, +D000013__89, SF1_1__14, D000014__93, EDGE1_000__153, D01A_000__77, EDGE2_000__153, D000018__153, +EDGE3_000__153, D23_000__77, EDGE3_000__154, D000018__154, EDGE2_000__154, D01B_000__77, EDGE1_000__154, +D000042__25, CV13_11, D000017__93, HQD_11__14, D000012__94, SD1_1__13, D000013__90, SD1_1__14, +D000014__94, EDGE1_000__155, D01A_000__78, EDGE2_000__155, D000018__155, EDGE3_000__155, D23_000__78, +EDGE3_000__156, D000018__156, EDGE2_000__156, D01B_000__78, EDGE1_000__156, D000042__26, CH13_11, +D000017__94, HQF_11__15, D000012__95, SF2_1__13, D000013__91, SF2_1__14, D000014__95, EDGE1_000__157, +D01A_000__79, EDGE2_000__157, D000018__157, EDGE3_000__157, D23_000__79, EDGE3_000__158, D000018__158, +EDGE2_000__158, D01B_000__79, EDGE1_000__158, D000042__27, CV14_11, D000017__95, HQD_11__15, +D000012__96, SD2_1__13, D000013__92, SD2_1__14, D000014__96, EDGE1_000__159, D01A_000__80, +EDGE2_000__159, D000018__159, EDGE3_000__159, D23_000__80, EDGE3_000__160, D000018__160, EDGE2_000__160, +D01B_000__80, EDGE1_000__160, D000042__28, CH14_11, D000017__96, HQF_11__16, D000012__97, SF1_1__15, +D000013__93, SF1_1__16, D000014__97, EDGE1_000__161, D01A_000__81, EDGE2_000__161, D000018__161, +EDGE3_000__161, D23_000__81, EDGE3_000__162, D000018__162, EDGE2_000__162, D01B_000__81, EDGE1_000__162, +D000042__29, CV15_11, D000017__97, HQD_11__16, D000012__98, SD1_1__15, D000013__94, SD1_1__16, +D000014__98, EDGE1_000__163, D01A_000__82, EDGE2_000__163, D000018__163, EDGE3_000__163, D23_000__82, +EDGE3_000__164, D000018__164, EDGE2_000__164, D01B_000__82, EDGE1_000__164, D000042__30, CH15_11, +D000017__98, HQF_11__17, D000012__99, SF2_1__15, D000013__95, SF2_1__16, D000014__99, EDGE1_000__165, +D01A_000__83, EDGE2_000__165, D000018__165, EDGE3_000__165, D23_000__83, EDGE3_000__166, D000018__166, +EDGE2_000__166, D01B_000__83, EDGE1_000__166, D000042__31, CV16_11, D000017__99, HQD_11__17, +D000012__100, SD2_1__15, D000013__96, SD2_1__16, D000014__100, EDGE1_000__167, D01A_000__84, +EDGE2_000__167, D000018__167, EDGE3_000__167, D23_000__84, EDGE3_000__168, D000018__168, EDGE2_000__168, +D01B_000__84, EDGE1_000__168, D000042__32, CH16_11, D000017__100, HQF_11__18, D000012__101, SF17_11, +D000014__101, DB23_11__1, D000043__1, CV17_11, D000017__101, HQD_11__18, D000012__102, SD17_11, +D000014__102, DB23_11__2, D000043__2, CH17_11, D000017__102, HQF_11__19, D000012__103, SF18_11, +D000044__1, HQM22_11, D000044__2, HQM21_11, D000032__15, DB23_11__3, D000032__16, HQM20_11, D000032__17, +DB23_11__4, D000032__18, HQM19_11, D000045__1, HQM18_11, D000045__2, HQM17_11, D000045__3, HQM16_11, +D000045__4, HQM15_11, D000045__5, HQM14_11, D000045__6, HQM13_11, D000032__19, DB23_11__5, D000032__20, +HQM12_11, D000032__21, DB23_11__6, D000046__1, HQFSS_12__1, D000047__1, HQDSS_12__1, D000047__2, +HQFSS_12__2, D000047__3, HQDSS_12__2, D000046__2, DB12_4M__1, D000048__1, DB12_4M__2, D000048__2, +DB12_4M__3, D000049, HQFSS_12__3, D000047__4, HQDSS_12__3, D000047__5, HQFSS_12__4, D000050, IP12, +D000051, HQDSS_12__4, D000047__6, HQFSS_12__5, D000047__7, HQDSS_12__5, D000047__8, HQFSS_12__6, +D000052, DB12_4P__1, D000048__3, DB12_4P__2, D000048__4, DB12_4P__3, D000053__1, HQDSS_12__6, MKICK_INJ, +D000047__9, HQFSS_12__7, D000047__10, HQDSS_12__7, D000047__11, MCOLL_INJ, HQFSS_12__8, D000053__2, +DB23_12__1, D000032__22, HQM14_12, D000032__23, DB23_12__2, D000032__24, HQM15_12, D000054__1, HQM16_12, +D000054__2, HQM17_12, D000054__3, HQM18_12, D000054__4, HQM19_12, D000032__25, DB23_12__3, D000032__26, +HQM20_12, D000032__27, DB23_12__4, D000032__28, HQM21_12, D000055__1, HQM22_12, D000055__2, SFM1_1, +D000056__1, HQF_1__1, D000017__103, CH00_1, D000057__1, DB23_12__5, D000014__103, SD00_1, D000012__104, +HQD_1__1, D000017__104, CV00_1, D000057__2, DB23_12__6, D000014__104, SF00_1, D000012__105, HQF_1__2, +D000017__105, CH01_1, D000058__1, EDGE1_000__169, D01A_000__85, EDGE2_000__169, D000018__169, +EDGE3_000__169, D23_000__85, EDGE3_000__170, D000018__170, EDGE2_000__170, D01B_000__85, EDGE1_000__170, +D000014__105, SD1_1__17, D000013__97, SD1_1__18, D000012__106, HQD_1__2, D000017__106, CV01_1, +D000058__2, EDGE1_000__171, D01A_000__86, EDGE2_000__171, D000018__171, EDGE3_000__171, D23_000__86, +EDGE3_000__172, D000018__172, EDGE2_000__172, D01B_000__86, EDGE1_000__172, D000014__106, SF1_1__17, +D000013__98, SF1_1__18, D000012__107, HQF_1__3, D000017__107, CH02_1, D000058__3, EDGE1_000__173, +D01A_000__87, EDGE2_000__173, D000018__173, EDGE3_000__173, D23_000__87, EDGE3_000__174, D000018__174, +EDGE2_000__174, D01B_000__87, EDGE1_000__174, D000014__107, SD2_1__17, D000013__99, SD2_1__18, +D000012__108, HQD_1__3, D000017__108, CV02_1, D000058__4, EDGE1_000__175, D01A_000__88, EDGE2_000__175, +D000018__175, EDGE3_000__175, D23_000__88, EDGE3_000__176, D000018__176, EDGE2_000__176, D01B_000__88, +EDGE1_000__176, D000014__108, SF2_1__17, D000013__100, SF2_1__18, D000012__109, HQF_1__4, D000017__109, +CH03_1, D000058__5, EDGE1_000__177, D01A_000__89, EDGE2_000__177, D000018__177, EDGE3_000__177, +D23_000__89, EDGE3_000__178, D000018__178, EDGE2_000__178, D01B_000__89, EDGE1_000__178, D000014__109, +SD1_1__19, D000013__101, SD1_1__20, D000012__110, HQD_1__4, D000017__110, CV03_1, D000058__6, +EDGE1_000__179, D01A_000__90, EDGE2_000__179, D000018__179, EDGE3_000__179, D23_000__90, EDGE3_000__180, +D000018__180, EDGE2_000__180, D01B_000__90, EDGE1_000__180, D000014__110, SF1_1__19, D000013__102, +SF1_1__20, D000012__111, HQF_1__5, D000017__111, CH04_1, D000058__7, EDGE1_000__181, D01A_000__91, +EDGE2_000__181, D000018__181, EDGE3_000__181, D23_000__91, EDGE3_000__182, D000018__182, EDGE2_000__182, +D01B_000__91, EDGE1_000__182, D000014__111, SD2_1__19, D000013__103, SD2_1__20, D000012__112, HQD_1__5, +D000017__112, CV04_1, D000058__8, EDGE1_000__183, D01A_000__92, EDGE2_000__183, D000018__183, +EDGE3_000__183, D23_000__92, EDGE3_000__184, D000018__184, EDGE2_000__184, D01B_000__92, EDGE1_000__184, +D000014__112, SF2_1__19, D000013__104, SF2_1__20, D000012__113, HQF_1__6, D000017__113, CH05_1, +D000058__9, EDGE1_000__185, D01A_000__93, EDGE2_000__185, D000018__185, EDGE3_000__185, D23_000__93, +EDGE3_000__186, D000018__186, EDGE2_000__186, D01B_000__93, EDGE1_000__186, D000014__113, SD1_1__21, +D000013__105, SD1_1__22, D000012__114, HQD_1__6, D000017__114, CV05_1, D000058__10, EDGE1_000__187, +D01A_000__94, EDGE2_000__187, D000018__187, EDGE3_000__187, D23_000__94, EDGE3_000__188, D000018__188, +EDGE2_000__188, D01B_000__94, EDGE1_000__188, D000014__114, SF1_1__21, D000013__106, SF1_1__22, +D000012__115, HQF_1__7, D000017__115, CH06_1, D000058__11, EDGE1_000__189, D01A_000__95, EDGE2_000__189, +D000018__189, EDGE3_000__189, D23_000__95, EDGE3_000__190, D000018__190, EDGE2_000__190, D01B_000__95, +EDGE1_000__190, D000014__115, SD2_1__21, D000013__107, SD2_1__22, D000012__116, HQD_1__7, D000017__116, +CV06_1, D000058__12, EDGE1_000__191, D01A_000__96, EDGE2_000__191, D000018__191, EDGE3_000__191, +D23_000__96, EDGE3_000__192, D000018__192, EDGE2_000__192, D01B_000__96, EDGE1_000__192, D000014__116, +SF2_1__21, D000013__108, SF2_1__22, D000012__117, HQF_1__8, D000017__117, CH07_1, D000058__13, +EDGE1_000__193, D01A_000__97, EDGE2_000__193, D000018__193, EDGE3_000__193, D23_000__97, EDGE3_000__194, +D000018__194, EDGE2_000__194, D01B_000__97, EDGE1_000__194, D000014__117, SD1_1__23, D000013__109, +SD1_1__24, D000012__118, HQD_1__8, D000017__118, CV07_1, D000058__14, EDGE1_000__195, D01A_000__98, +EDGE2_000__195, D000018__195, EDGE3_000__195, D23_000__98, EDGE3_000__196, D000018__196, EDGE2_000__196, +D01B_000__98, EDGE1_000__196, D000014__118, SF1_1__23, D000013__110, SF1_1__24, D000012__119, HQF_1__9, +D000017__119, CH08_1, D000058__15, EDGE1_000__197, D01A_000__99, EDGE2_000__197, D000018__197, +EDGE3_000__197, D23_000__99, EDGE3_000__198, D000018__198, EDGE2_000__198, D01B_000__99, EDGE1_000__198, +D000014__119, SD2_1__23, D000013__111, SD2_1__24, D000012__120, HQD_1__9, D000017__120, CV08_1, +D000058__16, EDGE1_000__199, D01A_000__100, EDGE2_000__199, D000018__199, EDGE3_000__199, D23_000__100, +EDGE3_000__200, D000018__200, EDGE2_000__200, D01B_000__100, EDGE1_000__200, D000014__120, SF2_1__23, +D000013__112, SF2_1__24, D000012__121, HQF_1__10, D000017__121, CH09_1, D000058__17, EDGE1_000__201, +D01A_000__101, EDGE2_000__201, D000018__201, EDGE3_000__201, D23_000__101, EDGE3_000__202, D000018__202, +EDGE2_000__202, D01B_000__101, EDGE1_000__202, D000014__121, SD1_1__25, D000013__113, SD1_1__26, +D000012__122, HQD_1__10, D000017__122, CV09_1, D000058__18, EDGE1_000__203, D01A_000__102, +EDGE2_000__203, D000018__203, EDGE3_000__203, D23_000__102, EDGE3_000__204, D000018__204, +EDGE2_000__204, D01B_000__102, EDGE1_000__204, D000014__122, SF1_1__25, D000013__114, SF1_1__26, +D000012__123, HQF_1__11, D000017__123, CH10_1, D000058__19, EDGE1_000__205, D01A_000__103, +EDGE2_000__205, D000018__205, EDGE3_000__205, D23_000__103, EDGE3_000__206, D000018__206, +EDGE2_000__206, D01B_000__103, EDGE1_000__206, D000014__123, SD2_1__25, D000013__115, SD2_1__26, +D000012__124, HQD_1__11, D000017__124, CV10_1, D000058__20, EDGE1_000__207, D01A_000__104, +EDGE2_000__207, D000018__207, EDGE3_000__207, D23_000__104, EDGE3_000__208, D000018__208, +EDGE2_000__208, D01B_000__104, EDGE1_000__208, D000014__124, SF2_1__25, D000013__116, SF2_1__26, +D000012__125, HQF_1__12, D000017__125, CH11_1, D000058__21, EDGE1_000__209, D01A_000__105, +EDGE2_000__209, D000018__209, EDGE3_000__209, D23_000__105, EDGE3_000__210, D000018__210, +EDGE2_000__210, D01B_000__105, EDGE1_000__210, D000014__125, SD1_1__27, D000013__117, SD1_1__28, +D000012__126, HQD_1__12, D000017__126, CV11_1, D000058__22, EDGE1_000__211, D01A_000__106, +EDGE2_000__211, D000018__211, EDGE3_000__211, D23_000__106, EDGE3_000__212, D000018__212, +EDGE2_000__212, D01B_000__106, EDGE1_000__212, D000014__126, SF1_1__27, D000013__118, SF1_1__28, +D000012__127, HQF_1__13, D000017__127, CH12_1, D000058__23, EDGE1_000__213, D01A_000__107, +EDGE2_000__213, D000018__213, EDGE3_000__213, D23_000__107, EDGE3_000__214, D000018__214, +EDGE2_000__214, D01B_000__107, EDGE1_000__214, D000014__127, SD2_1__27, D000013__119, SD2_1__28, +D000012__128, HQD_1__13, D000017__128, CV12_1, D000058__24, EDGE1_000__215, D01A_000__108, +EDGE2_000__215, D000018__215, EDGE3_000__215, D23_000__108, EDGE3_000__216, D000018__216, +EDGE2_000__216, D01B_000__108, EDGE1_000__216, D000014__128, SF2_1__27, D000013__120, SF2_1__28, +D000012__129, HQF_1__14, D000017__129, CH13_1, D000058__25, EDGE1_000__217, D01A_000__109, +EDGE2_000__217, D000018__217, EDGE3_000__217, D23_000__109, EDGE3_000__218, D000018__218, +EDGE2_000__218, D01B_000__109, EDGE1_000__218, D000014__129, SD1_1__29, D000013__121, SD1_1__30, +D000012__130, HQD_1__14, D000017__130, CV13_1, D000058__26, EDGE1_000__219, D01A_000__110, +EDGE2_000__219, D000018__219, EDGE3_000__219, D23_000__110, EDGE3_000__220, D000018__220, +EDGE2_000__220, D01B_000__110, EDGE1_000__220, D000014__130, SF1_1__29, D000013__122, SF1_1__30, +D000012__131, HQF_1__15, D000017__131, CH14_1, D000058__27, EDGE1_000__221, D01A_000__111, +EDGE2_000__221, D000018__221, EDGE3_000__221, D23_000__111, EDGE3_000__222, D000018__222, +EDGE2_000__222, D01B_000__111, EDGE1_000__222, D000014__131, SD2_1__29, D000013__123, SD2_1__30, +D000012__132, HQD_1__15, D000017__132, CV14_1, D000058__28, EDGE1_000__223, D01A_000__112, +EDGE2_000__223, D000018__223, EDGE3_000__223, D23_000__112, EDGE3_000__224, D000018__224, +EDGE2_000__224, D01B_000__112, EDGE1_000__224, D000014__132, SF2_1__29, D000013__124, SF2_1__30, +D000012__133, HQF_1__16, D000017__133, CH15_1, D000058__29, EDGE1_000__225, D01A_000__113, +EDGE2_000__225, D000018__225, EDGE3_000__225, D23_000__113, EDGE3_000__226, D000018__226, +EDGE2_000__226, D01B_000__113, EDGE1_000__226, D000014__133, SD1_1__31, D000013__125, SD1_1__32, +D000012__134, HQD_1__16, D000017__134, CV15_1, D000058__30, EDGE1_000__227, D01A_000__114, +EDGE2_000__227, D000018__227, EDGE3_000__227, D23_000__114, EDGE3_000__228, D000018__228, +EDGE2_000__228, D01B_000__114, EDGE1_000__228, D000014__134, SF1_1__31, D000013__126, SF1_1__32, +D000012__135, HQF_1__17, D000017__135, CH16_1, D000058__31, EDGE1_000__229, D01A_000__115, +EDGE2_000__229, D000018__229, EDGE3_000__229, D23_000__115, EDGE3_000__230, D000018__230, +EDGE2_000__230, D01B_000__115, EDGE1_000__230, D000014__135, SD2_1__31, D000013__127, SD2_1__32, +D000012__136, HQD_1__17, D000017__136, CV16_1, D000058__32, EDGE1_000__231, D01A_000__116, +EDGE2_000__231, D000018__231, EDGE3_000__231, D23_000__116, EDGE3_000__232, D000018__232, +EDGE2_000__232, D01B_000__116, EDGE1_000__232, D000014__136, SF2_1__31, D000013__128, SF2_1__32, +D000012__137, HQF_1__18, D000017__137, CH17_1, D000057__3, DB23_1__1, D000014__137, SD17_1, +D000012__138, HQD_1__18, D000017__138, CV17_1, D000057__4, DB23_1__2, D000014__138, SF17_1, +D000012__139, HQF_1__19, D000059__1, HQM22_1, D000059__2, HQM21_1, D000059__3, HQM20_1, D000059__4, +HQM19_1, D000059__5, HQM18_1, D000032__29, DB23_1__3, D000032__30, HQM17_1, D000032__31, DB23_1__4, +D000032__32, HQM16_1, D000060__1, HQM15_1, D000060__2, HQM14_1, D000060__3, HQM13_1, D000032__33, +DB23_1__5, D000032__34, HQM12_1, D000032__35, DB23_1__6, D000061__1, HQDSS_2__1, D000062__1, SX41_2, +D000056__2, HQFSS_2__1, D000062__2, SX42_2, D000056__3, HQDSS_2__2, MCOLL_H1, D000062__3, SX43_2, +D000056__4, HQFSS_2__2, D000062__4, MCOLL_H2, SX44_2, D000056__5, HQDSS_2__3, D000062__5, SX45_2, +D000056__6, HQFSS_2__3, D000062__6, MCOLL_H3, SX46_2, D000056__7, HQDSS_2__4, D000063, IP2, D000064, +HQFSS_2__4, D000056__8, SX47_2, D000062__7, HQDSS_2__5, D000056__9, SX48_2, D000062__8, HQFSS_2__5, +D000056__10, SX49_2, D000062__9, HQDSS_2__6, D000056__11, SX50_2, MLAMB, D000062__10, HQFSS_2__6, +D000056__12, SX51_2, D000062__11, HQDSS_2__7, D000056__13, SX52_2, D000062__12, HQFSS_2__7, D000061__2, +DB23_2__1, D000032__36, HQM12_2, D000032__37, DB23_2__2, D000032__38, HQM13_2, D000065__1, HQM14_2, +D000065__2, HQM15_2, D000065__3, HQM16_2, D000032__39, DB23_2__3, D000032__40, HQM17_2, D000032__41, +DB23_2__4, D000032__42, HQM18_2, D000066__1, HQM19_2, D000066__2, HQM20_2, D000066__3, HQM21_2, +D000066__4, HQM22_2, D000066__5, HQF_3__1, D000012__140, SF00_3, D000014__139, DB23_2__5, D000067__1, +CV00_3, D000017__139, HQD_3__1, D000012__141, SD00_3, D000014__140, DB23_2__6, D000067__2, CH00_3, +D000017__140, HQF_3__2, D000012__142, SF1_1__33, D000013__129, SF1_1__34, D000014__141, EDGE1_000__233, +D01A_000__117, EDGE2_000__233, D000018__233, EDGE3_000__233, D23_000__117, EDGE3_000__234, D000018__234, +EDGE2_000__234, D01B_000__117, EDGE1_000__234, D000068__1, CV01_3, D000017__141, HQD_3__2, D000012__143, +SD1_1__33, D000013__130, SD1_1__34, D000014__142, EDGE1_000__235, D01A_000__118, EDGE2_000__235, +D000018__235, EDGE3_000__235, D23_000__118, EDGE3_000__236, D000018__236, EDGE2_000__236, D01B_000__118, +EDGE1_000__236, D000068__2, CH01_3, D000017__142, HQF_3__3, D000012__144, SF2_1__33, D000013__131, +SF2_1__34, D000014__143, EDGE1_000__237, D01A_000__119, EDGE2_000__237, D000018__237, EDGE3_000__237, +D23_000__119, EDGE3_000__238, D000018__238, EDGE2_000__238, D01B_000__119, EDGE1_000__238, D000068__3, +CV02_3, D000017__143, HQD_3__3, D000012__145, SD2_1__33, D000013__132, SD2_1__34, D000014__144, +EDGE1_000__239, D01A_000__120, EDGE2_000__239, D000018__239, EDGE3_000__239, D23_000__120, +EDGE3_000__240, D000018__240, EDGE2_000__240, D01B_000__120, EDGE1_000__240, D000068__4, CH02_3, +D000017__144, HQF_3__4, D000012__146, SF1_1__35, D000013__133, SF1_1__36, D000014__145, EDGE1_000__241, +D01A_000__121, EDGE2_000__241, D000018__241, EDGE3_000__241, D23_000__121, EDGE3_000__242, D000018__242, +EDGE2_000__242, D01B_000__121, EDGE1_000__242, D000068__5, CV03_3, D000017__145, HQD_3__4, D000012__147, +SD1_1__35, D000013__134, SD1_1__36, D000014__146, EDGE1_000__243, D01A_000__122, EDGE2_000__243, +D000018__243, EDGE3_000__243, D23_000__122, EDGE3_000__244, D000018__244, EDGE2_000__244, D01B_000__122, +EDGE1_000__244, D000068__6, CH03_3, D000017__146, HQF_3__5, D000012__148, SF2_1__35, D000013__135, +SF2_1__36, D000014__147, EDGE1_000__245, D01A_000__123, EDGE2_000__245, D000018__245, EDGE3_000__245, +D23_000__123, EDGE3_000__246, D000018__246, EDGE2_000__246, D01B_000__123, EDGE1_000__246, D000068__7, +CV04_3, D000017__147, HQD_3__5, D000012__149, SD2_1__35, D000013__136, SD2_1__36, D000014__148, +EDGE1_000__247, D01A_000__124, EDGE2_000__247, D000018__247, EDGE3_000__247, D23_000__124, +EDGE3_000__248, D000018__248, EDGE2_000__248, D01B_000__124, EDGE1_000__248, D000068__8, CH04_3, +D000017__148, HQF_3__6, D000012__150, SF1_1__37, D000013__137, SF1_1__38, D000014__149, EDGE1_000__249, +D01A_000__125, EDGE2_000__249, D000018__249, EDGE3_000__249, D23_000__125, EDGE3_000__250, D000018__250, +EDGE2_000__250, D01B_000__125, EDGE1_000__250, D000068__9, CV05_3, D000017__149, HQD_3__6, D000012__151, +SD1_1__37, D000013__138, SD1_1__38, D000014__150, EDGE1_000__251, D01A_000__126, EDGE2_000__251, +D000018__251, EDGE3_000__251, D23_000__126, EDGE3_000__252, D000018__252, EDGE2_000__252, D01B_000__126, +EDGE1_000__252, D000068__10, CH05_3, D000017__150, HQF_3__7, D000012__152, SF2_1__37, D000013__139, +SF2_1__38, D000014__151, EDGE1_000__253, D01A_000__127, EDGE2_000__253, D000018__253, EDGE3_000__253, +D23_000__127, EDGE3_000__254, D000018__254, EDGE2_000__254, D01B_000__127, EDGE1_000__254, D000068__11, +CV06_3, D000017__151, HQD_3__7, D000012__153, SD2_1__37, D000013__140, SD2_1__38, D000014__152, +EDGE1_000__255, D01A_000__128, EDGE2_000__255, D000018__255, EDGE3_000__255, D23_000__128, +EDGE3_000__256, D000018__256, EDGE2_000__256, D01B_000__128, EDGE1_000__256, D000068__12, CH06_3, +D000017__152, HQF_3__8, D000012__154, SF1_1__39, D000013__141, SF1_1__40, D000014__153, EDGE1_000__257, +D01A_000__129, EDGE2_000__257, D000018__257, EDGE3_000__257, D23_000__129, EDGE3_000__258, D000018__258, +EDGE2_000__258, D01B_000__129, EDGE1_000__258, D000068__13, CV07_3, D000017__153, HQD_3__8, +D000012__155, SD1_1__39, D000013__142, SD1_1__40, D000014__154, EDGE1_000__259, D01A_000__130, +EDGE2_000__259, D000018__259, EDGE3_000__259, D23_000__130, EDGE3_000__260, D000018__260, +EDGE2_000__260, D01B_000__130, EDGE1_000__260, D000068__14, CH07_3, D000017__154, HQF_3__9, +D000012__156, SF2_1__39, D000013__143, SF2_1__40, D000014__155, EDGE1_000__261, D01A_000__131, +EDGE2_000__261, D000018__261, EDGE3_000__261, D23_000__131, EDGE3_000__262, D000018__262, +EDGE2_000__262, D01B_000__131, EDGE1_000__262, D000068__15, CV08_3, D000017__155, HQD_3__9, +D000012__157, SD2_1__39, D000013__144, SD2_1__40, D000014__156, EDGE1_000__263, D01A_000__132, +EDGE2_000__263, D000018__263, EDGE3_000__263, D23_000__132, EDGE3_000__264, D000018__264, +EDGE2_000__264, D01B_000__132, EDGE1_000__264, D000068__16, CH08_3, D000017__156, HQF_3__10, +D000012__158, SF1_1__41, D000013__145, SF1_1__42, D000014__157, EDGE1_000__265, D01A_000__133, +EDGE2_000__265, D000018__265, EDGE3_000__265, D23_000__133, EDGE3_000__266, D000018__266, +EDGE2_000__266, D01B_000__133, EDGE1_000__266, D000068__17, CV09_3, D000017__157, HQD_3__10, +D000012__159, SD1_1__41, D000013__146, SD1_1__42, D000014__158, EDGE1_000__267, D01A_000__134, +EDGE2_000__267, D000018__267, EDGE3_000__267, D23_000__134, EDGE3_000__268, D000018__268, +EDGE2_000__268, D01B_000__134, EDGE1_000__268, D000068__18, CH09_3, D000017__158, HQF_3__11, +D000012__160, SF2_1__41, D000013__147, SF2_1__42, D000014__159, EDGE1_000__269, D01A_000__135, +EDGE2_000__269, D000018__269, EDGE3_000__269, D23_000__135, EDGE3_000__270, D000018__270, +EDGE2_000__270, D01B_000__135, EDGE1_000__270, D000068__19, CV10_3, D000017__159, HQD_3__11, +D000012__161, SD2_1__41, D000013__148, SD2_1__42, D000014__160, EDGE1_000__271, D01A_000__136, +EDGE2_000__271, D000018__271, EDGE3_000__271, D23_000__136, EDGE3_000__272, D000018__272, +EDGE2_000__272, D01B_000__136, EDGE1_000__272, D000068__20, CH10_3, D000017__160, HQF_3__12, +D000012__162, SF1_1__43, D000013__149, SF1_1__44, D000014__161, EDGE1_000__273, D01A_000__137, +EDGE2_000__273, D000018__273, EDGE3_000__273, D23_000__137, EDGE3_000__274, D000018__274, +EDGE2_000__274, D01B_000__137, EDGE1_000__274, D000068__21, CV11_3, D000017__161, HQD_3__12, +D000012__163, SD1_1__43, D000013__150, SD1_1__44, D000014__162, EDGE1_000__275, D01A_000__138, +EDGE2_000__275, D000018__275, EDGE3_000__275, D23_000__138, EDGE3_000__276, D000018__276, +EDGE2_000__276, D01B_000__138, EDGE1_000__276, D000068__22, CH11_3, D000017__162, HQF_3__13, +D000012__164, SF2_1__43, D000013__151, SF2_1__44, D000014__163, EDGE1_000__277, D01A_000__139, +EDGE2_000__277, D000018__277, EDGE3_000__277, D23_000__139, EDGE3_000__278, D000018__278, +EDGE2_000__278, D01B_000__139, EDGE1_000__278, D000068__23, CV12_3, D000017__163, HQD_3__13, +D000012__165, SD2_1__43, D000013__152, SD2_1__44, D000014__164, EDGE1_000__279, D01A_000__140, +EDGE2_000__279, D000018__279, EDGE3_000__279, D23_000__140, EDGE3_000__280, D000018__280, +EDGE2_000__280, D01B_000__140, EDGE1_000__280, D000068__24, CH12_3, D000017__164, HQF_3__14, +D000012__166, SF1_1__45, D000013__153, SF1_1__46, D000014__165, EDGE1_000__281, D01A_000__141, +EDGE2_000__281, D000018__281, EDGE3_000__281, D23_000__141, EDGE3_000__282, D000018__282, +EDGE2_000__282, D01B_000__141, EDGE1_000__282, D000068__25, CV13_3, D000017__165, HQD_3__14, +D000012__167, SD1_1__45, D000013__154, SD1_1__46, D000014__166, EDGE1_000__283, D01A_000__142, +EDGE2_000__283, D000018__283, EDGE3_000__283, D23_000__142, EDGE3_000__284, D000018__284, +EDGE2_000__284, D01B_000__142, EDGE1_000__284, D000068__26, CH13_3, D000017__166, HQF_3__15, +D000012__168, SF2_1__45, D000013__155, SF2_1__46, D000014__167, EDGE1_000__285, D01A_000__143, +EDGE2_000__285, D000018__285, EDGE3_000__285, D23_000__143, EDGE3_000__286, D000018__286, +EDGE2_000__286, D01B_000__143, EDGE1_000__286, D000068__27, CV14_3, D000017__167, HQD_3__15, +D000012__169, SD2_1__45, D000013__156, SD2_1__46, D000014__168, EDGE1_000__287, D01A_000__144, +EDGE2_000__287, D000018__287, EDGE3_000__287, D23_000__144, EDGE3_000__288, D000018__288, +EDGE2_000__288, D01B_000__144, EDGE1_000__288, D000068__28, CH14_3, D000017__168, HQF_3__16, +D000012__170, SF1_1__47, D000013__157, SF1_1__48, D000014__169, EDGE1_000__289, D01A_000__145, +EDGE2_000__289, D000018__289, EDGE3_000__289, D23_000__145, EDGE3_000__290, D000018__290, +EDGE2_000__290, D01B_000__145, EDGE1_000__290, D000068__29, CV15_3, D000017__169, HQD_3__16, +D000012__171, SD1_1__47, D000013__158, SD1_1__48, D000014__170, EDGE1_000__291, D01A_000__146, +EDGE2_000__291, D000018__291, EDGE3_000__291, D23_000__146, EDGE3_000__292, D000018__292, +EDGE2_000__292, D01B_000__146, EDGE1_000__292, D000068__30, CH15_3, D000017__170, HQF_3__17, +D000012__172, SF2_1__47, D000013__159, SF2_1__48, D000014__171, EDGE1_000__293, D01A_000__147, +EDGE2_000__293, D000018__293, EDGE3_000__293, D23_000__147, EDGE3_000__294, D000018__294, +EDGE2_000__294, D01B_000__147, EDGE1_000__294, D000068__31, CV16_3, D000017__171, HQD_3__17, +D000012__173, SD2_1__47, D000013__160, SD2_1__48, D000014__172, EDGE1_000__295, D01A_000__148, +EDGE2_000__295, D000018__295, EDGE3_000__295, D23_000__148, EDGE3_000__296, D000018__296, +EDGE2_000__296, D01B_000__148, EDGE1_000__296, D000068__32, CH16_3, D000017__172, HQF_3__18, +D000012__174, SF17_3, D000014__173, DB23_3__1, D000067__3, CV17_3, D000017__173, HQD_3__18, +D000012__175, SD17_3, D000014__174, DB23_3__2, D000067__4, CH17_3, D000017__174, HQF_3__19, +D000012__176, SF18_3, D000069__1, HQD22_3, D000069__2, HQF21_3, D000032__43, DB23_3__3, D000032__44, +HQD20_3, D000032__45, DB23_3__4, D000032__46, HQF19_3, D000070__1, HQD18_3, D000070__2, HQF17_3, +D000070__3, HQD16_3, D000032__47, DB23_3__5, D000032__48, HQF15_3, D000032__49, DB23_3__6, D000032__50, +HQD14_3, MCOLL_V1, D000071__1, HQF13_3, D000071__2, MCOLL_V2, HQD12_3, D000071__3, HQF11_3, D000056__14, +SX41_4, D000072__1, MCOLL_V3, HQD10_3, D000056__15, SX42_4, D000072__2, HQF9_3, D000056__16, SX43_4, +D000056__17, DB12_4P__4, D000048__5, DB12_4P__5, D000048__6, DB12_4P__6, D000032__51, HQD8_3, +D000056__18, SX44_4, D000072__3, HQF7_3, D000056__19, SX45_4, D000072__4, HQD6_3, D000056__20, SX46_4, +D000073, IP4, D000074, SX47_4, D000056__21, HQD4_4, D000075__1, SX48_4, D000056__22, HQF5_4, D000075__2, +SX49_4, D000056__23, HQD6_4, D000032__52, DB12_4M__4, D000048__7, DB12_4M__5, D000048__8, DB12_4M__6, +D000056__24, SX50_4, D000056__25, HQF7_4, D000075__3, SX51_4, D000056__26, HQD8_4, D000075__4, SX52_4, +D000056__27, HQF9_4, D000076__1, HQD10_4, D000076__2, HQF11_4, D000032__53, DB23_4__1, D000032__54, +HQD12_4, D000032__55, DB23_4__2, D000032__56, HQF13_4, D000077__1, HQD14_4, D000077__2, HQF15_4, +D000077__3, HQD16_4, D000077__4, HQF17_4, D000077__5, HQD18_4, D000032__57, DB23_4__3, D000032__58, +HQF19_4, D000032__59, DB23_4__4, D000032__60, HQD20_4, D000078__1, HQF21_4, D000078__2, HQD22_4, +D000078__3, SFM1_5, D000056__28, HQF_5__1, D000017__175, CH00_5, D000079__1, DB23_4__5, D000014__175, +SD00_5, D000012__177, HQD_5__1, D000017__176, CV00_5, D000079__2, DB23_4__6, D000014__176, SF00_5, +D000012__178, HQF_5__2, D000017__177, CH01_5, D000080__1, EDGE1_000__297, D01A_000__149, EDGE2_000__297, +D000018__297, EDGE3_000__297, D23_000__149, EDGE3_000__298, D000018__298, EDGE2_000__298, D01B_000__149, +EDGE1_000__298, D000014__177, SD1_5__1, D000013__161, SD1_5__2, D000012__179, HQD_5__2, D000017__178, +CV01_5, D000080__2, EDGE1_000__299, D01A_000__150, EDGE2_000__299, D000018__299, EDGE3_000__299, +D23_000__150, EDGE3_000__300, D000018__300, EDGE2_000__300, D01B_000__150, EDGE1_000__300, D000014__178, +SF1_5__1, D000013__162, SF1_5__2, D000012__180, HQF_5__3, D000017__179, CH02_5, D000080__3, +EDGE1_000__301, D01A_000__151, EDGE2_000__301, D000018__301, EDGE3_000__301, D23_000__151, +EDGE3_000__302, D000018__302, EDGE2_000__302, D01B_000__151, EDGE1_000__302, D000014__179, SD2_5__1, +D000013__163, SD2_5__2, D000012__181, HQD_5__3, D000017__180, CV02_5, D000080__4, EDGE1_000__303, +D01A_000__152, EDGE2_000__303, D000018__303, EDGE3_000__303, D23_000__152, EDGE3_000__304, D000018__304, +EDGE2_000__304, D01B_000__152, EDGE1_000__304, D000014__180, SF2_5__1, D000013__164, SF2_5__2, +D000012__182, HQF_5__4, D000017__181, CH03_5, D000080__5, EDGE1_000__305, D01A_000__153, EDGE2_000__305, +D000018__305, EDGE3_000__305, D23_000__153, EDGE3_000__306, D000018__306, EDGE2_000__306, D01B_000__153, +EDGE1_000__306, D000014__181, SD1_5__3, D000013__165, SD1_5__4, D000012__183, HQD_5__4, D000017__182, +CV03_5, D000080__6, EDGE1_000__307, D01A_000__154, EDGE2_000__307, D000018__307, EDGE3_000__307, +D23_000__154, EDGE3_000__308, D000018__308, EDGE2_000__308, D01B_000__154, EDGE1_000__308, D000014__182, +SF1_5__3, D000013__166, SF1_5__4, D000012__184, HQF_5__5, D000017__183, CH04_5, D000080__7, +EDGE1_000__309, D01A_000__155, EDGE2_000__309, D000018__309, EDGE3_000__309, D23_000__155, +EDGE3_000__310, D000018__310, EDGE2_000__310, D01B_000__155, EDGE1_000__310, D000014__183, SD2_5__3, +D000013__167, SD2_5__4, D000012__185, HQD_5__5, D000017__184, CV04_5, D000080__8, EDGE1_000__311, +D01A_000__156, EDGE2_000__311, D000018__311, EDGE3_000__311, D23_000__156, EDGE3_000__312, D000018__312, +EDGE2_000__312, D01B_000__156, EDGE1_000__312, D000014__184, SF2_5__3, D000013__168, SF2_5__4, +D000012__186, HQF_5__6, D000017__185, CH05_5, D000080__9, EDGE1_000__313, D01A_000__157, EDGE2_000__313, +D000018__313, EDGE3_000__313, D23_000__157, EDGE3_000__314, D000018__314, EDGE2_000__314, D01B_000__157, +EDGE1_000__314, D000014__185, SD1_5__5, D000013__169, SD1_5__6, D000012__187, HQD_5__6, D000017__186, +CV05_5, D000080__10, EDGE1_000__315, D01A_000__158, EDGE2_000__315, D000018__315, EDGE3_000__315, +D23_000__158, EDGE3_000__316, D000018__316, EDGE2_000__316, D01B_000__158, EDGE1_000__316, D000014__186, +SF1_5__5, D000013__170, SF1_5__6, D000012__188, HQF_5__7, D000017__187, CH06_5, D000080__11, +EDGE1_000__317, D01A_000__159, EDGE2_000__317, D000018__317, EDGE3_000__317, D23_000__159, +EDGE3_000__318, D000018__318, EDGE2_000__318, D01B_000__159, EDGE1_000__318, D000014__187, SD2_5__5, +D000013__171, SD2_5__6, D000012__189, HQD_5__7, D000017__188, CV06_5, D000080__12, EDGE1_000__319, +D01A_000__160, EDGE2_000__319, D000018__319, EDGE3_000__319, D23_000__160, EDGE3_000__320, D000018__320, +EDGE2_000__320, D01B_000__160, EDGE1_000__320, D000014__188, SF2_5__5, D000013__172, SF2_5__6, +D000012__190, HQF_5__8, D000017__189, CH07_5, D000080__13, EDGE1_000__321, D01A_000__161, +EDGE2_000__321, D000018__321, EDGE3_000__321, D23_000__161, EDGE3_000__322, D000018__322, +EDGE2_000__322, D01B_000__161, EDGE1_000__322, D000014__189, SD1_5__7, D000013__173, SD1_5__8, +D000012__191, HQD_5__8, D000017__190, CV07_5, D000080__14, EDGE1_000__323, D01A_000__162, +EDGE2_000__323, D000018__323, EDGE3_000__323, D23_000__162, EDGE3_000__324, D000018__324, +EDGE2_000__324, D01B_000__162, EDGE1_000__324, D000014__190, SF1_5__7, D000013__174, SF1_5__8, +D000012__192, HQF_5__9, D000017__191, CH08_5, D000080__15, EDGE1_000__325, D01A_000__163, +EDGE2_000__325, D000018__325, EDGE3_000__325, D23_000__163, EDGE3_000__326, D000018__326, +EDGE2_000__326, D01B_000__163, EDGE1_000__326, D000014__191, SD2_5__7, D000013__175, SD2_5__8, +D000012__193, HQD_5__9, D000017__192, CV08_5, D000080__16, EDGE1_000__327, D01A_000__164, +EDGE2_000__327, D000018__327, EDGE3_000__327, D23_000__164, EDGE3_000__328, D000018__328, +EDGE2_000__328, D01B_000__164, EDGE1_000__328, D000014__192, SF2_5__7, D000013__176, SF2_5__8, +D000012__194, HQF_5__10, D000017__193, CH09_5, D000080__17, EDGE1_000__329, D01A_000__165, +EDGE2_000__329, D000018__329, EDGE3_000__329, D23_000__165, EDGE3_000__330, D000018__330, +EDGE2_000__330, D01B_000__165, EDGE1_000__330, D000014__193, SD1_5__9, D000013__177, SD1_5__10, +D000012__195, HQD_5__10, D000017__194, CV09_5, D000080__18, EDGE1_000__331, D01A_000__166, +EDGE2_000__331, D000018__331, EDGE3_000__331, D23_000__166, EDGE3_000__332, D000018__332, +EDGE2_000__332, D01B_000__166, EDGE1_000__332, D000014__194, SF1_5__9, D000013__178, SF1_5__10, +D000012__196, HQF_5__11, D000017__195, CH10_5, D000080__19, EDGE1_000__333, D01A_000__167, +EDGE2_000__333, D000018__333, EDGE3_000__333, D23_000__167, EDGE3_000__334, D000018__334, +EDGE2_000__334, D01B_000__167, EDGE1_000__334, D000014__195, SD2_5__9, D000013__179, SD2_5__10, +D000012__197, HQD_5__11, D000017__196, CV10_5, D000080__20, EDGE1_000__335, D01A_000__168, +EDGE2_000__335, D000018__335, EDGE3_000__335, D23_000__168, EDGE3_000__336, D000018__336, +EDGE2_000__336, D01B_000__168, EDGE1_000__336, D000014__196, SF2_5__9, D000013__180, SF2_5__10, +D000012__198, HQF_5__12, D000017__197, CH11_5, D000080__21, EDGE1_000__337, D01A_000__169, +EDGE2_000__337, D000018__337, EDGE3_000__337, D23_000__169, EDGE3_000__338, D000018__338, +EDGE2_000__338, D01B_000__169, EDGE1_000__338, D000014__197, SD1_5__11, D000013__181, SD1_5__12, +D000012__199, HQD_5__12, D000017__198, CV11_5, D000080__22, EDGE1_000__339, D01A_000__170, +EDGE2_000__339, D000018__339, EDGE3_000__339, D23_000__170, EDGE3_000__340, D000018__340, +EDGE2_000__340, D01B_000__170, EDGE1_000__340, D000014__198, SF1_5__11, D000013__182, SF1_5__12, +D000012__200, HQF_5__13, D000017__199, CH12_5, D000080__23, EDGE1_000__341, D01A_000__171, +EDGE2_000__341, D000018__341, EDGE3_000__341, D23_000__171, EDGE3_000__342, D000018__342, +EDGE2_000__342, D01B_000__171, EDGE1_000__342, D000014__199, SD2_5__11, D000013__183, SD2_5__12, +D000012__201, HQD_5__13, D000017__200, CV12_5, D000080__24, EDGE1_000__343, D01A_000__172, +EDGE2_000__343, D000018__343, EDGE3_000__343, D23_000__172, EDGE3_000__344, D000018__344, +EDGE2_000__344, D01B_000__172, EDGE1_000__344, D000014__200, SF2_5__11, D000013__184, SF2_5__12, +D000012__202, HQF_5__14, D000017__201, CH13_5, D000080__25, EDGE1_000__345, D01A_000__173, +EDGE2_000__345, D000018__345, EDGE3_000__345, D23_000__173, EDGE3_000__346, D000018__346, +EDGE2_000__346, D01B_000__173, EDGE1_000__346, D000014__201, SD1_5__13, D000013__185, SD1_5__14, +D000012__203, HQD_5__14, D000017__202, CV13_5, D000080__26, EDGE1_000__347, D01A_000__174, +EDGE2_000__347, D000018__347, EDGE3_000__347, D23_000__174, EDGE3_000__348, D000018__348, +EDGE2_000__348, D01B_000__174, EDGE1_000__348, D000014__202, SF1_5__13, D000013__186, SF1_5__14, +D000012__204, HQF_5__15, D000017__203, CH14_5, D000080__27, EDGE1_000__349, D01A_000__175, +EDGE2_000__349, D000018__349, EDGE3_000__349, D23_000__175, EDGE3_000__350, D000018__350, +EDGE2_000__350, D01B_000__175, EDGE1_000__350, D000014__203, SD2_5__13, D000013__187, SD2_5__14, +D000012__205, HQD_5__15, D000017__204, CV14_5, D000080__28, EDGE1_000__351, D01A_000__176, +EDGE2_000__351, D000018__351, EDGE3_000__351, D23_000__176, EDGE3_000__352, D000018__352, +EDGE2_000__352, D01B_000__176, EDGE1_000__352, D000014__204, SF2_5__13, D000013__188, SF2_5__14, +D000012__206, HQF_5C, D000017__205, CH15_5, D000080__29, EDGE1_001__1, D01A_001__1, EDGE2_001__1, +D000029__9, EDGE3_001__1, D23_001__1, EDGE3_001__2, D000029__10, EDGE2_001__2, D01B_001__1, +EDGE1_001__2, D000014__205, SD1_5__15, D000013__189, SD1_5__16, D000012__207, HQD_5C, D000017__206, +CV15_5, D000080__30, EDGE1_001__3, D01A_001__2, EDGE2_001__3, D000029__11, EDGE3_001__3, D23_001__2, +EDGE3_001__4, D000029__12, EDGE2_001__4, D01B_001__2, EDGE1_001__4, D000014__206, SF1_5__15, +D000013__190, SF1_5__16, D000012__208, HQF_5B, D000017__207, CH16_5, D000080__31, EDGE1_001__5, +D01A_001__3, EDGE2_001__5, D000029__13, EDGE3_001__5, D23_001__3, EDGE3_001__6, D000029__14, +EDGE2_001__6, D01B_001__3, EDGE1_001__6, D000014__207, SD2_5__15, D000013__191, SD2_5__16, D000012__209, +HQD_5B, D000017__208, CV16_5, D000080__32, EDGE1_001__7, D01A_001__4, EDGE2_001__7, D000029__15, +EDGE3_001__7, D23_001__4, EDGE3_001__8, D000029__16, EDGE2_001__8, D01B_001__4, EDGE1_001__8, +D000014__208, SF2_5__15, D000013__192, SF2_5__16, D000012__210, HQF_5A, D000011__4, HQD_5A, D000008__25, +MROT1__4, HSOL5_6__3, D000008__26, HQSS1_5, D000009__31, HQSS2_5, D000009__32, HQSS3_5, D000009__33, +HQSS4_5, D000009__34, HQSS5_5, D000008__27, HSOL5_6__4, MROT2__4, D000008__28, HQFF1_5, D000081__1, +DB23_5__1, D000081__2, QFF2_5, D000081__3, DB23_5__2, D000081__4, QFF3_5, D000081__5, DB23_5__3, +D000081__6, QFF4_5, D000081__7, DB23_5__4, D000081__8, HQFF5_5, D000081__9, DB23_5__5, D000081__10, +MFF_5, HQFF6_5, D000008__29, MROT3__4, HSOL20_6__3, D000008__30, HQLS1_5, D000009__35, HQLS2_5, +D000009__36, HQLS3_5, D000009__37, HQLS4_5, D000009__38, HQLS5_5, D000009__39, HQLS6_5, D000009__40, +HQLS7_5, D000008__31, HSOL20_6__4, MROT4__4, D000008__32, MLRF_6, Q12EF_6, D000006__30, D3EF_6__1, +D000006__31, Q11EF_6, D000006__32, D3EF_6__2, D000006__33, Q10EF_6, D000006__34, D3EF_6__3, D000006__35, +Q9EF_6, D000006__36, D3EF_6__4, D000006__37, Q8EF_6, D000005__15, Q7EF_6, D000005__16, Q6EF_6, +D000005__17, Q5EF_6, D000005__18, Q4EF_6, D000082, Q3EF_6, D000007__33, RF_CRAB__4, D000007__34, Q2EF_6, +D000006__38, D1EF_6, D000083, MCOLL_MASK, Q1EF_6, D000022__2, Q0EF_6, D000023__2, IP6__2], + R_ref=-59.52872449027632, species_ref=Species("electron")) \ No newline at end of file From 03b1d45de98193ed02f8478c41135c9e43e4fa18 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 7 Nov 2025 03:15:48 -0500 Subject: [PATCH 46/76] git stop thinking I changed esr --- test/lattices/esr.jl | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/test/lattices/esr.jl b/test/lattices/esr.jl index 2f0801c1..c850abdf 100644 --- a/test/lattices/esr.jl +++ b/test/lattices/esr.jl @@ -5540,4 +5540,4 @@ D000006__31, Q11EF_6, D000006__32, D3EF_6__2, D000006__33, Q10EF_6, D000006__34, Q9EF_6, D000006__36, D3EF_6__4, D000006__37, Q8EF_6, D000005__15, Q7EF_6, D000005__16, Q6EF_6, D000005__17, Q5EF_6, D000005__18, Q4EF_6, D000082, Q3EF_6, D000007__33, RF_CRAB__4, D000007__34, Q2EF_6, D000006__38, D1EF_6, D000083, MCOLL_MASK, Q1EF_6, D000022__2, Q0EF_6, D000023__2, IP6__2], - R_ref=-59.52872449027632, species_ref=Species("electron")) \ No newline at end of file + R_ref=-59.52872449027632, species_ref=Species("electron")) From 9dbd0dc866a70bcdf7c332aedac0b414a0e78a8a Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 8 Jan 2026 20:04:15 -0500 Subject: [PATCH 47/76] Enhance Runge-Kutta tracking to calculate kick based on field --- src/modules/RungeKuttaTracking.jl | 253 +++++++++++++++++++++++++---- test/RungeKuttaTracking_test.jl | 257 +++++++++++++++++------------- 2 files changed, 363 insertions(+), 147 deletions(-) diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index b230b592..86169588 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -6,59 +6,244 @@ struct RungeKutta end Module implementing particle tracking through arbitrary electromagnetic fields using a 4th order Runge-Kutta method. """ module RungeKuttaTracking -using ..BeamTracking +using ..BeamTracking, ..StaticArrays using ..BeamTracking: @makekernel, Coords +using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, STATE_ALIVE, STATE_LOST, STATE_LOST_PZ +using ..BeamTracking: C_LIGHT, E_CHARGE, vifelse const TRACKING_METHOD = RungeKutta """ - rk4_step!(u, t, h, field_func, params) + kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) -Perform a single 4th order Runge-Kutta step. +Calculate the derivative vector du/ds for relativistic particle tracking. +Returns an SVector{6} containing [dx/ds, dpx/ds, dy/ds, dpy/ds, dz/ds, dpz/ds]. + +Uses branchless operations for GPU/SIMD compatibility. For unphysical momenta, +returns zero derivatives (caller should mark particle as lost). + +# Arguments +- `x, px, y, py, z, pz`: State vector components +- `s`: Arc length position +- `Ex, Ey, Ez`: Electric field components (V/m) +- `Bx, By, Bz`: Magnetic field components (T) +- `charge`: Particle charge in units of e +- `tilde_m`: Normalized mass mc²/(p₀c) +- `beta_0`: Reference velocity β₀ = v₀/c +- `gamsqr_0`: Squared reference Lorentz factor γ₀² +- `g_bend`: Curvature (0 for drift, 1/ρ for bends) +- `p0c`: Reference momentum × c (eV) +- `mc2`: Rest mass energy (eV) +""" +@inline function kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + # Relative momentum + rel_p = 1 + pz + + # Transverse velocity components (normalized) + vt_x = px / rel_p + vt_y = py / rel_p + vt2 = vt_x^2 + vt_y^2 + + # Check for unphysical momenta (branchless) + vt2_1 = one(vt2) + good_momenta = (vt2 < vt2_1) + vt2_safe = vifelse(good_momenta, vt2, zero(vt2)) + + # Particle beta and velocity + rel_p2 = rel_p^2 + beta = rel_p / sqrt(rel_p2 + tilde_m^2) + + # Longitudinal velocity component + rel_dir = 1 # +1 for forward tracking + vz_norm = sqrt(1 - vt2_safe) * rel_dir + vx = beta * C_LIGHT * vt_x + vy = beta * C_LIGHT * vt_y + vz = beta * C_LIGHT * vz_norm + + # Lorentz force: F = q*(E + v×B) in Newtons + # E_force in eV/m = (charge * e) * E[V/m] + E_force_x = charge * E_CHARGE * Ex + E_force_y = charge * E_CHARGE * Ey + E_force_z = charge * E_CHARGE * Ez + + # B_force = q*(v × B), component by component + B_force_x = charge * E_CHARGE * (vy*Bz - vz*By) + B_force_y = charge * E_CHARGE * (vz*Bx - vx*Bz) + B_force_z = charge * E_CHARGE * (vx*By - vy*Bx) + + # Time derivative w.r.t. arc length + dh_bend = x * g_bend # Longitudinal distance deviation + abs_vz = abs(vz) + abs_vz_safe = vifelse(good_momenta, abs_vz, one(abs_vz)) # Avoid division by zero + dt_ds = rel_dir * (1 + dh_bend) / abs_vz_safe + + # Longitudinal momentum (normalized) + pz_p0 = rel_p * rel_dir * abs_vz / (beta * C_LIGHT) + + # Energy derivative: dp/ds = (F · v) * dt/ds / (β*c) + F_dot_v = E_force_x*vx + E_force_y*vy + E_force_z*vz + dp_ds = F_dot_v * dt_ds / (beta * C_LIGHT) + + # Position derivatives: dr/ds = v * dt/ds + dx_ds = vx * dt_ds + dy_ds = vy * dt_ds + + # Momentum derivatives: dp_i/ds = F_i * dt/ds / p0c + corrections + dpx_ds = (E_force_x + B_force_x) * dt_ds / p0c + g_bend * pz_p0 + dpy_ds = (E_force_y + B_force_y) * dt_ds / p0c + + # Longitudinal coordinate z derivative + # Simplified formula (can add full Fortran version later) + sqrt_1mvt2 = sqrt(1 - vt2_safe) + dz_ds = rel_dir * (beta / beta_0 - 1) + rel_dir * (sqrt_1mvt2 - dh_bend) / sqrt_1mvt2 + + # Energy deviation derivative + dpz_ds = dp_ds / p0c + + # Return zero derivatives if momenta are unphysical (branchless) + zero_deriv = zero(dx_ds) + return SVector( + vifelse(good_momenta, dx_ds, zero_deriv), + vifelse(good_momenta, dpx_ds, zero_deriv), + vifelse(good_momenta, dy_ds, zero_deriv), + vifelse(good_momenta, dpy_ds, zero_deriv), + vifelse(good_momenta, dz_ds, zero_deriv), + vifelse(good_momenta, dpz_ds, zero_deriv) + ) +end + +""" + rk4_step!(v, i, s, h, field_func, field_params, tracking_params) + +Perform a single RK4 step for particle i, updating coordinates in-place. +Uses stack-allocated SVectors for all intermediate values. # Arguments -- `u`: State vector [x, px, y, py, z, pz] -- `t`: Current time +- `v`: Coordinate matrix (N_particles × 6) +- `i`: Particle index +- `s`: Current arc length - `h`: Step size -- `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. - Return value should be [px, Ex, py, Ey, pz, Ez]. -- `params`: Additional parameters for the field function +- `field_func`: Function returning (Ex, Ey, Ez, Bx, By, Bz) = field_func(x, px, y, py, z, pz, s, field_params) +- `field_params`: Parameters for field function +- `tracking_params`: Tuple of (charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) """ -function rk4_step!(u, t, h, field_func, params) - k1 = field_func(u, t, params) - k2 = field_func(u .+ (h / 2) .* k1, t + h / 2, params) - k3 = field_func(u .+ (h / 2) .* k2, t + h / 2, params) - k4 = field_func(u .+ h .* k3, t + h, params) - u .+= (h / 6) .* (k1 .+ 2 .* k2 .+ 2 .* k3 .+ k4) +@inline function rk4_step!(v, i, s, h, field_func, field_params, tracking_params) + # Unpack tracking parameters + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2 = tracking_params + + # Extract current state (scalars) + x = v[i, XI] + px = v[i, PXI] + y = v[i, YI] + py = v[i, PYI] + z = v[i, ZI] + pz = v[i, PZI] + + # k1 = f(u, s) + Ex, Ey, Ez, Bx, By, Bz = field_func(x, px, y, py, z, pz, s, field_params) + k1 = kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + + # k2 = f(u + h/2 * k1, s + h/2) + h2 = h / 2 + x2 = x + h2 * k1[1] + px2 = px + h2 * k1[2] + y2 = y + h2 * k1[3] + py2 = py + h2 * k1[4] + z2 = z + h2 * k1[5] + pz2 = pz + h2 * k1[6] + Ex, Ey, Ez, Bx, By, Bz = field_func(x2, px2, y2, py2, z2, pz2, s + h2, field_params) + k2 = kick_vector(x2, px2, y2, py2, z2, pz2, s + h2, Ex, Ey, Ez, Bx, By, Bz, + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + + # k3 = f(u + h/2 * k2, s + h/2) + x3 = x + h2 * k2[1] + px3 = px + h2 * k2[2] + y3 = y + h2 * k2[3] + py3 = py + h2 * k2[4] + z3 = z + h2 * k2[5] + pz3 = pz + h2 * k2[6] + Ex, Ey, Ez, Bx, By, Bz = field_func(x3, px3, y3, py3, z3, pz3, s + h2, field_params) + k3 = kick_vector(x3, px3, y3, py3, z3, pz3, s + h2, Ex, Ey, Ez, Bx, By, Bz, + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + + # k4 = f(u + h * k3, s + h) + x4 = x + h * k3[1] + px4 = px + h * k3[2] + y4 = y + h * k3[3] + py4 = py + h * k3[4] + z4 = z + h * k3[5] + pz4 = pz + h * k3[6] + Ex, Ey, Ez, Bx, By, Bz = field_func(x4, px4, y4, py4, z4, pz4, s + h, field_params) + k4 = kick_vector(x4, px4, y4, py4, z4, pz4, s + h, Ex, Ey, Ez, Bx, By, Bz, + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + + # Update state: u += h/6 * (k1 + 2*k2 + 2*k3 + k4) + h6 = h / 6 + v[i, XI] = x + h6 * (k1[1] + 2*k2[1] + 2*k3[1] + k4[1]) + v[i, PXI] = px + h6 * (k1[2] + 2*k2[2] + 2*k3[2] + k4[2]) + v[i, YI] = y + h6 * (k1[3] + 2*k2[3] + 2*k3[3] + k4[3]) + v[i, PYI] = py + h6 * (k1[4] + 2*k2[4] + 2*k3[4] + k4[4]) + v[i, ZI] = z + h6 * (k1[5] + 2*k2[5] + 2*k3[5] + k4[5]) + v[i, PZI] = pz + h6 * (k1[6] + 2*k2[6] + 2*k3[6] + k4[6]) end """ - rk4_track!(i, b, work, t_span, field_func, params, n_steps) + rk4_track!(i, coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, + s_span, field_func, field_params, n_steps, g_bend) -Track a particle through a drift space with arbitrary field using 4th order Runge-Kutta. +Track particle through arbitrary electromagnetic fields using RK4. # Arguments - `i`: Particle index -- `b`: Coords containing particle coordinates -- `t_span`: Time span [t_start, t_end] -- `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. - Return value should be [px, Ex, py, Ey, pz, Ez]. -- `params`: Additional parameters for the field function +- `coords`: Coords object containing particle coordinates and state +- `beta_0`: Reference velocity β₀ = v₀/c +- `gamsqr_0`: Squared reference Lorentz factor γ₀² +- `tilde_m`: Normalized mass mc²/(p₀c) +- `charge`: Particle charge in units of e +- `p0c`: Reference momentum × c (eV) +- `mc2`: Rest mass energy (eV) +- `s_span`: Arc length span [s_start, s_end] +- `field_func`: Function returning (Ex, Ey, Ez, Bx, By, Bz) = field_func(x, px, y, py, z, pz, s, field_params) +- `field_params`: Parameters for field function - `n_steps`: Number of integration steps +- `g_bend`: Curvature (0 for drift, 1/ρ for bends) """ -@makekernel function rk4_track!(i, b::Coords, t_span, field_func, params, n_steps) - # Create a view of the particle coordinates - u = view(b.v, i, :) - - # Integration step size - h = (t_span[2] - t_span[1]) / n_steps - - t = t_span[1] - # Perform integration steps - for _ in 1:n_steps - rk4_step!(u, t, h, field_func, params) - t += h - end +function rk4_track!(i, coords::Coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, field_func, + field_params, n_steps, g_bend) + v = coords.v + + # Check if particle is alive at start + alive_at_start = (coords.state[i] == STATE_ALIVE) + + # Skip if particle is not alive + if !alive_at_start + return + end + + tracking_params = (charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + + # Integration + h = (s_span[2] - s_span[1]) / n_steps + s = s_span[1] + + for step in 1:n_steps + # Check momenta before step + rel_p = 1 + v[i, PZI] + vt2 = (v[i, PXI] / rel_p)^2 + (v[i, PYI] / rel_p)^2 + good_momenta = (vt2 < 1) + + # Mark particle as lost if momenta are unphysical + alive = (coords.state[i] == STATE_ALIVE) + coords.state[i] = vifelse(!good_momenta & alive, STATE_LOST_PZ, coords.state[i]) + + # Perform RK4 step (will return zero derivatives if lost) + rk4_step!(v, i, s, h, field_func, field_params, tracking_params) + s += h + end end end \ No newline at end of file diff --git a/test/RungeKuttaTracking_test.jl b/test/RungeKuttaTracking_test.jl index 7fcd581f..ca1ca97e 100644 --- a/test/RungeKuttaTracking_test.jl +++ b/test/RungeKuttaTracking_test.jl @@ -1,145 +1,176 @@ @testset "RungeKuttaTracking" begin - # Define a simple uniform electric field in x-direction - function uniform_field(u, t, params) - return SVector(u[2], 1.0, u[4], 0.0, u[6], 0.0) + using BeamTracking: Species, massof, chargeof, R_to_beta_gamma, R_to_pc, pc_to_R + + # Helper function to setup tracking parameters + function setup_particle(kinetic_energy=5e3) # 5 keV default + species = Species("electron") + mc2 = massof(species) # eV + ek = kinetic_energy + βγ = sqrt(ek / mc2 * (ek / mc2 + 2)) + pc = mc2 * βγ + R_ref = pc_to_R(species, pc) + + # Calculate tracking parameters + beta_gamma_0 = R_to_beta_gamma(species, R_ref) + tilde_m = 1 / beta_gamma_0 + gamsqr_0 = 1 + beta_gamma_0^2 + beta_0 = beta_gamma_0 / sqrt(gamsqr_0) + charge = chargeof(species) / BeamTracking.E_CHARGE + p0c = R_to_pc(species, R_ref) + + return species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 end - # Define a time-dependent field for testing - function time_varying_field(u, t, params) - return SVector(u[2], t, u[4], 0.0, u[6], 0.0) + # Field functions with new signature + function drift(x, px, y, py, z, pz, s, params) + return (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) end - # Define a parametric field for testing - function parametric_field(u, t, params) - E_x = params.E_x - return SVector(u[2], E_x, u[4], 0.0, u[6], 0.0) + function uniform_efield(x, px, y, py, z, pz, s, params) + Ex = params.Ex # V/m + return (Ex, 0.0, 0.0, 0.0, 0.0, 0.0) end - @testset "rk4_step!" begin - # Test single RK4 step with uniform field - u = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] - t = 0.0 - h = 0.1 - params = nothing - - # Perform one RK4 step - RungeKuttaTracking.rk4_step!(u, t, h, uniform_field, params) - - # Verify results (analytical solution for uniform field) - expected_x = 0.5 * h^2 # x = 0.5 * t^2 - expected_px = h # px = t - - @test isapprox(u[1], expected_x, rtol=1e-10) - @test isapprox(u[2], expected_px, rtol=1e-10) - @test u[3] ≈ 0.0 - @test u[4] ≈ 0.0 - @test u[5] ≈ 0.0 - @test u[6] ≈ 0.0 + function uniform_bfield(x, px, y, py, z, pz, s, params) + Bz = params.Bz # Tesla + return (0.0, 0.0, 0.0, 0.0, 0.0, Bz) end - @testset "rk4_step! with parameters" begin - # Test RK4 step with parametric field - u = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] - t = 0.0 - h = 0.1 - params = (E_x=2.0,) + @testset "Pure drift" begin + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() - RungeKuttaTracking.rk4_step!(u, t, h, parametric_field, params) + # Create bunch with small transverse momentum + bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch.coords.v[1, 1] = 0.0 # x0 = 0 + bunch.coords.v[1, 2] = 0.01 # px0 = 0.01 + bunch.coords.v[1, 3] = 0.0 # y0 = 0 + bunch.coords.v[1, 4] = 0.0 # py0 = 0 + bunch.coords.v[1, 5] = 0.0 # z0 = 0 + bunch.coords.v[1, 6] = 0.0 # pz0 = 0 - # With E_x = 2.0, acceleration is double - expected_x = 0.5 * 2.0 * h^2 # x = 0.5 * 2.0 * t^2 - expected_px = 2.0 * h # px = 2.0 * t - - @test isapprox(u[1], expected_x, rtol=1e-10) - @test isapprox(u[2], expected_px, rtol=1e-10) - end - - @testset "rk4_track! single particle" begin - # Create a single particle bunch - bunch = Bunch(zeros(1, 6)) - t_span = (0.0, 1.0) + s_span = (0.0, 1.0) # 1 meter arc length + field_params = nothing n_steps = 100 - params = nothing - - # Track the particle - RungeKuttaTracking.rk4_track!(1, bunch.coords, t_span, uniform_field, params, n_steps) - - # Verify final position and momentum (analytical solution) - @test isapprox(bunch.coords.v[1, 1], 0.5, rtol=1e-5) # x = 0.5 * t^2 at t=1 - @test isapprox(bunch.coords.v[1, 2], 1.0, rtol=1e-5) # px = t at t=1 - @test bunch.coords.v[1, 3] ≈ 0.0 - @test bunch.coords.v[1, 4] ≈ 0.0 - @test bunch.coords.v[1, 5] ≈ 0.0 - @test bunch.coords.v[1, 6] ≈ 0.0 + g_bend = 0.0 + + RungeKuttaTracking.rk4_track!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, drift, + field_params, n_steps, g_bend) + + # For drift, dx/ds ≈ px (for small px and pz ≈ 0) + # So x_final ≈ x0 + px * L + @test isapprox(bunch.coords.v[1, 1], 0.01, rtol=1e-3) # x ≈ 0.01 m + @test isapprox(bunch.coords.v[1, 2], 0.01, rtol=1e-5) # px unchanged + @test bunch.coords.v[1, 3] ≈ 0.0 # y unchanged + @test bunch.coords.v[1, 4] ≈ 0.0 # py unchanged end - @testset "rk4_track! with different initial conditions" begin - # Create a particle with initial position and momentum - bunch = Bunch(zeros(1, 6)) - bunch.coords.v[1, 1] = 1.0 # x0 = 1.0 - bunch.coords.v[1, 2] = 0.5 # px0 = 0.5 - - t_span = (0.0, 1.0) - n_steps = 100 - params = nothing - - RungeKuttaTracking.rk4_track!(1, bunch.coords, t_span, uniform_field, params, n_steps) + @testset "Uniform E-field - weak field" begin + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() - # Analytical solution: x = x0 + px0*t + 0.5*E*t^2, px = px0 + E*t - expected_x = 1.0 + 0.5 * 1.0 + 0.5 * 1.0 * 1.0^2 # 2.0 - expected_px = 0.5 + 1.0 * 1.0 # 1.5 + bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + # Start with small initial momentum in x (can't integrate arc length from rest) + bunch.coords.v[1, 1] = 0.0 + bunch.coords.v[1, 2] = 0.001 # Small initial px + bunch.coords.v[1, 3] = 0.0 + bunch.coords.v[1, 4] = 0.0 + bunch.coords.v[1, 5] = 0.0 + bunch.coords.v[1, 6] = 0.0 - @test isapprox(bunch.coords.v[1, 1], expected_x, rtol=1e-5) - @test isapprox(bunch.coords.v[1, 2], expected_px, rtol=1e-5) - end + px_initial = bunch.coords.v[1, 2] + x_initial = bunch.coords.v[1, 1] - @testset "rk4_track! with parameters" begin - # Test tracking with parametric field - bunch = Bunch(zeros(1, 6)) - t_span = (0.0, 1.0) + s_span = (0.0, 1.0) # 1 meter arc length + field_params = (Ex=-1e4,) # -10 kV/m (negative field accelerates electron in +x) n_steps = 100 - params = (E_x=3.0,) - - RungeKuttaTracking.rk4_track!(1, bunch.coords, t_span, parametric_field, params, n_steps) + g_bend = 0.0 - # With E_x = 3.0 - expected_x = 0.5 * 3.0 * 1.0^2 # 1.5 - expected_px = 3.0 * 1.0 # 3.0 + RungeKuttaTracking.rk4_track!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, uniform_efield, + field_params, n_steps, g_bend) - @test isapprox(bunch.coords.v[1, 1], expected_x, rtol=1e-5) - @test isapprox(bunch.coords.v[1, 2], expected_px, rtol=1e-5) + # Electron in negative E-field should accelerate in +x direction + @test bunch.coords.v[1, 2] > px_initial # px should increase + @test bunch.coords.v[1, 1] > x_initial # x should increase + @test bunch.coords.v[1, 3] ≈ 0.0 # y unchanged + @test bunch.coords.v[1, 4] ≈ 0.0 # py unchanged end - @testset "rk4_track! different step sizes" begin - # Test convergence with different step sizes - bunch1 = Bunch(zeros(1, 6)) - bunch2 = Bunch(zeros(1, 6)) + @testset "Uniform B-field - circular motion" begin + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() - t_span = (0.0, 1.0) - params = nothing + bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + # Initial velocity in x-direction + bunch.coords.v[1, 1] = 0.0 # x0 = 0 + bunch.coords.v[1, 2] = 0.01 # px0 = 0.01 + bunch.coords.v[1, 3] = 0.0 # y0 = 0 + bunch.coords.v[1, 4] = 0.0 # py0 = 0 + bunch.coords.v[1, 5] = 0.0 # z0 = 0 + bunch.coords.v[1, 6] = 0.0 # pz0 = 0 - # Track with different step sizes - RungeKuttaTracking.rk4_track!(1, bunch1.coords, t_span, uniform_field, params, 50) - RungeKuttaTracking.rk4_track!(1, bunch2.coords, t_span, uniform_field, params, 200) + s_span = (0.0, 1.0) # 1 meter + field_params = (Bz=0.01,) # 0.01 Tesla + n_steps = 200 + g_bend = 0.0 - # Results should be similar but more accurate with smaller steps - @test isapprox(bunch1.coords.v[1, 1], bunch2.coords.v[1, 1], rtol=1e-3) - @test isapprox(bunch1.coords.v[1, 2], bunch2.coords.v[1, 2], rtol=1e-3) + RungeKuttaTracking.rk4_track!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, uniform_bfield, + field_params, n_steps, g_bend) - # Both should be close to analytical solution - @test isapprox(bunch2.coords.v[1, 1], 0.5, rtol=1e-6) - @test isapprox(bunch2.coords.v[1, 2], 1.0, rtol=1e-6) + # In uniform B-field, particle should follow circular path + # Total transverse momentum should be conserved + pt2 = bunch.coords.v[1, 2]^2 + bunch.coords.v[1, 4]^2 + @test isapprox(pt2, 0.01^2, rtol=1e-4) end - @testset "rk4_track! time-varying field" begin - bunch = Bunch(zeros(1, 6)) - t_span = (0.0, 2.0) - n_steps = 200 + @testset "Particle loss detection" begin + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() + + bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + # Set unphysical initial momenta (vt² > 1) + bunch.coords.v[1, 1] = 0.0 + bunch.coords.v[1, 2] = 1.5 # px too large + bunch.coords.v[1, 3] = 0.0 + bunch.coords.v[1, 4] = 0.0 + bunch.coords.v[1, 5] = 0.0 + bunch.coords.v[1, 6] = 0.0 # pz = 0, so rel_p = 1 + + s_span = (0.0, 1.0) + field_params = nothing + n_steps = 10 + g_bend = 0.0 + + RungeKuttaTracking.rk4_track!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, drift, + field_params, n_steps, g_bend) + + # Particle should be marked as lost + @test bunch.coords.state[1] == BeamTracking.STATE_LOST_PZ + end - RungeKuttaTracking.rk4_track!(1, bunch.coords, t_span, time_varying_field, nothing, n_steps) + @testset "Convergence test" begin + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() - @test isapprox(bunch.coords.v[1, 2], 2.0, rtol=1e-5) # px(2) = 2 - @test isapprox(bunch.coords.v[1, 1], 4 / 3, rtol=1e-5) # x(2) = 4/3 + bunch1 = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch2 = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch1.coords.v[1, 2] = 0.01 # px0 = 0.01 + bunch2.coords.v[1, 2] = 0.01 + + s_span = (0.0, 1.0) + field_params = (Ex=1e4,) + g_bend = 0.0 + + # Track with different step sizes + RungeKuttaTracking.rk4_track!(1, bunch1.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, uniform_efield, + field_params, 50, g_bend) + RungeKuttaTracking.rk4_track!(1, bunch2.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, uniform_efield, + field_params, 200, g_bend) + + # Results should be similar with finer steps being more accurate + @test isapprox(bunch1.coords.v[1, 1], bunch2.coords.v[1, 1], rtol=1e-2) + @test isapprox(bunch1.coords.v[1, 2], bunch2.coords.v[1, 2], rtol=1e-2) end -end \ No newline at end of file +end From 0f1084c2f950a97a8da5bfd07a84b9deddac743e Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 8 Jan 2026 20:56:35 -0500 Subject: [PATCH 48/76] Remove field tracking --- src/modules/FieldTracking.jl | 59 --------------- test/FieldTracking_test.jl | 141 ----------------------------------- test/runtests.jl | 1 - 3 files changed, 201 deletions(-) delete mode 100644 src/modules/FieldTracking.jl delete mode 100644 test/FieldTracking_test.jl diff --git a/src/modules/FieldTracking.jl b/src/modules/FieldTracking.jl deleted file mode 100644 index 93f113fe..00000000 --- a/src/modules/FieldTracking.jl +++ /dev/null @@ -1,59 +0,0 @@ -struct Field end - -""" - FieldTracking - -Module implementing particle tracking through arbitrary electromagnetic fields using DifferentialEquations.jl. -""" -module FieldTracking -using ..BeamTracking -using ..BeamTracking: @makekernel, Coords -using SciMLBase -const TRACKING_METHOD = Field - -""" - field_system!(du, u, p, t) - -Define the ODE system for particle motion in an electromagnetic field. - -# Arguments -- `du`: Vector of derivatives -- `u`: State vector [x, px, y, py, z, pz] -- `p`: Parameters tuple containing (field_func, params) -- `field_func`: Function that returns the field. Must be of the form `field_func(u, t, params)`. - Return value should be [px, Ex, py, Ey, pz, Ez]. -- `t`: Time variable -""" -function field_system!(du, u, p, t) - field_func, params = p - du .= field_func(u, t, params) -end - -""" - field_track!(i, b, L, field_func, field_params, solver, solver_params) - -Track a particle through a drift space with arbitrary field using DifferentialEquations.jl. - -# Arguments -- `i`: Particle index -- `b`: Coords containing particle coordinates -- `L`: Drift length -- `field_func`: Function that returns the field at a given position (x, y, z) -- `field_params`: Additional parameters for the field function -- `solver`: ODE solver to use -- `solver_params`: Additional parameters for the solver -""" -@makekernel function field_track!(i, b::Coords, L, field_func, field_params, solver, solver_params) - # Initial state vector - u0 = view(b.v, i, :) - - # Set up and solve the ODE - prob = ODEProblem(field_system!, u0, (0.0, L), (field_func, field_params)) - sol = solve(prob, solver; solver_params...) - - # Update final coordinates by assigning each component - u0 .= sol.u[end] - -end - -end \ No newline at end of file diff --git a/test/FieldTracking_test.jl b/test/FieldTracking_test.jl deleted file mode 100644 index d88c94a9..00000000 --- a/test/FieldTracking_test.jl +++ /dev/null @@ -1,141 +0,0 @@ - -@testset "FieldTracking" begin - # Define a simple uniform electric field in x-direction - function uniform_field(u, t, params) - return SVector(u[2], 1.0, u[4], 0.0, u[6], 0.0) - end - - # Define a parametric field for testing field_params - function parametric_field(u, t, params) - E_x = params.E_x - return SVector(u[2], E_x, u[4], 0.0, u[6], 0.0) - end - - # Define a time-dependent field - function time_varying_field(u, t, params) - return SVector(u[2], t, u[4], 0.0, u[6], 0.0) - end - - @testset "field_system!" begin - # Test initial conditions with uniform field - du = zeros(6) - u = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] - p = (uniform_field, nothing) - t = 0.0 - - # Call field_system! - FieldTracking.field_system!(du, u, p, t) - - # Verify the derivatives are correctly computed - @test du[1] ≈ 0.0 # dx/dt = px - @test du[2] ≈ 1.0 # dpx/dt = Ex = 1.0 - @test du[3] ≈ 0.0 # dy/dt = py - @test du[4] ≈ 0.0 # dpy/dt = Ey = 0.0 - @test du[5] ≈ 0.0 # dz/dt = pz - @test du[6] ≈ 0.0 # dpz/dt = Ez = 0.0 - end - - @testset "field_system! with parameters" begin - # Test field_system! with parametric field - du = zeros(6) - u = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] - params = (E_x=2.5,) - p = (parametric_field, params) - t = 0.0 - - FieldTracking.field_system!(du, u, p, t) - - @test du[1] ≈ 0.0 # dx/dt = px - @test du[2] ≈ 2.5 # dpx/dt = Ex = 2.5 - @test du[3] ≈ 0.0 # dy/dt = py - @test du[4] ≈ 0.0 # dpy/dt = Ey = 0.0 - @test du[5] ≈ 0.0 # dz/dt = pz - @test du[6] ≈ 0.0 # dpz/dt = Ez = 0.0 - end - - @testset "field_system! time-dependent" begin - # Test field_system! with time-varying field - du = zeros(6) - u = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] - p = (time_varying_field, nothing) - t = 1.5 - - FieldTracking.field_system!(du, u, p, t) - - @test du[1] ≈ 0.0 # dx/dt = px - @test du[2] ≈ 1.5 # dpx/dt = Ex = t = 1.5 - @test du[3] ≈ 0.0 # dy/dt = py - @test du[4] ≈ 0.0 # dpy/dt = Ey = 0.0 - @test du[5] ≈ 0.0 # dz/dt = pz - @test du[6] ≈ 0.0 # dpz/dt = Ez = 0.0 - end - - # Test field_track! with uniform field - @testset "Uniform Field Tracking" begin - # Create a single particle - bunch = Bunch(zeros(1, 6)) - L = 1.0 - solver = Tsit5() - - # Track the particle - FieldTracking.field_track!(1, bunch.coords, L, uniform_field, nothing, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) - - # Verify final position and momentum - @test isapprox(bunch.coords.v[1, 1], 0.5, rtol=1e-5) # x = x0 + 0.5*t^2 - @test isapprox(bunch.coords.v[1, 2], 1.0, rtol=1e-5) # px = t - end - - # Test field_track! with parametric field - @testset "Parametric Field Tracking" begin - # Create a single particle - bunch = Bunch(zeros(1, 6)) - L = 1.0 - solver = Tsit5() - field_params = (E_x=3.0,) - - # Track the particle - FieldTracking.field_track!(1, bunch.coords, L, parametric_field, field_params, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) - - # Verify final position and momentum with E_x = 3.0 - @test isapprox(bunch.coords.v[1, 1], 1.5, rtol=1e-5) # x = 0.5 * 3.0 * t^2 - @test isapprox(bunch.coords.v[1, 2], 3.0, rtol=1e-5) # px = 3.0 * t - end - - # Test field_track! with different solver options - @testset "Different Solver Options" begin - # Test with different solver parameters - bunch1 = Bunch(zeros(1, 6)) - bunch2 = Bunch(zeros(1, 6)) - L = 1.0 - - # Track with different solvers - FieldTracking.field_track!(1, bunch1.coords, L, uniform_field, nothing, Tsit5(), (reltol=1e-6, abstol=1e-8)) - FieldTracking.field_track!(1, bunch2.coords, L, uniform_field, nothing, RK4(), (dt=0.01,)) - - # Both should give similar results - @test isapprox(bunch1.coords.v[1, 1], bunch2.coords.v[1, 1], rtol=1e-3) - @test isapprox(bunch1.coords.v[1, 2], bunch2.coords.v[1, 2], rtol=1e-3) - end - - # Test field_track! with initial conditions - @testset "Different Initial Conditions" begin - # Create particle with non-zero initial conditions - bunch = Bunch(zeros(1, 6)) - bunch.coords.v[1, 1] = 2.0 # x0 = 2.0 - bunch.coords.v[1, 2] = 1.5 # px0 = 1.5 - bunch.coords.v[1, 3] = 0.5 # y0 = 0.5 - bunch.coords.v[1, 4] = 0.2 # py0 = 0.2 - - L = 1.0 - solver = Tsit5() - - # Track the particle - FieldTracking.field_track!(1, bunch.coords, L, uniform_field, nothing, solver, (save_everystep=false, save_start=false, save_end=true, dense=false, calck=false)) - - # Verify motion in x (with field) and y (without field) - @test isapprox(bunch.coords.v[1, 1], 2.0 + 1.5 * 1.0 + 0.5 * 1.0^2, rtol=1e-5) # x motion with field - @test isapprox(bunch.coords.v[1, 2], 1.5 + 1.0, rtol=1e-5) # px increases due to field - @test isapprox(bunch.coords.v[1, 3], 0.5 + 0.2 * 1.0, rtol=1e-5) # y motion without field - @test isapprox(bunch.coords.v[1, 4], 0.2, rtol=1e-5) # py unchanged (no field in y) - end -end \ No newline at end of file diff --git a/test/runtests.jl b/test/runtests.jl index ac7e13ad..6776358e 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -202,5 +202,4 @@ include("aperture_tracking_test.jl") include("ExactTracking_test.jl") include("IntegrationTracking_test.jl") include("time_test.jl") -include("FieldTracking_test.jl") include("RungeKuttaTracking_test.jl") \ No newline at end of file From f03b29c79c2feb6ee139bc02c10b03bdbcc39611 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 8 Jan 2026 22:23:05 -0500 Subject: [PATCH 49/76] Integrate Runge-Kutta tracking method into BeamTracking --- .../BeamTrackingBeamlinesExt.jl | 1 + ext/BeamTrackingBeamlinesExt/rungekutta.jl | 117 ++++++++++++++++++ src/BeamTracking.jl | 3 +- src/modules/RungeKuttaTracking.jl | 89 ++++++------- src/tracking_methods.jl | 11 +- test/RungeKuttaTracking_test.jl | 111 +++++++++++++---- 6 files changed, 256 insertions(+), 76 deletions(-) create mode 100644 ext/BeamTrackingBeamlinesExt/rungekutta.jl diff --git a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl index fe6c2ed1..3911032d 100644 --- a/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl +++ b/ext/BeamTrackingBeamlinesExt/BeamTrackingBeamlinesExt.jl @@ -41,5 +41,6 @@ include("unpack.jl") include("scibmadstandard.jl") include("exact.jl") include("yoshida.jl") +include("rungekutta.jl") end \ No newline at end of file diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl new file mode 100644 index 00000000..84db5f83 --- /dev/null +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -0,0 +1,117 @@ +# =========== BYPASS UNPACKING FOR RUNGEKUTTA ============= # + +""" +Specialized _track! for RungeKutta that bypasses the unpacking system. +Gets field function directly from Beamlines.field_calc and passes the full element. +""" +function _track!( + coords::Coords, + bunch::Bunch, + ele::LineElement, + tm::RungeKutta, + ramp_without_rf; + kwargs... +) + # Get basic element properties + L = float(ele.L) + ap = deval(ele.AlignmentParams) + bp = deval(ele.BendParams) + dp = deval(ele.ApertureParams) + lp = deval(ele.BeamlineParams) + R_ref = bunch.R_ref + + # Setup reference state + beta_gamma_ref = R_to_beta_gamma(bunch.species, bunch.R_ref) + kc = KernelChain(Val{6}(), RefState(bunch.t_ref, beta_gamma_ref)) + + # Evolve time through whole element + bunch.t_ref += L/beta_gamma_to_v(beta_gamma_ref) + + # Handle reference momentum ramping + if R_ref isa TimeDependentParam + R_ref_initial = bunch.R_ref + R_ref_final = R_ref(bunch.t_ref) + if !(R_ref_initial ≈ R_ref_final) + kc = push(kc, KernelCall(BeamTracking.update_P0!, (R_ref_initial, R_ref_final, ramp_without_rf))) + setfield!(bunch, :R_ref, R_ref_final) + end + end + + # Entrance aperture and alignment + if isactive(ap) + if isactive(dp) + if dp.aperture_shifts_with_body + kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, true))) + kc = push(kc, @inline(aperture(tm, bunch, dp, true))) + else + kc = push(kc, @inline(aperture(tm, bunch, dp, true))) + kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, true))) + end + else + kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, true))) + end + elseif isactive(dp) + kc = push(kc, @inline(aperture(tm, bunch, dp, true))) + end + + # Only track through body if element has length + if L != 0 + # Setup physics parameters + species, R_ref = bunch.species, bunch.R_ref + tilde_m, gamsqr_0, beta_0 = BeamTracking.drift_params(species, R_ref) + charge = chargeof(species) / BeamTracking.E_CHARGE + p0c = BeamTracking.R_to_pc(species, R_ref) + mc2 = massof(species) + + # Calculate integration steps + if tm.ds_step > 0 + n_steps = Int(ceil(L / tm.ds_step)) + elseif tm.n_steps > 0 + n_steps = tm.n_steps + else + n_steps = max(1, Int(ceil(L / BeamTracking.DEFAULT_RK4_DS_STEP))) + end + + s_span = (0.0, L) + + # Get curvature from BendParams if present + g_bend = isactive(bp) ? bp.g : 0.0 + + # Get field function from Beamlines and pass full element + field_func = Beamlines.field_calc(ele) + + params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, n_steps, g_bend, + field_func, ele) + kc = push(kc, KernelCall(BeamTracking.RungeKuttaTracking.rk4_kernel!, params)) + end + + # Exit aperture and alignment + if isactive(ap) + if isactive(dp) + if dp.aperture_shifts_with_body + kc = push(kc, @inline(aperture(tm, bunch, dp, false))) + kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, false))) + else + kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, false))) + kc = push(kc, @inline(aperture(tm, bunch, dp, false))) + end + else + kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, false))) + end + elseif isactive(dp) + kc = push(kc, @inline(aperture(tm, bunch, dp, false))) + end + + # Launch kernels + @noinline launch!(coords, kc; kwargs...) + return nothing +end + +# =========== ALIGNMENT AND APERTURE ============= # +# These are still needed for other tracking methods that go through universal! + +@inline alignment(tm::RungeKutta, bunch, alignmentparams, bendparams, L, entering) = + alignment(Exact(), bunch, alignmentparams, bendparams, L, entering) + +@inline aperture(tm::RungeKutta, bunch, apertureparams, entering) = + aperture(Exact(), bunch, apertureparams, entering) diff --git a/src/BeamTracking.jl b/src/BeamTracking.jl index fb4fbbc5..da4a456a 100644 --- a/src/BeamTracking.jl +++ b/src/BeamTracking.jl @@ -18,7 +18,7 @@ using KernelAbstractions import GTPSA: sincu, sinhcu export Bunch, State, ParticleView, Time, TimeDependentParam -export Yoshida, Yoshida, MatrixKick, BendKick, SolenoidKick, DriftKick, Exact +export Yoshida, Yoshida, MatrixKick, BendKick, SolenoidKick, DriftKick, Exact, RungeKutta export track! @@ -49,7 +49,6 @@ include("kernels/spin.jl") include("kernels/transforms.jl") include("kernels/yoshida.jl") -include("modules/FieldTracking.jl") #; TRACKING_METHOD(::FieldTracking) = Field include("modules/RungeKuttaTracking.jl") #; TRACKING_METHOD(::RungeKuttaTracking) = RungeKutta # Empty tracking method to be imported+implemented by package extensions diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index 86169588..b4c660d5 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -1,17 +1,14 @@ -struct RungeKutta end - """ - RungeKuttaFieldTracking + RungeKuttaTracking Module implementing particle tracking through arbitrary electromagnetic fields using a 4th order Runge-Kutta method. """ module RungeKuttaTracking using ..BeamTracking, ..StaticArrays using ..BeamTracking: @makekernel, Coords -using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, STATE_ALIVE, STATE_LOST, STATE_LOST_PZ +using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, STATE_ALIVE, STATE_LOST_PZ using ..BeamTracking: C_LIGHT, E_CHARGE, vifelse -const TRACKING_METHOD = RungeKutta """ kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, @@ -86,6 +83,10 @@ returns zero derivatives (caller should mark particle as lost). F_dot_v = E_force_x*vx + E_force_y*vy + E_force_z*vz dp_ds = F_dot_v * dt_ds / (beta * C_LIGHT) + # Total energy for dbeta_ds calculation + e_tot = p0c * rel_p / beta + dbeta_ds = mc2^2 * dp_ds * C_LIGHT / e_tot^3 + # Position derivatives: dr/ds = v * dt/ds dx_ds = vx * dt_ds dy_ds = vy * dt_ds @@ -95,9 +96,8 @@ returns zero derivatives (caller should mark particle as lost). dpy_ds = (E_force_y + B_force_y) * dt_ds / p0c # Longitudinal coordinate z derivative - # Simplified formula (can add full Fortran version later) sqrt_1mvt2 = sqrt(1 - vt2_safe) - dz_ds = rel_dir * (beta / beta_0 - 1) + rel_dir * (sqrt_1mvt2 - dh_bend) / sqrt_1mvt2 + dz_ds = rel_dir * (beta / beta_0 - 1) + rel_dir * (sqrt_1mvt2 - dh_bend) / sqrt_1mvt2 + dbeta_ds * z / beta # Energy deviation derivative dpz_ds = dp_ds / p0c @@ -191,59 +191,44 @@ Uses stack-allocated SVectors for all intermediate values. end """ - rk4_track!(i, coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, - s_span, field_func, field_params, n_steps, g_bend) + rk4_kernel!(i, coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, + s_span, n_steps, g_bend, field_func, field_params) -Track particle through arbitrary electromagnetic fields using RK4. +Kernelized RK4 tracking through arbitrary electromagnetic fields. +Compatible with @makekernel and the package's kernel architecture. -# Arguments -- `i`: Particle index -- `coords`: Coords object containing particle coordinates and state -- `beta_0`: Reference velocity β₀ = v₀/c -- `gamsqr_0`: Squared reference Lorentz factor γ₀² -- `tilde_m`: Normalized mass mc²/(p₀c) -- `charge`: Particle charge in units of e -- `p0c`: Reference momentum × c (eV) -- `mc2`: Rest mass energy (eV) -- `s_span`: Arc length span [s_start, s_end] -- `field_func`: Function returning (Ex, Ey, Ez, Bx, By, Bz) = field_func(x, px, y, py, z, pz, s, field_params) -- `field_params`: Parameters for field function -- `n_steps`: Number of integration steps -- `g_bend`: Curvature (0 for drift, 1/ρ for bends) +The field_func should have signature: field_func(x, px, y, py, z, pz, s, params) +and return (Ex, Ey, Ez, Bx, By, Bz). """ -function rk4_track!(i, coords::Coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, field_func, - field_params, n_steps, g_bend) - v = coords.v - +@makekernel function rk4_kernel!(i, coords::Coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, n_steps, g_bend, + field_func, field_params) # Check if particle is alive at start alive_at_start = (coords.state[i] == STATE_ALIVE) - # Skip if particle is not alive - if !alive_at_start - return - end - + # Pack tracking parameters for rk4_step! tracking_params = (charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) - # Integration - h = (s_span[2] - s_span[1]) / n_steps - s = s_span[1] - - for step in 1:n_steps - # Check momenta before step - rel_p = 1 + v[i, PZI] - vt2 = (v[i, PXI] / rel_p)^2 + (v[i, PYI] / rel_p)^2 - good_momenta = (vt2 < 1) - - # Mark particle as lost if momenta are unphysical - alive = (coords.state[i] == STATE_ALIVE) - coords.state[i] = vifelse(!good_momenta & alive, STATE_LOST_PZ, coords.state[i]) - - # Perform RK4 step (will return zero derivatives if lost) - rk4_step!(v, i, s, h, field_func, field_params, tracking_params) - s += h + # Integration loop - only if particle was alive at start + if alive_at_start + h = (s_span[2] - s_span[1]) / n_steps + s = s_span[1] + + v = coords.v + for step in 1:n_steps + # Check momenta before step + rel_p = 1 + v[i, PZI] + vt2 = (v[i, PXI] / rel_p)^2 + (v[i, PYI] / rel_p)^2 + + # Mark particle as lost if momenta are unphysical (branchless) + alive = (coords.state[i] == STATE_ALIVE) + coords.state[i] = vifelse(vt2 >= 1 && alive, STATE_LOST_PZ, coords.state[i]) + + # Perform RK4 step + rk4_step!(v, i, s, h, field_func, field_params, tracking_params) + s += h + end end end -end \ No newline at end of file +end diff --git a/src/tracking_methods.jl b/src/tracking_methods.jl index f2d75f60..1f18f15c 100644 --- a/src/tracking_methods.jl +++ b/src/tracking_methods.jl @@ -40,4 +40,13 @@ end # ========== Exact =========================== -struct Exact end \ No newline at end of file +struct Exact end + +# ========== Explicit RK4 Tracking ========== +struct RungeKutta + ds_step::Float64 + n_steps::Int +end + +DEFAULT_RK4_DS_STEP = 0.2 +RungeKutta(; ds_step::Float64=DEFAULT_RK4_DS_STEP, n_steps::Int=-1) = RungeKutta(ds_step, n_steps) \ No newline at end of file diff --git a/test/RungeKuttaTracking_test.jl b/test/RungeKuttaTracking_test.jl index ca1ca97e..9ba84668 100644 --- a/test/RungeKuttaTracking_test.jl +++ b/test/RungeKuttaTracking_test.jl @@ -1,5 +1,7 @@ @testset "RungeKuttaTracking" begin - using BeamTracking: Species, massof, chargeof, R_to_beta_gamma, R_to_pc, pc_to_R + using BeamTracking + using BeamTracking: Species, massof, chargeof, R_to_beta_gamma, R_to_pc, pc_to_R, + RungeKuttaTracking, Bunch, STATE_ALIVE, STATE_LOST_PZ, E_CHARGE # Helper function to setup tracking parameters function setup_particle(kinetic_energy=5e3) # 5 keV default @@ -15,7 +17,7 @@ tilde_m = 1 / beta_gamma_0 gamsqr_0 = 1 + beta_gamma_0^2 beta_0 = beta_gamma_0 / sqrt(gamsqr_0) - charge = chargeof(species) / BeamTracking.E_CHARGE + charge = chargeof(species) p0c = R_to_pc(species, R_ref) return species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 @@ -53,9 +55,9 @@ n_steps = 100 g_bend = 0.0 - RungeKuttaTracking.rk4_track!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, drift, - field_params, n_steps, g_bend) + RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, n_steps, g_bend, + drift, field_params) # For drift, dx/ds ≈ px (for small px and pz ≈ 0) # So x_final ≈ x0 + px * L @@ -85,9 +87,9 @@ n_steps = 100 g_bend = 0.0 - RungeKuttaTracking.rk4_track!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, uniform_efield, - field_params, n_steps, g_bend) + RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, n_steps, g_bend, + uniform_efield, field_params) # Electron in negative E-field should accelerate in +x direction @test bunch.coords.v[1, 2] > px_initial # px should increase @@ -113,9 +115,9 @@ n_steps = 200 g_bend = 0.0 - RungeKuttaTracking.rk4_track!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, uniform_bfield, - field_params, n_steps, g_bend) + RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, n_steps, g_bend, + uniform_bfield, field_params) # In uniform B-field, particle should follow circular path # Total transverse momentum should be conserved @@ -140,12 +142,12 @@ n_steps = 10 g_bend = 0.0 - RungeKuttaTracking.rk4_track!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, drift, - field_params, n_steps, g_bend) + RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, n_steps, g_bend, + drift, field_params) # Particle should be marked as lost - @test bunch.coords.state[1] == BeamTracking.STATE_LOST_PZ + @test bunch.coords.state[1] == STATE_LOST_PZ end @testset "Convergence test" begin @@ -161,16 +163,83 @@ g_bend = 0.0 # Track with different step sizes - RungeKuttaTracking.rk4_track!(1, bunch1.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, uniform_efield, - field_params, 50, g_bend) - RungeKuttaTracking.rk4_track!(1, bunch2.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, uniform_efield, - field_params, 200, g_bend) + RungeKuttaTracking.rk4_kernel!(1, bunch1.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, 50, g_bend, + uniform_efield, field_params) + RungeKuttaTracking.rk4_kernel!(1, bunch2.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, 200, g_bend, + uniform_efield, field_params) # Results should be similar with finer steps being more accurate @test isapprox(bunch1.coords.v[1, 1], bunch2.coords.v[1, 1], rtol=1e-2) @test isapprox(bunch1.coords.v[1, 2], bunch2.coords.v[1, 2], rtol=1e-2) end + @testset "Integration with track! and BeamlinesExt" begin + using Beamlines + + species = Species("electron") + mc2 = massof(species) + ek = 5e3 # 5 keV + βγ = sqrt(ek / mc2 * (ek / mc2 + 2)) + pc = mc2 * βγ + R_ref = pc_to_R(species, pc) + + # Create a simple drift element + L_drift = 1.0 # 1 meter + drift_ele = Drift(L=L_drift) + drift_ele.tracking_method = RungeKutta() + + # Create bunch with small transverse momentum + bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch.coords.v[1, 1] = 0.0 # x0 = 0 + bunch.coords.v[1, 2] = 0.01 # px0 = 0.01 + bunch.coords.v[1, 3] = 0.0 # y0 = 0 + bunch.coords.v[1, 4] = 0.0 # py0 = 0 + bunch.coords.v[1, 5] = 0.0 # z0 = 0 + bunch.coords.v[1, 6] = 0.0 # pz0 = 0 + + # Track through drift using track! + track!(bunch, drift_ele) + + # For drift, dx/ds ≈ px (for small px and pz ≈ 0) + # So x_final ≈ x0 + px * L + @test isapprox(bunch.coords.v[1, 1], 0.01, rtol=1e-3) # x ≈ 0.01 m + @test isapprox(bunch.coords.v[1, 2], 0.01, rtol=1e-5) # px unchanged + @test bunch.coords.v[1, 3] ≈ 0.0 # y unchanged + @test bunch.coords.v[1, 4] ≈ 0.0 # py unchanged + @test bunch.coords.state[1] == STATE_ALIVE + end + + @testset "RungeKutta with different step configurations" begin + using Beamlines + + species = Species("electron") + mc2 = massof(species) + ek = 5e3 + βγ = sqrt(ek / mc2 * (ek / mc2 + 2)) + pc = mc2 * βγ + R_ref = pc_to_R(species, pc) + + L_drift = 1.0 + + # Test with ds_step + drift_ds = Drift(L=L_drift) + drift_ds.tracking_method = RungeKutta(ds_step=0.1) + bunch_ds = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch_ds.coords.v[1, 2] = 0.01 + track!(bunch_ds, drift_ds) + + # Test with n_steps + drift_ns = Drift(L=L_drift) + drift_ns.tracking_method = RungeKutta(ds_step=-1.0, n_steps=50) + bunch_ns = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch_ns.coords.v[1, 2] = 0.01 + track!(bunch_ns, drift_ns) + + # Both should give similar results + @test isapprox(bunch_ds.coords.v[1, 1], bunch_ns.coords.v[1, 1], rtol=1e-2) + @test isapprox(bunch_ds.coords.v[1, 2], bunch_ns.coords.v[1, 2], rtol=1e-4) + end + end From 90633fd7e1e79c292de5f2f38975be3560d03854 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 9 Jan 2026 00:21:19 -0500 Subject: [PATCH 50/76] Added checks for zero-length elements and updated parameter handling to allow for flexible step size or number of steps. --- ext/BeamTrackingBeamlinesExt/rungekutta.jl | 19 ++++++---- src/modules/RungeKuttaTracking.jl | 43 ++++++++++++---------- src/tracking_methods.jl | 24 +++++++++++- test/RungeKuttaTracking_test.jl | 20 +++++----- 4 files changed, 68 insertions(+), 38 deletions(-) diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl index 84db5f83..2eb787c9 100644 --- a/ext/BeamTrackingBeamlinesExt/rungekutta.jl +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -54,8 +54,11 @@ function _track!( kc = push(kc, @inline(aperture(tm, bunch, dp, true))) end - # Only track through body if element has length - if L != 0 + # Only track through body if element has length + if L <= 0.0 + error("RungeKutta tracking does not support zero-length elements") + end + # Setup physics parameters species, R_ref = bunch.species, bunch.R_ref tilde_m, gamsqr_0, beta_0 = BeamTracking.drift_params(species, R_ref) @@ -63,13 +66,14 @@ function _track!( p0c = BeamTracking.R_to_pc(species, R_ref) mc2 = massof(species) - # Calculate integration steps + # Determine step size to use if tm.ds_step > 0 - n_steps = Int(ceil(L / tm.ds_step)) + ds_step = tm.ds_step elseif tm.n_steps > 0 - n_steps = tm.n_steps + # Fallback: calculate ds_step from n_steps for backward compatibility + ds_step = L / tm.n_steps else - n_steps = max(1, Int(ceil(L / BeamTracking.DEFAULT_RK4_DS_STEP))) + ds_step = BeamTracking.DEFAULT_RK4_DS_STEP end s_span = (0.0, L) @@ -80,10 +84,9 @@ function _track!( # Get field function from Beamlines and pass full element field_func = Beamlines.field_calc(ele) - params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, n_steps, g_bend, + params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, field_func, ele) kc = push(kc, KernelCall(BeamTracking.RungeKuttaTracking.rk4_kernel!, params)) - end # Exit aperture and alignment if isactive(ap) diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index b4c660d5..c94230ae 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -59,16 +59,13 @@ returns zero derivatives (caller should mark particle as lost). vy = beta * C_LIGHT * vt_y vz = beta * C_LIGHT * vz_norm - # Lorentz force: F = q*(E + v×B) in Newtons - # E_force in eV/m = (charge * e) * E[V/m] - E_force_x = charge * E_CHARGE * Ex - E_force_y = charge * E_CHARGE * Ey - E_force_z = charge * E_CHARGE * Ez - - # B_force = q*(v × B), component by component - B_force_x = charge * E_CHARGE * (vy*Bz - vz*By) - B_force_y = charge * E_CHARGE * (vz*Bx - vx*Bz) - B_force_z = charge * E_CHARGE * (vx*By - vy*Bx) + # Lorentz force: F = q*(E + v×B) + E_force_x = charge * Ex + E_force_y = charge * Ey + E_force_z = charge * Ez + B_force_x = charge * (vy*Bz - vz*By) + B_force_y = charge * (vz*Bx - vx*Bz) + B_force_z = charge * (vx*By - vy*Bx) # Time derivative w.r.t. arc length dh_bend = x * g_bend # Longitudinal distance deviation @@ -92,15 +89,16 @@ returns zero derivatives (caller should mark particle as lost). dy_ds = vy * dt_ds # Momentum derivatives: dp_i/ds = F_i * dt/ds / p0c + corrections - dpx_ds = (E_force_x + B_force_x) * dt_ds / p0c + g_bend * pz_p0 - dpy_ds = (E_force_y + B_force_y) * dt_ds / p0c + p0 = p0c / C_LIGHT + dpx_ds = (E_force_x + B_force_x) * dt_ds / p0 + g_bend * pz_p0 + dpy_ds = (E_force_y + B_force_y) * dt_ds / p0 # Longitudinal coordinate z derivative sqrt_1mvt2 = sqrt(1 - vt2_safe) - dz_ds = rel_dir * (beta / beta_0 - 1) + rel_dir * (sqrt_1mvt2 - dh_bend) / sqrt_1mvt2 + dbeta_ds * z / beta + dz_ds = rel_dir * (beta / beta_0 - 1) + rel_dir * (sqrt_1mvt2 - 1 - dh_bend) / sqrt_1mvt2 + dbeta_ds * z / beta # Energy deviation derivative - dpz_ds = dp_ds / p0c + dpz_ds = dp_ds / p0 # Return zero derivatives if momenta are unphysical (branchless) zero_deriv = zero(dx_ds) @@ -192,7 +190,7 @@ end """ rk4_kernel!(i, coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, - s_span, n_steps, g_bend, field_func, field_params) + s_span, ds_step, g_bend, field_func, field_params) Kernelized RK4 tracking through arbitrary electromagnetic fields. Compatible with @makekernel and the package's kernel architecture. @@ -201,7 +199,7 @@ The field_func should have signature: field_func(x, px, y, py, z, pz, s, params) and return (Ex, Ey, Ez, Bx, By, Bz). """ @makekernel function rk4_kernel!(i, coords::Coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, n_steps, g_bend, + charge, p0c, mc2, s_span, ds_step, g_bend, field_func, field_params) # Check if particle is alive at start alive_at_start = (coords.state[i] == STATE_ALIVE) @@ -211,11 +209,18 @@ and return (Ex, Ey, Ez, Bx, By, Bz). # Integration loop - only if particle was alive at start if alive_at_start - h = (s_span[2] - s_span[1]) / n_steps - s = s_span[1] + s_start = s_span[1] + s_end = s_span[2] + s = s_start v = coords.v - for step in 1:n_steps + while s < s_end + # Calculate remaining distance + remaining = s_end - s + + # Use ds_step, but if remaining is smaller, use remaining + h = min(ds_step, remaining) + # Check momenta before step rel_p = 1 + v[i, PZI] vt2 = (v[i, PXI] / rel_p)^2 + (v[i, PYI] / rel_p)^2 diff --git a/src/tracking_methods.jl b/src/tracking_methods.jl index 1f18f15c..52830ccb 100644 --- a/src/tracking_methods.jl +++ b/src/tracking_methods.jl @@ -49,4 +49,26 @@ struct RungeKutta end DEFAULT_RK4_DS_STEP = 0.2 -RungeKutta(; ds_step::Float64=DEFAULT_RK4_DS_STEP, n_steps::Int=-1) = RungeKutta(ds_step, n_steps) \ No newline at end of file +function RungeKutta(; ds_step::Union{Float64, Nothing}=nothing, n_steps::Union{Int, Nothing}=nothing) + # Get actual values (use provided or sentinel) + _ds_step = ds_step === nothing ? -1.0 : ds_step + _n_steps = n_steps === nothing ? -1 : n_steps + + # Error if both are explicitly set to positive values + if _ds_step > 0 && _n_steps > 0 + error("Only one of ds_step or n_steps should be specified") + end + + # If user sets n_steps (and it's positive), set ds_step to negative + if _n_steps > 0 + return RungeKutta(-1.0, _n_steps) + end + + # If user sets ds_step (and it's positive), set n_steps to -1 + if _ds_step > 0 + return RungeKutta(_ds_step, -1) + end + + # Fallback: use defaults if both are negative/not set + return RungeKutta(DEFAULT_RK4_DS_STEP, -1) +end \ No newline at end of file diff --git a/test/RungeKuttaTracking_test.jl b/test/RungeKuttaTracking_test.jl index 9ba84668..7802c1d0 100644 --- a/test/RungeKuttaTracking_test.jl +++ b/test/RungeKuttaTracking_test.jl @@ -52,11 +52,11 @@ s_span = (0.0, 1.0) # 1 meter arc length field_params = nothing - n_steps = 100 + ds_step = 0.01 # 1 cm step size g_bend = 0.0 RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, n_steps, g_bend, + charge, p0c, mc2, s_span, ds_step, g_bend, drift, field_params) # For drift, dx/ds ≈ px (for small px and pz ≈ 0) @@ -84,11 +84,11 @@ s_span = (0.0, 1.0) # 1 meter arc length field_params = (Ex=-1e4,) # -10 kV/m (negative field accelerates electron in +x) - n_steps = 100 + ds_step = 0.01 # 1 cm step size g_bend = 0.0 RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, n_steps, g_bend, + charge, p0c, mc2, s_span, ds_step, g_bend, uniform_efield, field_params) # Electron in negative E-field should accelerate in +x direction @@ -112,11 +112,11 @@ s_span = (0.0, 1.0) # 1 meter field_params = (Bz=0.01,) # 0.01 Tesla - n_steps = 200 + ds_step = 0.001 # 1 mm step size g_bend = 0.0 RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, n_steps, g_bend, + charge, p0c, mc2, s_span, ds_step, g_bend, uniform_bfield, field_params) # In uniform B-field, particle should follow circular path @@ -139,11 +139,11 @@ s_span = (0.0, 1.0) field_params = nothing - n_steps = 10 + ds_step = 0.1 # 10 cm step size g_bend = 0.0 RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, n_steps, g_bend, + charge, p0c, mc2, s_span, ds_step, g_bend, drift, field_params) # Particle should be marked as lost @@ -164,10 +164,10 @@ # Track with different step sizes RungeKuttaTracking.rk4_kernel!(1, bunch1.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, 50, g_bend, + charge, p0c, mc2, s_span, 0.02, g_bend, uniform_efield, field_params) RungeKuttaTracking.rk4_kernel!(1, bunch2.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, 200, g_bend, + charge, p0c, mc2, s_span, 0.005, g_bend, uniform_efield, field_params) # Results should be similar with finer steps being more accurate From ab93f2487f56074947fde89902c534cee5ab5a4c Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 9 Jan 2026 00:21:30 -0500 Subject: [PATCH 51/76] Add Runge-Kutta tracking documentation --- docs/src/runge_kutta.md | 176 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 176 insertions(+) create mode 100644 docs/src/runge_kutta.md diff --git a/docs/src/runge_kutta.md b/docs/src/runge_kutta.md new file mode 100644 index 00000000..108ec85a --- /dev/null +++ b/docs/src/runge_kutta.md @@ -0,0 +1,176 @@ +# Runge-Kutta Tracking + +The `RungeKutta` tracking method provides a 4th-order Runge-Kutta (RK4) integration scheme for tracking particles through arbitrary electromagnetic fields. This method is particularly useful for elements with complex fields that cannot be handled analytically. + +## Overview + +The Runge-Kutta tracking implementation uses a classical 4th-order Runge-Kutta method to numerically integrate the relativistic equations of motion for charged particles in electromagnetic fields. The implementation is optimized for GPU/SIMD compatibility using branchless operations and stack-allocated StaticArrays. + +## Configuration + +The `RungeKutta` tracking method can be configured with the following parameters: + +### Parameters + +- **`ds_step`**: The step size for integration (in meters). If not specified, defaults to `0.2` meters when neither parameter is set. + +- **`n_steps`** : The number of integration steps. If specified and positive, the step size is calculated as `h = L / n_steps` where `L` is the element length. + +**Important**: Only one of `ds_step` or `n_steps` should be specified. If both are set to positive values, an error will be raised. If neither is specified, `ds_step=0.2` is used by default. + +### Examples + +```julia +# Use default step size (0.2 meters) +ele.tracking_method = RungeKutta() + +# Specify step size explicitly +ele.tracking_method = RungeKutta(ds_step=0.1) + +# Specify number of steps +ele.tracking_method = RungeKutta(n_steps=50) +``` + +## Physics + +The Runge-Kutta method integrates the relativistic equations of motion expressed in terms of arc length `s` as the independent variable. The state vector is: + +```math +\mathbf{u} = [x, p_x, y, p_y, z, p_z] +``` + +where: +- `x, y, z`: Position coordinates (meters) +- `p_x, p_y, p_z`: Normalized momentum components (relative to reference momentum `p₀`) + +The derivatives `du/ds` are calculated from the relativistic electromagnetism: + +### Position Derivatives + +```math +\frac{dx}{ds} = v_x \frac{dt}{ds}, \quad \frac{dy}{ds} = v_y \frac{dt}{ds} +``` + +where `v_x, v_y` are the transverse velocity components and `dt/ds` accounts for the relationship between arc length and time. + +### Momentum Derivatives + +```math +\frac{dp_x}{ds} = \frac{F_x}{p₀c} \frac{dt}{ds} + g_{bend} \frac{p_z}{p₀}, \quad \frac{dp_y}{ds} = \frac{F_y}{p₀c} \frac{dt}{ds} +``` + +where `F_x, F_y` are the Lorentz force components and `g_bend` is the curvature parameter (nonzero only in bend elements). + +### Longitudinal Coordinate + +The `z` coordinate represents the phase space deviation and is integrated with corrections for energy changes and bending: + +```math +\frac{dz}{ds} = \text{rel\_dir} \left(\frac{\beta}{\beta₀} - 1\right) + \text{rel\_dir} \frac{\sqrt{1-v_t²} - 1 - dh_{bend}}{\sqrt{1-v_t²}} + \frac{d\beta}{ds} \frac{z}{\beta} +``` + +### Energy Deviation + +```math +\frac{dp_z}{ds} = \frac{dp}{ds} / p₀c +``` + +where `dp/ds` is calculated from the work done by the electromagnetic fields. + +## Implementation Details + +### RK4 Algorithm + +The 4th-order Runge-Kutta method uses the standard four-stage scheme: + +1. **k₁**: Evaluate derivatives at current state `u(s)` +2. **k₂**: Evaluate derivatives at `u(s) + (h/2) k₁` +3. **k₃**: Evaluate derivatives at `u(s) + (h/2) k₂` +4. **k₄**: Evaluate derivatives at `u(s) + h k₃` + +The final update is: + +```math +u(s+h) = u(s) + \frac{h}{6}(k₁ + 2k₂ + 2k₃ + k₄) +``` + +### Field Function Interface + +The Runge-Kutta method requires a field function that returns the electromagnetic field components at a given position: + +```julia +field_func(x, px, y, py, z, pz, s, field_params) -> (Ex, Ey, Ez, Bx, By, Bz) +``` + +When used with `Beamlines.jl` elements, the field function is automatically obtained from `Beamlines.field_calc(ele)`. + +### Particle Loss Detection + +The implementation includes automatic detection of unphysical particle states: + +- **Unphysical momenta**: If the transverse velocity squared `v_t² ≥ 1`, the particle is marked as lost (`STATE_LOST_PZ`) +- The check is performed branchlessly for GPU compatibility +- Lost particles have their derivatives set to zero + +### GPU/SIMD Compatibility + +The implementation uses several techniques for GPU and SIMD compatibility: + +- **Branchless operations**: Uses `vifelse` for conditional logic +- **Stack-allocated arrays**: All intermediate values use `SVector` from StaticArrays.jl +- **No dynamic memory allocation**: All arrays are stack-allocated +- **Kernel abstraction**: Compatible with `@makekernel` macro for GPU execution + +## Usage + +### Basic Usage with Beamlines.jl + +```julia +using BeamTracking, Beamlines + +# Create an element with Runge-Kutta tracking +ele = Quadrupole(L=1.0, k1=0.1) +ele.tracking_method = RungeKutta(ds_step=0.1) + +# Create a bunch and track +bunch = Bunch(zeros(100, 6), R_ref=1e6, species=Species("electron")) +track!(bunch, ele) +``` + +### Custom Field Functions + +For custom field configurations, you can use the low-level API: + +```julia +using BeamTracking.RungeKuttaTracking + +# Define a custom field function +function my_field(x, px, y, py, z, pz, s, params) + Ex = params.E0 * sin(2π * s / params.λ) + return (Ex, 0.0, 0.0, 0.0, 0.0, 0.0) +end + +# Setup parameters +species = Species("electron") +R_ref = 1e6 +beta_0, gamsqr_0, tilde_m = drift_params(species, R_ref) +charge = chargeof(species) / E_CHARGE +p0c = R_to_pc(species, R_ref) +mc2 = massof(species) + +# Track +s_span = (0.0, 1.0) +n_steps = 100 +g_bend = 0.0 +field_params = (E0=1e4, λ=0.1) + +RungeKuttaTracking.rk4_kernel!( + 1, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, n_steps, g_bend, + my_field, field_params +) +``` + +## Supported Elements + +The Runge-Kutta method works with all thick elements that have field definitions. From ce4d3dc26036685d069aa8b8ff865a427449aa47 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 9 Jan 2026 00:31:30 -0500 Subject: [PATCH 52/76] Clean up and handle patch --- docs/src/runge_kutta.md | 2 +- ext/BeamTrackingBeamlinesExt/rungekutta.jl | 10 ++++++---- 2 files changed, 7 insertions(+), 5 deletions(-) diff --git a/docs/src/runge_kutta.md b/docs/src/runge_kutta.md index 108ec85a..014d7feb 100644 --- a/docs/src/runge_kutta.md +++ b/docs/src/runge_kutta.md @@ -102,7 +102,7 @@ The Runge-Kutta method requires a field function that returns the electromagneti field_func(x, px, y, py, z, pz, s, field_params) -> (Ex, Ey, Ez, Bx, By, Bz) ``` -When used with `Beamlines.jl` elements, the field function is automatically obtained from `Beamlines.field_calc(ele)`. +When used with `Beamlines.jl` elements, the field function is automatically obtained from `Beamlines.em_field_calc(ele)`. ### Particle Loss Detection diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl index 2eb787c9..5c6114b4 100644 --- a/ext/BeamTrackingBeamlinesExt/rungekutta.jl +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -17,7 +17,7 @@ function _track!( ap = deval(ele.AlignmentParams) bp = deval(ele.BendParams) dp = deval(ele.ApertureParams) - lp = deval(ele.BeamlineParams) + patch = deval(ele.PatchParams) R_ref = bunch.R_ref # Setup reference state @@ -37,6 +37,10 @@ function _track!( end end + if isactive(patch) + error("RungeKutta tracking does not support patch elements") + end + # Entrance aperture and alignment if isactive(ap) if isactive(dp) @@ -70,7 +74,6 @@ function _track!( if tm.ds_step > 0 ds_step = tm.ds_step elseif tm.n_steps > 0 - # Fallback: calculate ds_step from n_steps for backward compatibility ds_step = L / tm.n_steps else ds_step = BeamTracking.DEFAULT_RK4_DS_STEP @@ -82,7 +85,7 @@ function _track!( g_bend = isactive(bp) ? bp.g : 0.0 # Get field function from Beamlines and pass full element - field_func = Beamlines.field_calc(ele) + field_func = Beamlines.em_field_calc(ele) params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, field_func, ele) @@ -111,7 +114,6 @@ function _track!( end # =========== ALIGNMENT AND APERTURE ============= # -# These are still needed for other tracking methods that go through universal! @inline alignment(tm::RungeKutta, bunch, alignmentparams, bendparams, L, entering) = alignment(Exact(), bunch, alignmentparams, bendparams, L, entering) From 98f8b845f27080a816587ef6d071e8e4deca044c Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 9 Jan 2026 01:28:07 -0500 Subject: [PATCH 53/76] Change field_func signature to only depend on position --- src/modules/RungeKuttaTracking.jl | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index c94230ae..6889a238 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -123,7 +123,7 @@ Uses stack-allocated SVectors for all intermediate values. - `i`: Particle index - `s`: Current arc length - `h`: Step size -- `field_func`: Function returning (Ex, Ey, Ez, Bx, By, Bz) = field_func(x, px, y, py, z, pz, s, field_params) +- `field_func`: Function returning (Ex, Ey, Ez, Bx, By, Bz) = field_func(x, y, z, s, field_params) - `field_params`: Parameters for field function - `tracking_params`: Tuple of (charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) """ @@ -140,7 +140,7 @@ Uses stack-allocated SVectors for all intermediate values. pz = v[i, PZI] # k1 = f(u, s) - Ex, Ey, Ez, Bx, By, Bz = field_func(x, px, y, py, z, pz, s, field_params) + Ex, Ey, Ez, Bx, By, Bz = field_func(x, y, z, s, field_params) k1 = kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -152,7 +152,7 @@ Uses stack-allocated SVectors for all intermediate values. py2 = py + h2 * k1[4] z2 = z + h2 * k1[5] pz2 = pz + h2 * k1[6] - Ex, Ey, Ez, Bx, By, Bz = field_func(x2, px2, y2, py2, z2, pz2, s + h2, field_params) + Ex, Ey, Ez, Bx, By, Bz = field_func(x2, y2, z2, s + h2, field_params) k2 = kick_vector(x2, px2, y2, py2, z2, pz2, s + h2, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -163,7 +163,7 @@ Uses stack-allocated SVectors for all intermediate values. py3 = py + h2 * k2[4] z3 = z + h2 * k2[5] pz3 = pz + h2 * k2[6] - Ex, Ey, Ez, Bx, By, Bz = field_func(x3, px3, y3, py3, z3, pz3, s + h2, field_params) + Ex, Ey, Ez, Bx, By, Bz = field_func(x3, y3, z3, s + h2, field_params) k3 = kick_vector(x3, px3, y3, py3, z3, pz3, s + h2, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -174,7 +174,7 @@ Uses stack-allocated SVectors for all intermediate values. py4 = py + h * k3[4] z4 = z + h * k3[5] pz4 = pz + h * k3[6] - Ex, Ey, Ez, Bx, By, Bz = field_func(x4, px4, y4, py4, z4, pz4, s + h, field_params) + Ex, Ey, Ez, Bx, By, Bz = field_func(x4, y4, z4, s + h, field_params) k4 = kick_vector(x4, px4, y4, py4, z4, pz4, s + h, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -195,7 +195,7 @@ end Kernelized RK4 tracking through arbitrary electromagnetic fields. Compatible with @makekernel and the package's kernel architecture. -The field_func should have signature: field_func(x, px, y, py, z, pz, s, params) +The field_func should have signature: field_func(x, y, z, s, params) and return (Ex, Ey, Ez, Bx, By, Bz). """ @makekernel function rk4_kernel!(i, coords::Coords, beta_0, gamsqr_0, tilde_m, From cae1336ffbfadffaf062f3304a204acfd3a5f47e Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 9 Jan 2026 01:37:55 -0500 Subject: [PATCH 54/76] Update field_func signature in documentation --- docs/src/runge_kutta.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/src/runge_kutta.md b/docs/src/runge_kutta.md index 014d7feb..41ea549e 100644 --- a/docs/src/runge_kutta.md +++ b/docs/src/runge_kutta.md @@ -99,10 +99,10 @@ u(s+h) = u(s) + \frac{h}{6}(k₁ + 2k₂ + 2k₃ + k₄) The Runge-Kutta method requires a field function that returns the electromagnetic field components at a given position: ```julia -field_func(x, px, y, py, z, pz, s, field_params) -> (Ex, Ey, Ez, Bx, By, Bz) +field_func(x, y, z, s, field_params) -> (Ex, Ey, Ez, Bx, By, Bz) ``` -When used with `Beamlines.jl` elements, the field function is automatically obtained from `Beamlines.em_field_calc(ele)`. +The field function depends only on position coordinates (x, y, z, s), not on momenta. When used with `Beamlines.jl` elements, the field function is automatically obtained from `Beamlines.em_field_calc(ele)`. ### Particle Loss Detection @@ -145,7 +145,7 @@ For custom field configurations, you can use the low-level API: using BeamTracking.RungeKuttaTracking # Define a custom field function -function my_field(x, px, y, py, z, pz, s, params) +function my_field(x, y, z, s, params) Ex = params.E0 * sin(2π * s / params.λ) return (Ex, 0.0, 0.0, 0.0, 0.0, 0.0) end From 68db31883467649b4579a59df3442d6aaf0f969f Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 9 Jan 2026 13:01:40 -0500 Subject: [PATCH 55/76] Improved test particle setup, added uniform Ez test --- test/RungeKuttaTracking_test.jl | 64 +++++++++++++++++---------------- 1 file changed, 34 insertions(+), 30 deletions(-) diff --git a/test/RungeKuttaTracking_test.jl b/test/RungeKuttaTracking_test.jl index 7802c1d0..5dab46d3 100644 --- a/test/RungeKuttaTracking_test.jl +++ b/test/RungeKuttaTracking_test.jl @@ -4,12 +4,9 @@ RungeKuttaTracking, Bunch, STATE_ALIVE, STATE_LOST_PZ, E_CHARGE # Helper function to setup tracking parameters - function setup_particle(kinetic_energy=5e3) # 5 keV default + function setup_particle(pc=1e4) # pc in eV, default corresponds to 5 keV species = Species("electron") mc2 = massof(species) # eV - ek = kinetic_energy - βγ = sqrt(ek / mc2 * (ek / mc2 + 2)) - pc = mc2 * βγ R_ref = pc_to_R(species, pc) # Calculate tracking parameters @@ -24,16 +21,17 @@ end # Field functions with new signature - function drift(x, px, y, py, z, pz, s, params) + function drift(x, y, z, s, params) return (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) end - function uniform_efield(x, px, y, py, z, pz, s, params) + function uniform_efield(x, y, z, s, params) Ex = params.Ex # V/m - return (Ex, 0.0, 0.0, 0.0, 0.0, 0.0) + Ez = params.Ez + return (Ex, 0.0, Ez, 0.0, 0.0, 0.0) end - function uniform_bfield(x, px, y, py, z, pz, s, params) + function uniform_bfield(x, y, z, s, params) Bz = params.Bz # Tesla return (0.0, 0.0, 0.0, 0.0, 0.0, Bz) end @@ -59,31 +57,19 @@ charge, p0c, mc2, s_span, ds_step, g_bend, drift, field_params) - # For drift, dx/ds ≈ px (for small px and pz ≈ 0) - # So x_final ≈ x0 + px * L @test isapprox(bunch.coords.v[1, 1], 0.01, rtol=1e-3) # x ≈ 0.01 m @test isapprox(bunch.coords.v[1, 2], 0.01, rtol=1e-5) # px unchanged @test bunch.coords.v[1, 3] ≈ 0.0 # y unchanged @test bunch.coords.v[1, 4] ≈ 0.0 # py unchanged end - @testset "Uniform E-field - weak field" begin - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() + @testset "Uniform E-field - Ex" begin + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) # 1 GeV bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) - # Start with small initial momentum in x (can't integrate arc length from rest) - bunch.coords.v[1, 1] = 0.0 - bunch.coords.v[1, 2] = 0.001 # Small initial px - bunch.coords.v[1, 3] = 0.0 - bunch.coords.v[1, 4] = 0.0 - bunch.coords.v[1, 5] = 0.0 - bunch.coords.v[1, 6] = 0.0 - - px_initial = bunch.coords.v[1, 2] - x_initial = bunch.coords.v[1, 1] s_span = (0.0, 1.0) # 1 meter arc length - field_params = (Ex=-1e4,) # -10 kV/m (negative field accelerates electron in +x) + field_params = (Ex=-1e4, Ez=0.0) ds_step = 0.01 # 1 cm step size g_bend = 0.0 @@ -91,15 +77,33 @@ charge, p0c, mc2, s_span, ds_step, g_bend, uniform_efield, field_params) - # Electron in negative E-field should accelerate in +x direction - @test bunch.coords.v[1, 2] > px_initial # px should increase - @test bunch.coords.v[1, 1] > x_initial # x should increase + @test isapprox(bunch.coords.v[1, 2], 1e-5, rtol=1e-5) + @test bunch.coords.v[1, 1] > 0.0 # x should increase @test bunch.coords.v[1, 3] ≈ 0.0 # y unchanged @test bunch.coords.v[1, 4] ≈ 0.0 # py unchanged end + @testset "Uniform E-field - Ez" begin + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) # 1 GeV + + bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + + s_span = (0.0, 1.0) # 1 meter arc length + field_params = (Ex=0.0, Ez=-1e4) + ds_step = 0.01 # 1 cm step size + g_bend = 0.0 + + RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, ds_step, g_bend, + uniform_efield, field_params) + + @test isapprox(bunch.coords.v[1, 6], 1e-5, rtol=1e-5) + @test bunch.coords.v[1, 1] ≈ 0.0 # x unchanged + @test bunch.coords.v[1, 2] ≈ 0.0 # px unchanged + end + @testset "Uniform B-field - circular motion" begin - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) # Initial velocity in x-direction @@ -126,7 +130,7 @@ end @testset "Particle loss detection" begin - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) # Set unphysical initial momenta (vt² > 1) @@ -151,7 +155,7 @@ end @testset "Convergence test" begin - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) bunch1 = Bunch(zeros(1, 6), R_ref=R_ref, species=species) bunch2 = Bunch(zeros(1, 6), R_ref=R_ref, species=species) @@ -159,7 +163,7 @@ bunch2.coords.v[1, 2] = 0.01 s_span = (0.0, 1.0) - field_params = (Ex=1e4,) + field_params = (Ex=1e4, Ez=0.0) g_bend = 0.0 # Track with different step sizes From 8804e035de37670b20aacd00a0570be317149b26 Mon Sep 17 00:00:00 2001 From: ndwang Date: Sat, 10 Jan 2026 22:41:26 -0500 Subject: [PATCH 56/76] Refactor Runge-Kutta tracking to avoid closure for electromagnetic field calculations. --- docs/src/runge_kutta.md | 2 +- ext/BeamTrackingBeamlinesExt/rungekutta.jl | 12 ++-- src/modules/RungeKuttaTracking.jl | 83 +++++++++++++++------- 3 files changed, 68 insertions(+), 29 deletions(-) diff --git a/docs/src/runge_kutta.md b/docs/src/runge_kutta.md index 41ea549e..bba0846d 100644 --- a/docs/src/runge_kutta.md +++ b/docs/src/runge_kutta.md @@ -68,6 +68,7 @@ The `z` coordinate represents the phase space deviation and is integrated with c ```math \frac{dz}{ds} = \text{rel\_dir} \left(\frac{\beta}{\beta₀} - 1\right) + \text{rel\_dir} \frac{\sqrt{1-v_t²} - 1 - dh_{bend}}{\sqrt{1-v_t²}} + \frac{d\beta}{ds} \frac{z}{\beta} ``` +At the moment `rel_dir` is hardcoded to be 1. In the future this could be extended to track particles going backwards. ### Energy Deviation @@ -102,7 +103,6 @@ The Runge-Kutta method requires a field function that returns the electromagneti field_func(x, y, z, s, field_params) -> (Ex, Ey, Ez, Bx, By, Bz) ``` -The field function depends only on position coordinates (x, y, z, s), not on momenta. When used with `Beamlines.jl` elements, the field function is automatically obtained from `Beamlines.em_field_calc(ele)`. ### Particle Loss Detection diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl index 5c6114b4..62f51686 100644 --- a/ext/BeamTrackingBeamlinesExt/rungekutta.jl +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -84,11 +84,15 @@ function _track!( # Get curvature from BendParams if present g_bend = isactive(bp) ? bp.g : 0.0 - # Get field function from Beamlines and pass full element - field_func = Beamlines.em_field_calc(ele) + # Extract multipole parameters + bm = deval(ele.BMultipoleParams) + if isactive(bm) + mm = bm.order + kn, ks = get_strengths(bm, L, R_ref) + end - params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, - field_func, ele) + # Build kernel call + params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks) kc = push(kc, KernelCall(BeamTracking.RungeKuttaTracking.rk4_kernel!, params)) # Exit aperture and alignment diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index 6889a238..e9430040 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -10,6 +10,43 @@ using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, STATE_ALIVE, STATE_LOST_PZ using ..BeamTracking: C_LIGHT, E_CHARGE, vifelse +""" + multipole_em_field(x, y, z, s, mm, kn, ks) + +Compute EM field from multipole moments for RK4 tracking. +Handles ALL multipole orders: +- m=0: solenoid (longitudinal Bz) +- m=1: dipole (transverse By, Bx) +- m≥2: higher-order multipoles (quadrupole, sextupole, etc.) + +Returns (Ex, Ey, Ez, Bx, By, Bz) where: +- Bx, By: transverse field from all orders except m=0 (via normalized_field) +- Bz: longitudinal field from m=0 term if present +- Ex, Ey, Ez: zero (static magnetic elements only) +""" +@inline function multipole_em_field(x, y, z, s, mm, kn, ks) + # Handle empty multipole arrays (pure drift or pure bend) + if length(mm) == 0 + # No multipole field, return zeros + bx = zero(x) + by = zero(y) + bz = zero(x) + else + # Get transverse field components, excluding m=0 (solenoid) + # normalized_field from multipole.jl handles all orders including m=1 (dipole) + bx, by = BeamTracking.normalized_field(mm, kn, ks, x, y, 0) + + # Extract longitudinal field from m=0 term if present + bz = zero(bx) + if mm[1] == 0 + bz = kn[1] # Solenoid strength is the m=0 normal component + end + end + + # No electric field from static magnets + return (zero(bx), zero(by), zero(bz), bx, by, bz) +end + """ kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -113,7 +150,7 @@ returns zero derivatives (caller should mark particle as lost). end """ - rk4_step!(v, i, s, h, field_func, field_params, tracking_params) + rk4_step!(v, i, s, h, mm, kn, ks, tracking_params) Perform a single RK4 step for particle i, updating coordinates in-place. Uses stack-allocated SVectors for all intermediate values. @@ -123,14 +160,18 @@ Uses stack-allocated SVectors for all intermediate values. - `i`: Particle index - `s`: Current arc length - `h`: Step size -- `field_func`: Function returning (Ex, Ey, Ez, Bx, By, Bz) = field_func(x, y, z, s, field_params) -- `field_params`: Parameters for field function -- `tracking_params`: Tuple of (charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) +- `mm`: Multipole orders (StaticArray) +- `kn`: Normal multipole strengths (StaticArray) +- `ks`: Skew multipole strengths (StaticArray) +- `charge`: Particle charge in units of e +- `tilde_m`: Normalized mass mc²/(p₀c) +- `beta_0`: Reference velocity β₀ = v₀/c +- `gamsqr_0`: Squared reference Lorentz factor γ₀² +- `g_bend`: Curvature (0 for drift, 1/ρ for bends) +- `p0c`: Reference momentum × c (eV) +- `mc2`: Rest mass energy (eV) """ -@inline function rk4_step!(v, i, s, h, field_func, field_params, tracking_params) - # Unpack tracking parameters - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2 = tracking_params - +@inline function rk4_step!(v, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) # Extract current state (scalars) x = v[i, XI] px = v[i, PXI] @@ -140,7 +181,7 @@ Uses stack-allocated SVectors for all intermediate values. pz = v[i, PZI] # k1 = f(u, s) - Ex, Ey, Ez, Bx, By, Bz = field_func(x, y, z, s, field_params) + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x, y, z, s, mm, kn, ks) k1 = kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -152,7 +193,7 @@ Uses stack-allocated SVectors for all intermediate values. py2 = py + h2 * k1[4] z2 = z + h2 * k1[5] pz2 = pz + h2 * k1[6] - Ex, Ey, Ez, Bx, By, Bz = field_func(x2, y2, z2, s + h2, field_params) + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x2, y2, z2, s + h2, mm, kn, ks) k2 = kick_vector(x2, px2, y2, py2, z2, pz2, s + h2, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -163,7 +204,7 @@ Uses stack-allocated SVectors for all intermediate values. py3 = py + h2 * k2[4] z3 = z + h2 * k2[5] pz3 = pz + h2 * k2[6] - Ex, Ey, Ez, Bx, By, Bz = field_func(x3, y3, z3, s + h2, field_params) + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x3, y3, z3, s + h2, mm, kn, ks) k3 = kick_vector(x3, px3, y3, py3, z3, pz3, s + h2, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -174,7 +215,7 @@ Uses stack-allocated SVectors for all intermediate values. py4 = py + h * k3[4] z4 = z + h * k3[5] pz4 = pz + h * k3[6] - Ex, Ey, Ez, Bx, By, Bz = field_func(x4, y4, z4, s + h, field_params) + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x4, y4, z4, s + h, mm, kn, ks) k4 = kick_vector(x4, px4, y4, py4, z4, pz4, s + h, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -190,23 +231,19 @@ end """ rk4_kernel!(i, coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, - s_span, ds_step, g_bend, field_func, field_params) + s_span, ds_step, g_bend, mm, kn, ks) -Kernelized RK4 tracking through arbitrary electromagnetic fields. +Kernelized RK4 tracking through multipole fields. Compatible with @makekernel and the package's kernel architecture. -The field_func should have signature: field_func(x, y, z, s, params) -and return (Ex, Ey, Ez, Bx, By, Bz). +The electromagnetic field is computed from multipole moments (mm, kn, ks) using +the multipole_em_field function. """ @makekernel function rk4_kernel!(i, coords::Coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, ds_step, g_bend, - field_func, field_params) + charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks) # Check if particle is alive at start alive_at_start = (coords.state[i] == STATE_ALIVE) - # Pack tracking parameters for rk4_step! - tracking_params = (charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) - # Integration loop - only if particle was alive at start if alive_at_start s_start = s_span[1] @@ -217,10 +254,8 @@ and return (Ex, Ey, Ez, Bx, By, Bz). while s < s_end # Calculate remaining distance remaining = s_end - s - # Use ds_step, but if remaining is smaller, use remaining h = min(ds_step, remaining) - # Check momenta before step rel_p = 1 + v[i, PZI] vt2 = (v[i, PXI] / rel_p)^2 + (v[i, PYI] / rel_p)^2 @@ -230,7 +265,7 @@ and return (Ex, Ey, Ez, Bx, By, Bz). coords.state[i] = vifelse(vt2 >= 1 && alive, STATE_LOST_PZ, coords.state[i]) # Perform RK4 step - rk4_step!(v, i, s, h, field_func, field_params, tracking_params) + rk4_step!(v, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) s += h end end From ed5e202994a3d19bd476f52294341cf948b3bed2 Mon Sep 17 00:00:00 2001 From: ndwang Date: Wed, 21 Jan 2026 22:27:05 -0500 Subject: [PATCH 57/76] Remove branching in multipole_em_field; avoid division in rk4_step and add alive state check; changed while loop to for loop in rk4_kernel --- src/modules/RungeKuttaTracking.jl | 114 ++++++++++++++---------------- 1 file changed, 54 insertions(+), 60 deletions(-) diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index e9430040..7f61a730 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -24,27 +24,12 @@ Returns (Ex, Ey, Ez, Bx, By, Bz) where: - Bz: longitudinal field from m=0 term if present - Ex, Ey, Ez: zero (static magnetic elements only) """ -@inline function multipole_em_field(x, y, z, s, mm, kn, ks) - # Handle empty multipole arrays (pure drift or pure bend) - if length(mm) == 0 - # No multipole field, return zeros - bx = zero(x) - by = zero(y) - bz = zero(x) - else - # Get transverse field components, excluding m=0 (solenoid) - # normalized_field from multipole.jl handles all orders including m=1 (dipole) - bx, by = BeamTracking.normalized_field(mm, kn, ks, x, y, 0) - - # Extract longitudinal field from m=0 term if present - bz = zero(bx) - if mm[1] == 0 - bz = kn[1] # Solenoid strength is the m=0 normal component - end - end +@inline function multipole_em_field(x, y, z, s, mm::SVector{N}, kn, ks) where N + bx, by = normalized_field(mm, kn, ks, x, y, 0) + is_solenoid = (N > 0) && (mm[1] == 0) + bz = vifelse(is_solenoid, kn[1], zero(x)) - # No electric field from static magnets - return (zero(bx), zero(by), zero(bz), bx, by, bz) + return (zero(x), zero(x), zero(x), bx, by, bz) end """ @@ -87,7 +72,10 @@ returns zero derivatives (caller should mark particle as lost). # Particle beta and velocity rel_p2 = rel_p^2 - beta = rel_p / sqrt(rel_p2 + tilde_m^2) + inv_gamma_v = sqrt(rel_p2 + tilde_m^2) + beta = rel_p / inv_gamma_v + + inv_beta_c = 1.0 / (beta * C_LIGHT) # Longitudinal velocity component rel_dir = 1 # +1 for forward tracking @@ -111,11 +99,11 @@ returns zero derivatives (caller should mark particle as lost). dt_ds = rel_dir * (1 + dh_bend) / abs_vz_safe # Longitudinal momentum (normalized) - pz_p0 = rel_p * rel_dir * abs_vz / (beta * C_LIGHT) + pz_p0 = rel_p * rel_dir * abs_vz * inv_beta_c - # Energy derivative: dp/ds = (F · v) * dt/ds / (β*c) + # Energy derivative: dp/ds = (F · v) * dt/ds * inv_beta_c F_dot_v = E_force_x*vx + E_force_y*vy + E_force_z*vz - dp_ds = F_dot_v * dt_ds / (beta * C_LIGHT) + dp_ds = F_dot_v * dt_ds * inv_beta_c # Total energy for dbeta_ds calculation e_tot = p0c * rel_p / beta @@ -150,13 +138,13 @@ returns zero derivatives (caller should mark particle as lost). end """ - rk4_step!(v, i, s, h, mm, kn, ks, tracking_params) + rk4_step!(coords, i, s, h, mm, kn, ks, tracking_params) Perform a single RK4 step for particle i, updating coordinates in-place. -Uses stack-allocated SVectors for all intermediate values. +Only updates state if particle is alive. # Arguments -- `v`: Coordinate matrix (N_particles × 6) +- `coords`: Coordinates structure - `i`: Particle index - `s`: Current arc length - `h`: Step size @@ -171,8 +159,12 @@ Uses stack-allocated SVectors for all intermediate values. - `p0c`: Reference momentum × c (eV) - `mc2`: Rest mass energy (eV) """ -@inline function rk4_step!(v, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) - # Extract current state (scalars) +@inline function rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + # Check if particle is alive + alive = (coords.state[i] == STATE_ALIVE) + + # Extract current particle + v = coords.v x = v[i, XI] px = v[i, PXI] y = v[i, YI] @@ -220,13 +212,14 @@ Uses stack-allocated SVectors for all intermediate values. charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) # Update state: u += h/6 * (k1 + 2*k2 + 2*k3 + k4) + # Only update if particle is alive h6 = h / 6 - v[i, XI] = x + h6 * (k1[1] + 2*k2[1] + 2*k3[1] + k4[1]) - v[i, PXI] = px + h6 * (k1[2] + 2*k2[2] + 2*k3[2] + k4[2]) - v[i, YI] = y + h6 * (k1[3] + 2*k2[3] + 2*k3[3] + k4[3]) - v[i, PYI] = py + h6 * (k1[4] + 2*k2[4] + 2*k3[4] + k4[4]) - v[i, ZI] = z + h6 * (k1[5] + 2*k2[5] + 2*k3[5] + k4[5]) - v[i, PZI] = pz + h6 * (k1[6] + 2*k2[6] + 2*k3[6] + k4[6]) + v[i, XI] = vifelse(alive, x + h6 * (k1[1] + 2*k2[1] + 2*k3[1] + k4[1]), v[i, XI]) + v[i, PXI] = vifelse(alive, px + h6 * (k1[2] + 2*k2[2] + 2*k3[2] + k4[2]), v[i, PXI]) + v[i, YI] = vifelse(alive, y + h6 * (k1[3] + 2*k2[3] + 2*k3[3] + k4[3]), v[i, YI]) + v[i, PYI] = vifelse(alive, py + h6 * (k1[4] + 2*k2[4] + 2*k3[4] + k4[4]), v[i, PYI]) + v[i, ZI] = vifelse(alive, z + h6 * (k1[5] + 2*k2[5] + 2*k3[5] + k4[5]), v[i, ZI]) + v[i, PZI] = vifelse(alive, pz + h6 * (k1[6] + 2*k2[6] + 2*k3[6] + k4[6]), v[i, PZI]) end """ @@ -243,31 +236,32 @@ the multipole_em_field function. charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks) # Check if particle is alive at start alive_at_start = (coords.state[i] == STATE_ALIVE) - - # Integration loop - only if particle was alive at start - if alive_at_start - s_start = s_span[1] - s_end = s_span[2] - s = s_start - - v = coords.v - while s < s_end - # Calculate remaining distance - remaining = s_end - s - # Use ds_step, but if remaining is smaller, use remaining - h = min(ds_step, remaining) - # Check momenta before step - rel_p = 1 + v[i, PZI] - vt2 = (v[i, PXI] / rel_p)^2 + (v[i, PYI] / rel_p)^2 - - # Mark particle as lost if momenta are unphysical (branchless) - alive = (coords.state[i] == STATE_ALIVE) - coords.state[i] = vifelse(vt2 >= 1 && alive, STATE_LOST_PZ, coords.state[i]) - - # Perform RK4 step - rk4_step!(v, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) - s += h - end + + s_start = s_span[1] + s_end = s_span[2] + s = s_start + + v = coords.v + + # Calculate number of steps for deterministic iteration + total_distance = s_end - s_start + n_steps = ceil(Int, total_distance / ds_step) + + for step in 1:n_steps + remaining = s_end - s + h = min(ds_step, remaining) + + # Chck if particle is lost + rel_p = 1 + v[i, PZI] + inv_rel_p = 1.0 / rel_p + vt2 = (v[i, PXI] * inv_rel_p)^2 + (v[i, PYI] * inv_rel_p)^2 + + # Mark particle as lost + coords.state[i] = vifelse(vt2 >= 1.0 && alive, STATE_LOST_PZ, coords.state[i]) + + # Perform RK4 step (check for alive status is now inside rk4_step!) + rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + s += h end end From ff97d586beec1f799a0470f67de1a428ce4a3b29 Mon Sep 17 00:00:00 2001 From: ndwang Date: Wed, 21 Jan 2026 23:04:03 -0500 Subject: [PATCH 58/76] Added default empty multipoles when absent --- ext/BeamTrackingBeamlinesExt/rungekutta.jl | 71 ++++++++++++---------- 1 file changed, 38 insertions(+), 33 deletions(-) diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl index 62f51686..6184c4bd 100644 --- a/ext/BeamTrackingBeamlinesExt/rungekutta.jl +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -58,42 +58,47 @@ function _track!( kc = push(kc, @inline(aperture(tm, bunch, dp, true))) end - # Only track through body if element has length - if L <= 0.0 - error("RungeKutta tracking does not support zero-length elements") - end - - # Setup physics parameters - species, R_ref = bunch.species, bunch.R_ref - tilde_m, gamsqr_0, beta_0 = BeamTracking.drift_params(species, R_ref) - charge = chargeof(species) / BeamTracking.E_CHARGE - p0c = BeamTracking.R_to_pc(species, R_ref) - mc2 = massof(species) - - # Determine step size to use - if tm.ds_step > 0 - ds_step = tm.ds_step - elseif tm.n_steps > 0 - ds_step = L / tm.n_steps - else - ds_step = BeamTracking.DEFAULT_RK4_DS_STEP - end - - s_span = (0.0, L) + # Only track through body if element has length + if L <= 0.0 + error("RungeKutta tracking does not support zero-length elements") + end - # Get curvature from BendParams if present - g_bend = isactive(bp) ? bp.g : 0.0 + # Setup physics parameters + species, R_ref = bunch.species, bunch.R_ref + tilde_m, gamsqr_0, beta_0 = BeamTracking.drift_params(species, R_ref) + charge = chargeof(species) / BeamTracking.E_CHARGE + p0c = BeamTracking.R_to_pc(species, R_ref) + mc2 = massof(species) + + # Determine step size to use + if tm.ds_step > 0 + ds_step = tm.ds_step + elseif tm.n_steps > 0 + ds_step = L / tm.n_steps + else + ds_step = BeamTracking.DEFAULT_RK4_DS_STEP + end - # Extract multipole parameters - bm = deval(ele.BMultipoleParams) - if isactive(bm) - mm = bm.order - kn, ks = get_strengths(bm, L, R_ref) - end + s_span = (0.0, L) + + # Get curvature from BendParams if present + g_bend = isactive(bp) ? bp.g : 0.0 + + # Extract multipole parameters + bm = deval(ele.BMultipoleParams) + if isactive(bm) + mm = bm.order + kn, ks = get_strengths(bm, L, R_ref) + else + # Default to empty multipole parameters for elements without multipoles + mm = SVector{Int}() + kn = SVector{typeof(L)}() + ks = SVector{typeof(L)}() + end - # Build kernel call - params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks) - kc = push(kc, KernelCall(BeamTracking.RungeKuttaTracking.rk4_kernel!, params)) + # Build kernel call + params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks) + kc = push(kc, KernelCall(BeamTracking.RungeKuttaTracking.rk4_kernel!, params)) # Exit aperture and alignment if isactive(ap) From d591bca9eb07f30c26ed839757839ee47c8db856 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 22 Jan 2026 02:35:19 -0500 Subject: [PATCH 59/76] bug fixes --- ext/BeamTrackingBeamlinesExt/rungekutta.jl | 4 ++-- src/modules/RungeKuttaTracking.jl | 8 ++++---- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl index 6184c4bd..751c360c 100644 --- a/ext/BeamTrackingBeamlinesExt/rungekutta.jl +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -66,7 +66,7 @@ function _track!( # Setup physics parameters species, R_ref = bunch.species, bunch.R_ref tilde_m, gamsqr_0, beta_0 = BeamTracking.drift_params(species, R_ref) - charge = chargeof(species) / BeamTracking.E_CHARGE + charge = chargeof(species) p0c = BeamTracking.R_to_pc(species, R_ref) mc2 = massof(species) @@ -82,7 +82,7 @@ function _track!( s_span = (0.0, L) # Get curvature from BendParams if present - g_bend = isactive(bp) ? bp.g : 0.0 + g_bend = isactive(bp) ? bp.g_ref : 0.0 # Extract multipole parameters bm = deval(ele.BMultipoleParams) diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index 7f61a730..3b64a3e2 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -7,7 +7,7 @@ module RungeKuttaTracking using ..BeamTracking, ..StaticArrays using ..BeamTracking: @makekernel, Coords using ..BeamTracking: XI, PXI, YI, PYI, ZI, PZI, STATE_ALIVE, STATE_LOST_PZ -using ..BeamTracking: C_LIGHT, E_CHARGE, vifelse +using ..BeamTracking: C_LIGHT, E_CHARGE, vifelse, normalized_field """ @@ -26,7 +26,7 @@ Returns (Ex, Ey, Ez, Bx, By, Bz) where: """ @inline function multipole_em_field(x, y, z, s, mm::SVector{N}, kn, ks) where N bx, by = normalized_field(mm, kn, ks, x, y, 0) - is_solenoid = (N > 0) && (mm[1] == 0) + is_solenoid = (mm[1] == 0) bz = vifelse(is_solenoid, kn[1], zero(x)) return (zero(x), zero(x), zero(x), bx, by, bz) @@ -255,9 +255,9 @@ the multipole_em_field function. rel_p = 1 + v[i, PZI] inv_rel_p = 1.0 / rel_p vt2 = (v[i, PXI] * inv_rel_p)^2 + (v[i, PYI] * inv_rel_p)^2 - + alive = (coords.state[i] == STATE_ALIVE) # Mark particle as lost - coords.state[i] = vifelse(vt2 >= 1.0 && alive, STATE_LOST_PZ, coords.state[i]) + coords.state[i] = vifelse((vt2 >= 1.0) & alive, STATE_LOST_PZ, coords.state[i]) # Perform RK4 step (check for alive status is now inside rk4_step!) rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) From 83ceae522915a1274526b597e8e7d8b6f8a9b24f Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 22 Jan 2026 03:07:02 -0500 Subject: [PATCH 60/76] RK4 now supports drift --- ext/BeamTrackingBeamlinesExt/rungekutta.jl | 6 +++--- src/modules/RungeKuttaTracking.jl | 4 ++++ 2 files changed, 7 insertions(+), 3 deletions(-) diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl index 751c360c..4c97f134 100644 --- a/ext/BeamTrackingBeamlinesExt/rungekutta.jl +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -91,9 +91,9 @@ function _track!( kn, ks = get_strengths(bm, L, R_ref) else # Default to empty multipole parameters for elements without multipoles - mm = SVector{Int}() - kn = SVector{typeof(L)}() - ks = SVector{typeof(L)}() + mm = SVector{0, Int}() + kn = SVector{0, typeof(L)}() + ks = SVector{0, typeof(L)}() end # Build kernel call diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index 3b64a3e2..f9c8a537 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -24,6 +24,10 @@ Returns (Ex, Ey, Ez, Bx, By, Bz) where: - Bz: longitudinal field from m=0 term if present - Ex, Ey, Ez: zero (static magnetic elements only) """ +@inline function multipole_em_field(x, y, z, s, mm::SVector{0}, kn, ks) + return (zero(x), zero(x), zero(x), zero(x), zero(x), zero(x)) +end + @inline function multipole_em_field(x, y, z, s, mm::SVector{N}, kn, ks) where N bx, by = normalized_field(mm, kn, ks, x, y, 0) is_solenoid = (mm[1] == 0) From da9759056a80d3cb9919c6035fc0f4a34c90aac6 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 22 Jan 2026 03:07:23 -0500 Subject: [PATCH 61/76] Update RK4 tests to use the new interface --- test/RungeKuttaTracking_test.jl | 255 ++++++++++++++------------------ 1 file changed, 112 insertions(+), 143 deletions(-) diff --git a/test/RungeKuttaTracking_test.jl b/test/RungeKuttaTracking_test.jl index 5dab46d3..7561212c 100644 --- a/test/RungeKuttaTracking_test.jl +++ b/test/RungeKuttaTracking_test.jl @@ -1,10 +1,11 @@ @testset "RungeKuttaTracking" begin using BeamTracking using BeamTracking: Species, massof, chargeof, R_to_beta_gamma, R_to_pc, pc_to_R, - RungeKuttaTracking, Bunch, STATE_ALIVE, STATE_LOST_PZ, E_CHARGE + RungeKuttaTracking, Bunch, STATE_ALIVE, STATE_LOST_PZ, E_CHARGE, C_LIGHT + using StaticArrays # Helper function to setup tracking parameters - function setup_particle(pc=1e4) # pc in eV, default corresponds to 5 keV + function setup_particle(pc=1e9) # pc in eV, default corresponds to 1 GeV species = Species("electron") mc2 = massof(species) # eV R_ref = pc_to_R(species, pc) @@ -20,137 +21,112 @@ return species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 end - # Field functions with new signature - function drift(x, y, z, s, params) - return (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) - end - - function uniform_efield(x, y, z, s, params) - Ex = params.Ex # V/m - Ez = params.Ez - return (Ex, 0.0, Ez, 0.0, 0.0, 0.0) - end - - function uniform_bfield(x, y, z, s, params) - Bz = params.Bz # Tesla - return (0.0, 0.0, 0.0, 0.0, 0.0, Bz) - end - @testset "Pure drift" begin species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() # Create bunch with small transverse momentum bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) - bunch.coords.v[1, 1] = 0.0 # x0 = 0 - bunch.coords.v[1, 2] = 0.01 # px0 = 0.01 - bunch.coords.v[1, 3] = 0.0 # y0 = 0 - bunch.coords.v[1, 4] = 0.0 # py0 = 0 - bunch.coords.v[1, 5] = 0.0 # z0 = 0 - bunch.coords.v[1, 6] = 0.0 # pz0 = 0 - - s_span = (0.0, 1.0) # 1 meter arc length - field_params = nothing - ds_step = 0.01 # 1 cm step size - g_bend = 0.0 - - RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, ds_step, g_bend, - drift, field_params) - - @test isapprox(bunch.coords.v[1, 1], 0.01, rtol=1e-3) # x ≈ 0.01 m - @test isapprox(bunch.coords.v[1, 2], 0.01, rtol=1e-5) # px unchanged - @test bunch.coords.v[1, 3] ≈ 0.0 # y unchanged - @test bunch.coords.v[1, 4] ≈ 0.0 # py unchanged - end - - @testset "Uniform E-field - Ex" begin - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) # 1 GeV + bunch.coords.v[1, BeamTracking.PXI] = 0.01 - bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) - - s_span = (0.0, 1.0) # 1 meter arc length - field_params = (Ex=-1e4, Ez=0.0) - ds_step = 0.01 # 1 cm step size + s_span = (0.0, 1.0) + ds_step = 0.01 g_bend = 0.0 + + # Empty multipole vectors for drift + mm = SVector{0, Int}() + kn = SVector{0, Float64}() + ks = SVector{0, Float64}() RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, ds_step, g_bend, - uniform_efield, field_params) + charge, p0c, mc2, s_span, ds_step, g_bend, + mm, kn, ks) - @test isapprox(bunch.coords.v[1, 2], 1e-5, rtol=1e-5) - @test bunch.coords.v[1, 1] > 0.0 # x should increase - @test bunch.coords.v[1, 3] ≈ 0.0 # y unchanged - @test bunch.coords.v[1, 4] ≈ 0.0 # py unchanged + # Regression test + solution = [0.0100005 0.01 0.0 0.0 -5.00038e-5 0.0] + @test isapprox(bunch.coords.v, solution, rtol=1e-6) + @test bunch.coords.state[1] == STATE_ALIVE end - @testset "Uniform E-field - Ez" begin - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) # 1 GeV + @testset "Solenoid" begin + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch.coords.v[1, BeamTracking.PXI] = 0.01 - s_span = (0.0, 1.0) # 1 meter arc length - field_params = (Ex=0.0, Ez=-1e4) - ds_step = 0.01 # 1 cm step size + s_span = (0.0, 1.0) + ds_step = 0.01 g_bend = 0.0 + + # Solenoid field + Bz_physical = 0.01 # Tesla + Bz_normalized = Bz_physical / R_ref + mm = SVector(0) # Solenoid (m=0) + kn = SVector(Bz_normalized) + ks = SVector(0.0) RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, ds_step, g_bend, - uniform_efield, field_params) + charge, p0c, mc2, s_span, ds_step, g_bend, + mm, kn, ks) - @test isapprox(bunch.coords.v[1, 6], 1e-5, rtol=1e-5) - @test bunch.coords.v[1, 1] ≈ 0.0 # x unchanged - @test bunch.coords.v[1, 2] ≈ 0.0 # px unchanged + # In uniform B-field, particle should follow circular path + # Total transverse momentum should be conserved + pt2 = bunch.coords.v[1, 2]^2 + bunch.coords.v[1, 4]^2 + @test isapprox(pt2, 0.01^2, rtol=1e-4) + # Regression test + solution = [0.0100005 0.01 -4.49423e-6 -8.988e-6 -5.00038e-5 0.0] + @test isapprox(bunch.coords.v, solution, rtol=1e-6) + @test bunch.coords.state[1] == STATE_ALIVE end - @testset "Uniform B-field - circular motion" begin + @testset "Dipole" begin species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) - # Initial velocity in x-direction - bunch.coords.v[1, 1] = 0.0 # x0 = 0 - bunch.coords.v[1, 2] = 0.01 # px0 = 0.01 - bunch.coords.v[1, 3] = 0.0 # y0 = 0 - bunch.coords.v[1, 4] = 0.0 # py0 = 0 - bunch.coords.v[1, 5] = 0.0 # z0 = 0 - bunch.coords.v[1, 6] = 0.0 # pz0 = 0 - - s_span = (0.0, 1.0) # 1 meter - field_params = (Bz=0.01,) # 0.01 Tesla - ds_step = 0.001 # 1 mm step size + bunch.coords.v[1, BeamTracking.PXI] = 0.01 + + s_span = (0.0, 1.0) + ds_step = 0.01 g_bend = 0.0 + + # Dipole field + By_physical = 0.01 # Tesla + By_normalized = By_physical / R_ref + mm = SVector(1) # Dipole (m=1) + kn = SVector(By_normalized) + ks = SVector(0.0) RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, - uniform_bfield, field_params) + mm, kn, ks) - # In uniform B-field, particle should follow circular path - # Total transverse momentum should be conserved - pt2 = bunch.coords.v[1, 2]^2 + bunch.coords.v[1, 4]^2 - @test isapprox(pt2, 0.01^2, rtol=1e-4) + # Regression test + solution = [0.00955106 0.00910124 0.0 0.0 -4.5644e-5 0.0] + @test isapprox(bunch.coords.v, solution, rtol=1e-6) + @test bunch.coords.state[1] == STATE_ALIVE end @testset "Particle loss detection" begin species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) - # Set unphysical initial momenta (vt² > 1) - bunch.coords.v[1, 1] = 0.0 - bunch.coords.v[1, 2] = 1.5 # px too large - bunch.coords.v[1, 3] = 0.0 - bunch.coords.v[1, 4] = 0.0 - bunch.coords.v[1, 5] = 0.0 - bunch.coords.v[1, 6] = 0.0 # pz = 0, so rel_p = 1 + bunch.coords.v[1, BeamTracking.PXI] = 1.5 # Unphysical initial momentum s_span = (0.0, 1.0) - field_params = nothing ds_step = 0.1 # 10 cm step size g_bend = 0.0 + + # Empty multipole vectors for drift + mm = SVector{0, Int}() + kn = SVector{0, Float64}() + ks = SVector{0, Float64}() RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, - drift, field_params) + mm, kn, ks) - # Particle should be marked as lost + # Particle should not track + solution = [0.0 1.5 0.0 0.0 0.0 0.0] + @test isapprox(bunch.coords.v, solution, rtol=1e-6) @test bunch.coords.state[1] == STATE_LOST_PZ end @@ -159,91 +135,84 @@ bunch1 = Bunch(zeros(1, 6), R_ref=R_ref, species=species) bunch2 = Bunch(zeros(1, 6), R_ref=R_ref, species=species) - bunch1.coords.v[1, 2] = 0.01 # px0 = 0.01 - bunch2.coords.v[1, 2] = 0.01 + bunch1.coords.v[1, BeamTracking.PXI] = 0.01 + bunch2.coords.v[1, BeamTracking.PXI] = 0.01 s_span = (0.0, 1.0) - field_params = (Ex=1e4, Ez=0.0) g_bend = 0.0 + + # Empty multipole vectors for drift + mm = SVector{0, Int}() + kn = SVector{0, Float64}() + ks = SVector{0, Float64}() # Track with different step sizes RungeKuttaTracking.rk4_kernel!(1, bunch1.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, 0.02, g_bend, - uniform_efield, field_params) + charge, p0c, mc2, s_span, 0.1, g_bend, + mm, kn, ks) RungeKuttaTracking.rk4_kernel!(1, bunch2.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, 0.005, g_bend, - uniform_efield, field_params) + charge, p0c, mc2, s_span, 0.05, g_bend, + mm, kn, ks) - # Results should be similar with finer steps being more accurate - @test isapprox(bunch1.coords.v[1, 1], bunch2.coords.v[1, 1], rtol=1e-2) - @test isapprox(bunch1.coords.v[1, 2], bunch2.coords.v[1, 2], rtol=1e-2) + # Results should be identical + @test isapprox(bunch1.coords.v, bunch2.coords.v, rtol=1e-2) end - @testset "Integration with track! and BeamlinesExt" begin + @testset "Beamlines integration - Drift" begin using Beamlines - species = Species("electron") - mc2 = massof(species) - ek = 5e3 # 5 keV - βγ = sqrt(ek / mc2 * (ek / mc2 + 2)) - pc = mc2 * βγ - R_ref = pc_to_R(species, pc) + species, R_ref, _, _, _, _, _, _ = setup_particle() + bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch.coords.v[1, BeamTracking.PXI] = 0.01 - # Create a simple drift element - L_drift = 1.0 # 1 meter - drift_ele = Drift(L=L_drift) + drift_ele = Drift(L=1.0) drift_ele.tracking_method = RungeKutta() - # Create bunch with small transverse momentum - bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) - bunch.coords.v[1, 1] = 0.0 # x0 = 0 - bunch.coords.v[1, 2] = 0.01 # px0 = 0.01 - bunch.coords.v[1, 3] = 0.0 # y0 = 0 - bunch.coords.v[1, 4] = 0.0 # py0 = 0 - bunch.coords.v[1, 5] = 0.0 # z0 = 0 - bunch.coords.v[1, 6] = 0.0 # pz0 = 0 - - # Track through drift using track! track!(bunch, drift_ele) - # For drift, dx/ds ≈ px (for small px and pz ≈ 0) - # So x_final ≈ x0 + px * L - @test isapprox(bunch.coords.v[1, 1], 0.01, rtol=1e-3) # x ≈ 0.01 m - @test isapprox(bunch.coords.v[1, 2], 0.01, rtol=1e-5) # px unchanged - @test bunch.coords.v[1, 3] ≈ 0.0 # y unchanged - @test bunch.coords.v[1, 4] ≈ 0.0 # py unchanged - @test bunch.coords.state[1] == STATE_ALIVE + # Regression test + solution = [0.0100005 0.01 0.0 0.0 -5.00038e-5 0.0] + @test isapprox(bunch.coords.v, solution, rtol=1e-6) end - @testset "RungeKutta with different step configurations" begin + @testset "Beamlines integration - SBend" begin using Beamlines - species = Species("electron") - mc2 = massof(species) - ek = 5e3 - βγ = sqrt(ek / mc2 * (ek / mc2 + 2)) - pc = mc2 * βγ - R_ref = pc_to_R(species, pc) + species, R_ref, _, _, _, _, _, _ = setup_particle() + bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch.coords.v[1, BeamTracking.PXI] = 0.01 + + sbend_ele = SBend(L=1.0, angle=pi/132) + sbend_ele.tracking_method = RungeKutta() + + track!(bunch, sbend_ele) + + # Regression test + solution = [0.0100005 0.01 0.0 0.0 -5.00038e-5 0.0] + @test isapprox(bunch.coords.v, solution, rtol=1e-6) + end + + @testset "RungeKutta with different step configurations" begin + using Beamlines - L_drift = 1.0 + species, R_ref, _, _, _, _, _, _ = setup_particle() # Test with ds_step - drift_ds = Drift(L=L_drift) + drift_ds = Drift(L=1.0) drift_ds.tracking_method = RungeKutta(ds_step=0.1) bunch_ds = Bunch(zeros(1, 6), R_ref=R_ref, species=species) - bunch_ds.coords.v[1, 2] = 0.01 + bunch_ds.coords.v[1, BeamTracking.PXI] = 0.01 track!(bunch_ds, drift_ds) # Test with n_steps - drift_ns = Drift(L=L_drift) - drift_ns.tracking_method = RungeKutta(ds_step=-1.0, n_steps=50) + drift_ns = Drift(L=1.0) + drift_ns.tracking_method = RungeKutta(n_steps=10) bunch_ns = Bunch(zeros(1, 6), R_ref=R_ref, species=species) - bunch_ns.coords.v[1, 2] = 0.01 + bunch_ns.coords.v[1, BeamTracking.PXI] = 0.01 track!(bunch_ns, drift_ns) - # Both should give similar results - @test isapprox(bunch_ds.coords.v[1, 1], bunch_ns.coords.v[1, 1], rtol=1e-2) - @test isapprox(bunch_ds.coords.v[1, 2], bunch_ns.coords.v[1, 2], rtol=1e-4) + # Both should give the same results + @test isapprox(bunch_ds.coords.v, bunch_ns.coords.v, rtol=1e-2) end end From 6c09ba51b34e25ad50795c21a9fd13b589753439 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 22 Jan 2026 03:34:15 -0500 Subject: [PATCH 62/76] Update RK4 documentation to new interface --- docs/src/runge_kutta.md | 128 +++++++++------------ ext/BeamTrackingBeamlinesExt/rungekutta.jl | 16 ++- 2 files changed, 62 insertions(+), 82 deletions(-) diff --git a/docs/src/runge_kutta.md b/docs/src/runge_kutta.md index bba0846d..b672a516 100644 --- a/docs/src/runge_kutta.md +++ b/docs/src/runge_kutta.md @@ -31,18 +31,54 @@ ele.tracking_method = RungeKutta(ds_step=0.1) ele.tracking_method = RungeKutta(n_steps=50) ``` +## Usage + +### Basic Usage with Beamlines.jl + +```julia +using BeamTracking, Beamlines + +# Create an element with Runge-Kutta tracking +ele = Quadrupole(L=1.0, k1=0.1) +ele.tracking_method = RungeKutta(ds_step=0.1) + +# Create a bunch and track +bunch = Bunch(zeros(100, 6), R_ref=1e6, species=Species("electron")) +track!(bunch, ele) +``` + +### Low-Level Kernel Interface + +For advanced use cases, the `rk4_kernel!` function provides direct access to the integration routine: + +```julia +rk4_kernel!(i, coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, + s_span, n_steps, g_bend, mm, kn, ks) +``` + +**Parameters:** +- `i`: Particle index +- `coords`: Particle coordinate array +- `beta_0`, `gamsqr_0`, `tilde_m`: Reference particle parameters +- `charge`: Particle charge (in units of elementary charge) +- `p0c`, `mc2`: Reference momentum and rest mass energy +- `s_span`: Integration range `(s_start, s_end)` +- `n_steps`: Number of integration steps +- `g_bend`: Curvature parameter (1/ρ for bends, 0 otherwise) +- `mm`: StaticArray of multipole orders +- `kn`: Normal multipole strengths +- `ks`: Skew multipole strengths + +The multipole arrays define the magnetic field configuration. For example, a quadrupole with `k1=0.5` would use `mm=SA[2]`, `kn=SA[0.5]`, `ks=SA[0.0]`. + ## Physics The Runge-Kutta method integrates the relativistic equations of motion expressed in terms of arc length `s` as the independent variable. The state vector is: ```math -\mathbf{u} = [x, p_x, y, p_y, z, p_z] +\mathbf{u} = [x, p_x, y, p_y, z, p_z]. ``` -where: -- `x, y, z`: Position coordinates (meters) -- `p_x, p_y, p_z`: Normalized momentum components (relative to reference momentum `p₀`) - The derivatives `du/ds` are calculated from the relativistic electromagnetism: ### Position Derivatives @@ -63,8 +99,6 @@ where `F_x, F_y` are the Lorentz force components and `g_bend` is the curvature ### Longitudinal Coordinate -The `z` coordinate represents the phase space deviation and is integrated with corrections for energy changes and bending: - ```math \frac{dz}{ds} = \text{rel\_dir} \left(\frac{\beta}{\beta₀} - 1\right) + \text{rel\_dir} \frac{\sqrt{1-v_t²} - 1 - dh_{bend}}{\sqrt{1-v_t²}} + \frac{d\beta}{ds} \frac{z}{\beta} ``` @@ -95,82 +129,30 @@ The final update is: u(s+h) = u(s) + \frac{h}{6}(k₁ + 2k₂ + 2k₃ + k₄) ``` -### Field Function Interface - -The Runge-Kutta method requires a field function that returns the electromagnetic field components at a given position: - -```julia -field_func(x, y, z, s, field_params) -> (Ex, Ey, Ez, Bx, By, Bz) -``` - -### Particle Loss Detection +### Particle Loss Condition -The implementation includes automatic detection of unphysical particle states: +The implementation includes detection of unphysical particle states: -- **Unphysical momenta**: If the transverse velocity squared `v_t² ≥ 1`, the particle is marked as lost (`STATE_LOST_PZ`) -- The check is performed branchlessly for GPU compatibility -- Lost particles have their derivatives set to zero +- **Unphysical momenta**: If the transverse velocity squared `v_t² ≥ 1`, the particle is marked as lost (`STATE_LOST_PZ`) and won't be tracked. -### GPU/SIMD Compatibility +### Multipole Field Calculation -The implementation uses several techniques for GPU and SIMD compatibility: - -- **Branchless operations**: Uses `vifelse` for conditional logic -- **Stack-allocated arrays**: All intermediate values use `SVector` from StaticArrays.jl -- **No dynamic memory allocation**: All arrays are stack-allocated -- **Kernel abstraction**: Compatible with `@makekernel` macro for GPU execution - -## Usage - -### Basic Usage with Beamlines.jl +Electromagnetic fields are computed using the `multipole_em_field` function, which calculates field components from magnetic multipole parameters: ```julia -using BeamTracking, Beamlines - -# Create an element with Runge-Kutta tracking -ele = Quadrupole(L=1.0, k1=0.1) -ele.tracking_method = RungeKutta(ds_step=0.1) - -# Create a bunch and track -bunch = Bunch(zeros(100, 6), R_ref=1e6, species=Species("electron")) -track!(bunch, ele) +multipole_em_field(x, y, z, s, mm, kn, ks) -> (Ex, Ey, Ez, Bx, By, Bz) ``` -### Custom Field Functions - -For custom field configurations, you can use the low-level API: +**Parameters:** +- **`mm`**: StaticArray of magnetic multipole orders (0=solenoid, 1=dipole, 2=quadrupole, 3=sextupole, etc.) +- **`kn`**: Normal multipole strengths (normalized and not integrated) +- **`ks`**: Skew multipole strengths (normalized and not integrated) -```julia -using BeamTracking.RungeKuttaTracking - -# Define a custom field function -function my_field(x, y, z, s, params) - Ex = params.E0 * sin(2π * s / params.λ) - return (Ex, 0.0, 0.0, 0.0, 0.0, 0.0) -end - -# Setup parameters -species = Species("electron") -R_ref = 1e6 -beta_0, gamsqr_0, tilde_m = drift_params(species, R_ref) -charge = chargeof(species) / E_CHARGE -p0c = R_to_pc(species, R_ref) -mc2 = massof(species) - -# Track -s_span = (0.0, 1.0) -n_steps = 100 -g_bend = 0.0 -field_params = (E0=1e4, λ=0.1) - -RungeKuttaTracking.rk4_kernel!( - 1, bunch.coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, n_steps, g_bend, - my_field, field_params -) -``` +**Field computation:** +- For `m=0` (solenoid): Returns longitudinal field `Bz` +- For `m≥1` (dipole, quadrupole, etc.): Computes transverse fields `Bx`, `By` using a Horner-like scheme for efficient polynomial evaluation ## Supported Elements -The Runge-Kutta method works with all thick elements that have field definitions. +The Runge-Kutta method works with all thick elements that have BMultipoleParams. Other thick elements are treated as drifts. diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl index 4c97f134..fcca3608 100644 --- a/ext/BeamTrackingBeamlinesExt/rungekutta.jl +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -18,7 +18,7 @@ function _track!( bp = deval(ele.BendParams) dp = deval(ele.ApertureParams) patch = deval(ele.PatchParams) - R_ref = bunch.R_ref + bm = deval(ele.BMultipoleParams) # Setup reference state beta_gamma_ref = R_to_beta_gamma(bunch.species, bunch.R_ref) @@ -37,6 +37,10 @@ function _track!( end end + # Error conditions + if L <= 0.0 + error("RungeKutta tracking does not support zero-length elements") + end if isactive(patch) error("RungeKutta tracking does not support patch elements") end @@ -58,11 +62,6 @@ function _track!( kc = push(kc, @inline(aperture(tm, bunch, dp, true))) end - # Only track through body if element has length - if L <= 0.0 - error("RungeKutta tracking does not support zero-length elements") - end - # Setup physics parameters species, R_ref = bunch.species, bunch.R_ref tilde_m, gamsqr_0, beta_0 = BeamTracking.drift_params(species, R_ref) @@ -85,18 +84,17 @@ function _track!( g_bend = isactive(bp) ? bp.g_ref : 0.0 # Extract multipole parameters - bm = deval(ele.BMultipoleParams) if isactive(bm) mm = bm.order kn, ks = get_strengths(bm, L, R_ref) else - # Default to empty multipole parameters for elements without multipoles + # Default to drift mm = SVector{0, Int}() kn = SVector{0, typeof(L)}() ks = SVector{0, typeof(L)}() end - # Build kernel call + # Build RK4 kernel call params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks) kc = push(kc, KernelCall(BeamTracking.RungeKuttaTracking.rk4_kernel!, params)) From 3815486c0b0f6aa25dc7920e9aeec9bdb305e807 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 22 Jan 2026 03:35:50 -0500 Subject: [PATCH 63/76] Update documentation: track! now requires a beamline --- docs/src/runge_kutta.md | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/src/runge_kutta.md b/docs/src/runge_kutta.md index b672a516..f3bb32a4 100644 --- a/docs/src/runge_kutta.md +++ b/docs/src/runge_kutta.md @@ -41,6 +41,7 @@ using BeamTracking, Beamlines # Create an element with Runge-Kutta tracking ele = Quadrupole(L=1.0, k1=0.1) ele.tracking_method = RungeKutta(ds_step=0.1) +bl = Beamline([ele], R_ref=1e6) # Create a bunch and track bunch = Bunch(zeros(100, 6), R_ref=1e6, species=Species("electron")) From 7ad4f2c412b2069685905e3ffbfef38a32a4def0 Mon Sep 17 00:00:00 2001 From: ndwang Date: Thu, 22 Jan 2026 03:43:29 -0500 Subject: [PATCH 64/76] Fixing tests --- ext/BeamTrackingBeamlinesExt/rungekutta.jl | 8 +++++--- test/RungeKuttaTracking_test.jl | 2 +- 2 files changed, 6 insertions(+), 4 deletions(-) diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl index fcca3608..d7838dea 100644 --- a/ext/BeamTrackingBeamlinesExt/rungekutta.jl +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -19,9 +19,11 @@ function _track!( dp = deval(ele.ApertureParams) patch = deval(ele.PatchParams) bm = deval(ele.BMultipoleParams) + R_ref = bunch.R_ref + species = bunch.species # Setup reference state - beta_gamma_ref = R_to_beta_gamma(bunch.species, bunch.R_ref) + beta_gamma_ref = R_to_beta_gamma(species, R_ref) kc = KernelChain(Val{6}(), RefState(bunch.t_ref, beta_gamma_ref)) # Evolve time through whole element @@ -29,7 +31,7 @@ function _track!( # Handle reference momentum ramping if R_ref isa TimeDependentParam - R_ref_initial = bunch.R_ref + R_ref_initial = R_ref R_ref_final = R_ref(bunch.t_ref) if !(R_ref_initial ≈ R_ref_final) kc = push(kc, KernelCall(BeamTracking.update_P0!, (R_ref_initial, R_ref_final, ramp_without_rf))) @@ -63,7 +65,7 @@ function _track!( end # Setup physics parameters - species, R_ref = bunch.species, bunch.R_ref + R_ref = bunch.R_ref tilde_m, gamsqr_0, beta_0 = BeamTracking.drift_params(species, R_ref) charge = chargeof(species) p0c = BeamTracking.R_to_pc(species, R_ref) diff --git a/test/RungeKuttaTracking_test.jl b/test/RungeKuttaTracking_test.jl index 7561212c..159da8e5 100644 --- a/test/RungeKuttaTracking_test.jl +++ b/test/RungeKuttaTracking_test.jl @@ -188,7 +188,7 @@ track!(bunch, sbend_ele) # Regression test - solution = [0.0100005 0.01 0.0 0.0 -5.00038e-5 0.0] + solution = [0.02548426139361667 0.040928045820272416 0.0 0.0 -0.0006063129051164828 0.0] @test isapprox(bunch.coords.v, solution, rtol=1e-6) end From d85b82f68a49739974b81a2dd4153ee4f3580ba5 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 23 Jan 2026 00:48:28 -0500 Subject: [PATCH 65/76] minor doc rearrangement --- docs/src/runge_kutta.md | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/docs/src/runge_kutta.md b/docs/src/runge_kutta.md index f3bb32a4..6b4b194f 100644 --- a/docs/src/runge_kutta.md +++ b/docs/src/runge_kutta.md @@ -47,6 +47,7 @@ bl = Beamline([ele], R_ref=1e6) bunch = Bunch(zeros(100, 6), R_ref=1e6, species=Species("electron")) track!(bunch, ele) ``` +The Runge-Kutta method works with all thick elements that have BMultipoleParams. Other thick elements are treated as drifts. ### Low-Level Kernel Interface @@ -153,7 +154,3 @@ multipole_em_field(x, y, z, s, mm, kn, ks) -> (Ex, Ey, Ez, Bx, By, Bz) **Field computation:** - For `m=0` (solenoid): Returns longitudinal field `Bz` - For `m≥1` (dipole, quadrupole, etc.): Computes transverse fields `Bx`, `By` using a Horner-like scheme for efficient polynomial evaluation - -## Supported Elements - -The Runge-Kutta method works with all thick elements that have BMultipoleParams. Other thick elements are treated as drifts. From eca6e98d59687a4c007c3ffe7a040b5c61e615b8 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 23 Jan 2026 00:50:29 -0500 Subject: [PATCH 66/76] fix indentation --- src/modules/RungeKuttaTracking.jl | 362 +++++++++++++++--------------- 1 file changed, 181 insertions(+), 181 deletions(-) diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index f9c8a537..bb020492 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -1,5 +1,5 @@ """ - RungeKuttaTracking + RungeKuttaTracking Module implementing particle tracking through arbitrary electromagnetic fields using a 4th order Runge-Kutta method. """ @@ -11,7 +11,7 @@ using ..BeamTracking: C_LIGHT, E_CHARGE, vifelse, normalized_field """ - multipole_em_field(x, y, z, s, mm, kn, ks) + multipole_em_field(x, y, z, s, mm, kn, ks) Compute EM field from multipole moments for RK4 tracking. Handles ALL multipole orders: @@ -25,20 +25,20 @@ Returns (Ex, Ey, Ez, Bx, By, Bz) where: - Ex, Ey, Ez: zero (static magnetic elements only) """ @inline function multipole_em_field(x, y, z, s, mm::SVector{0}, kn, ks) - return (zero(x), zero(x), zero(x), zero(x), zero(x), zero(x)) + return (zero(x), zero(x), zero(x), zero(x), zero(x), zero(x)) end @inline function multipole_em_field(x, y, z, s, mm::SVector{N}, kn, ks) where N - bx, by = normalized_field(mm, kn, ks, x, y, 0) - is_solenoid = (mm[1] == 0) - bz = vifelse(is_solenoid, kn[1], zero(x)) + bx, by = normalized_field(mm, kn, ks, x, y, 0) + is_solenoid = (mm[1] == 0) + bz = vifelse(is_solenoid, kn[1], zero(x)) - return (zero(x), zero(x), zero(x), bx, by, bz) + return (zero(x), zero(x), zero(x), bx, by, bz) end """ - kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) Calculate the derivative vector du/ds for relativistic particle tracking. Returns an SVector{6} containing [dx/ds, dpx/ds, dy/ds, dpy/ds, dz/ds, dpz/ds]. @@ -60,89 +60,89 @@ returns zero derivatives (caller should mark particle as lost). - `mc2`: Rest mass energy (eV) """ @inline function kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) - # Relative momentum - rel_p = 1 + pz - - # Transverse velocity components (normalized) - vt_x = px / rel_p - vt_y = py / rel_p - vt2 = vt_x^2 + vt_y^2 - - # Check for unphysical momenta (branchless) - vt2_1 = one(vt2) - good_momenta = (vt2 < vt2_1) - vt2_safe = vifelse(good_momenta, vt2, zero(vt2)) - - # Particle beta and velocity - rel_p2 = rel_p^2 - inv_gamma_v = sqrt(rel_p2 + tilde_m^2) - beta = rel_p / inv_gamma_v - - inv_beta_c = 1.0 / (beta * C_LIGHT) - - # Longitudinal velocity component - rel_dir = 1 # +1 for forward tracking - vz_norm = sqrt(1 - vt2_safe) * rel_dir - vx = beta * C_LIGHT * vt_x - vy = beta * C_LIGHT * vt_y - vz = beta * C_LIGHT * vz_norm - - # Lorentz force: F = q*(E + v×B) - E_force_x = charge * Ex - E_force_y = charge * Ey - E_force_z = charge * Ez - B_force_x = charge * (vy*Bz - vz*By) - B_force_y = charge * (vz*Bx - vx*Bz) - B_force_z = charge * (vx*By - vy*Bx) - - # Time derivative w.r.t. arc length - dh_bend = x * g_bend # Longitudinal distance deviation - abs_vz = abs(vz) - abs_vz_safe = vifelse(good_momenta, abs_vz, one(abs_vz)) # Avoid division by zero - dt_ds = rel_dir * (1 + dh_bend) / abs_vz_safe - - # Longitudinal momentum (normalized) - pz_p0 = rel_p * rel_dir * abs_vz * inv_beta_c - - # Energy derivative: dp/ds = (F · v) * dt/ds * inv_beta_c - F_dot_v = E_force_x*vx + E_force_y*vy + E_force_z*vz - dp_ds = F_dot_v * dt_ds * inv_beta_c - - # Total energy for dbeta_ds calculation - e_tot = p0c * rel_p / beta - dbeta_ds = mc2^2 * dp_ds * C_LIGHT / e_tot^3 - - # Position derivatives: dr/ds = v * dt/ds - dx_ds = vx * dt_ds - dy_ds = vy * dt_ds - - # Momentum derivatives: dp_i/ds = F_i * dt/ds / p0c + corrections - p0 = p0c / C_LIGHT - dpx_ds = (E_force_x + B_force_x) * dt_ds / p0 + g_bend * pz_p0 - dpy_ds = (E_force_y + B_force_y) * dt_ds / p0 - - # Longitudinal coordinate z derivative - sqrt_1mvt2 = sqrt(1 - vt2_safe) - dz_ds = rel_dir * (beta / beta_0 - 1) + rel_dir * (sqrt_1mvt2 - 1 - dh_bend) / sqrt_1mvt2 + dbeta_ds * z / beta - - # Energy deviation derivative - dpz_ds = dp_ds / p0 - - # Return zero derivatives if momenta are unphysical (branchless) - zero_deriv = zero(dx_ds) - return SVector( - vifelse(good_momenta, dx_ds, zero_deriv), - vifelse(good_momenta, dpx_ds, zero_deriv), - vifelse(good_momenta, dy_ds, zero_deriv), - vifelse(good_momenta, dpy_ds, zero_deriv), - vifelse(good_momenta, dz_ds, zero_deriv), - vifelse(good_momenta, dpz_ds, zero_deriv) - ) + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + # Relative momentum + rel_p = 1 + pz + + # Transverse velocity components (normalized) + vt_x = px / rel_p + vt_y = py / rel_p + vt2 = vt_x^2 + vt_y^2 + + # Check for unphysical momenta (branchless) + vt2_1 = one(vt2) + good_momenta = (vt2 < vt2_1) + vt2_safe = vifelse(good_momenta, vt2, zero(vt2)) + + # Particle beta and velocity + rel_p2 = rel_p^2 + inv_gamma_v = sqrt(rel_p2 + tilde_m^2) + beta = rel_p / inv_gamma_v + + inv_beta_c = 1.0 / (beta * C_LIGHT) + + # Longitudinal velocity component + rel_dir = 1 # +1 for forward tracking + vz_norm = sqrt(1 - vt2_safe) * rel_dir + vx = beta * C_LIGHT * vt_x + vy = beta * C_LIGHT * vt_y + vz = beta * C_LIGHT * vz_norm + + # Lorentz force: F = q*(E + v×B) + E_force_x = charge * Ex + E_force_y = charge * Ey + E_force_z = charge * Ez + B_force_x = charge * (vy*Bz - vz*By) + B_force_y = charge * (vz*Bx - vx*Bz) + B_force_z = charge * (vx*By - vy*Bx) + + # Time derivative w.r.t. arc length + dh_bend = x * g_bend # Longitudinal distance deviation + abs_vz = abs(vz) + abs_vz_safe = vifelse(good_momenta, abs_vz, one(abs_vz)) # Avoid division by zero + dt_ds = rel_dir * (1 + dh_bend) / abs_vz_safe + + # Longitudinal momentum (normalized) + pz_p0 = rel_p * rel_dir * abs_vz * inv_beta_c + + # Energy derivative: dp/ds = (F · v) * dt/ds * inv_beta_c + F_dot_v = E_force_x*vx + E_force_y*vy + E_force_z*vz + dp_ds = F_dot_v * dt_ds * inv_beta_c + + # Total energy for dbeta_ds calculation + e_tot = p0c * rel_p / beta + dbeta_ds = mc2^2 * dp_ds * C_LIGHT / e_tot^3 + + # Position derivatives: dr/ds = v * dt/ds + dx_ds = vx * dt_ds + dy_ds = vy * dt_ds + + # Momentum derivatives: dp_i/ds = F_i * dt/ds / p0c + corrections + p0 = p0c / C_LIGHT + dpx_ds = (E_force_x + B_force_x) * dt_ds / p0 + g_bend * pz_p0 + dpy_ds = (E_force_y + B_force_y) * dt_ds / p0 + + # Longitudinal coordinate z derivative + sqrt_1mvt2 = sqrt(1 - vt2_safe) + dz_ds = rel_dir * (beta / beta_0 - 1) + rel_dir * (sqrt_1mvt2 - 1 - dh_bend) / sqrt_1mvt2 + dbeta_ds * z / beta + + # Energy deviation derivative + dpz_ds = dp_ds / p0 + + # Return zero derivatives if momenta are unphysical (branchless) + zero_deriv = zero(dx_ds) + return SVector( + vifelse(good_momenta, dx_ds, zero_deriv), + vifelse(good_momenta, dpx_ds, zero_deriv), + vifelse(good_momenta, dy_ds, zero_deriv), + vifelse(good_momenta, dpy_ds, zero_deriv), + vifelse(good_momenta, dz_ds, zero_deriv), + vifelse(good_momenta, dpz_ds, zero_deriv) + ) end """ - rk4_step!(coords, i, s, h, mm, kn, ks, tracking_params) + rk4_step!(coords, i, s, h, mm, kn, ks, tracking_params) Perform a single RK4 step for particle i, updating coordinates in-place. Only updates state if particle is alive. @@ -164,71 +164,71 @@ Only updates state if particle is alive. - `mc2`: Rest mass energy (eV) """ @inline function rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) - # Check if particle is alive - alive = (coords.state[i] == STATE_ALIVE) - - # Extract current particle - v = coords.v - x = v[i, XI] - px = v[i, PXI] - y = v[i, YI] - py = v[i, PYI] - z = v[i, ZI] - pz = v[i, PZI] - - # k1 = f(u, s) - Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x, y, z, s, mm, kn, ks) - k1 = kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) - - # k2 = f(u + h/2 * k1, s + h/2) - h2 = h / 2 - x2 = x + h2 * k1[1] - px2 = px + h2 * k1[2] - y2 = y + h2 * k1[3] - py2 = py + h2 * k1[4] - z2 = z + h2 * k1[5] - pz2 = pz + h2 * k1[6] - Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x2, y2, z2, s + h2, mm, kn, ks) - k2 = kick_vector(x2, px2, y2, py2, z2, pz2, s + h2, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) - - # k3 = f(u + h/2 * k2, s + h/2) - x3 = x + h2 * k2[1] - px3 = px + h2 * k2[2] - y3 = y + h2 * k2[3] - py3 = py + h2 * k2[4] - z3 = z + h2 * k2[5] - pz3 = pz + h2 * k2[6] - Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x3, y3, z3, s + h2, mm, kn, ks) - k3 = kick_vector(x3, px3, y3, py3, z3, pz3, s + h2, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) - - # k4 = f(u + h * k3, s + h) - x4 = x + h * k3[1] - px4 = px + h * k3[2] - y4 = y + h * k3[3] - py4 = py + h * k3[4] - z4 = z + h * k3[5] - pz4 = pz + h * k3[6] - Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x4, y4, z4, s + h, mm, kn, ks) - k4 = kick_vector(x4, px4, y4, py4, z4, pz4, s + h, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) - - # Update state: u += h/6 * (k1 + 2*k2 + 2*k3 + k4) - # Only update if particle is alive - h6 = h / 6 - v[i, XI] = vifelse(alive, x + h6 * (k1[1] + 2*k2[1] + 2*k3[1] + k4[1]), v[i, XI]) - v[i, PXI] = vifelse(alive, px + h6 * (k1[2] + 2*k2[2] + 2*k3[2] + k4[2]), v[i, PXI]) - v[i, YI] = vifelse(alive, y + h6 * (k1[3] + 2*k2[3] + 2*k3[3] + k4[3]), v[i, YI]) - v[i, PYI] = vifelse(alive, py + h6 * (k1[4] + 2*k2[4] + 2*k3[4] + k4[4]), v[i, PYI]) - v[i, ZI] = vifelse(alive, z + h6 * (k1[5] + 2*k2[5] + 2*k3[5] + k4[5]), v[i, ZI]) - v[i, PZI] = vifelse(alive, pz + h6 * (k1[6] + 2*k2[6] + 2*k3[6] + k4[6]), v[i, PZI]) + # Check if particle is alive + alive = (coords.state[i] == STATE_ALIVE) + + # Extract current particle + v = coords.v + x = v[i, XI] + px = v[i, PXI] + y = v[i, YI] + py = v[i, PYI] + z = v[i, ZI] + pz = v[i, PZI] + + # k1 = f(u, s) + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x, y, z, s, mm, kn, ks) + k1 = kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + + # k2 = f(u + h/2 * k1, s + h/2) + h2 = h / 2 + x2 = x + h2 * k1[1] + px2 = px + h2 * k1[2] + y2 = y + h2 * k1[3] + py2 = py + h2 * k1[4] + z2 = z + h2 * k1[5] + pz2 = pz + h2 * k1[6] + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x2, y2, z2, s + h2, mm, kn, ks) + k2 = kick_vector(x2, px2, y2, py2, z2, pz2, s + h2, Ex, Ey, Ez, Bx, By, Bz, + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + + # k3 = f(u + h/2 * k2, s + h/2) + x3 = x + h2 * k2[1] + px3 = px + h2 * k2[2] + y3 = y + h2 * k2[3] + py3 = py + h2 * k2[4] + z3 = z + h2 * k2[5] + pz3 = pz + h2 * k2[6] + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x3, y3, z3, s + h2, mm, kn, ks) + k3 = kick_vector(x3, px3, y3, py3, z3, pz3, s + h2, Ex, Ey, Ez, Bx, By, Bz, + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + + # k4 = f(u + h * k3, s + h) + x4 = x + h * k3[1] + px4 = px + h * k3[2] + y4 = y + h * k3[3] + py4 = py + h * k3[4] + z4 = z + h * k3[5] + pz4 = pz + h * k3[6] + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x4, y4, z4, s + h, mm, kn, ks) + k4 = kick_vector(x4, px4, y4, py4, z4, pz4, s + h, Ex, Ey, Ez, Bx, By, Bz, + charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + + # Update state: u += h/6 * (k1 + 2*k2 + 2*k3 + k4) + # Only update if particle is alive + h6 = h / 6 + v[i, XI] = vifelse(alive, x + h6 * (k1[1] + 2*k2[1] + 2*k3[1] + k4[1]), v[i, XI]) + v[i, PXI] = vifelse(alive, px + h6 * (k1[2] + 2*k2[2] + 2*k3[2] + k4[2]), v[i, PXI]) + v[i, YI] = vifelse(alive, y + h6 * (k1[3] + 2*k2[3] + 2*k3[3] + k4[3]), v[i, YI]) + v[i, PYI] = vifelse(alive, py + h6 * (k1[4] + 2*k2[4] + 2*k3[4] + k4[4]), v[i, PYI]) + v[i, ZI] = vifelse(alive, z + h6 * (k1[5] + 2*k2[5] + 2*k3[5] + k4[5]), v[i, ZI]) + v[i, PZI] = vifelse(alive, pz + h6 * (k1[6] + 2*k2[6] + 2*k3[6] + k4[6]), v[i, PZI]) end """ - rk4_kernel!(i, coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, - s_span, ds_step, g_bend, mm, kn, ks) + rk4_kernel!(i, coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, + s_span, ds_step, g_bend, mm, kn, ks) Kernelized RK4 tracking through multipole fields. Compatible with @makekernel and the package's kernel architecture. @@ -237,36 +237,36 @@ The electromagnetic field is computed from multipole moments (mm, kn, ks) using the multipole_em_field function. """ @makekernel function rk4_kernel!(i, coords::Coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks) - # Check if particle is alive at start - alive_at_start = (coords.state[i] == STATE_ALIVE) - - s_start = s_span[1] - s_end = s_span[2] - s = s_start - - v = coords.v - - # Calculate number of steps for deterministic iteration - total_distance = s_end - s_start - n_steps = ceil(Int, total_distance / ds_step) - - for step in 1:n_steps - remaining = s_end - s - h = min(ds_step, remaining) - - # Chck if particle is lost - rel_p = 1 + v[i, PZI] - inv_rel_p = 1.0 / rel_p - vt2 = (v[i, PXI] * inv_rel_p)^2 + (v[i, PYI] * inv_rel_p)^2 - alive = (coords.state[i] == STATE_ALIVE) - # Mark particle as lost - coords.state[i] = vifelse((vt2 >= 1.0) & alive, STATE_LOST_PZ, coords.state[i]) - - # Perform RK4 step (check for alive status is now inside rk4_step!) - rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) - s += h - end + charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks) + # Check if particle is alive at start + alive_at_start = (coords.state[i] == STATE_ALIVE) + + s_start = s_span[1] + s_end = s_span[2] + s = s_start + + v = coords.v + + # Calculate number of steps for deterministic iteration + total_distance = s_end - s_start + n_steps = ceil(Int, total_distance / ds_step) + + for step in 1:n_steps + remaining = s_end - s + h = min(ds_step, remaining) + + # Chck if particle is lost + rel_p = 1 + v[i, PZI] + inv_rel_p = 1.0 / rel_p + vt2 = (v[i, PXI] * inv_rel_p)^2 + (v[i, PYI] * inv_rel_p)^2 + alive = (coords.state[i] == STATE_ALIVE) + # Mark particle as lost + coords.state[i] = vifelse((vt2 >= 1.0) & alive, STATE_LOST_PZ, coords.state[i]) + + # Perform RK4 step (check for alive status is now inside rk4_step!) + rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + s += h + end end end From 23988a2e96cdaefe733c35f36c3bed14ffbf5f27 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 23 Jan 2026 00:52:09 -0500 Subject: [PATCH 67/76] DifferentialEquations are no longer needed --- Project.toml | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/Project.toml b/Project.toml index b5a1f6e6..1e015517 100644 --- a/Project.toml +++ b/Project.toml @@ -14,7 +14,6 @@ MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" ReferenceFrameRotations = "74f56ac7-18b3-5285-802d-d4bd4f104033" SIMD = "fdea26ae-647d-5447-a871-4b548cad5224" -SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462" SIMDMathFunctions = "d22a7203-ad50-4fbc-abc4-d6ac724cca58" SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" @@ -37,7 +36,6 @@ KernelAbstractions = "0.9.35" MacroTools = "0.5.16" ReferenceFrameRotations = "3" SIMD = "3.7.1" -SciMLBase = "2.96.0" SIMDMathFunctions = "0.1.3" SpecialFunctions = "2.5.1" StaticArrays = "1" @@ -52,7 +50,6 @@ GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" JET = "c3a54625-cd67-489e-a8e7-0a5a0ff4e31b" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" -OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" [targets] -test = ["Test", "Distributions", "JET", "GTPSA", "BenchmarkTools", "Beamlines", "StaticArrays", "OrdinaryDiffEq"] +test = ["Test", "Distributions", "JET", "GTPSA", "BenchmarkTools", "Beamlines", "StaticArrays"] From edd80c15492c819b5f72c56708ecf2875dccb85b Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 23 Jan 2026 00:53:22 -0500 Subject: [PATCH 68/76] benchmarks are outdated --- benchmark/KernelEvaluation.jl | 79 -- benchmark/Manifest.toml | 1593 --------------------------------- benchmark/Project.toml | 6 - 3 files changed, 1678 deletions(-) delete mode 100644 benchmark/KernelEvaluation.jl delete mode 100644 benchmark/Manifest.toml delete mode 100644 benchmark/Project.toml diff --git a/benchmark/KernelEvaluation.jl b/benchmark/KernelEvaluation.jl deleted file mode 100644 index 6adaecde..00000000 --- a/benchmark/KernelEvaluation.jl +++ /dev/null @@ -1,79 +0,0 @@ -using BeamTracking -using BeamTracking: get_N_particle, runkernels!, MAX_TEMPS, KernelCall, KernelChain, BunchView -using BenchmarkTools -using SciMLBase, OrdinaryDiffEq -using StaticArrays - -""" - evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) - -Evaluate the performance of any tracking kernel and return a dictionary of metrics. - -# Arguments -- `bunch`: Initial particle bunch -- `kernel`: The kernel function to evaluate -- `args...`: Arguments to pass to the kernel -- `n_runs`: Number of runs for performance evaluation (default: 10) - -# Returns -A dictionary containing the following metrics: -- `min_time`: Minimum tracking time (in nanoseconds) -- `min_memory`: Minimum memory allocation (in bytes) -- `min_allocs`: Minimum number of allocations -- `success`: Boolean whether the tracking was successful - -""" -function evaluate_kernel_performance(bunch, kernel, args...; n_runs=10) - try - # Create kernel chain - kc = (KernelCall(kernel, args),) - - # Benchmark the tracking with specified sample size and time budget - result = @benchmark begin - runkernels!(nothing, $bunch, $kc) - end samples=n_runs seconds=10 - - metrics = Dict( - "min_time" => time(minimum(result)), - "min_memory" => memory(minimum(result)), - "min_allocs" => allocs(minimum(result)), - "success" => true - ) - - return metrics - catch e - @warn "Tracking failed: $e" - return Dict( - "min_time" => NaN, - "min_memory" => NaN, - "min_allocs" => NaN, - "success" => false - ) - end -end - - -function evaluate_field_track_performance(; n_runs=10, n_particles=1000, solver=Tsit5(), solver_params=(save_everystep=false,save_start=false,save_end=true,dense=false,calck=false)) - bunch = Bunch(n_particles) - L = 1.0 - field_func = (u, t, params) -> SVector(u[2], 0.0, u[4], 0.0, u[6], 0.0) - params = nothing - return evaluate_kernel_performance(BunchView(bunch), FieldTracking.field_track!, L, field_func, params, solver, solver_params; n_runs=n_runs) -end - -function evaluate_linear_track_performance(;n_runs=10, n_particles=1000) - # suggest good default values for bunch, L, r56 - bunch = Bunch(n_particles) - L = 1.0 - r56 = 1.0 - return evaluate_kernel_performance(BunchView(bunch), LinearTracking.linear_drift!, L, r56; n_runs=n_runs) -end - -function evaluate_rk4_track_performance(;n_runs=10, n_particles=1000) - bunch = Bunch(n_particles) - t_span = (0.0, 1.0) - field_func = (u, t, params) -> SVector(u[2], 0.0, u[4], 0.0, u[6], 0.0) - params = nothing - return evaluate_kernel_performance(BunchView(bunch), RungeKuttaTracking.rk4_track!, t_span, field_func, params, 10; n_runs=n_runs) -end - diff --git a/benchmark/Manifest.toml b/benchmark/Manifest.toml deleted file mode 100644 index b40dee02..00000000 --- a/benchmark/Manifest.toml +++ /dev/null @@ -1,1593 +0,0 @@ -# This file is machine-generated - editing it directly is not advised - -julia_version = "1.11.1" -manifest_format = "2.0" -project_hash = "9a9cf90c80239fef8cec42fa4b410b6a6f723f74" - -[[deps.ADTypes]] -git-tree-sha1 = "e2478490447631aedba0823d4d7a80b2cc8cdb32" -uuid = "47edcb42-4c32-4615-8424-f2b9edc5f35b" -version = "1.14.0" -weakdeps = ["ChainRulesCore", "ConstructionBase", "EnzymeCore"] - - [deps.ADTypes.extensions] - ADTypesChainRulesCoreExt = "ChainRulesCore" - ADTypesConstructionBaseExt = "ConstructionBase" - ADTypesEnzymeCoreExt = "EnzymeCore" - -[[deps.Accessors]] -deps = ["CompositionsBase", "ConstructionBase", "Dates", "InverseFunctions", "MacroTools"] -git-tree-sha1 = "3b86719127f50670efe356bc11073d84b4ed7a5d" -uuid = "7d9f7c33-5ae7-4f3b-8dc6-eff91059b697" -version = "0.1.42" - - [deps.Accessors.extensions] - AxisKeysExt = "AxisKeys" - IntervalSetsExt = "IntervalSets" - LinearAlgebraExt = "LinearAlgebra" - StaticArraysExt = "StaticArrays" - StructArraysExt = "StructArrays" - TestExt = "Test" - UnitfulExt = "Unitful" - - [deps.Accessors.weakdeps] - AxisKeys = "94b1ba4f-4ee9-5380-92f1-94cde586c3c5" - IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953" - LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" - StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" - StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" - Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" - Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d" - -[[deps.Adapt]] -deps = ["LinearAlgebra", "Requires"] -git-tree-sha1 = "f7817e2e585aa6d924fd714df1e2a84be7896c60" -uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" -version = "4.3.0" -weakdeps = ["SparseArrays", "StaticArrays"] - - [deps.Adapt.extensions] - AdaptSparseArraysExt = "SparseArrays" - AdaptStaticArraysExt = "StaticArrays" - -[[deps.ArgTools]] -uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" -version = "1.1.2" - -[[deps.ArrayInterface]] -deps = ["Adapt", "LinearAlgebra"] -git-tree-sha1 = "9606d7832795cbef89e06a550475be300364a8aa" -uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9" -version = "7.19.0" - - [deps.ArrayInterface.extensions] - ArrayInterfaceBandedMatricesExt = "BandedMatrices" - ArrayInterfaceBlockBandedMatricesExt = "BlockBandedMatrices" - ArrayInterfaceCUDAExt = "CUDA" - ArrayInterfaceCUDSSExt = "CUDSS" - ArrayInterfaceChainRulesCoreExt = "ChainRulesCore" - ArrayInterfaceChainRulesExt = "ChainRules" - ArrayInterfaceGPUArraysCoreExt = "GPUArraysCore" - ArrayInterfaceReverseDiffExt = "ReverseDiff" - ArrayInterfaceSparseArraysExt = "SparseArrays" - ArrayInterfaceStaticArraysCoreExt = "StaticArraysCore" - ArrayInterfaceTrackerExt = "Tracker" - - [deps.ArrayInterface.weakdeps] - BandedMatrices = "aae01518-5342-5314-be14-df237901396f" - BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0" - CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" - CUDSS = "45b445bb-4962-46a0-9369-b4df9d0f772e" - ChainRules = "082447d4-558c-5d27-93f4-14fc19e9eca2" - ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" - GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527" - ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" - SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" - StaticArraysCore = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" - Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" - -[[deps.ArrayLayouts]] -deps = ["FillArrays", "LinearAlgebra"] -git-tree-sha1 = "4e25216b8fea1908a0ce0f5d87368587899f75be" -uuid = "4c555306-a7a7-4459-81d9-ec55ddd5c99a" -version = "1.11.1" -weakdeps = ["SparseArrays"] - - [deps.ArrayLayouts.extensions] - ArrayLayoutsSparseArraysExt = "SparseArrays" - -[[deps.Artifacts]] -uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" -version = "1.11.0" - -[[deps.Atomix]] -deps = ["UnsafeAtomics"] -git-tree-sha1 = "b5bb4dc6248fde467be2a863eb8452993e74d402" -uuid = "a9b6321e-bd34-4604-b9c9-b65b8de01458" -version = "1.1.1" - - [deps.Atomix.extensions] - AtomixCUDAExt = "CUDA" - AtomixMetalExt = "Metal" - AtomixOpenCLExt = "OpenCL" - AtomixoneAPIExt = "oneAPI" - - [deps.Atomix.weakdeps] - CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" - Metal = "dde4c033-4e86-420c-a63e-0dd931031962" - OpenCL = "08131aa3-fb12-5dee-8b74-c09406e224a2" - oneAPI = "8f75cd03-7ff8-4ecb-9b8f-daf728133b1b" - -[[deps.Base64]] -uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" -version = "1.11.0" - -[[deps.BeamTracking]] -deps = ["Accessors", "Adapt", "EnumX", "GTPSA", "KernelAbstractions", "MacroTools", "ReferenceFrameRotations", "SIMD", "SciMLBase", "StaticArrays", "Unrolled", "VectorizationBase"] -path = ".." -uuid = "8ef5c10a-4ca3-437f-8af5-b84d8af36df0" -version = "0.2.0" - - [deps.BeamTracking.extensions] - BeamTrackingBeamlinesExt = "Beamlines" - - [deps.BeamTracking.weakdeps] - Beamlines = "5bb90b03-0719-46b8-8ce4-1ef3afd3cd4b" - -[[deps.BenchmarkTools]] -deps = ["Compat", "JSON", "Logging", "Printf", "Profile", "Statistics", "UUIDs"] -git-tree-sha1 = "e38fbc49a620f5d0b660d7f543db1009fe0f8336" -uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" -version = "1.6.0" - -[[deps.BitTwiddlingConvenienceFunctions]] -deps = ["Static"] -git-tree-sha1 = "f21cfd4950cb9f0587d5067e69405ad2acd27b87" -uuid = "62783981-4cbd-42fc-bca8-16325de8dc4b" -version = "0.1.6" - -[[deps.BracketingNonlinearSolve]] -deps = ["CommonSolve", "ConcreteStructs", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase"] -git-tree-sha1 = "a9014924595b7a2c1dd14aac516e38fa10ada656" -uuid = "70df07ce-3d50-431d-a3e7-ca6ddb60ac1e" -version = "1.3.0" -weakdeps = ["ChainRulesCore", "ForwardDiff"] - - [deps.BracketingNonlinearSolve.extensions] - BracketingNonlinearSolveChainRulesCoreExt = ["ChainRulesCore", "ForwardDiff"] - BracketingNonlinearSolveForwardDiffExt = "ForwardDiff" - -[[deps.CPUSummary]] -deps = ["CpuId", "IfElse", "PrecompileTools", "Static"] -git-tree-sha1 = "5a97e67919535d6841172016c9530fd69494e5ec" -uuid = "2a0fbf3d-bb9c-48f3-b0a9-814d99fd7ab9" -version = "0.2.6" - -[[deps.ChainRulesCore]] -deps = ["Compat", "LinearAlgebra"] -git-tree-sha1 = "1713c74e00545bfe14605d2a2be1712de8fbcb58" -uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" -version = "1.25.1" -weakdeps = ["SparseArrays"] - - [deps.ChainRulesCore.extensions] - ChainRulesCoreSparseArraysExt = "SparseArrays" - -[[deps.CloseOpenIntervals]] -deps = ["Static", "StaticArrayInterface"] -git-tree-sha1 = "05ba0d07cd4fd8b7a39541e31a7b0254704ea581" -uuid = "fb6a15b2-703c-40df-9091-08a04967cfa9" -version = "0.1.13" - -[[deps.CommonSolve]] -git-tree-sha1 = "0eee5eb66b1cf62cd6ad1b460238e60e4b09400c" -uuid = "38540f10-b2f7-11e9-35d8-d573e4eb0ff2" -version = "0.2.4" - -[[deps.CommonSubexpressions]] -deps = ["MacroTools"] -git-tree-sha1 = "cda2cfaebb4be89c9084adaca7dd7333369715c5" -uuid = "bbf7d656-a473-5ed7-a52c-81e309532950" -version = "0.3.1" - -[[deps.CommonWorldInvalidations]] -git-tree-sha1 = "ae52d1c52048455e85a387fbee9be553ec2b68d0" -uuid = "f70d9fcc-98c5-4d4a-abd7-e4cdeebd8ca8" -version = "1.0.0" - -[[deps.Compat]] -deps = ["TOML", "UUIDs"] -git-tree-sha1 = "8ae8d32e09f0dcf42a36b90d4e17f5dd2e4c4215" -uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" -version = "4.16.0" -weakdeps = ["Dates", "LinearAlgebra"] - - [deps.Compat.extensions] - CompatLinearAlgebraExt = "LinearAlgebra" - -[[deps.CompilerSupportLibraries_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" -version = "1.1.1+0" - -[[deps.CompositionsBase]] -git-tree-sha1 = "802bb88cd69dfd1509f6670416bd4434015693ad" -uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b" -version = "0.1.2" -weakdeps = ["InverseFunctions"] - - [deps.CompositionsBase.extensions] - CompositionsBaseInverseFunctionsExt = "InverseFunctions" - -[[deps.ConcreteStructs]] -git-tree-sha1 = "f749037478283d372048690eb3b5f92a79432b34" -uuid = "2569d6c7-a4a2-43d3-a901-331e8e4be471" -version = "0.2.3" - -[[deps.ConstructionBase]] -git-tree-sha1 = "b4b092499347b18a015186eae3042f72267106cb" -uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" -version = "1.6.0" - - [deps.ConstructionBase.extensions] - ConstructionBaseIntervalSetsExt = "IntervalSets" - ConstructionBaseLinearAlgebraExt = "LinearAlgebra" - ConstructionBaseStaticArraysExt = "StaticArrays" - - [deps.ConstructionBase.weakdeps] - IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953" - LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" - StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" - -[[deps.CpuId]] -deps = ["Markdown"] -git-tree-sha1 = "fcbb72b032692610bfbdb15018ac16a36cf2e406" -uuid = "adafc99b-e345-5852-983c-f28acb93d879" -version = "0.3.1" - -[[deps.Crayons]] -git-tree-sha1 = "249fe38abf76d48563e2f4556bebd215aa317e15" -uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f" -version = "4.1.1" - -[[deps.DataAPI]] -git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe" -uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" -version = "1.16.0" - -[[deps.DataStructures]] -deps = ["Compat", "InteractiveUtils", "OrderedCollections"] -git-tree-sha1 = "4e1fe97fdaed23e9dc21d4d664bea76b65fc50a0" -uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" -version = "0.18.22" - -[[deps.DataValueInterfaces]] -git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" -uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" -version = "1.0.0" - -[[deps.Dates]] -deps = ["Printf"] -uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" -version = "1.11.0" - -[[deps.DiffEqBase]] -deps = ["ArrayInterface", "ConcreteStructs", "DataStructures", "DocStringExtensions", "EnumX", "EnzymeCore", "FastBroadcast", "FastClosures", "FastPower", "FunctionWrappers", "FunctionWrappersWrappers", "LinearAlgebra", "Logging", "Markdown", "MuladdMacro", "Parameters", "PrecompileTools", "Printf", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "Setfield", "Static", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface", "TruncatedStacktraces"] -git-tree-sha1 = "2d87d7bd165c1ca0d11923a9fabe90a9d71e88a6" -uuid = "2b5f629d-d688-5b77-993f-72d75c75574e" -version = "6.176.0" - - [deps.DiffEqBase.extensions] - DiffEqBaseCUDAExt = "CUDA" - DiffEqBaseChainRulesCoreExt = "ChainRulesCore" - DiffEqBaseDistributionsExt = "Distributions" - DiffEqBaseEnzymeExt = ["ChainRulesCore", "Enzyme"] - DiffEqBaseForwardDiffExt = ["ForwardDiff"] - DiffEqBaseGTPSAExt = "GTPSA" - DiffEqBaseGeneralizedGeneratedExt = "GeneralizedGenerated" - DiffEqBaseMPIExt = "MPI" - DiffEqBaseMeasurementsExt = "Measurements" - DiffEqBaseMonteCarloMeasurementsExt = "MonteCarloMeasurements" - DiffEqBaseMooncakeExt = "Mooncake" - DiffEqBaseReverseDiffExt = "ReverseDiff" - DiffEqBaseSparseArraysExt = "SparseArrays" - DiffEqBaseTrackerExt = "Tracker" - DiffEqBaseUnitfulExt = "Unitful" - - [deps.DiffEqBase.weakdeps] - CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" - ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" - Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f" - Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" - ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" - GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" - GeneralizedGenerated = "6b9d7cbe-bcb9-11e9-073f-15a7a543e2eb" - MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195" - Measurements = "eff96d63-e80a-5855-80a2-b1b0885c5ab7" - MonteCarloMeasurements = "0987c9cc-fe09-11e8-30f0-b96dd679fdca" - Mooncake = "da2b9cff-9c12-43a0-ae48-6db2b0edb7d6" - ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" - SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" - Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" - Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d" - -[[deps.DiffResults]] -deps = ["StaticArraysCore"] -git-tree-sha1 = "782dd5f4561f5d267313f23853baaaa4c52ea621" -uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" -version = "1.1.0" - -[[deps.DiffRules]] -deps = ["IrrationalConstants", "LogExpFunctions", "NaNMath", "Random", "SpecialFunctions"] -git-tree-sha1 = "23163d55f885173722d1e4cf0f6110cdbaf7e272" -uuid = "b552c78f-8df3-52c6-915a-8e097449b14b" -version = "1.15.1" - -[[deps.DifferentiationInterface]] -deps = ["ADTypes", "LinearAlgebra"] -git-tree-sha1 = "210933c93f39f832d92f9efbbe69a49c453db36d" -uuid = "a0c0ee7d-e4b9-4e03-894e-1c5f64a51d63" -version = "0.7.1" - - [deps.DifferentiationInterface.extensions] - DifferentiationInterfaceChainRulesCoreExt = "ChainRulesCore" - DifferentiationInterfaceDiffractorExt = "Diffractor" - DifferentiationInterfaceEnzymeExt = ["EnzymeCore", "Enzyme"] - DifferentiationInterfaceFastDifferentiationExt = "FastDifferentiation" - DifferentiationInterfaceFiniteDiffExt = "FiniteDiff" - DifferentiationInterfaceFiniteDifferencesExt = "FiniteDifferences" - DifferentiationInterfaceForwardDiffExt = ["ForwardDiff", "DiffResults"] - DifferentiationInterfaceGPUArraysCoreExt = "GPUArraysCore" - DifferentiationInterfaceGTPSAExt = "GTPSA" - DifferentiationInterfaceMooncakeExt = "Mooncake" - DifferentiationInterfacePolyesterForwardDiffExt = ["PolyesterForwardDiff", "ForwardDiff", "DiffResults"] - DifferentiationInterfaceReverseDiffExt = ["ReverseDiff", "DiffResults"] - DifferentiationInterfaceSparseArraysExt = "SparseArrays" - DifferentiationInterfaceSparseConnectivityTracerExt = "SparseConnectivityTracer" - DifferentiationInterfaceSparseMatrixColoringsExt = "SparseMatrixColorings" - DifferentiationInterfaceStaticArraysExt = "StaticArrays" - DifferentiationInterfaceSymbolicsExt = "Symbolics" - DifferentiationInterfaceTrackerExt = "Tracker" - DifferentiationInterfaceZygoteExt = ["Zygote", "ForwardDiff"] - - [deps.DifferentiationInterface.weakdeps] - ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" - DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" - Diffractor = "9f5e2b26-1114-432f-b630-d3fe2085c51c" - Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" - EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" - FastDifferentiation = "eb9bf01b-bf85-4b60-bf87-ee5de06c00be" - FiniteDiff = "6a86dc24-6348-571c-b903-95158fe2bd41" - FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000" - ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" - GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527" - GTPSA = "b27dd330-f138-47c5-815b-40db9dd9b6e8" - Mooncake = "da2b9cff-9c12-43a0-ae48-6db2b0edb7d6" - PolyesterForwardDiff = "98d1487c-24ca-40b6-b7ab-df2af84e126b" - ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" - SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" - SparseConnectivityTracer = "9f842d2f-2579-4b1d-911e-f412cf18a3f5" - SparseMatrixColorings = "0a514795-09f3-496d-8182-132a7b665d35" - StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" - Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" - Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" - Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" - -[[deps.Distributed]] -deps = ["Random", "Serialization", "Sockets"] -uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" -version = "1.11.0" - -[[deps.DocStringExtensions]] -git-tree-sha1 = "7442a5dfe1ebb773c29cc2962a8980f47221d76c" -uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" -version = "0.9.5" - -[[deps.Downloads]] -deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] -uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" -version = "1.6.0" - -[[deps.EnumX]] -git-tree-sha1 = "bddad79635af6aec424f53ed8aad5d7555dc6f00" -uuid = "4e289a0a-7415-4d19-859d-a7e5c4648b56" -version = "1.0.5" - -[[deps.EnzymeCore]] -git-tree-sha1 = "8272a687bca7b5c601c0c24fc0c71bff10aafdfd" -uuid = "f151be2c-9106-41f4-ab19-57ee4f262869" -version = "0.8.12" -weakdeps = ["Adapt"] - - [deps.EnzymeCore.extensions] - AdaptExt = "Adapt" - -[[deps.ExponentialUtilities]] -deps = ["Adapt", "ArrayInterface", "GPUArraysCore", "GenericSchur", "LinearAlgebra", "PrecompileTools", "Printf", "SparseArrays", "libblastrampoline_jll"] -git-tree-sha1 = "cae251c76f353e32d32d76fae2fea655eab652af" -uuid = "d4d017d3-3776-5f7e-afef-a10c40355c18" -version = "1.27.0" -weakdeps = ["StaticArrays"] - - [deps.ExponentialUtilities.extensions] - ExponentialUtilitiesStaticArraysExt = "StaticArrays" - -[[deps.ExprTools]] -git-tree-sha1 = "27415f162e6028e81c72b82ef756bf321213b6ec" -uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04" -version = "0.1.10" - -[[deps.ExproniconLite]] -git-tree-sha1 = "c13f0b150373771b0fdc1713c97860f8df12e6c2" -uuid = "55351af7-c7e9-48d6-89ff-24e801d99491" -version = "0.10.14" - -[[deps.FastBroadcast]] -deps = ["ArrayInterface", "LinearAlgebra", "Polyester", "Static", "StaticArrayInterface", "StrideArraysCore"] -git-tree-sha1 = "ab1b34570bcdf272899062e1a56285a53ecaae08" -uuid = "7034ab61-46d4-4ed7-9d0f-46aef9175898" -version = "0.3.5" - -[[deps.FastClosures]] -git-tree-sha1 = "acebe244d53ee1b461970f8910c235b259e772ef" -uuid = "9aa1b823-49e4-5ca5-8b0f-3971ec8bab6a" -version = "0.3.2" - -[[deps.FastGaussQuadrature]] -deps = ["LinearAlgebra", "SpecialFunctions", "StaticArrays"] -git-tree-sha1 = "fd923962364b645f3719855c88f7074413a6ad92" -uuid = "442a2c76-b920-505d-bb47-c5924d526838" -version = "1.0.2" - -[[deps.FastPower]] -git-tree-sha1 = "df32f07f373f06260cd6af5371385b5ef85dd762" -uuid = "a4df4552-cc26-4903-aec0-212e50a0e84b" -version = "1.1.2" - - [deps.FastPower.extensions] - FastPowerEnzymeExt = "Enzyme" - FastPowerForwardDiffExt = "ForwardDiff" - FastPowerMeasurementsExt = "Measurements" - FastPowerMonteCarloMeasurementsExt = "MonteCarloMeasurements" - FastPowerReverseDiffExt = "ReverseDiff" - FastPowerTrackerExt = "Tracker" - - [deps.FastPower.weakdeps] - Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" - ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" - Measurements = "eff96d63-e80a-5855-80a2-b1b0885c5ab7" - MonteCarloMeasurements = "0987c9cc-fe09-11e8-30f0-b96dd679fdca" - ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" - Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" - -[[deps.FileWatching]] -uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" -version = "1.11.0" - -[[deps.FillArrays]] -deps = ["LinearAlgebra"] -git-tree-sha1 = "6a70198746448456524cb442b8af316927ff3e1a" -uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" -version = "1.13.0" - - [deps.FillArrays.extensions] - FillArraysPDMatsExt = "PDMats" - FillArraysSparseArraysExt = "SparseArrays" - FillArraysStatisticsExt = "Statistics" - - [deps.FillArrays.weakdeps] - PDMats = "90014a1f-27ba-587c-ab20-58faa44d9150" - SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" - Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" - -[[deps.FiniteDiff]] -deps = ["ArrayInterface", "LinearAlgebra", "Setfield"] -git-tree-sha1 = "f089ab1f834470c525562030c8cfde4025d5e915" -uuid = "6a86dc24-6348-571c-b903-95158fe2bd41" -version = "2.27.0" - - [deps.FiniteDiff.extensions] - FiniteDiffBandedMatricesExt = "BandedMatrices" - FiniteDiffBlockBandedMatricesExt = "BlockBandedMatrices" - FiniteDiffSparseArraysExt = "SparseArrays" - FiniteDiffStaticArraysExt = "StaticArrays" - - [deps.FiniteDiff.weakdeps] - BandedMatrices = "aae01518-5342-5314-be14-df237901396f" - BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0" - SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" - StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" - -[[deps.ForwardDiff]] -deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions"] -git-tree-sha1 = "910febccb28d493032495b7009dce7d7f7aee554" -uuid = "f6369f11-7733-5829-9624-2563aa707210" -version = "1.0.1" -weakdeps = ["StaticArrays"] - - [deps.ForwardDiff.extensions] - ForwardDiffStaticArraysExt = "StaticArrays" - -[[deps.FunctionWrappers]] -git-tree-sha1 = "d62485945ce5ae9c0c48f124a84998d755bae00e" -uuid = "069b7b12-0de2-55c6-9aab-29f3d0a68a2e" -version = "1.1.3" - -[[deps.FunctionWrappersWrappers]] -deps = ["FunctionWrappers"] -git-tree-sha1 = "b104d487b34566608f8b4e1c39fb0b10aa279ff8" -uuid = "77dc65aa-8811-40c2-897b-53d922fa7daf" -version = "0.1.3" - -[[deps.Future]] -deps = ["Random"] -uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820" -version = "1.11.0" - -[[deps.GPUArraysCore]] -deps = ["Adapt"] -git-tree-sha1 = "83cf05ab16a73219e5f6bd1bdfa9848fa24ac627" -uuid = "46192b85-c4d5-4398-a991-12ede77f4527" -version = "0.2.0" - -[[deps.GTPSA]] -deps = ["GTPSA_jll", "LinearAlgebra", "MacroTools", "PrettyTables", "Printf", "SpecialFunctions"] -git-tree-sha1 = "47f4ed0fa5b6d4474abea5f58301d2eee41e6fba" -uuid = "b27dd330-f138-47c5-815b-40db9dd9b6e8" -version = "1.4.7" - -[[deps.GTPSA_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl", "OpenBLAS32_jll"] -git-tree-sha1 = "421653d4ac27de5b1e34dd674169e8ac29c4adf5" -uuid = "a4739e29-4b97-5c0b-bbcf-46f08034c990" -version = "1.6.1+0" - -[[deps.GenericSchur]] -deps = ["LinearAlgebra", "Printf"] -git-tree-sha1 = "f88e0ba1f6b42121a7c1dfe93a9687d8e164c91b" -uuid = "c145ed77-6b09-5dd9-b285-bf645a82121e" -version = "0.5.5" - -[[deps.HostCPUFeatures]] -deps = ["BitTwiddlingConvenienceFunctions", "IfElse", "Libdl", "Static"] -git-tree-sha1 = "8e070b599339d622e9a081d17230d74a5c473293" -uuid = "3e5b6fbb-0976-4d2c-9146-d79de83f2fb0" -version = "0.1.17" - -[[deps.IfElse]] -git-tree-sha1 = "debdd00ffef04665ccbb3e150747a77560e8fad1" -uuid = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173" -version = "0.1.1" - -[[deps.IntelOpenMP_jll]] -deps = ["Artifacts", "JLLWrappers", "LazyArtifacts", "Libdl"] -git-tree-sha1 = "0f14a5456bdc6b9731a5682f439a672750a09e48" -uuid = "1d5cc7b8-4909-519e-a0f8-d0f5ad9712d0" -version = "2025.0.4+0" - -[[deps.InteractiveUtils]] -deps = ["Markdown"] -uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" -version = "1.11.0" - -[[deps.InverseFunctions]] -git-tree-sha1 = "a779299d77cd080bf77b97535acecd73e1c5e5cb" -uuid = "3587e190-3f89-42d0-90ee-14403ec27112" -version = "0.1.17" - - [deps.InverseFunctions.extensions] - InverseFunctionsDatesExt = "Dates" - InverseFunctionsTestExt = "Test" - - [deps.InverseFunctions.weakdeps] - Dates = "ade2ca70-3891-5945-98fb-dc099432e06a" - Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" - -[[deps.IrrationalConstants]] -git-tree-sha1 = "e2222959fbc6c19554dc15174c81bf7bf3aa691c" -uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" -version = "0.2.4" - -[[deps.IteratorInterfaceExtensions]] -git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" -uuid = "82899510-4779-5014-852e-03e436cf321d" -version = "1.0.0" - -[[deps.JLLWrappers]] -deps = ["Artifacts", "Preferences"] -git-tree-sha1 = "a007feb38b422fbdab534406aeca1b86823cb4d6" -uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" -version = "1.7.0" - -[[deps.JSON]] -deps = ["Dates", "Mmap", "Parsers", "Unicode"] -git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a" -uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" -version = "0.21.4" - -[[deps.Jieko]] -deps = ["ExproniconLite"] -git-tree-sha1 = "2f05ed29618da60c06a87e9c033982d4f71d0b6c" -uuid = "ae98c720-c025-4a4a-838c-29b094483192" -version = "0.2.1" - -[[deps.KernelAbstractions]] -deps = ["Adapt", "Atomix", "InteractiveUtils", "MacroTools", "PrecompileTools", "Requires", "StaticArrays", "UUIDs"] -git-tree-sha1 = "602c0e9efadafb8abfe8281c3fbf9cf6f406fc03" -uuid = "63c18a36-062a-441e-b654-da1e3ab1ce7c" -version = "0.9.35" -weakdeps = ["EnzymeCore", "LinearAlgebra", "SparseArrays"] - - [deps.KernelAbstractions.extensions] - EnzymeExt = "EnzymeCore" - LinearAlgebraExt = "LinearAlgebra" - SparseArraysExt = "SparseArrays" - -[[deps.Krylov]] -deps = ["LinearAlgebra", "Printf", "SparseArrays"] -git-tree-sha1 = "b94257a1a8737099ca40bc7271a8b374033473ed" -uuid = "ba0b0d4f-ebba-5204-a429-3ac8c609bfb7" -version = "0.10.1" - -[[deps.LaTeXStrings]] -git-tree-sha1 = "dda21b8cbd6a6c40d9d02a73230f9d70fed6918c" -uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" -version = "1.4.0" - -[[deps.LayoutPointers]] -deps = ["ArrayInterface", "LinearAlgebra", "ManualMemory", "SIMDTypes", "Static", "StaticArrayInterface"] -git-tree-sha1 = "a9eaadb366f5493a5654e843864c13d8b107548c" -uuid = "10f19ff3-798f-405d-979b-55457f8fc047" -version = "0.1.17" - -[[deps.LazyArrays]] -deps = ["ArrayLayouts", "FillArrays", "LinearAlgebra", "MacroTools", "SparseArrays"] -git-tree-sha1 = "866ce84b15e54d758c11946aacd4e5df0e60b7a3" -uuid = "5078a376-72f3-5289-bfd5-ec5146d43c02" -version = "2.6.1" - - [deps.LazyArrays.extensions] - LazyArraysBandedMatricesExt = "BandedMatrices" - LazyArraysBlockArraysExt = "BlockArrays" - LazyArraysBlockBandedMatricesExt = "BlockBandedMatrices" - LazyArraysStaticArraysExt = "StaticArrays" - - [deps.LazyArrays.weakdeps] - BandedMatrices = "aae01518-5342-5314-be14-df237901396f" - BlockArrays = "8e7c35d0-a365-5155-bbbb-fb81a777f24e" - BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0" - StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" - -[[deps.LazyArtifacts]] -deps = ["Artifacts", "Pkg"] -uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3" -version = "1.11.0" - -[[deps.LibCURL]] -deps = ["LibCURL_jll", "MozillaCACerts_jll"] -uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" -version = "0.6.4" - -[[deps.LibCURL_jll]] -deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] -uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" -version = "8.6.0+0" - -[[deps.LibGit2]] -deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"] -uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" -version = "1.11.0" - -[[deps.LibGit2_jll]] -deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"] -uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5" -version = "1.7.2+0" - -[[deps.LibSSH2_jll]] -deps = ["Artifacts", "Libdl", "MbedTLS_jll"] -uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" -version = "1.11.0+1" - -[[deps.Libdl]] -uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" -version = "1.11.0" - -[[deps.LineSearch]] -deps = ["ADTypes", "CommonSolve", "ConcreteStructs", "FastClosures", "LinearAlgebra", "MaybeInplace", "SciMLBase", "SciMLJacobianOperators", "StaticArraysCore"] -git-tree-sha1 = "97d502765cc5cf3a722120f50da03c2474efce04" -uuid = "87fe0de2-c867-4266-b59a-2f0a94fc965b" -version = "0.1.4" -weakdeps = ["LineSearches"] - - [deps.LineSearch.extensions] - LineSearchLineSearchesExt = "LineSearches" - -[[deps.LineSearches]] -deps = ["LinearAlgebra", "NLSolversBase", "NaNMath", "Parameters", "Printf"] -git-tree-sha1 = "4adee99b7262ad2a1a4bbbc59d993d24e55ea96f" -uuid = "d3d80556-e9d4-5f37-9878-2ab0fcc64255" -version = "7.4.0" - -[[deps.LinearAlgebra]] -deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] -uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" -version = "1.11.0" - -[[deps.LinearSolve]] -deps = ["ArrayInterface", "ChainRulesCore", "ConcreteStructs", "DocStringExtensions", "EnumX", "GPUArraysCore", "InteractiveUtils", "Krylov", "LazyArrays", "Libdl", "LinearAlgebra", "MKL_jll", "Markdown", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "Setfield", "StaticArraysCore", "UnPack"] -git-tree-sha1 = "c0d1a91a50af6778863d320761f807f641f74935" -uuid = "7ed4a6bd-45f5-4d41-b270-4a48e9bafcae" -version = "3.17.0" - - [deps.LinearSolve.extensions] - LinearSolveBandedMatricesExt = "BandedMatrices" - LinearSolveBlockDiagonalsExt = "BlockDiagonals" - LinearSolveCUDAExt = "CUDA" - LinearSolveCUDSSExt = "CUDSS" - LinearSolveEnzymeExt = "EnzymeCore" - LinearSolveFastAlmostBandedMatricesExt = "FastAlmostBandedMatrices" - LinearSolveFastLapackInterfaceExt = "FastLapackInterface" - LinearSolveHYPREExt = "HYPRE" - LinearSolveIterativeSolversExt = "IterativeSolvers" - LinearSolveKernelAbstractionsExt = "KernelAbstractions" - LinearSolveKrylovKitExt = "KrylovKit" - LinearSolveMetalExt = "Metal" - LinearSolvePardisoExt = ["Pardiso", "SparseArrays"] - LinearSolveRecursiveFactorizationExt = "RecursiveFactorization" - LinearSolveSparseArraysExt = "SparseArrays" - LinearSolveSparspakExt = ["SparseArrays", "Sparspak"] - - [deps.LinearSolve.weakdeps] - BandedMatrices = "aae01518-5342-5314-be14-df237901396f" - BlockDiagonals = "0a1fb500-61f7-11e9-3c65-f5ef3456f9f0" - CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" - CUDSS = "45b445bb-4962-46a0-9369-b4df9d0f772e" - EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" - FastAlmostBandedMatrices = "9d29842c-ecb8-4973-b1e9-a27b1157504e" - FastLapackInterface = "29a986be-02c6-4525-aec4-84b980013641" - HYPRE = "b5ffcf37-a2bd-41ab-a3da-4bd9bc8ad771" - IterativeSolvers = "42fd0dbc-a981-5370-80f2-aaf504508153" - KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c" - KrylovKit = "0b1a1467-8014-51b9-945f-bf0ae24f4b77" - Metal = "dde4c033-4e86-420c-a63e-0dd931031962" - Pardiso = "46dd5b70-b6fb-5a00-ae2d-e8fea33afaf2" - RecursiveFactorization = "f2c3362d-daeb-58d1-803e-2bc74f2840b4" - SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" - Sparspak = "e56a9233-b9d6-4f03-8d0f-1825330902ac" - -[[deps.LogExpFunctions]] -deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] -git-tree-sha1 = "13ca9e2586b89836fd20cccf56e57e2b9ae7f38f" -uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" -version = "0.3.29" - - [deps.LogExpFunctions.extensions] - LogExpFunctionsChainRulesCoreExt = "ChainRulesCore" - LogExpFunctionsChangesOfVariablesExt = "ChangesOfVariables" - LogExpFunctionsInverseFunctionsExt = "InverseFunctions" - - [deps.LogExpFunctions.weakdeps] - ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" - ChangesOfVariables = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" - InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" - -[[deps.Logging]] -uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" -version = "1.11.0" - -[[deps.MKL_jll]] -deps = ["Artifacts", "IntelOpenMP_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "oneTBB_jll"] -git-tree-sha1 = "5de60bc6cb3899cd318d80d627560fae2e2d99ae" -uuid = "856f044c-d86e-5d09-b602-aeab76dc8ba7" -version = "2025.0.1+1" - -[[deps.MacroTools]] -git-tree-sha1 = "1e0228a030642014fe5cfe68c2c0a818f9e3f522" -uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" -version = "0.5.16" - -[[deps.ManualMemory]] -git-tree-sha1 = "bcaef4fc7a0cfe2cba636d84cda54b5e4e4ca3cd" -uuid = "d125e4d3-2237-4719-b19c-fa641b8a4667" -version = "0.1.8" - -[[deps.Markdown]] -deps = ["Base64"] -uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" -version = "1.11.0" - -[[deps.MaybeInplace]] -deps = ["ArrayInterface", "LinearAlgebra", "MacroTools"] -git-tree-sha1 = "54e2fdc38130c05b42be423e90da3bade29b74bd" -uuid = "bb5d69b7-63fc-4a16-80bd-7e42200c7bdb" -version = "0.1.4" -weakdeps = ["SparseArrays"] - - [deps.MaybeInplace.extensions] - MaybeInplaceSparseArraysExt = "SparseArrays" - -[[deps.MbedTLS_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" -version = "2.28.6+0" - -[[deps.Mmap]] -uuid = "a63ad114-7e13-5084-954f-fe012c677804" -version = "1.11.0" - -[[deps.Moshi]] -deps = ["ExproniconLite", "Jieko"] -git-tree-sha1 = "453de0fc2be3d11b9b93ca4d0fddd91196dcf1ed" -uuid = "2e0e35c7-a2e4-4343-998d-7ef72827ed2d" -version = "0.3.5" - -[[deps.MozillaCACerts_jll]] -uuid = "14a3606d-f60d-562e-9121-12d972cd8159" -version = "2023.12.12" - -[[deps.MuladdMacro]] -git-tree-sha1 = "cac9cc5499c25554cba55cd3c30543cff5ca4fab" -uuid = "46d2c3a1-f734-5fdb-9937-b9b9aeba4221" -version = "0.2.4" - -[[deps.NLSolversBase]] -deps = ["ADTypes", "DifferentiationInterface", "Distributed", "FiniteDiff", "ForwardDiff"] -git-tree-sha1 = "25a6638571a902ecfb1ae2a18fc1575f86b1d4df" -uuid = "d41bc354-129a-5804-8e4c-c37616107c6c" -version = "7.10.0" - -[[deps.NaNMath]] -deps = ["OpenLibm_jll"] -git-tree-sha1 = "9b8215b1ee9e78a293f99797cd31375471b2bcae" -uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" -version = "1.1.3" - -[[deps.NetworkOptions]] -uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" -version = "1.2.0" - -[[deps.NonlinearSolve]] -deps = ["ADTypes", "ArrayInterface", "BracketingNonlinearSolve", "CommonSolve", "ConcreteStructs", "DiffEqBase", "DifferentiationInterface", "FastClosures", "FiniteDiff", "ForwardDiff", "LineSearch", "LinearAlgebra", "LinearSolve", "NonlinearSolveBase", "NonlinearSolveFirstOrder", "NonlinearSolveQuasiNewton", "NonlinearSolveSpectralMethods", "PrecompileTools", "Preferences", "Reexport", "SciMLBase", "SimpleNonlinearSolve", "SparseArrays", "SparseMatrixColorings", "StaticArraysCore", "SymbolicIndexingInterface"] -git-tree-sha1 = "aeb6fb02e63b4d4f90337ed90ce54ceb4c0efe77" -uuid = "8913a72c-1f9b-4ce2-8d82-65094dcecaec" -version = "4.9.0" - - [deps.NonlinearSolve.extensions] - NonlinearSolveFastLevenbergMarquardtExt = "FastLevenbergMarquardt" - NonlinearSolveFixedPointAccelerationExt = "FixedPointAcceleration" - NonlinearSolveLeastSquaresOptimExt = "LeastSquaresOptim" - NonlinearSolveMINPACKExt = "MINPACK" - NonlinearSolveNLSolversExt = "NLSolvers" - NonlinearSolveNLsolveExt = ["NLsolve", "LineSearches"] - NonlinearSolvePETScExt = ["PETSc", "MPI"] - NonlinearSolveSIAMFANLEquationsExt = "SIAMFANLEquations" - NonlinearSolveSpeedMappingExt = "SpeedMapping" - NonlinearSolveSundialsExt = "Sundials" - - [deps.NonlinearSolve.weakdeps] - FastLevenbergMarquardt = "7a0df574-e128-4d35-8cbd-3d84502bf7ce" - FixedPointAcceleration = "817d07cb-a79a-5c30-9a31-890123675176" - LeastSquaresOptim = "0fc2ff8b-aaa3-5acd-a817-1944a5e08891" - LineSearches = "d3d80556-e9d4-5f37-9878-2ab0fcc64255" - MINPACK = "4854310b-de5a-5eb6-a2a5-c1dee2bd17f9" - MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195" - NLSolvers = "337daf1e-9722-11e9-073e-8b9effe078ba" - NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" - PETSc = "ace2c81b-2b5f-4b1e-a30d-d662738edfe0" - SIAMFANLEquations = "084e46ad-d928-497d-ad5e-07fa361a48c4" - SpeedMapping = "f1835b91-879b-4a3f-a438-e4baacf14412" - Sundials = "c3572dad-4567-51f8-b174-8c6c989267f4" - -[[deps.NonlinearSolveBase]] -deps = ["ADTypes", "Adapt", "ArrayInterface", "CommonSolve", "Compat", "ConcreteStructs", "DifferentiationInterface", "EnzymeCore", "FastClosures", "LinearAlgebra", "Markdown", "MaybeInplace", "Preferences", "Printf", "RecursiveArrayTools", "SciMLBase", "SciMLJacobianOperators", "SciMLOperators", "StaticArraysCore", "SymbolicIndexingInterface", "TimerOutputs"] -git-tree-sha1 = "404d71dd057759f4d590191a643113485c4a482a" -uuid = "be0214bd-f91f-a760-ac4e-3421ce2b2da0" -version = "1.12.0" - - [deps.NonlinearSolveBase.extensions] - NonlinearSolveBaseBandedMatricesExt = "BandedMatrices" - NonlinearSolveBaseDiffEqBaseExt = "DiffEqBase" - NonlinearSolveBaseForwardDiffExt = "ForwardDiff" - NonlinearSolveBaseLineSearchExt = "LineSearch" - NonlinearSolveBaseLinearSolveExt = "LinearSolve" - NonlinearSolveBaseSparseArraysExt = "SparseArrays" - NonlinearSolveBaseSparseMatrixColoringsExt = "SparseMatrixColorings" - - [deps.NonlinearSolveBase.weakdeps] - BandedMatrices = "aae01518-5342-5314-be14-df237901396f" - DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e" - ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" - LineSearch = "87fe0de2-c867-4266-b59a-2f0a94fc965b" - LinearSolve = "7ed4a6bd-45f5-4d41-b270-4a48e9bafcae" - SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" - SparseMatrixColorings = "0a514795-09f3-496d-8182-132a7b665d35" - -[[deps.NonlinearSolveFirstOrder]] -deps = ["ADTypes", "ArrayInterface", "CommonSolve", "ConcreteStructs", "DiffEqBase", "FiniteDiff", "ForwardDiff", "LineSearch", "LinearAlgebra", "LinearSolve", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase", "SciMLJacobianOperators", "Setfield", "StaticArraysCore"] -git-tree-sha1 = "9c8cd0a986518ba317af263549b48e34ac8f776d" -uuid = "5959db7a-ea39-4486-b5fe-2dd0bf03d60d" -version = "1.5.0" - -[[deps.NonlinearSolveQuasiNewton]] -deps = ["ArrayInterface", "CommonSolve", "ConcreteStructs", "DiffEqBase", "LinearAlgebra", "LinearSolve", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase", "SciMLOperators", "StaticArraysCore"] -git-tree-sha1 = "e3888bdbab6e0bfadbc3164ef4595e40e7b7e954" -uuid = "9a2c21bd-3a47-402d-9113-8faf9a0ee114" -version = "1.6.0" -weakdeps = ["ForwardDiff"] - - [deps.NonlinearSolveQuasiNewton.extensions] - NonlinearSolveQuasiNewtonForwardDiffExt = "ForwardDiff" - -[[deps.NonlinearSolveSpectralMethods]] -deps = ["CommonSolve", "ConcreteStructs", "DiffEqBase", "LineSearch", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase"] -git-tree-sha1 = "3398222199e4b9ca0b5840907fb509f28f1a2fdc" -uuid = "26075421-4e9a-44e1-8bd1-420ed7ad02b2" -version = "1.2.0" -weakdeps = ["ForwardDiff"] - - [deps.NonlinearSolveSpectralMethods.extensions] - NonlinearSolveSpectralMethodsForwardDiffExt = "ForwardDiff" - -[[deps.OpenBLAS32_jll]] -deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl"] -git-tree-sha1 = "ece4587683695fe4c5f20e990da0ed7e83c351e7" -uuid = "656ef2d0-ae68-5445-9ca0-591084a874a2" -version = "0.3.29+0" - -[[deps.OpenBLAS_jll]] -deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] -uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" -version = "0.3.27+1" - -[[deps.OpenLibm_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "05823500-19ac-5b8b-9628-191a04bc5112" -version = "0.8.1+2" - -[[deps.OpenSpecFun_jll]] -deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl"] -git-tree-sha1 = "1346c9208249809840c91b26703912dff463d335" -uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" -version = "0.5.6+0" - -[[deps.OrderedCollections]] -git-tree-sha1 = "05868e21324cede2207c6f0f466b4bfef6d5e7ee" -uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" -version = "1.8.1" - -[[deps.OrdinaryDiffEq]] -deps = ["ADTypes", "Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DocStringExtensions", "EnumX", "ExponentialUtilities", "FastBroadcast", "FastClosures", "FillArrays", "FiniteDiff", "ForwardDiff", "FunctionWrappersWrappers", "InteractiveUtils", "LineSearches", "LinearAlgebra", "LinearSolve", "Logging", "MacroTools", "MuladdMacro", "NonlinearSolve", "OrdinaryDiffEqAdamsBashforthMoulton", "OrdinaryDiffEqBDF", "OrdinaryDiffEqCore", "OrdinaryDiffEqDefault", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqExplicitRK", "OrdinaryDiffEqExponentialRK", "OrdinaryDiffEqExtrapolation", "OrdinaryDiffEqFIRK", "OrdinaryDiffEqFeagin", "OrdinaryDiffEqFunctionMap", "OrdinaryDiffEqHighOrderRK", "OrdinaryDiffEqIMEXMultistep", "OrdinaryDiffEqLinear", "OrdinaryDiffEqLowOrderRK", "OrdinaryDiffEqLowStorageRK", "OrdinaryDiffEqNonlinearSolve", "OrdinaryDiffEqNordsieck", "OrdinaryDiffEqPDIRK", "OrdinaryDiffEqPRK", "OrdinaryDiffEqQPRK", "OrdinaryDiffEqRKN", "OrdinaryDiffEqRosenbrock", "OrdinaryDiffEqSDIRK", "OrdinaryDiffEqSSPRK", "OrdinaryDiffEqStabilizedIRK", "OrdinaryDiffEqStabilizedRK", "OrdinaryDiffEqSymplecticRK", "OrdinaryDiffEqTsit5", "OrdinaryDiffEqVerner", "Polyester", "PreallocationTools", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "SimpleNonlinearSolve", "SimpleUnPack", "SparseArrays", "Static", "StaticArrayInterface", "StaticArrays", "TruncatedStacktraces"] -git-tree-sha1 = "1c2b2df870944e0dc01454fd87479847c55fa26c" -uuid = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" -version = "6.98.0" - -[[deps.OrdinaryDiffEqAdamsBashforthMoulton]] -deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqLowOrderRK", "Polyester", "RecursiveArrayTools", "Reexport", "Static"] -git-tree-sha1 = "82f78099ecf4e0fa53545811318520d87e7fe0b8" -uuid = "89bda076-bce5-4f1c-845f-551c83cdda9a" -version = "1.2.0" - -[[deps.OrdinaryDiffEqBDF]] -deps = ["ADTypes", "ArrayInterface", "DiffEqBase", "FastBroadcast", "LinearAlgebra", "MacroTools", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "OrdinaryDiffEqSDIRK", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "StaticArrays", "TruncatedStacktraces"] -git-tree-sha1 = "9124a686af119063bb4d3a8f87044a8f312fcad9" -uuid = "6ad6398a-0878-4a85-9266-38940aa047c8" -version = "1.6.0" - -[[deps.OrdinaryDiffEqCore]] -deps = ["ADTypes", "Accessors", "Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DocStringExtensions", "EnumX", "FastBroadcast", "FastClosures", "FastPower", "FillArrays", "FunctionWrappersWrappers", "InteractiveUtils", "LinearAlgebra", "Logging", "MacroTools", "MuladdMacro", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators", "SciMLStructures", "SimpleUnPack", "Static", "StaticArrayInterface", "StaticArraysCore", "SymbolicIndexingInterface", "TruncatedStacktraces"] -git-tree-sha1 = "08dac9c6672a4548439048089bac293759a897fd" -uuid = "bbf590c4-e513-4bbe-9b18-05decba2e5d8" -version = "1.26.1" -weakdeps = ["EnzymeCore"] - - [deps.OrdinaryDiffEqCore.extensions] - OrdinaryDiffEqCoreEnzymeCoreExt = "EnzymeCore" - -[[deps.OrdinaryDiffEqDefault]] -deps = ["ADTypes", "DiffEqBase", "EnumX", "LinearAlgebra", "LinearSolve", "OrdinaryDiffEqBDF", "OrdinaryDiffEqCore", "OrdinaryDiffEqRosenbrock", "OrdinaryDiffEqTsit5", "OrdinaryDiffEqVerner", "PrecompileTools", "Preferences", "Reexport"] -git-tree-sha1 = "8eeed32442874d1bdcc2192a874a73f1a9a07e31" -uuid = "50262376-6c5a-4cf5-baba-aaf4f84d72d7" -version = "1.4.0" - -[[deps.OrdinaryDiffEqDifferentiation]] -deps = ["ADTypes", "ArrayInterface", "ConcreteStructs", "ConstructionBase", "DiffEqBase", "DifferentiationInterface", "FastBroadcast", "FiniteDiff", "ForwardDiff", "FunctionWrappersWrappers", "LinearAlgebra", "LinearSolve", "OrdinaryDiffEqCore", "SciMLBase", "SciMLOperators", "SparseArrays", "SparseMatrixColorings", "StaticArrayInterface", "StaticArrays"] -git-tree-sha1 = "efecf0c4cc44e16251b0e718f08b0876b2a82b80" -uuid = "4302a76b-040a-498a-8c04-15b101fed76b" -version = "1.10.0" - -[[deps.OrdinaryDiffEqExplicitRK]] -deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "TruncatedStacktraces"] -git-tree-sha1 = "4dbce3f9e6974567082ce5176e21aab0224a69e9" -uuid = "9286f039-9fbf-40e8-bf65-aa933bdc4db0" -version = "1.1.0" - -[[deps.OrdinaryDiffEqExponentialRK]] -deps = ["ADTypes", "DiffEqBase", "ExponentialUtilities", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqSDIRK", "OrdinaryDiffEqVerner", "RecursiveArrayTools", "Reexport", "SciMLBase"] -git-tree-sha1 = "8d2ab84d7fabdfde995e5f567361f238069497f5" -uuid = "e0540318-69ee-4070-8777-9e2de6de23de" -version = "1.4.0" - -[[deps.OrdinaryDiffEqExtrapolation]] -deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "FastPower", "LinearSolve", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "Polyester", "RecursiveArrayTools", "Reexport"] -git-tree-sha1 = "80a636aac325c546b04e3bf20f0c80eaa0173dd4" -uuid = "becaefa8-8ca2-5cf9-886d-c06f3d2bd2c4" -version = "1.5.0" - -[[deps.OrdinaryDiffEqFIRK]] -deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "FastGaussQuadrature", "FastPower", "LinearAlgebra", "LinearSolve", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "Polyester", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators"] -git-tree-sha1 = "0da8ec3491821262a3d2828e6370e76b51a770a3" -uuid = "5960d6e9-dd7a-4743-88e7-cf307b64f125" -version = "1.12.0" - -[[deps.OrdinaryDiffEqFeagin]] -deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "RecursiveArrayTools", "Reexport", "Static"] -git-tree-sha1 = "a7cc74d3433db98e59dc3d58bc28174c6c290adf" -uuid = "101fe9f7-ebb6-4678-b671-3a81e7194747" -version = "1.1.0" - -[[deps.OrdinaryDiffEqFunctionMap]] -deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "SciMLBase", "Static"] -git-tree-sha1 = "925a91583d1ab84f1f0fea121be1abf1179c5926" -uuid = "d3585ca7-f5d3-4ba6-8057-292ed1abd90f" -version = "1.1.1" - -[[deps.OrdinaryDiffEqHighOrderRK]] -deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "Static"] -git-tree-sha1 = "103e017ff186ac39d731904045781c9bacfca2b0" -uuid = "d28bc4f8-55e1-4f49-af69-84c1a99f0f58" -version = "1.1.0" - -[[deps.OrdinaryDiffEqIMEXMultistep]] -deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "Reexport"] -git-tree-sha1 = "095bab73a3ff185e9ef971fc42ecc93c7824e589" -uuid = "9f002381-b378-40b7-97a6-27a27c83f129" -version = "1.3.0" - -[[deps.OrdinaryDiffEqLinear]] -deps = ["DiffEqBase", "ExponentialUtilities", "LinearAlgebra", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "SciMLBase", "SciMLOperators"] -git-tree-sha1 = "940cef72ec8799d869ff1ba3dcf47cf7758e51cf" -uuid = "521117fe-8c41-49f8-b3b6-30780b3f0fb5" -version = "1.3.0" - -[[deps.OrdinaryDiffEqLowOrderRK]] -deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "SciMLBase", "Static"] -git-tree-sha1 = "d4bb32e09d6b68ce2eb45fb81001eab46f60717a" -uuid = "1344f307-1e59-4825-a18e-ace9aa3fa4c6" -version = "1.2.0" - -[[deps.OrdinaryDiffEqLowStorageRK]] -deps = ["Adapt", "DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "Static", "StaticArrays"] -git-tree-sha1 = "52ec7081e65291fa5c19749312df0818db2fa1bc" -uuid = "b0944070-b475-4768-8dec-fb6eb410534d" -version = "1.3.0" - -[[deps.OrdinaryDiffEqNonlinearSolve]] -deps = ["ADTypes", "ArrayInterface", "DiffEqBase", "FastBroadcast", "FastClosures", "ForwardDiff", "LinearAlgebra", "LinearSolve", "MuladdMacro", "NonlinearSolve", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "PreallocationTools", "RecursiveArrayTools", "SciMLBase", "SciMLOperators", "SciMLStructures", "SimpleNonlinearSolve", "StaticArrays"] -git-tree-sha1 = "ffdb0f5207b0e30f8b1edf99b3b9546d9c48ccaf" -uuid = "127b3ac7-2247-4354-8eb6-78cf4e7c58e8" -version = "1.10.0" - -[[deps.OrdinaryDiffEqNordsieck]] -deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqTsit5", "Polyester", "RecursiveArrayTools", "Reexport", "Static"] -git-tree-sha1 = "ef44754f10e0dfb9bb55ded382afed44cd94ab57" -uuid = "c9986a66-5c92-4813-8696-a7ec84c806c8" -version = "1.1.0" - -[[deps.OrdinaryDiffEqPDIRK]] -deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "Polyester", "Reexport", "StaticArrays"] -git-tree-sha1 = "ab9897e4bc8e3cf8e15f1cf61dbdd15d6a2341d7" -uuid = "5dd0a6cf-3d4b-4314-aa06-06d4e299bc89" -version = "1.3.1" - -[[deps.OrdinaryDiffEqPRK]] -deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "Reexport"] -git-tree-sha1 = "da525d277962a1b76102c79f30cb0c31e13fe5b9" -uuid = "5b33eab2-c0f1-4480-b2c3-94bc1e80bda1" -version = "1.1.0" - -[[deps.OrdinaryDiffEqQPRK]] -deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "Static"] -git-tree-sha1 = "332f9d17d0229218f66a73492162267359ba85e9" -uuid = "04162be5-8125-4266-98ed-640baecc6514" -version = "1.1.0" - -[[deps.OrdinaryDiffEqRKN]] -deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "RecursiveArrayTools", "Reexport"] -git-tree-sha1 = "41c09d9c20877546490f907d8dffdd52690dd65f" -uuid = "af6ede74-add8-4cfd-b1df-9a4dbb109d7a" -version = "1.1.0" - -[[deps.OrdinaryDiffEqRosenbrock]] -deps = ["ADTypes", "DiffEqBase", "DifferentiationInterface", "FastBroadcast", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "LinearSolve", "MacroTools", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "Static"] -git-tree-sha1 = "1ce0096d920e95773220e818f29bf4b37ea2bb78" -uuid = "43230ef6-c299-4910-a778-202eb28ce4ce" -version = "1.11.0" - -[[deps.OrdinaryDiffEqSDIRK]] -deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "LinearAlgebra", "MacroTools", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "RecursiveArrayTools", "Reexport", "SciMLBase", "TruncatedStacktraces"] -git-tree-sha1 = "b3a7e3a2f355d837c823b435630f035aef446b45" -uuid = "2d112036-d095-4a1e-ab9a-08536f3ecdbf" -version = "1.3.0" - -[[deps.OrdinaryDiffEqSSPRK]] -deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "Static", "StaticArrays"] -git-tree-sha1 = "651756c030df7a1d49ad484288937f8c398e8a08" -uuid = "669c94d9-1f4b-4b64-b377-1aa079aa2388" -version = "1.3.0" - -[[deps.OrdinaryDiffEqStabilizedIRK]] -deps = ["ADTypes", "DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "OrdinaryDiffEqDifferentiation", "OrdinaryDiffEqNonlinearSolve", "RecursiveArrayTools", "Reexport", "StaticArrays"] -git-tree-sha1 = "111c23b68ad644b47e38242af920d5805c7bedb1" -uuid = "e3e12d00-db14-5390-b879-ac3dd2ef6296" -version = "1.3.0" - -[[deps.OrdinaryDiffEqStabilizedRK]] -deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "RecursiveArrayTools", "Reexport", "StaticArrays"] -git-tree-sha1 = "1b0d894c880e25f7d0b022d7257638cf8ce5b311" -uuid = "358294b1-0aab-51c3-aafe-ad5ab194a2ad" -version = "1.1.0" - -[[deps.OrdinaryDiffEqSymplecticRK]] -deps = ["DiffEqBase", "FastBroadcast", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "RecursiveArrayTools", "Reexport"] -git-tree-sha1 = "a13d59a2d6cfb6a3332a7782638ca6e1cb6ca688" -uuid = "fa646aed-7ef9-47eb-84c4-9443fc8cbfa8" -version = "1.3.0" - -[[deps.OrdinaryDiffEqTsit5]] -deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "Static", "TruncatedStacktraces"] -git-tree-sha1 = "96552f7d4619fabab4038a29ed37dd55e9eb513a" -uuid = "b1df2697-797e-41e3-8120-5422d3b24e4a" -version = "1.1.0" - -[[deps.OrdinaryDiffEqVerner]] -deps = ["DiffEqBase", "FastBroadcast", "LinearAlgebra", "MuladdMacro", "OrdinaryDiffEqCore", "Polyester", "PrecompileTools", "Preferences", "RecursiveArrayTools", "Reexport", "Static", "TruncatedStacktraces"] -git-tree-sha1 = "08f2d3be30874b6e2e937a06b501fb9811f7d8bd" -uuid = "79d7bb75-1356-48c1-b8c0-6832512096c2" -version = "1.2.0" - -[[deps.Parameters]] -deps = ["OrderedCollections", "UnPack"] -git-tree-sha1 = "34c0e9ad262e5f7fc75b10a9952ca7692cfc5fbe" -uuid = "d96e819e-fc66-5662-9728-84c9c7592b0a" -version = "0.12.3" - -[[deps.Parsers]] -deps = ["Dates", "PrecompileTools", "UUIDs"] -git-tree-sha1 = "7d2f8f21da5db6a806faf7b9b292296da42b2810" -uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" -version = "2.8.3" - -[[deps.Pkg]] -deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "Random", "SHA", "TOML", "Tar", "UUIDs", "p7zip_jll"] -uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" -version = "1.11.0" - - [deps.Pkg.extensions] - REPLExt = "REPL" - - [deps.Pkg.weakdeps] - REPL = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" - -[[deps.Polyester]] -deps = ["ArrayInterface", "BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "ManualMemory", "PolyesterWeave", "Static", "StaticArrayInterface", "StrideArraysCore", "ThreadingUtilities"] -git-tree-sha1 = "6f7cd22a802094d239824c57d94c8e2d0f7cfc7d" -uuid = "f517fe37-dbe3-4b94-8317-1923a5111588" -version = "0.7.18" - -[[deps.PolyesterWeave]] -deps = ["BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "Static", "ThreadingUtilities"] -git-tree-sha1 = "645bed98cd47f72f67316fd42fc47dee771aefcd" -uuid = "1d0040c9-8b98-4ee7-8388-3f51789ca0ad" -version = "0.2.2" - -[[deps.PreallocationTools]] -deps = ["Adapt", "ArrayInterface", "ForwardDiff"] -git-tree-sha1 = "6d98eace73d82e47f5b16c393de198836d9f790a" -uuid = "d236fae5-4411-538c-8e31-a6e3d9e00b46" -version = "0.4.27" - - [deps.PreallocationTools.extensions] - PreallocationToolsReverseDiffExt = "ReverseDiff" - PreallocationToolsSparseConnectivityTracerExt = "SparseConnectivityTracer" - - [deps.PreallocationTools.weakdeps] - ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" - SparseConnectivityTracer = "9f842d2f-2579-4b1d-911e-f412cf18a3f5" - -[[deps.PrecompileTools]] -deps = ["Preferences"] -git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f" -uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" -version = "1.2.1" - -[[deps.Preferences]] -deps = ["TOML"] -git-tree-sha1 = "9306f6085165d270f7e3db02af26a400d580f5c6" -uuid = "21216c6a-2e73-6563-6e65-726566657250" -version = "1.4.3" - -[[deps.PrettyTables]] -deps = ["Crayons", "LaTeXStrings", "Markdown", "PrecompileTools", "Printf", "Reexport", "StringManipulation", "Tables"] -git-tree-sha1 = "1101cd475833706e4d0e7b122218257178f48f34" -uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d" -version = "2.4.0" - -[[deps.Printf]] -deps = ["Unicode"] -uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" -version = "1.11.0" - -[[deps.Profile]] -uuid = "9abbd945-dff8-562f-b5e8-e1ebf5ef1b79" -version = "1.11.0" - -[[deps.Random]] -deps = ["SHA"] -uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" -version = "1.11.0" - -[[deps.RecipesBase]] -deps = ["PrecompileTools"] -git-tree-sha1 = "5c3d09cc4f31f5fc6af001c250bf1278733100ff" -uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" -version = "1.3.4" - -[[deps.RecursiveArrayTools]] -deps = ["Adapt", "ArrayInterface", "DocStringExtensions", "GPUArraysCore", "IteratorInterfaceExtensions", "LinearAlgebra", "RecipesBase", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface", "Tables"] -git-tree-sha1 = "2e154f7d7e38db1af0a14ec751aba33360c3bef9" -uuid = "731186ca-8d62-57ce-b412-fbd966d074cd" -version = "3.33.0" - - [deps.RecursiveArrayTools.extensions] - RecursiveArrayToolsFastBroadcastExt = "FastBroadcast" - RecursiveArrayToolsForwardDiffExt = "ForwardDiff" - RecursiveArrayToolsMeasurementsExt = "Measurements" - RecursiveArrayToolsMonteCarloMeasurementsExt = "MonteCarloMeasurements" - RecursiveArrayToolsReverseDiffExt = ["ReverseDiff", "Zygote"] - RecursiveArrayToolsSparseArraysExt = ["SparseArrays"] - RecursiveArrayToolsStructArraysExt = "StructArrays" - RecursiveArrayToolsTrackerExt = "Tracker" - RecursiveArrayToolsZygoteExt = "Zygote" - - [deps.RecursiveArrayTools.weakdeps] - FastBroadcast = "7034ab61-46d4-4ed7-9d0f-46aef9175898" - ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" - Measurements = "eff96d63-e80a-5855-80a2-b1b0885c5ab7" - MonteCarloMeasurements = "0987c9cc-fe09-11e8-30f0-b96dd679fdca" - ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" - SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" - StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" - Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" - Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" - -[[deps.Reexport]] -git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" -uuid = "189a3867-3050-52da-a836-e630ba90ab69" -version = "1.2.2" - -[[deps.ReferenceFrameRotations]] -deps = ["Crayons", "LinearAlgebra", "Printf", "Random", "StaticArrays"] -git-tree-sha1 = "c1fadb2e94fa53c8bb8b937118e87d388012eaf6" -uuid = "74f56ac7-18b3-5285-802d-d4bd4f104033" -version = "3.0.2" - -[[deps.Requires]] -deps = ["UUIDs"] -git-tree-sha1 = "62389eeff14780bfe55195b7204c0d8738436d64" -uuid = "ae029012-a4dd-5104-9daa-d747884805df" -version = "1.3.1" - -[[deps.RuntimeGeneratedFunctions]] -deps = ["ExprTools", "SHA", "Serialization"] -git-tree-sha1 = "86a8a8b783481e1ea6b9c91dd949cb32191f8ab4" -uuid = "7e49a35a-f44a-4d26-94aa-eba1b4ca6b47" -version = "0.5.15" - -[[deps.SHA]] -uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" -version = "0.7.0" - -[[deps.SIMD]] -deps = ["PrecompileTools"] -git-tree-sha1 = "fea870727142270bdf7624ad675901a1ee3b4c87" -uuid = "fdea26ae-647d-5447-a871-4b548cad5224" -version = "3.7.1" - -[[deps.SIMDTypes]] -git-tree-sha1 = "330289636fb8107c5f32088d2741e9fd7a061a5c" -uuid = "94e857df-77ce-4151-89e5-788b33177be4" -version = "0.1.0" - -[[deps.SciMLBase]] -deps = ["ADTypes", "Accessors", "Adapt", "ArrayInterface", "CommonSolve", "ConstructionBase", "Distributed", "DocStringExtensions", "EnumX", "FunctionWrappersWrappers", "IteratorInterfaceExtensions", "LinearAlgebra", "Logging", "Markdown", "Moshi", "PrecompileTools", "Preferences", "Printf", "RecipesBase", "RecursiveArrayTools", "Reexport", "RuntimeGeneratedFunctions", "SciMLOperators", "SciMLStructures", "StaticArraysCore", "Statistics", "SymbolicIndexingInterface"] -git-tree-sha1 = "04bbcdc8d1f7d6f667f75fbcc68728231e21fabe" -uuid = "0bca4576-84f4-4d90-8ffe-ffa030f20462" -version = "2.101.0" - - [deps.SciMLBase.extensions] - SciMLBaseChainRulesCoreExt = "ChainRulesCore" - SciMLBaseMLStyleExt = "MLStyle" - SciMLBaseMakieExt = "Makie" - SciMLBasePartialFunctionsExt = "PartialFunctions" - SciMLBasePyCallExt = "PyCall" - SciMLBasePythonCallExt = "PythonCall" - SciMLBaseRCallExt = "RCall" - SciMLBaseZygoteExt = ["Zygote", "ChainRulesCore"] - - [deps.SciMLBase.weakdeps] - ChainRules = "082447d4-558c-5d27-93f4-14fc19e9eca2" - ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" - MLStyle = "d8e11817-5142-5d16-987a-aa16d5891078" - Makie = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a" - PartialFunctions = "570af359-4316-4cb7-8c74-252c00c2016b" - PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0" - PythonCall = "6099a3de-0909-46bc-b1f4-468b9a2dfc0d" - RCall = "6f49c342-dc21-5d91-9882-a32aef131414" - Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" - -[[deps.SciMLJacobianOperators]] -deps = ["ADTypes", "ArrayInterface", "ConcreteStructs", "ConstructionBase", "DifferentiationInterface", "FastClosures", "LinearAlgebra", "SciMLBase", "SciMLOperators"] -git-tree-sha1 = "7da1216346ad79499d08d7e2a3dbf297dc80c829" -uuid = "19f34311-ddf3-4b8b-af20-060888a46c0e" -version = "0.1.6" - -[[deps.SciMLOperators]] -deps = ["Accessors", "ArrayInterface", "DocStringExtensions", "LinearAlgebra", "MacroTools"] -git-tree-sha1 = "3249fe77f322fe539e935ecb388c8290cd38a3fc" -uuid = "c0aeaf25-5076-4817-a8d5-81caf7dfa961" -version = "1.3.1" -weakdeps = ["SparseArrays", "StaticArraysCore"] - - [deps.SciMLOperators.extensions] - SciMLOperatorsSparseArraysExt = "SparseArrays" - SciMLOperatorsStaticArraysCoreExt = "StaticArraysCore" - -[[deps.SciMLStructures]] -deps = ["ArrayInterface"] -git-tree-sha1 = "566c4ed301ccb2a44cbd5a27da5f885e0ed1d5df" -uuid = "53ae85a6-f571-4167-b2af-e1d143709226" -version = "1.7.0" - -[[deps.Serialization]] -uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" -version = "1.11.0" - -[[deps.Setfield]] -deps = ["ConstructionBase", "Future", "MacroTools", "StaticArraysCore"] -git-tree-sha1 = "c5391c6ace3bc430ca630251d02ea9687169ca68" -uuid = "efcf1570-3423-57d1-acb7-fd33fddbac46" -version = "1.1.2" - -[[deps.SimpleNonlinearSolve]] -deps = ["ADTypes", "ArrayInterface", "BracketingNonlinearSolve", "CommonSolve", "ConcreteStructs", "DifferentiationInterface", "FastClosures", "FiniteDiff", "ForwardDiff", "LineSearch", "LinearAlgebra", "MaybeInplace", "NonlinearSolveBase", "PrecompileTools", "Reexport", "SciMLBase", "Setfield", "StaticArraysCore"] -git-tree-sha1 = "7aaa5fe4617271b64fce0466d187f2a72edbd81a" -uuid = "727e6d20-b764-4bd8-a329-72de5adea6c7" -version = "2.5.0" - - [deps.SimpleNonlinearSolve.extensions] - SimpleNonlinearSolveChainRulesCoreExt = "ChainRulesCore" - SimpleNonlinearSolveDiffEqBaseExt = "DiffEqBase" - SimpleNonlinearSolveReverseDiffExt = "ReverseDiff" - SimpleNonlinearSolveTrackerExt = "Tracker" - - [deps.SimpleNonlinearSolve.weakdeps] - ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" - DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e" - ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" - Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" - -[[deps.SimpleUnPack]] -git-tree-sha1 = "58e6353e72cde29b90a69527e56df1b5c3d8c437" -uuid = "ce78b400-467f-4804-87d8-8f486da07d0a" -version = "1.1.0" - -[[deps.Sockets]] -uuid = "6462fe0b-24de-5631-8697-dd941f90decc" -version = "1.11.0" - -[[deps.SparseArrays]] -deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"] -uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" -version = "1.11.0" - -[[deps.SparseMatrixColorings]] -deps = ["ADTypes", "DocStringExtensions", "LinearAlgebra", "PrecompileTools", "Random", "SparseArrays"] -git-tree-sha1 = "ab958b4fec46d1f1d057bb8e2a99bfdb90744646" -uuid = "0a514795-09f3-496d-8182-132a7b665d35" -version = "0.4.20" - - [deps.SparseMatrixColorings.extensions] - SparseMatrixColoringsCliqueTreesExt = "CliqueTrees" - SparseMatrixColoringsColorsExt = "Colors" - - [deps.SparseMatrixColorings.weakdeps] - CliqueTrees = "60701a23-6482-424a-84db-faee86b9b1f8" - Colors = "5ae59095-9a9b-59fe-a467-6f913c188581" - -[[deps.SpecialFunctions]] -deps = ["IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] -git-tree-sha1 = "41852b8679f78c8d8961eeadc8f62cef861a52e3" -uuid = "276daf66-3868-5448-9aa4-cd146d93841b" -version = "2.5.1" -weakdeps = ["ChainRulesCore"] - - [deps.SpecialFunctions.extensions] - SpecialFunctionsChainRulesCoreExt = "ChainRulesCore" - -[[deps.Static]] -deps = ["CommonWorldInvalidations", "IfElse", "PrecompileTools"] -git-tree-sha1 = "f737d444cb0ad07e61b3c1bef8eb91203c321eff" -uuid = "aedffcd0-7271-4cad-89d0-dc628f76c6d3" -version = "1.2.0" - -[[deps.StaticArrayInterface]] -deps = ["ArrayInterface", "Compat", "IfElse", "LinearAlgebra", "PrecompileTools", "Static"] -git-tree-sha1 = "96381d50f1ce85f2663584c8e886a6ca97e60554" -uuid = "0d7ed370-da01-4f52-bd93-41d350b8b718" -version = "1.8.0" - - [deps.StaticArrayInterface.extensions] - StaticArrayInterfaceOffsetArraysExt = "OffsetArrays" - StaticArrayInterfaceStaticArraysExt = "StaticArrays" - - [deps.StaticArrayInterface.weakdeps] - OffsetArrays = "6fe1bfb0-de20-5000-8ca7-80f57d26f881" - StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" - -[[deps.StaticArrays]] -deps = ["LinearAlgebra", "PrecompileTools", "Random", "StaticArraysCore"] -git-tree-sha1 = "0feb6b9031bd5c51f9072393eb5ab3efd31bf9e4" -uuid = "90137ffa-7385-5640-81b9-e52037218182" -version = "1.9.13" -weakdeps = ["ChainRulesCore", "Statistics"] - - [deps.StaticArrays.extensions] - StaticArraysChainRulesCoreExt = "ChainRulesCore" - StaticArraysStatisticsExt = "Statistics" - -[[deps.StaticArraysCore]] -git-tree-sha1 = "192954ef1208c7019899fbf8049e717f92959682" -uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" -version = "1.4.3" - -[[deps.Statistics]] -deps = ["LinearAlgebra"] -git-tree-sha1 = "ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0" -uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" -version = "1.11.1" -weakdeps = ["SparseArrays"] - - [deps.Statistics.extensions] - SparseArraysExt = ["SparseArrays"] - -[[deps.StrideArraysCore]] -deps = ["ArrayInterface", "CloseOpenIntervals", "IfElse", "LayoutPointers", "LinearAlgebra", "ManualMemory", "SIMDTypes", "Static", "StaticArrayInterface", "ThreadingUtilities"] -git-tree-sha1 = "f35f6ab602df8413a50c4a25ca14de821e8605fb" -uuid = "7792a7ef-975c-4747-a70f-980b88e8d1da" -version = "0.5.7" - -[[deps.StringManipulation]] -deps = ["PrecompileTools"] -git-tree-sha1 = "725421ae8e530ec29bcbdddbe91ff8053421d023" -uuid = "892a3eda-7b42-436c-8928-eab12a02cf0e" -version = "0.4.1" - -[[deps.SuiteSparse_jll]] -deps = ["Artifacts", "Libdl", "libblastrampoline_jll"] -uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c" -version = "7.7.0+0" - -[[deps.SymbolicIndexingInterface]] -deps = ["Accessors", "ArrayInterface", "PrettyTables", "RuntimeGeneratedFunctions", "StaticArraysCore"] -git-tree-sha1 = "b6a641e38efa01355aa721246dd246e10c7dcd4d" -uuid = "2efcf032-c050-4f8e-a9bb-153293bab1f5" -version = "0.3.40" - -[[deps.TOML]] -deps = ["Dates"] -uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" -version = "1.0.3" - -[[deps.TableTraits]] -deps = ["IteratorInterfaceExtensions"] -git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" -uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" -version = "1.0.1" - -[[deps.Tables]] -deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "OrderedCollections", "TableTraits"] -git-tree-sha1 = "f2c1efbc8f3a609aadf318094f8fc5204bdaf344" -uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" -version = "1.12.1" - -[[deps.Tar]] -deps = ["ArgTools", "SHA"] -uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" -version = "1.10.0" - -[[deps.ThreadingUtilities]] -deps = ["ManualMemory"] -git-tree-sha1 = "d969183d3d244b6c33796b5ed01ab97328f2db85" -uuid = "8290d209-cae3-49c0-8002-c8c24d57dab5" -version = "0.5.5" - -[[deps.TimerOutputs]] -deps = ["ExprTools", "Printf"] -git-tree-sha1 = "3748bd928e68c7c346b52125cf41fff0de6937d0" -uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f" -version = "0.5.29" - - [deps.TimerOutputs.extensions] - FlameGraphsExt = "FlameGraphs" - - [deps.TimerOutputs.weakdeps] - FlameGraphs = "08572546-2f56-4bcf-ba4e-bab62c3a3f89" - -[[deps.TruncatedStacktraces]] -deps = ["InteractiveUtils", "MacroTools", "Preferences"] -git-tree-sha1 = "ea3e54c2bdde39062abf5a9758a23735558705e1" -uuid = "781d530d-4396-4725-bb49-402e4bee1e77" -version = "1.4.0" - -[[deps.UUIDs]] -deps = ["Random", "SHA"] -uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" -version = "1.11.0" - -[[deps.UnPack]] -git-tree-sha1 = "387c1f73762231e86e0c9c5443ce3b4a0a9a0c2b" -uuid = "3a884ed6-31ef-47d7-9d2a-63182c4928ed" -version = "1.0.2" - -[[deps.Unicode]] -uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" -version = "1.11.0" - -[[deps.Unrolled]] -deps = ["MacroTools"] -git-tree-sha1 = "6cc9d682755680e0f0be87c56392b7651efc2c7b" -uuid = "9602ed7d-8fef-5bc8-8597-8f21381861e8" -version = "0.1.5" - -[[deps.UnsafeAtomics]] -git-tree-sha1 = "b13c4edda90890e5b04ba24e20a310fbe6f249ff" -uuid = "013be700-e6cd-48c3-b4a1-df204f14c38f" -version = "0.3.0" - - [deps.UnsafeAtomics.extensions] - UnsafeAtomicsLLVM = ["LLVM"] - - [deps.UnsafeAtomics.weakdeps] - LLVM = "929cbde3-209d-540e-8aea-75f648917ca0" - -[[deps.VectorizationBase]] -deps = ["ArrayInterface", "CPUSummary", "HostCPUFeatures", "IfElse", "LayoutPointers", "Libdl", "LinearAlgebra", "SIMDTypes", "Static", "StaticArrayInterface"] -git-tree-sha1 = "4ab62a49f1d8d9548a1c8d1a75e5f55cf196f64e" -uuid = "3d5dd08c-fd9d-11e8-17fa-ed2836048c2f" -version = "0.21.71" - -[[deps.Zlib_jll]] -deps = ["Libdl"] -uuid = "83775a58-1f1d-513f-b197-d71354ab007a" -version = "1.2.13+1" - -[[deps.libblastrampoline_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" -version = "5.11.0+0" - -[[deps.nghttp2_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" -version = "1.59.0+0" - -[[deps.oneTBB_jll]] -deps = ["Artifacts", "JLLWrappers", "Libdl"] -git-tree-sha1 = "d5a767a3bb77135a99e433afe0eb14cd7f6914c3" -uuid = "1317d2d5-d96f-522e-a858-c73665f53c3e" -version = "2022.0.0+0" - -[[deps.p7zip_jll]] -deps = ["Artifacts", "Libdl"] -uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" -version = "17.4.0+2" diff --git a/benchmark/Project.toml b/benchmark/Project.toml deleted file mode 100644 index 6a07a740..00000000 --- a/benchmark/Project.toml +++ /dev/null @@ -1,6 +0,0 @@ -[deps] -BeamTracking = "8ef5c10a-4ca3-437f-8af5-b84d8af36df0" -BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" -OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" -SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462" -StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" From ffa37799cf4fb200327573b76e7796ed3595df16 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 23 Jan 2026 00:56:23 -0500 Subject: [PATCH 69/76] remove ODE from test imports --- test/runtests.jl | 1 - 1 file changed, 1 deletion(-) diff --git a/test/runtests.jl b/test/runtests.jl index 6776358e..2485110a 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -7,7 +7,6 @@ using Test, GTPSA, StaticArrays, ReferenceFrameRotations, - OrdinaryDiffEq, SIMD using BeamTracking: Coords, KernelCall, Q0, QX, QY, QZ, STATE_ALIVE, STATE_LOST, C_LIGHT, From ab49d6c6cf4bdd13aaa938e1a149c4322ede4d43 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 23 Jan 2026 01:24:18 -0500 Subject: [PATCH 70/76] Add bencharmking script for RK4 --- benchmark/Manifest.toml | 557 ++++++++++++++++++++++++++++++ benchmark/Project.toml | 4 + benchmark/rk4_kernel_benchmark.jl | 142 ++++++++ 3 files changed, 703 insertions(+) create mode 100644 benchmark/Manifest.toml create mode 100644 benchmark/Project.toml create mode 100644 benchmark/rk4_kernel_benchmark.jl diff --git a/benchmark/Manifest.toml b/benchmark/Manifest.toml new file mode 100644 index 00000000..97bcd14e --- /dev/null +++ b/benchmark/Manifest.toml @@ -0,0 +1,557 @@ +# This file is machine-generated - editing it directly is not advised + +julia_version = "1.11.7" +manifest_format = "2.0" +project_hash = "de75b5803ad1cba7c19770d761c418a0aaedf835" + +[[deps.Accessors]] +deps = ["CompositionsBase", "ConstructionBase", "Dates", "InverseFunctions", "MacroTools"] +git-tree-sha1 = "856ecd7cebb68e5fc87abecd2326ad59f0f911f3" +uuid = "7d9f7c33-5ae7-4f3b-8dc6-eff91059b697" +version = "0.1.43" + + [deps.Accessors.extensions] + AxisKeysExt = "AxisKeys" + IntervalSetsExt = "IntervalSets" + LinearAlgebraExt = "LinearAlgebra" + StaticArraysExt = "StaticArrays" + StructArraysExt = "StructArrays" + TestExt = "Test" + UnitfulExt = "Unitful" + + [deps.Accessors.weakdeps] + AxisKeys = "94b1ba4f-4ee9-5380-92f1-94cde586c3c5" + IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953" + LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" + Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" + Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d" + +[[deps.Adapt]] +deps = ["LinearAlgebra", "Requires"] +git-tree-sha1 = "7e35fca2bdfba44d797c53dfe63a51fabf39bfc0" +uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" +version = "4.4.0" + + [deps.Adapt.extensions] + AdaptSparseArraysExt = "SparseArrays" + AdaptStaticArraysExt = "StaticArrays" + + [deps.Adapt.weakdeps] + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + +[[deps.ArrayInterface]] +deps = ["Adapt", "LinearAlgebra"] +git-tree-sha1 = "d81ae5489e13bc03567d4fbbb06c546a5e53c857" +uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9" +version = "7.22.0" + + [deps.ArrayInterface.extensions] + ArrayInterfaceBandedMatricesExt = "BandedMatrices" + ArrayInterfaceBlockBandedMatricesExt = "BlockBandedMatrices" + ArrayInterfaceCUDAExt = "CUDA" + ArrayInterfaceCUDSSExt = ["CUDSS", "CUDA"] + ArrayInterfaceChainRulesCoreExt = "ChainRulesCore" + ArrayInterfaceChainRulesExt = "ChainRules" + ArrayInterfaceGPUArraysCoreExt = "GPUArraysCore" + ArrayInterfaceMetalExt = "Metal" + ArrayInterfaceReverseDiffExt = "ReverseDiff" + ArrayInterfaceSparseArraysExt = "SparseArrays" + ArrayInterfaceStaticArraysCoreExt = "StaticArraysCore" + ArrayInterfaceTrackerExt = "Tracker" + + [deps.ArrayInterface.weakdeps] + BandedMatrices = "aae01518-5342-5314-be14-df237901396f" + BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0" + CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" + CUDSS = "45b445bb-4962-46a0-9369-b4df9d0f772e" + ChainRules = "082447d4-558c-5d27-93f4-14fc19e9eca2" + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527" + Metal = "dde4c033-4e86-420c-a63e-0dd931031962" + ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + StaticArraysCore = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" + Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" + +[[deps.Artifacts]] +uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" +version = "1.11.0" + +[[deps.AtomicAndPhysicalConstants]] +git-tree-sha1 = "1b65be9932c3c65128919fb2286084701247ccfc" +uuid = "5c0d271c-5419-4163-b387-496237733d8b" +version = "0.8.2" + +[[deps.Atomix]] +deps = ["UnsafeAtomics"] +git-tree-sha1 = "29bb0eb6f578a587a49da16564705968667f5fa8" +uuid = "a9b6321e-bd34-4604-b9c9-b65b8de01458" +version = "1.1.2" + + [deps.Atomix.extensions] + AtomixCUDAExt = "CUDA" + AtomixMetalExt = "Metal" + AtomixOpenCLExt = "OpenCL" + AtomixoneAPIExt = "oneAPI" + + [deps.Atomix.weakdeps] + CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" + Metal = "dde4c033-4e86-420c-a63e-0dd931031962" + OpenCL = "08131aa3-fb12-5dee-8b74-c09406e224a2" + oneAPI = "8f75cd03-7ff8-4ecb-9b8f-daf728133b1b" + +[[deps.Base64]] +uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" +version = "1.11.0" + +[[deps.BeamTracking]] +deps = ["Accessors", "Adapt", "AtomicAndPhysicalConstants", "GTPSA", "HostCPUFeatures", "KernelAbstractions", "MacroTools", "Random", "ReferenceFrameRotations", "SIMD", "SIMDMathFunctions", "SpecialFunctions", "StaticArrays", "Unrolled"] +path = ".." +uuid = "8ef5c10a-4ca3-437f-8af5-b84d8af36df0" +version = "0.4.2" + + [deps.BeamTracking.extensions] + BeamTrackingBeamlinesExt = "Beamlines" + + [deps.BeamTracking.weakdeps] + Beamlines = "5bb90b03-0719-46b8-8ce4-1ef3afd3cd4b" + +[[deps.BenchmarkTools]] +deps = ["Compat", "JSON", "Logging", "Printf", "Profile", "Statistics", "UUIDs"] +git-tree-sha1 = "7fecfb1123b8d0232218e2da0c213004ff15358d" +uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" +version = "1.6.3" + +[[deps.BitTwiddlingConvenienceFunctions]] +deps = ["Static"] +git-tree-sha1 = "f21cfd4950cb9f0587d5067e69405ad2acd27b87" +uuid = "62783981-4cbd-42fc-bca8-16325de8dc4b" +version = "0.1.6" + +[[deps.CPUSummary]] +deps = ["CpuId", "IfElse", "PrecompileTools", "Preferences", "Static"] +git-tree-sha1 = "f3a21d7fc84ba618a779d1ed2fcca2e682865bab" +uuid = "2a0fbf3d-bb9c-48f3-b0a9-814d99fd7ab9" +version = "0.2.7" + +[[deps.CommonWorldInvalidations]] +git-tree-sha1 = "ae52d1c52048455e85a387fbee9be553ec2b68d0" +uuid = "f70d9fcc-98c5-4d4a-abd7-e4cdeebd8ca8" +version = "1.0.0" + +[[deps.Compat]] +deps = ["TOML", "UUIDs"] +git-tree-sha1 = "9d8a54ce4b17aa5bdce0ea5c34bc5e7c340d16ad" +uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" +version = "4.18.1" +weakdeps = ["Dates", "LinearAlgebra"] + + [deps.Compat.extensions] + CompatLinearAlgebraExt = "LinearAlgebra" + +[[deps.CompilerSupportLibraries_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" +version = "1.1.1+0" + +[[deps.CompositionsBase]] +git-tree-sha1 = "802bb88cd69dfd1509f6670416bd4434015693ad" +uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b" +version = "0.1.2" +weakdeps = ["InverseFunctions"] + + [deps.CompositionsBase.extensions] + CompositionsBaseInverseFunctionsExt = "InverseFunctions" + +[[deps.ConstructionBase]] +git-tree-sha1 = "b4b092499347b18a015186eae3042f72267106cb" +uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" +version = "1.6.0" + + [deps.ConstructionBase.extensions] + ConstructionBaseIntervalSetsExt = "IntervalSets" + ConstructionBaseLinearAlgebraExt = "LinearAlgebra" + ConstructionBaseStaticArraysExt = "StaticArrays" + + [deps.ConstructionBase.weakdeps] + IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953" + LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + +[[deps.CpuId]] +deps = ["Markdown"] +git-tree-sha1 = "fcbb72b032692610bfbdb15018ac16a36cf2e406" +uuid = "adafc99b-e345-5852-983c-f28acb93d879" +version = "0.3.1" + +[[deps.Crayons]] +git-tree-sha1 = "249fe38abf76d48563e2f4556bebd215aa317e15" +uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f" +version = "4.1.1" + +[[deps.Dates]] +deps = ["Printf"] +uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" +version = "1.11.0" + +[[deps.DocStringExtensions]] +git-tree-sha1 = "7442a5dfe1ebb773c29cc2962a8980f47221d76c" +uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" +version = "0.9.5" + +[[deps.GTPSA]] +deps = ["GTPSA_jll", "LinearAlgebra", "MacroTools", "Printf", "SpecialFunctions"] +git-tree-sha1 = "d9312bc6e02a1fc219af56e78d2be7050519a04d" +uuid = "b27dd330-f138-47c5-815b-40db9dd9b6e8" +version = "1.5.1" + +[[deps.GTPSA_jll]] +deps = ["Artifacts", "JLLWrappers", "Libdl", "OpenBLAS32_jll"] +git-tree-sha1 = "421653d4ac27de5b1e34dd674169e8ac29c4adf5" +uuid = "a4739e29-4b97-5c0b-bbcf-46f08034c990" +version = "1.6.1+0" + +[[deps.HostCPUFeatures]] +deps = ["BitTwiddlingConvenienceFunctions", "IfElse", "Libdl", "Preferences", "Static"] +git-tree-sha1 = "af9ab7d1f70739a47f03be78771ebda38c3c71bf" +uuid = "3e5b6fbb-0976-4d2c-9146-d79de83f2fb0" +version = "0.1.18" + +[[deps.IfElse]] +git-tree-sha1 = "debdd00ffef04665ccbb3e150747a77560e8fad1" +uuid = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173" +version = "0.1.1" + +[[deps.InteractiveUtils]] +deps = ["Markdown"] +uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" +version = "1.11.0" + +[[deps.InverseFunctions]] +git-tree-sha1 = "a779299d77cd080bf77b97535acecd73e1c5e5cb" +uuid = "3587e190-3f89-42d0-90ee-14403ec27112" +version = "0.1.17" + + [deps.InverseFunctions.extensions] + InverseFunctionsDatesExt = "Dates" + InverseFunctionsTestExt = "Test" + + [deps.InverseFunctions.weakdeps] + Dates = "ade2ca70-3891-5945-98fb-dc099432e06a" + Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" + +[[deps.IrrationalConstants]] +git-tree-sha1 = "b2d91fe939cae05960e760110b328288867b5758" +uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" +version = "0.2.6" + +[[deps.JLLWrappers]] +deps = ["Artifacts", "Preferences"] +git-tree-sha1 = "0533e564aae234aff59ab625543145446d8b6ec2" +uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" +version = "1.7.1" + +[[deps.JSON]] +deps = ["Dates", "Logging", "Parsers", "PrecompileTools", "StructUtils", "UUIDs", "Unicode"] +git-tree-sha1 = "b3ad4a0255688dcb895a52fafbaae3023b588a90" +uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" +version = "1.4.0" + + [deps.JSON.extensions] + JSONArrowExt = ["ArrowTypes"] + + [deps.JSON.weakdeps] + ArrowTypes = "31f734f8-188a-4ce0-8406-c8a06bd891cd" + +[[deps.KernelAbstractions]] +deps = ["Adapt", "Atomix", "InteractiveUtils", "MacroTools", "PrecompileTools", "Requires", "StaticArrays", "UUIDs"] +git-tree-sha1 = "b5a371fcd1d989d844a4354127365611ae1e305f" +uuid = "63c18a36-062a-441e-b654-da1e3ab1ce7c" +version = "0.9.39" + + [deps.KernelAbstractions.extensions] + EnzymeExt = "EnzymeCore" + LinearAlgebraExt = "LinearAlgebra" + SparseArraysExt = "SparseArrays" + + [deps.KernelAbstractions.weakdeps] + EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869" + LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + +[[deps.LayoutPointers]] +deps = ["ArrayInterface", "LinearAlgebra", "ManualMemory", "SIMDTypes", "Static", "StaticArrayInterface"] +git-tree-sha1 = "a9eaadb366f5493a5654e843864c13d8b107548c" +uuid = "10f19ff3-798f-405d-979b-55457f8fc047" +version = "0.1.17" + +[[deps.Libdl]] +uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" +version = "1.11.0" + +[[deps.LinearAlgebra]] +deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] +uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" +version = "1.11.0" + +[[deps.LogExpFunctions]] +deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] +git-tree-sha1 = "13ca9e2586b89836fd20cccf56e57e2b9ae7f38f" +uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" +version = "0.3.29" + + [deps.LogExpFunctions.extensions] + LogExpFunctionsChainRulesCoreExt = "ChainRulesCore" + LogExpFunctionsChangesOfVariablesExt = "ChangesOfVariables" + LogExpFunctionsInverseFunctionsExt = "InverseFunctions" + + [deps.LogExpFunctions.weakdeps] + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + ChangesOfVariables = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" + InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" + +[[deps.Logging]] +uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" +version = "1.11.0" + +[[deps.MacroTools]] +git-tree-sha1 = "1e0228a030642014fe5cfe68c2c0a818f9e3f522" +uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" +version = "0.5.16" + +[[deps.ManualMemory]] +git-tree-sha1 = "bcaef4fc7a0cfe2cba636d84cda54b5e4e4ca3cd" +uuid = "d125e4d3-2237-4719-b19c-fa641b8a4667" +version = "0.1.8" + +[[deps.Markdown]] +deps = ["Base64"] +uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" +version = "1.11.0" + +[[deps.OpenBLAS32_jll]] +deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl"] +git-tree-sha1 = "46cce8b42186882811da4ce1f4c7208b02deb716" +uuid = "656ef2d0-ae68-5445-9ca0-591084a874a2" +version = "0.3.30+0" + +[[deps.OpenBLAS_jll]] +deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] +uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" +version = "0.3.27+1" + +[[deps.OpenLibm_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "05823500-19ac-5b8b-9628-191a04bc5112" +version = "0.8.5+0" + +[[deps.OpenSpecFun_jll]] +deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl"] +git-tree-sha1 = "1346c9208249809840c91b26703912dff463d335" +uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" +version = "0.5.6+0" + +[[deps.Parsers]] +deps = ["Dates", "PrecompileTools", "UUIDs"] +git-tree-sha1 = "7d2f8f21da5db6a806faf7b9b292296da42b2810" +uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" +version = "2.8.3" + +[[deps.PrecompileTools]] +deps = ["Preferences"] +git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f" +uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" +version = "1.2.1" + +[[deps.Preferences]] +deps = ["TOML"] +git-tree-sha1 = "522f093a29b31a93e34eaea17ba055d850edea28" +uuid = "21216c6a-2e73-6563-6e65-726566657250" +version = "1.5.1" + +[[deps.Printf]] +deps = ["Unicode"] +uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" +version = "1.11.0" + +[[deps.Profile]] +uuid = "9abbd945-dff8-562f-b5e8-e1ebf5ef1b79" +version = "1.11.0" + +[[deps.Random]] +deps = ["SHA"] +uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" +version = "1.11.0" + +[[deps.ReferenceFrameRotations]] +deps = ["Crayons", "LinearAlgebra", "Printf", "Random", "StaticArrays"] +git-tree-sha1 = "bbeaa5c8b63c066a134f2cad8cca1b8527cce9b5" +uuid = "74f56ac7-18b3-5285-802d-d4bd4f104033" +version = "3.1.2" + + [deps.ReferenceFrameRotations.extensions] + ReferenceFrameRotationsZygoteExt = ["ForwardDiff", "Zygote"] + + [deps.ReferenceFrameRotations.weakdeps] + ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" + Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" + +[[deps.Requires]] +deps = ["UUIDs"] +git-tree-sha1 = "62389eeff14780bfe55195b7204c0d8738436d64" +uuid = "ae029012-a4dd-5104-9daa-d747884805df" +version = "1.3.1" + +[[deps.SHA]] +uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" +version = "0.7.0" + +[[deps.SIMD]] +deps = ["PrecompileTools"] +git-tree-sha1 = "e24dc23107d426a096d3eae6c165b921e74c18e4" +uuid = "fdea26ae-647d-5447-a871-4b548cad5224" +version = "3.7.2" + +[[deps.SIMDMathFunctions]] +deps = ["SIMD", "SLEEFPirates", "VectorizationBase"] +git-tree-sha1 = "437d24266a7e029fa456036be76654051559fcc2" +uuid = "d22a7203-ad50-4fbc-abc4-d6ac724cca58" +version = "0.1.3" + +[[deps.SIMDTypes]] +git-tree-sha1 = "330289636fb8107c5f32088d2741e9fd7a061a5c" +uuid = "94e857df-77ce-4151-89e5-788b33177be4" +version = "0.1.0" + +[[deps.SLEEFPirates]] +deps = ["IfElse", "Static", "VectorizationBase"] +git-tree-sha1 = "456f610ca2fbd1c14f5fcf31c6bfadc55e7d66e0" +uuid = "476501e8-09a2-5ece-8869-fb82de89a1fa" +version = "0.6.43" + +[[deps.SciMLPublic]] +git-tree-sha1 = "0ba076dbdce87ba230fff48ca9bca62e1f345c9b" +uuid = "431bcebd-1456-4ced-9d72-93c2757fff0b" +version = "1.0.1" + +[[deps.SpecialFunctions]] +deps = ["IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] +git-tree-sha1 = "f2685b435df2613e25fc10ad8c26dddb8640f547" +uuid = "276daf66-3868-5448-9aa4-cd146d93841b" +version = "2.6.1" + + [deps.SpecialFunctions.extensions] + SpecialFunctionsChainRulesCoreExt = "ChainRulesCore" + + [deps.SpecialFunctions.weakdeps] + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + +[[deps.Static]] +deps = ["CommonWorldInvalidations", "IfElse", "PrecompileTools", "SciMLPublic"] +git-tree-sha1 = "49440414711eddc7227724ae6e570c7d5559a086" +uuid = "aedffcd0-7271-4cad-89d0-dc628f76c6d3" +version = "1.3.1" + +[[deps.StaticArrayInterface]] +deps = ["ArrayInterface", "Compat", "IfElse", "LinearAlgebra", "PrecompileTools", "Static"] +git-tree-sha1 = "96381d50f1ce85f2663584c8e886a6ca97e60554" +uuid = "0d7ed370-da01-4f52-bd93-41d350b8b718" +version = "1.8.0" + + [deps.StaticArrayInterface.extensions] + StaticArrayInterfaceOffsetArraysExt = "OffsetArrays" + StaticArrayInterfaceStaticArraysExt = "StaticArrays" + + [deps.StaticArrayInterface.weakdeps] + OffsetArrays = "6fe1bfb0-de20-5000-8ca7-80f57d26f881" + StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" + +[[deps.StaticArrays]] +deps = ["LinearAlgebra", "PrecompileTools", "Random", "StaticArraysCore"] +git-tree-sha1 = "eee1b9ad8b29ef0d936e3ec9838c7ec089620308" +uuid = "90137ffa-7385-5640-81b9-e52037218182" +version = "1.9.16" + + [deps.StaticArrays.extensions] + StaticArraysChainRulesCoreExt = "ChainRulesCore" + StaticArraysStatisticsExt = "Statistics" + + [deps.StaticArrays.weakdeps] + ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" + Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" + +[[deps.StaticArraysCore]] +git-tree-sha1 = "6ab403037779dae8c514bad259f32a447262455a" +uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" +version = "1.4.4" + +[[deps.Statistics]] +deps = ["LinearAlgebra"] +git-tree-sha1 = "ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0" +uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" +version = "1.11.1" + + [deps.Statistics.extensions] + SparseArraysExt = ["SparseArrays"] + + [deps.Statistics.weakdeps] + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + +[[deps.StructUtils]] +deps = ["Dates", "UUIDs"] +git-tree-sha1 = "9297459be9e338e546f5c4bedb59b3b5674da7f1" +uuid = "ec057cc2-7a8d-4b58-b3b3-92acb9f63b42" +version = "2.6.2" + + [deps.StructUtils.extensions] + StructUtilsMeasurementsExt = ["Measurements"] + StructUtilsTablesExt = ["Tables"] + + [deps.StructUtils.weakdeps] + Measurements = "eff96d63-e80a-5855-80a2-b1b0885c5ab7" + Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" + +[[deps.TOML]] +deps = ["Dates"] +uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" +version = "1.0.3" + +[[deps.UUIDs]] +deps = ["Random", "SHA"] +uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" +version = "1.11.0" + +[[deps.Unicode]] +uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" +version = "1.11.0" + +[[deps.Unrolled]] +deps = ["MacroTools"] +git-tree-sha1 = "6cc9d682755680e0f0be87c56392b7651efc2c7b" +uuid = "9602ed7d-8fef-5bc8-8597-8f21381861e8" +version = "0.1.5" + +[[deps.UnsafeAtomics]] +git-tree-sha1 = "b13c4edda90890e5b04ba24e20a310fbe6f249ff" +uuid = "013be700-e6cd-48c3-b4a1-df204f14c38f" +version = "0.3.0" + + [deps.UnsafeAtomics.extensions] + UnsafeAtomicsLLVM = ["LLVM"] + + [deps.UnsafeAtomics.weakdeps] + LLVM = "929cbde3-209d-540e-8aea-75f648917ca0" + +[[deps.VectorizationBase]] +deps = ["ArrayInterface", "CPUSummary", "HostCPUFeatures", "IfElse", "LayoutPointers", "Libdl", "LinearAlgebra", "SIMDTypes", "Static", "StaticArrayInterface"] +git-tree-sha1 = "d1d9a935a26c475ebffd54e9c7ad11627c43ea85" +uuid = "3d5dd08c-fd9d-11e8-17fa-ed2836048c2f" +version = "0.21.72" + +[[deps.libblastrampoline_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" +version = "5.11.0+0" diff --git a/benchmark/Project.toml b/benchmark/Project.toml new file mode 100644 index 00000000..eb04cdfb --- /dev/null +++ b/benchmark/Project.toml @@ -0,0 +1,4 @@ +[deps] +BeamTracking = "8ef5c10a-4ca3-437f-8af5-b84d8af36df0" +BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" +StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" diff --git a/benchmark/rk4_kernel_benchmark.jl b/benchmark/rk4_kernel_benchmark.jl new file mode 100644 index 00000000..eaf488fb --- /dev/null +++ b/benchmark/rk4_kernel_benchmark.jl @@ -0,0 +1,142 @@ +using BeamTracking +using BeamTracking: Species, massof, chargeof, R_to_beta_gamma, R_to_pc, pc_to_R, + RungeKuttaTracking, Bunch, STATE_ALIVE +using StaticArrays +using BenchmarkTools + +function setup_particle(pc=1e9) + species = Species("electron") + mc2 = massof(species) + R_ref = pc_to_R(species, pc) + + beta_gamma_0 = R_to_beta_gamma(species, R_ref) + tilde_m = 1 / beta_gamma_0 + gamsqr_0 = 1 + beta_gamma_0^2 + beta_0 = beta_gamma_0 / sqrt(gamsqr_0) + charge = chargeof(species) + p0c = R_to_pc(species, R_ref) + + return species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 +end + +function setup_solenoid_benchmark() + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) + + bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch.coords.v[1, BeamTracking.PXI] = 0.01 + + s_span = (0.0, 1.0) + ds_step = 0.01 + g_bend = 0.0 + + # Solenoid field + Bz_physical = 0.01 # Tesla + Bz_normalized = Bz_physical / R_ref + mm = SVector(0) + kn = SVector(Bz_normalized) + ks = SVector(0.0) + + return bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks +end + +function reset_bunch!(bunch) + bunch.coords.v .= 0.0 + bunch.coords.v[1, BeamTracking.PXI] = 0.01 + bunch.coords.state[1] = STATE_ALIVE +end + +# Setup +bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks = setup_solenoid_benchmark() + +println("rk4_kernel! benchmark (1 particle)") +println("=========================================") +println("s_span: $s_span, ds_step: $ds_step") +println("n_steps: $(Int(ceil((s_span[2] - s_span[1]) / ds_step)))") +println() + +# Warmup +reset_bunch!(bunch) +RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, ds_step, g_bend, + mm, kn, ks) + +# Benchmark +reset_bunch!(bunch) +b = @benchmark begin + RungeKuttaTracking.rk4_kernel!(1, $bunch.coords, $beta_0, $gamsqr_0, $tilde_m, + $charge, $p0c, $mc2, $s_span, $ds_step, $g_bend, + $mm, $kn, $ks) +end setup=(reset_bunch!($bunch)) + +display(b) +println() + +# Multi-particle benchmark +println("rk4_kernel! benchmark (1000 particles)") +println("=========================================") + +function setup_multi_particle(n_particles) + species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) + + bunch = Bunch(randn(n_particles, 6) * 0.001, R_ref=R_ref, species=species) + + s_span = (0.0, 1.0) + ds_step = 0.01 + g_bend = 0.0 + + Bz_physical = 0.01 + Bz_normalized = Bz_physical / R_ref + mm = SVector(0) + kn = SVector(Bz_normalized) + ks = SVector(0.0) + + return bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks +end + +function track_all_particles!(bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, + s_span, ds_step, g_bend, mm, kn, ks) + n = size(bunch.coords.v, 1) + for i in 1:n + RungeKuttaTracking.rk4_kernel!(i, bunch.coords, beta_0, gamsqr_0, tilde_m, + charge, p0c, mc2, s_span, ds_step, g_bend, + mm, kn, ks) + end +end + +n_particles = 1000 +bunch_mp, beta_0_mp, gamsqr_0_mp, tilde_m_mp, charge_mp, p0c_mp, mc2_mp, + s_span_mp, ds_step_mp, g_bend_mp, mm_mp, kn_mp, ks_mp = setup_multi_particle(n_particles) + +# Store initial state for reset +v_init = copy(bunch_mp.coords.v) +state_init = copy(bunch_mp.coords.state) + +function reset_multi!(bunch, v_init, state_init) + bunch.coords.v .= v_init + bunch.coords.state .= state_init +end + +# Warmup +track_all_particles!(bunch_mp, beta_0_mp, gamsqr_0_mp, tilde_m_mp, charge_mp, p0c_mp, mc2_mp, + s_span_mp, ds_step_mp, g_bend_mp, mm_mp, kn_mp, ks_mp) + +# Benchmark +b_mp = @benchmark begin + track_all_particles!($bunch_mp, $beta_0_mp, $gamsqr_0_mp, $tilde_m_mp, $charge_mp, + $p0c_mp, $mc2_mp, $s_span_mp, $ds_step_mp, $g_bend_mp, + $mm_mp, $kn_mp, $ks_mp) +end setup=(reset_multi!($bunch_mp, $v_init, $state_init)) + +display(b_mp) +println() + +# Per-particle timing +median_time_ns = median(b_mp).time +println("\nPer-particle median time: $(median_time_ns / n_particles) ns") + +reset_multi!(bunch_mp, v_init, state_init) +num_allocs_mp = @allocated track_all_particles!(bunch_mp, beta_0_mp, gamsqr_0_mp, tilde_m_mp, charge_mp, + p0c_mp, mc2_mp, s_span_mp, ds_step_mp, g_bend_mp, + mm_mp, kn_mp, ks_mp) +println("Total allocations for $n_particles particles: $num_allocs_mp bytes") +println("Per-particle allocations: $(num_allocs_mp / n_particles) bytes") From 8b6f5dfd3692b0d8e9068f24a2a900f1e2377db3 Mon Sep 17 00:00:00 2001 From: ndwang Date: Fri, 23 Jan 2026 14:53:56 -0500 Subject: [PATCH 71/76] adjust to new signatures --- ext/BeamTrackingBeamlinesExt/rungekutta.jl | 109 ++++++++++++++------- test/RungeKuttaTracking_test.jl | 48 ++++----- 2 files changed, 95 insertions(+), 62 deletions(-) diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl index d7838dea..f4e4728b 100644 --- a/ext/BeamTrackingBeamlinesExt/rungekutta.jl +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -9,33 +9,66 @@ function _track!( bunch::Bunch, ele::LineElement, tm::RungeKutta, + scalar_params::Bool, ramp_without_rf; kwargs... ) - # Get basic element properties + # Get basic element properties (type-unstable unpacking) L = float(ele.L) ap = deval(ele.AlignmentParams) bp = deval(ele.BendParams) dp = deval(ele.ApertureParams) patch = deval(ele.PatchParams) bm = deval(ele.BMultipoleParams) - R_ref = bunch.R_ref - species = bunch.species + p_over_q_ref = bunch.p_over_q_ref + + if scalar_params + L = scalarize(L) + ap = scalarize(ap) + bp = scalarize(bp) + bm = scalarize(bm) + pp = scalarize(pp) + dp = scalarize(dp) + mp = scalarize(mp) + rp = scalarize(rp) + lp = scalarize(lp) + p_over_q_ref = scalarize(p_over_q_ref) + end + + # Function barrier + runge_kutta_universal!(coords, tm, ramp_without_rf, bunch, L, p_over_q_ref, ap, bp, dp, patch, bm; kwargs...) +end +# Step 2: Type-stable computation ----------------------------------------- +function runge_kutta_universal!( + coords, + tm, + ramp_without_rf, + bunch, + L, + p_over_q_ref, + alignmentparams, + bendparams, + apertureparams, + patchparams, + bmultipoleparams; + kwargs... +) + species = bunch.species # Setup reference state - beta_gamma_ref = R_to_beta_gamma(species, R_ref) + beta_gamma_ref = R_to_beta_gamma(species, p_over_q_ref) kc = KernelChain(Val{6}(), RefState(bunch.t_ref, beta_gamma_ref)) # Evolve time through whole element bunch.t_ref += L/beta_gamma_to_v(beta_gamma_ref) # Handle reference momentum ramping - if R_ref isa TimeDependentParam - R_ref_initial = R_ref - R_ref_final = R_ref(bunch.t_ref) - if !(R_ref_initial ≈ R_ref_final) - kc = push(kc, KernelCall(BeamTracking.update_P0!, (R_ref_initial, R_ref_final, ramp_without_rf))) - setfield!(bunch, :R_ref, R_ref_final) + if p_over_q_ref isa TimeDependentParam + p_over_q_ref_initial = p_over_q_ref + p_over_q_ref_final = p_over_q_ref(bunch.t_ref) + if !(p_over_q_ref_initial ≈ p_over_q_ref_final) + kc = push(kc, KernelCall(BeamTracking.update_P0!, (p_over_q_ref_initial, p_over_q_ref_final, ramp_without_rf))) + setfield!(bunch, :p_over_q_ref, p_over_q_ref_final) end end @@ -43,32 +76,32 @@ function _track!( if L <= 0.0 error("RungeKutta tracking does not support zero-length elements") end - if isactive(patch) + if isactive(patchparams) error("RungeKutta tracking does not support patch elements") end # Entrance aperture and alignment - if isactive(ap) - if isactive(dp) - if dp.aperture_shifts_with_body - kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, true))) - kc = push(kc, @inline(aperture(tm, bunch, dp, true))) + if isactive(alignmentparams) + if isactive(apertureparams) + if apertureparams.aperture_shifts_with_body + kc = push(kc, @inline(alignment(tm, bunch, alignmentparams, bendparams, L, true))) + kc = push(kc, @inline(aperture(tm, bunch, apertureparams, true))) else - kc = push(kc, @inline(aperture(tm, bunch, dp, true))) - kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, true))) + kc = push(kc, @inline(aperture(tm, bunch, apertureparams, true))) + kc = push(kc, @inline(alignment(tm, bunch, alignmentparams, bendparams, L, true))) end else - kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, true))) + kc = push(kc, @inline(alignment(tm, bunch, alignmentparams, bendparams, L, true))) end - elseif isactive(dp) - kc = push(kc, @inline(aperture(tm, bunch, dp, true))) + elseif isactive(apertureparams) + kc = push(kc, @inline(aperture(tm, bunch, apertureparams, true))) end # Setup physics parameters - R_ref = bunch.R_ref - tilde_m, gamsqr_0, beta_0 = BeamTracking.drift_params(species, R_ref) + p_over_q_ref = bunch.p_over_q_ref + tilde_m, gamsqr_0, beta_0 = BeamTracking.drift_params(species, p_over_q_ref) charge = chargeof(species) - p0c = BeamTracking.R_to_pc(species, R_ref) + p0c = BeamTracking.R_to_pc(species, p_over_q_ref) mc2 = massof(species) # Determine step size to use @@ -83,12 +116,12 @@ function _track!( s_span = (0.0, L) # Get curvature from BendParams if present - g_bend = isactive(bp) ? bp.g_ref : 0.0 + g_bend = isactive(bendparams) ? bendparams.g_ref : 0.0 # Extract multipole parameters - if isactive(bm) - mm = bm.order - kn, ks = get_strengths(bm, L, R_ref) + if isactive(bmultipoleparams) + mm = bmultipoleparams.order + kn, ks = get_strengths(bmultipoleparams, L, p_over_q_ref) else # Default to drift mm = SVector{0, Int}() @@ -101,20 +134,20 @@ function _track!( kc = push(kc, KernelCall(BeamTracking.RungeKuttaTracking.rk4_kernel!, params)) # Exit aperture and alignment - if isactive(ap) - if isactive(dp) - if dp.aperture_shifts_with_body - kc = push(kc, @inline(aperture(tm, bunch, dp, false))) - kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, false))) + if isactive(alignmentparams) + if isactive(apertureparams) + if apertureparams.aperture_shifts_with_body + kc = push(kc, @inline(aperture(tm, bunch, apertureparams, false))) + kc = push(kc, @inline(alignment(tm, bunch, alignmentparams, bendparams, L, false))) else - kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, false))) - kc = push(kc, @inline(aperture(tm, bunch, dp, false))) + kc = push(kc, @inline(alignment(tm, bunch, alignmentparams, bendparams, L, false))) + kc = push(kc, @inline(aperture(tm, bunch, apertureparams, false))) end else - kc = push(kc, @inline(alignment(tm, bunch, ap, bp, L, false))) + kc = push(kc, @inline(alignment(tm, bunch, alignmentparams, bendparams, L, false))) end - elseif isactive(dp) - kc = push(kc, @inline(aperture(tm, bunch, dp, false))) + elseif isactive(apertureparams) + kc = push(kc, @inline(aperture(tm, bunch, apertureparams, false))) end # Launch kernels diff --git a/test/RungeKuttaTracking_test.jl b/test/RungeKuttaTracking_test.jl index 159da8e5..a897866a 100644 --- a/test/RungeKuttaTracking_test.jl +++ b/test/RungeKuttaTracking_test.jl @@ -8,24 +8,24 @@ function setup_particle(pc=1e9) # pc in eV, default corresponds to 1 GeV species = Species("electron") mc2 = massof(species) # eV - R_ref = pc_to_R(species, pc) + p_over_q_ref = pc_to_R(species, pc) # Calculate tracking parameters - beta_gamma_0 = R_to_beta_gamma(species, R_ref) + beta_gamma_0 = R_to_beta_gamma(species, p_over_q_ref) tilde_m = 1 / beta_gamma_0 gamsqr_0 = 1 + beta_gamma_0^2 beta_0 = beta_gamma_0 / sqrt(gamsqr_0) charge = chargeof(species) - p0c = R_to_pc(species, R_ref) + p0c = R_to_pc(species, p_over_q_ref) - return species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 + return species, p_over_q_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 end @testset "Pure drift" begin - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() + species, p_over_q_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() # Create bunch with small transverse momentum - bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) bunch.coords.v[1, BeamTracking.PXI] = 0.01 s_span = (0.0, 1.0) @@ -48,9 +48,9 @@ end @testset "Solenoid" begin - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) + species, p_over_q_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) - bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) bunch.coords.v[1, BeamTracking.PXI] = 0.01 s_span = (0.0, 1.0) @@ -59,7 +59,7 @@ # Solenoid field Bz_physical = 0.01 # Tesla - Bz_normalized = Bz_physical / R_ref + Bz_normalized = Bz_physical / p_over_q_ref mm = SVector(0) # Solenoid (m=0) kn = SVector(Bz_normalized) ks = SVector(0.0) @@ -79,9 +79,9 @@ end @testset "Dipole" begin - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) + species, p_over_q_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) - bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) bunch.coords.v[1, BeamTracking.PXI] = 0.01 s_span = (0.0, 1.0) @@ -90,7 +90,7 @@ # Dipole field By_physical = 0.01 # Tesla - By_normalized = By_physical / R_ref + By_normalized = By_physical / p_over_q_ref mm = SVector(1) # Dipole (m=1) kn = SVector(By_normalized) ks = SVector(0.0) @@ -106,9 +106,9 @@ end @testset "Particle loss detection" begin - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) + species, p_over_q_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) - bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) bunch.coords.v[1, BeamTracking.PXI] = 1.5 # Unphysical initial momentum s_span = (0.0, 1.0) @@ -131,10 +131,10 @@ end @testset "Convergence test" begin - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) + species, p_over_q_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) - bunch1 = Bunch(zeros(1, 6), R_ref=R_ref, species=species) - bunch2 = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch1 = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) + bunch2 = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) bunch1.coords.v[1, BeamTracking.PXI] = 0.01 bunch2.coords.v[1, BeamTracking.PXI] = 0.01 @@ -161,8 +161,8 @@ @testset "Beamlines integration - Drift" begin using Beamlines - species, R_ref, _, _, _, _, _, _ = setup_particle() - bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + species, p_over_q_ref, _, _, _, _, _, _ = setup_particle() + bunch = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) bunch.coords.v[1, BeamTracking.PXI] = 0.01 drift_ele = Drift(L=1.0) @@ -178,8 +178,8 @@ @testset "Beamlines integration - SBend" begin using Beamlines - species, R_ref, _, _, _, _, _, _ = setup_particle() - bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + species, p_over_q_ref, _, _, _, _, _, _ = setup_particle() + bunch = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) bunch.coords.v[1, BeamTracking.PXI] = 0.01 sbend_ele = SBend(L=1.0, angle=pi/132) @@ -195,19 +195,19 @@ @testset "RungeKutta with different step configurations" begin using Beamlines - species, R_ref, _, _, _, _, _, _ = setup_particle() + species, p_over_q_ref, _, _, _, _, _, _ = setup_particle() # Test with ds_step drift_ds = Drift(L=1.0) drift_ds.tracking_method = RungeKutta(ds_step=0.1) - bunch_ds = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch_ds = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) bunch_ds.coords.v[1, BeamTracking.PXI] = 0.01 track!(bunch_ds, drift_ds) # Test with n_steps drift_ns = Drift(L=1.0) drift_ns.tracking_method = RungeKutta(n_steps=10) - bunch_ns = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch_ns = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) bunch_ns.coords.v[1, BeamTracking.PXI] = 0.01 track!(bunch_ns, drift_ns) From d70bd1ff1feae43658117d38b638670a956448ea Mon Sep 17 00:00:00 2001 From: ndwang Date: Sat, 24 Jan 2026 18:23:00 -0500 Subject: [PATCH 72/76] Add RungeKutta constructor test and zero-length element test --- test/RungeKuttaTracking_test.jl | 47 +++++++++++++++++++++++++++++++++ 1 file changed, 47 insertions(+) diff --git a/test/RungeKuttaTracking_test.jl b/test/RungeKuttaTracking_test.jl index a897866a..9d2754e2 100644 --- a/test/RungeKuttaTracking_test.jl +++ b/test/RungeKuttaTracking_test.jl @@ -21,6 +21,33 @@ return species, p_over_q_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 end + @testset "RungeKutta constructor" begin + using BeamTracking: RungeKutta + + # Test default constructor (no arguments) + rk_default = RungeKutta() + @test rk_default.ds_step == 0.2 + @test rk_default.n_steps == -1 + + # Test constructor with ds_step only + rk_ds = RungeKutta(ds_step=0.1) + @test rk_ds.ds_step == 0.1 + @test rk_ds.n_steps == -1 + + # Test constructor with n_steps only + rk_ns = RungeKutta(n_steps=50) + @test rk_ns.ds_step == -1.0 + @test rk_ns.n_steps == 50 + + # Test constructor with both ds_step and n_steps (should error) + @test_throws ErrorException RungeKutta(ds_step=0.1, n_steps=50) + + # Test constructor with explicit nothing values (should use defaults) + rk_nothing = RungeKutta(ds_step=nothing, n_steps=nothing) + @test rk_nothing.ds_step == 0.2 + @test rk_nothing.n_steps == -1 + end + @testset "Pure drift" begin species, p_over_q_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle() @@ -215,4 +242,24 @@ @test isapprox(bunch_ds.coords.v, bunch_ns.coords.v, rtol=1e-2) end + @testset "Zero-length elements" begin + using Beamlines + + species, p_over_q_ref, _, _, _, _, _, _ = setup_particle() + + # Test zero-length drift should throw an error + drift_zero = Drift(L=0.0) + drift_zero.tracking_method = RungeKutta() + bunch_drift = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) + + @test_throws ErrorException track!(bunch_drift, drift_zero) + + # Test negative length should also throw an error + drift_negative = Drift(L=-0.1) + drift_negative.tracking_method = RungeKutta() + bunch_negative = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) + + @test_throws ErrorException track!(bunch_negative, drift_negative) + end + end From 866420f37cfd61699aade5f456cf2a3bf2e14353 Mon Sep 17 00:00:00 2001 From: ndwang Date: Mon, 9 Feb 2026 01:20:39 -0500 Subject: [PATCH 73/76] Update R_ref in benchmark to p_over_q_ref --- benchmark/rk4_kernel_benchmark.jl | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/benchmark/rk4_kernel_benchmark.jl b/benchmark/rk4_kernel_benchmark.jl index eaf488fb..547c784b 100644 --- a/benchmark/rk4_kernel_benchmark.jl +++ b/benchmark/rk4_kernel_benchmark.jl @@ -7,22 +7,22 @@ using BenchmarkTools function setup_particle(pc=1e9) species = Species("electron") mc2 = massof(species) - R_ref = pc_to_R(species, pc) + p_over_q_ref = pc_to_R(species, pc) - beta_gamma_0 = R_to_beta_gamma(species, R_ref) + beta_gamma_0 = R_to_beta_gamma(species, p_over_q_ref) tilde_m = 1 / beta_gamma_0 gamsqr_0 = 1 + beta_gamma_0^2 beta_0 = beta_gamma_0 / sqrt(gamsqr_0) charge = chargeof(species) - p0c = R_to_pc(species, R_ref) + p0c = R_to_pc(species, p_over_q_ref) - return species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 + return species, p_over_q_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 end function setup_solenoid_benchmark() - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) + species, p_over_q_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) - bunch = Bunch(zeros(1, 6), R_ref=R_ref, species=species) + bunch = Bunch(zeros(1, 6), p_over_q_ref=p_over_q_ref, species=species) bunch.coords.v[1, BeamTracking.PXI] = 0.01 s_span = (0.0, 1.0) @@ -31,7 +31,7 @@ function setup_solenoid_benchmark() # Solenoid field Bz_physical = 0.01 # Tesla - Bz_normalized = Bz_physical / R_ref + Bz_normalized = Bz_physical / p_over_q_ref mm = SVector(0) kn = SVector(Bz_normalized) ks = SVector(0.0) @@ -76,16 +76,16 @@ println("rk4_kernel! benchmark (1000 particles)") println("=========================================") function setup_multi_particle(n_particles) - species, R_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) + species, p_over_q_ref, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2 = setup_particle(1e9) - bunch = Bunch(randn(n_particles, 6) * 0.001, R_ref=R_ref, species=species) + bunch = Bunch(randn(n_particles, 6) * 0.001, p_over_q_ref=p_over_q_ref, species=species) s_span = (0.0, 1.0) ds_step = 0.01 g_bend = 0.0 Bz_physical = 0.01 - Bz_normalized = Bz_physical / R_ref + Bz_normalized = Bz_physical / p_over_q_ref mm = SVector(0) kn = SVector(Bz_normalized) ks = SVector(0.0) From 37f22f2b7a154a80d0007945177ff7044fad3611 Mon Sep 17 00:00:00 2001 From: ndwang Date: Mon, 9 Feb 2026 14:33:51 -0500 Subject: [PATCH 74/76] Update multipole_em_field to return fields in physical units --- benchmark/rk4_kernel_benchmark.jl | 22 ++++++++-------- ext/BeamTrackingBeamlinesExt/rungekutta.jl | 2 +- src/modules/RungeKuttaTracking.jl | 29 +++++++++++----------- test/RungeKuttaTracking_test.jl | 18 +++++++------- 4 files changed, 36 insertions(+), 35 deletions(-) diff --git a/benchmark/rk4_kernel_benchmark.jl b/benchmark/rk4_kernel_benchmark.jl index 547c784b..5d9e1ca1 100644 --- a/benchmark/rk4_kernel_benchmark.jl +++ b/benchmark/rk4_kernel_benchmark.jl @@ -36,7 +36,7 @@ function setup_solenoid_benchmark() kn = SVector(Bz_normalized) ks = SVector(0.0) - return bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks + return bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref end function reset_bunch!(bunch) @@ -46,7 +46,7 @@ function reset_bunch!(bunch) end # Setup -bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks = setup_solenoid_benchmark() +bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref = setup_solenoid_benchmark() println("rk4_kernel! benchmark (1 particle)") println("=========================================") @@ -58,14 +58,14 @@ println() reset_bunch!(bunch) RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, - mm, kn, ks) + mm, kn, ks, p_over_q_ref) # Benchmark reset_bunch!(bunch) b = @benchmark begin RungeKuttaTracking.rk4_kernel!(1, $bunch.coords, $beta_0, $gamsqr_0, $tilde_m, $charge, $p0c, $mc2, $s_span, $ds_step, $g_bend, - $mm, $kn, $ks) + $mm, $kn, $ks, $p_over_q_ref) end setup=(reset_bunch!($bunch)) display(b) @@ -90,22 +90,22 @@ function setup_multi_particle(n_particles) kn = SVector(Bz_normalized) ks = SVector(0.0) - return bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks + return bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref end function track_all_particles!(bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, - s_span, ds_step, g_bend, mm, kn, ks) + s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) n = size(bunch.coords.v, 1) for i in 1:n RungeKuttaTracking.rk4_kernel!(i, bunch.coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, - mm, kn, ks) + mm, kn, ks, p_over_q_ref) end end n_particles = 1000 bunch_mp, beta_0_mp, gamsqr_0_mp, tilde_m_mp, charge_mp, p0c_mp, mc2_mp, - s_span_mp, ds_step_mp, g_bend_mp, mm_mp, kn_mp, ks_mp = setup_multi_particle(n_particles) + s_span_mp, ds_step_mp, g_bend_mp, mm_mp, kn_mp, ks_mp, p_over_q_ref_mp = setup_multi_particle(n_particles) # Store initial state for reset v_init = copy(bunch_mp.coords.v) @@ -118,13 +118,13 @@ end # Warmup track_all_particles!(bunch_mp, beta_0_mp, gamsqr_0_mp, tilde_m_mp, charge_mp, p0c_mp, mc2_mp, - s_span_mp, ds_step_mp, g_bend_mp, mm_mp, kn_mp, ks_mp) + s_span_mp, ds_step_mp, g_bend_mp, mm_mp, kn_mp, ks_mp, p_over_q_ref_mp) # Benchmark b_mp = @benchmark begin track_all_particles!($bunch_mp, $beta_0_mp, $gamsqr_0_mp, $tilde_m_mp, $charge_mp, $p0c_mp, $mc2_mp, $s_span_mp, $ds_step_mp, $g_bend_mp, - $mm_mp, $kn_mp, $ks_mp) + $mm_mp, $kn_mp, $ks_mp, $p_over_q_ref_mp) end setup=(reset_multi!($bunch_mp, $v_init, $state_init)) display(b_mp) @@ -137,6 +137,6 @@ println("\nPer-particle median time: $(median_time_ns / n_particles) ns") reset_multi!(bunch_mp, v_init, state_init) num_allocs_mp = @allocated track_all_particles!(bunch_mp, beta_0_mp, gamsqr_0_mp, tilde_m_mp, charge_mp, p0c_mp, mc2_mp, s_span_mp, ds_step_mp, g_bend_mp, - mm_mp, kn_mp, ks_mp) + mm_mp, kn_mp, ks_mp, p_over_q_ref_mp) println("Total allocations for $n_particles particles: $num_allocs_mp bytes") println("Per-particle allocations: $(num_allocs_mp / n_particles) bytes") diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl index f4e4728b..88a9c0eb 100644 --- a/ext/BeamTrackingBeamlinesExt/rungekutta.jl +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -130,7 +130,7 @@ function runge_kutta_universal!( end # Build RK4 kernel call - params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks) + params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) kc = push(kc, KernelCall(BeamTracking.RungeKuttaTracking.rk4_kernel!, params)) # Exit aperture and alignment diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index bb020492..e17ee265 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -11,7 +11,7 @@ using ..BeamTracking: C_LIGHT, E_CHARGE, vifelse, normalized_field """ - multipole_em_field(x, y, z, s, mm, kn, ks) + multipole_em_field(x, y, z, s, mm, kn, ks, p_over_q_ref) Compute EM field from multipole moments for RK4 tracking. Handles ALL multipole orders: @@ -19,21 +19,22 @@ Handles ALL multipole orders: - m=1: dipole (transverse By, Bx) - m≥2: higher-order multipoles (quadrupole, sextupole, etc.) -Returns (Ex, Ey, Ez, Bx, By, Bz) where: -- Bx, By: transverse field from all orders except m=0 (via normalized_field) +Returns (Ex, Ey, Ez, Bx, By, Bz) in physical units (Tesla for B, V/m for E) where: +- Bx, By: transverse field from all orders except m=0 - Bz: longitudinal field from m=0 term if present - Ex, Ey, Ez: zero (static magnetic elements only) """ -@inline function multipole_em_field(x, y, z, s, mm::SVector{0}, kn, ks) +@inline function multipole_em_field(x, y, z, s, mm::SVector{0}, kn, ks, p_over_q_ref) return (zero(x), zero(x), zero(x), zero(x), zero(x), zero(x)) end -@inline function multipole_em_field(x, y, z, s, mm::SVector{N}, kn, ks) where N +@inline function multipole_em_field(x, y, z, s, mm::SVector{N}, kn, ks, p_over_q_ref) where N bx, by = normalized_field(mm, kn, ks, x, y, 0) is_solenoid = (mm[1] == 0) bz = vifelse(is_solenoid, kn[1], zero(x)) - return (zero(x), zero(x), zero(x), bx, by, bz) + # Convert from normalized (field/Bρ) to physical units (Tesla) + return (zero(x), zero(x), zero(x), bx * p_over_q_ref, by * p_over_q_ref, bz * p_over_q_ref) end """ @@ -163,7 +164,7 @@ Only updates state if particle is alive. - `p0c`: Reference momentum × c (eV) - `mc2`: Rest mass energy (eV) """ -@inline function rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) +@inline function rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2, p_over_q_ref) # Check if particle is alive alive = (coords.state[i] == STATE_ALIVE) @@ -177,7 +178,7 @@ Only updates state if particle is alive. pz = v[i, PZI] # k1 = f(u, s) - Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x, y, z, s, mm, kn, ks) + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x, y, z, s, mm, kn, ks, p_over_q_ref) k1 = kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -189,7 +190,7 @@ Only updates state if particle is alive. py2 = py + h2 * k1[4] z2 = z + h2 * k1[5] pz2 = pz + h2 * k1[6] - Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x2, y2, z2, s + h2, mm, kn, ks) + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x2, y2, z2, s + h2, mm, kn, ks, p_over_q_ref) k2 = kick_vector(x2, px2, y2, py2, z2, pz2, s + h2, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -200,7 +201,7 @@ Only updates state if particle is alive. py3 = py + h2 * k2[4] z3 = z + h2 * k2[5] pz3 = pz + h2 * k2[6] - Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x3, y3, z3, s + h2, mm, kn, ks) + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x3, y3, z3, s + h2, mm, kn, ks, p_over_q_ref) k3 = kick_vector(x3, px3, y3, py3, z3, pz3, s + h2, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -211,7 +212,7 @@ Only updates state if particle is alive. py4 = py + h * k3[4] z4 = z + h * k3[5] pz4 = pz + h * k3[6] - Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x4, y4, z4, s + h, mm, kn, ks) + Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x4, y4, z4, s + h, mm, kn, ks, p_over_q_ref) k4 = kick_vector(x4, px4, y4, py4, z4, pz4, s + h, Ex, Ey, Ez, Bx, By, Bz, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) @@ -228,7 +229,7 @@ end """ rk4_kernel!(i, coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, - s_span, ds_step, g_bend, mm, kn, ks) + s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) Kernelized RK4 tracking through multipole fields. Compatible with @makekernel and the package's kernel architecture. @@ -237,7 +238,7 @@ The electromagnetic field is computed from multipole moments (mm, kn, ks) using the multipole_em_field function. """ @makekernel function rk4_kernel!(i, coords::Coords, beta_0, gamsqr_0, tilde_m, - charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks) + charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) # Check if particle is alive at start alive_at_start = (coords.state[i] == STATE_ALIVE) @@ -264,7 +265,7 @@ the multipole_em_field function. coords.state[i] = vifelse((vt2 >= 1.0) & alive, STATE_LOST_PZ, coords.state[i]) # Perform RK4 step (check for alive status is now inside rk4_step!) - rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2, p_over_q_ref) s += h end end diff --git a/test/RungeKuttaTracking_test.jl b/test/RungeKuttaTracking_test.jl index 9d2754e2..d80b0ecf 100644 --- a/test/RungeKuttaTracking_test.jl +++ b/test/RungeKuttaTracking_test.jl @@ -66,7 +66,7 @@ RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, - mm, kn, ks) + mm, kn, ks, p_over_q_ref) # Regression test solution = [0.0100005 0.01 0.0 0.0 -5.00038e-5 0.0] @@ -93,14 +93,14 @@ RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, - mm, kn, ks) + mm, kn, ks, p_over_q_ref) # In uniform B-field, particle should follow circular path # Total transverse momentum should be conserved pt2 = bunch.coords.v[1, 2]^2 + bunch.coords.v[1, 4]^2 @test isapprox(pt2, 0.01^2, rtol=1e-4) # Regression test - solution = [0.0100005 0.01 -4.49423e-6 -8.988e-6 -5.00038e-5 0.0] + solution = [0.010000485056009705 0.009999955057780502 1.4991110783291216e-5 2.9980699961334158e-5 -5.000375031233078e-5 0.0] @test isapprox(bunch.coords.v, solution, rtol=1e-6) @test bunch.coords.state[1] == STATE_ALIVE end @@ -124,10 +124,10 @@ RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, - mm, kn, ks) + mm, kn, ks, p_over_q_ref) # Regression test - solution = [0.00955106 0.00910124 0.0 0.0 -4.5644e-5 0.0] + solution = [0.011499735519796054 0.012997924579999955 0.0 0.0 -6.649432859025015e-5 0.0] @test isapprox(bunch.coords.v, solution, rtol=1e-6) @test bunch.coords.state[1] == STATE_ALIVE end @@ -149,7 +149,7 @@ RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, - mm, kn, ks) + mm, kn, ks, p_over_q_ref) # Particle should not track solution = [0.0 1.5 0.0 0.0 0.0 0.0] @@ -176,10 +176,10 @@ # Track with different step sizes RungeKuttaTracking.rk4_kernel!(1, bunch1.coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, 0.1, g_bend, - mm, kn, ks) + mm, kn, ks, p_over_q_ref) RungeKuttaTracking.rk4_kernel!(1, bunch2.coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, 0.05, g_bend, - mm, kn, ks) + mm, kn, ks, p_over_q_ref) # Results should be identical @test isapprox(bunch1.coords.v, bunch2.coords.v, rtol=1e-2) @@ -215,7 +215,7 @@ track!(bunch, sbend_ele) # Regression test - solution = [0.02548426139361667 0.040928045820272416 0.0 0.0 -0.0006063129051164828 0.0] + solution = [0.010000150630002367 0.009995978032305387 0.0 0.0 -0.00016899908120890584 0.0] @test isapprox(bunch.coords.v, solution, rtol=1e-6) end From d55580bef07a44d7ad7cb5846202f8286ce39bb9 Mon Sep 17 00:00:00 2001 From: ndwang Date: Mon, 9 Feb 2026 14:34:13 -0500 Subject: [PATCH 75/76] Clean up dead variables --- benchmark/rk4_kernel_benchmark.jl | 20 ++++++++--------- ext/BeamTrackingBeamlinesExt/rungekutta.jl | 4 ++-- src/modules/RungeKuttaTracking.jl | 26 +++++++++------------- test/RungeKuttaTracking_test.jl | 12 +++++----- 4 files changed, 29 insertions(+), 33 deletions(-) diff --git a/benchmark/rk4_kernel_benchmark.jl b/benchmark/rk4_kernel_benchmark.jl index 5d9e1ca1..35f2be21 100644 --- a/benchmark/rk4_kernel_benchmark.jl +++ b/benchmark/rk4_kernel_benchmark.jl @@ -36,7 +36,7 @@ function setup_solenoid_benchmark() kn = SVector(Bz_normalized) ks = SVector(0.0) - return bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref + return bunch, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref end function reset_bunch!(bunch) @@ -46,7 +46,7 @@ function reset_bunch!(bunch) end # Setup -bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref = setup_solenoid_benchmark() +bunch, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref = setup_solenoid_benchmark() println("rk4_kernel! benchmark (1 particle)") println("=========================================") @@ -56,14 +56,14 @@ println() # Warmup reset_bunch!(bunch) -RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, +RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) # Benchmark reset_bunch!(bunch) b = @benchmark begin - RungeKuttaTracking.rk4_kernel!(1, $bunch.coords, $beta_0, $gamsqr_0, $tilde_m, + RungeKuttaTracking.rk4_kernel!(1, $bunch.coords, $beta_0, $tilde_m, $charge, $p0c, $mc2, $s_span, $ds_step, $g_bend, $mm, $kn, $ks, $p_over_q_ref) end setup=(reset_bunch!($bunch)) @@ -90,21 +90,21 @@ function setup_multi_particle(n_particles) kn = SVector(Bz_normalized) ks = SVector(0.0) - return bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref + return bunch, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref end -function track_all_particles!(bunch, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, +function track_all_particles!(bunch, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) n = size(bunch.coords.v, 1) for i in 1:n - RungeKuttaTracking.rk4_kernel!(i, bunch.coords, beta_0, gamsqr_0, tilde_m, + RungeKuttaTracking.rk4_kernel!(i, bunch.coords, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) end end n_particles = 1000 -bunch_mp, beta_0_mp, gamsqr_0_mp, tilde_m_mp, charge_mp, p0c_mp, mc2_mp, +bunch_mp, beta_0_mp, tilde_m_mp, charge_mp, p0c_mp, mc2_mp, s_span_mp, ds_step_mp, g_bend_mp, mm_mp, kn_mp, ks_mp, p_over_q_ref_mp = setup_multi_particle(n_particles) # Store initial state for reset @@ -117,12 +117,12 @@ function reset_multi!(bunch, v_init, state_init) end # Warmup -track_all_particles!(bunch_mp, beta_0_mp, gamsqr_0_mp, tilde_m_mp, charge_mp, p0c_mp, mc2_mp, +track_all_particles!(bunch_mp, beta_0_mp, tilde_m_mp, charge_mp, p0c_mp, mc2_mp, s_span_mp, ds_step_mp, g_bend_mp, mm_mp, kn_mp, ks_mp, p_over_q_ref_mp) # Benchmark b_mp = @benchmark begin - track_all_particles!($bunch_mp, $beta_0_mp, $gamsqr_0_mp, $tilde_m_mp, $charge_mp, + track_all_particles!($bunch_mp, $beta_0_mp, $tilde_m_mp, $charge_mp, $p0c_mp, $mc2_mp, $s_span_mp, $ds_step_mp, $g_bend_mp, $mm_mp, $kn_mp, $ks_mp, $p_over_q_ref_mp) end setup=(reset_multi!($bunch_mp, $v_init, $state_init)) diff --git a/ext/BeamTrackingBeamlinesExt/rungekutta.jl b/ext/BeamTrackingBeamlinesExt/rungekutta.jl index 88a9c0eb..a7336f3d 100644 --- a/ext/BeamTrackingBeamlinesExt/rungekutta.jl +++ b/ext/BeamTrackingBeamlinesExt/rungekutta.jl @@ -99,7 +99,7 @@ function runge_kutta_universal!( # Setup physics parameters p_over_q_ref = bunch.p_over_q_ref - tilde_m, gamsqr_0, beta_0 = BeamTracking.drift_params(species, p_over_q_ref) + tilde_m, _, beta_0 = BeamTracking.drift_params(species, p_over_q_ref) charge = chargeof(species) p0c = BeamTracking.R_to_pc(species, p_over_q_ref) mc2 = massof(species) @@ -130,7 +130,7 @@ function runge_kutta_universal!( end # Build RK4 kernel call - params = (beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) + params = (beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) kc = push(kc, KernelCall(BeamTracking.RungeKuttaTracking.rk4_kernel!, params)) # Exit aperture and alignment diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index e17ee265..0df7d0bd 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -39,7 +39,7 @@ end """ kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + charge, tilde_m, beta_0, g_bend, p0c, mc2) Calculate the derivative vector du/ds for relativistic particle tracking. Returns an SVector{6} containing [dx/ds, dpx/ds, dy/ds, dpy/ds, dz/ds, dpz/ds]. @@ -55,13 +55,12 @@ returns zero derivatives (caller should mark particle as lost). - `charge`: Particle charge in units of e - `tilde_m`: Normalized mass mc²/(p₀c) - `beta_0`: Reference velocity β₀ = v₀/c -- `gamsqr_0`: Squared reference Lorentz factor γ₀² - `g_bend`: Curvature (0 for drift, 1/ρ for bends) - `p0c`: Reference momentum × c (eV) - `mc2`: Rest mass energy (eV) """ @inline function kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + charge, tilde_m, beta_0, g_bend, p0c, mc2) # Relative momentum rel_p = 1 + pz @@ -159,12 +158,12 @@ Only updates state if particle is alive. - `charge`: Particle charge in units of e - `tilde_m`: Normalized mass mc²/(p₀c) - `beta_0`: Reference velocity β₀ = v₀/c -- `gamsqr_0`: Squared reference Lorentz factor γ₀² - `g_bend`: Curvature (0 for drift, 1/ρ for bends) - `p0c`: Reference momentum × c (eV) - `mc2`: Rest mass energy (eV) +- `p_over_q_ref`: Reference magnetic rigidity Bρ = p₀c/(c·charge) """ -@inline function rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2, p_over_q_ref) +@inline function rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, g_bend, p0c, mc2, p_over_q_ref) # Check if particle is alive alive = (coords.state[i] == STATE_ALIVE) @@ -180,7 +179,7 @@ Only updates state if particle is alive. # k1 = f(u, s) Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x, y, z, s, mm, kn, ks, p_over_q_ref) k1 = kick_vector(x, px, y, py, z, pz, s, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + charge, tilde_m, beta_0, g_bend, p0c, mc2) # k2 = f(u + h/2 * k1, s + h/2) h2 = h / 2 @@ -192,7 +191,7 @@ Only updates state if particle is alive. pz2 = pz + h2 * k1[6] Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x2, y2, z2, s + h2, mm, kn, ks, p_over_q_ref) k2 = kick_vector(x2, px2, y2, py2, z2, pz2, s + h2, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + charge, tilde_m, beta_0, g_bend, p0c, mc2) # k3 = f(u + h/2 * k2, s + h/2) x3 = x + h2 * k2[1] @@ -203,7 +202,7 @@ Only updates state if particle is alive. pz3 = pz + h2 * k2[6] Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x3, y3, z3, s + h2, mm, kn, ks, p_over_q_ref) k3 = kick_vector(x3, px3, y3, py3, z3, pz3, s + h2, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + charge, tilde_m, beta_0, g_bend, p0c, mc2) # k4 = f(u + h * k3, s + h) x4 = x + h * k3[1] @@ -214,7 +213,7 @@ Only updates state if particle is alive. pz4 = pz + h * k3[6] Ex, Ey, Ez, Bx, By, Bz = multipole_em_field(x4, y4, z4, s + h, mm, kn, ks, p_over_q_ref) k4 = kick_vector(x4, px4, y4, py4, z4, pz4, s + h, Ex, Ey, Ez, Bx, By, Bz, - charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2) + charge, tilde_m, beta_0, g_bend, p0c, mc2) # Update state: u += h/6 * (k1 + 2*k2 + 2*k3 + k4) # Only update if particle is alive @@ -228,7 +227,7 @@ Only updates state if particle is alive. end """ - rk4_kernel!(i, coords, beta_0, gamsqr_0, tilde_m, charge, p0c, mc2, + rk4_kernel!(i, coords, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) Kernelized RK4 tracking through multipole fields. @@ -237,11 +236,8 @@ Compatible with @makekernel and the package's kernel architecture. The electromagnetic field is computed from multipole moments (mm, kn, ks) using the multipole_em_field function. """ -@makekernel function rk4_kernel!(i, coords::Coords, beta_0, gamsqr_0, tilde_m, +@makekernel function rk4_kernel!(i, coords::Coords, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) - # Check if particle is alive at start - alive_at_start = (coords.state[i] == STATE_ALIVE) - s_start = s_span[1] s_end = s_span[2] s = s_start @@ -265,7 +261,7 @@ the multipole_em_field function. coords.state[i] = vifelse((vt2 >= 1.0) & alive, STATE_LOST_PZ, coords.state[i]) # Perform RK4 step (check for alive status is now inside rk4_step!) - rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, gamsqr_0, g_bend, p0c, mc2, p_over_q_ref) + rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, g_bend, p0c, mc2, p_over_q_ref) s += h end end diff --git a/test/RungeKuttaTracking_test.jl b/test/RungeKuttaTracking_test.jl index d80b0ecf..476c3def 100644 --- a/test/RungeKuttaTracking_test.jl +++ b/test/RungeKuttaTracking_test.jl @@ -64,7 +64,7 @@ kn = SVector{0, Float64}() ks = SVector{0, Float64}() - RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) @@ -91,7 +91,7 @@ kn = SVector(Bz_normalized) ks = SVector(0.0) - RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) @@ -122,7 +122,7 @@ kn = SVector(By_normalized) ks = SVector(0.0) - RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) @@ -147,7 +147,7 @@ kn = SVector{0, Float64}() ks = SVector{0, Float64}() - RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, gamsqr_0, tilde_m, + RungeKuttaTracking.rk4_kernel!(1, bunch.coords, beta_0, tilde_m, charge, p0c, mc2, s_span, ds_step, g_bend, mm, kn, ks, p_over_q_ref) @@ -174,10 +174,10 @@ ks = SVector{0, Float64}() # Track with different step sizes - RungeKuttaTracking.rk4_kernel!(1, bunch1.coords, beta_0, gamsqr_0, tilde_m, + RungeKuttaTracking.rk4_kernel!(1, bunch1.coords, beta_0, tilde_m, charge, p0c, mc2, s_span, 0.1, g_bend, mm, kn, ks, p_over_q_ref) - RungeKuttaTracking.rk4_kernel!(1, bunch2.coords, beta_0, gamsqr_0, tilde_m, + RungeKuttaTracking.rk4_kernel!(1, bunch2.coords, beta_0, tilde_m, charge, p0c, mc2, s_span, 0.05, g_bend, mm, kn, ks, p_over_q_ref) From 4ba9485867e0f16322cae62c34f7a76ea504eb92 Mon Sep 17 00:00:00 2001 From: ndwang Date: Tue, 10 Feb 2026 21:02:22 -0500 Subject: [PATCH 76/76] Changing 1.0 to 1 to avoid promotion --- src/modules/RungeKuttaTracking.jl | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/src/modules/RungeKuttaTracking.jl b/src/modules/RungeKuttaTracking.jl index 0df7d0bd..c2a29be1 100644 --- a/src/modules/RungeKuttaTracking.jl +++ b/src/modules/RungeKuttaTracking.jl @@ -79,7 +79,7 @@ returns zero derivatives (caller should mark particle as lost). inv_gamma_v = sqrt(rel_p2 + tilde_m^2) beta = rel_p / inv_gamma_v - inv_beta_c = 1.0 / (beta * C_LIGHT) + inv_beta_c = 1 / (beta * C_LIGHT) # Longitudinal velocity component rel_dir = 1 # +1 for forward tracking @@ -254,11 +254,11 @@ the multipole_em_field function. # Chck if particle is lost rel_p = 1 + v[i, PZI] - inv_rel_p = 1.0 / rel_p + inv_rel_p = 1 / rel_p vt2 = (v[i, PXI] * inv_rel_p)^2 + (v[i, PYI] * inv_rel_p)^2 alive = (coords.state[i] == STATE_ALIVE) # Mark particle as lost - coords.state[i] = vifelse((vt2 >= 1.0) & alive, STATE_LOST_PZ, coords.state[i]) + coords.state[i] = vifelse((vt2 >= 1) & alive, STATE_LOST_PZ, coords.state[i]) # Perform RK4 step (check for alive status is now inside rk4_step!) rk4_step!(coords, i, s, h, mm, kn, ks, charge, tilde_m, beta_0, g_bend, p0c, mc2, p_over_q_ref)