You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -23,7 +23,7 @@ There are many hyperlinks, marked in blue, to help both learning and revising a
23
23
-[Galois Theory](ii/mich/galois_theory.pdf) (2017, C. Brookes)
24
24
-[Graph Theory](ii/mich/graph_theory.pdf) (2017, P. Russell)
25
25
-[Linear Analysis](ii/mich/linear_analysis.pdf) (2017, R. Bauerschmidt)
26
-
-[Number Theory](ii/mich/number_theory2.pdf) (2017, A. Scholl)
26
+
-[Number Theory](ii/mich/number_theory.pdf) (2017, A. Scholl)
27
27
-~~[Probability and Measure](ii/mich/probability_and_measure.pdf) (2017, E. Breuillard)~~ very incomplete. I'll be using [these notes](http://www.statslab.cam.ac.uk/~james/Lectures/pm.pdf) instead.
and $\forall\theta$, $3 + 4\cos\theta + \cos(2\theta) \geq0$. But the left hand side is $\Re(3 + 4 e^{i\theta} + e^{2 i \theta})$, i.e.\ $\forall z$, $|z| =1$, $\Re(3 +4z+z^2) \geq0$.
2512
2512
% it is a dir series with nn coeffs, so \geq 0
@@ -2702,7 +2702,7 @@ \subsection{Prime Number Theorem for Arithmetic Progressions}
2702
2702
$L(s,\chi_1) L(s,\chi_2)$ has at most one real zero $\beta$ with $1 - \frac{c}{\log q} < \beta < 1$.
2703
2703
\end{thm}
2704
2704
\begin{proof}
2705
-
Say $\beta_i$ is a real zero of $L(s_i, \chi_i)$ for $i=1,2$. Without loss of generality $\frac{5}{6} \beta_1\leq\beta_2 < 1$. Fix $\delta\geq0$.
2705
+
Say $\beta_i$ is a real zero of $L(s_i, \chi_i)$ for $i=1,2$. Without loss of generality $\frac{5}{6} \leq\beta_1\leq\beta_2 < 1$. Fix $\delta\geq0$.
so $\exp(c \sqrt{\log x}) = \bigO_A(q)$, so $\log x \leq (\log q)^2 + \bigO_A(1)$, contradiction to $q \leq (\log x)^A$ i.e.\ for any $A$, if $q$ is large enough, $q \leq (\log p_{a,q})^A$.
Towards a contradiction with G\"odel's Incompleteness Theorem, prove $M \models\cons(\textsf{ZFC})$.
1363
1364
Consider $L \subseteq M$. Then by remark (3), $L \models\textsf{ZFC}$+GCH.
1364
1365
By $\textsf{ZFC}\vdash\exists$ regular limit, we get $L \models\textsf{ZFC}+\text{GCH}+\exists\kappa$ regular limit. Thus, $L \models\textsf{ZFC}+\hyperlink{def:ic}{\textsf{IC}}$.
1365
-
Then $L \models\exists\kappa (L_\kappa\models\textsf{ZFC})$, so $L \models\cons(\textsf{ZFC)})$ thus $M \models\cons(\textsf{ZFC})$ by absoluteness, a contradiction.
1366
+
Then $L \models\exists\kappa (L_\kappa\models\textsf{ZFC})$, so $L \models\cons(\textsf{ZFC})$ thus $M \models\cons(\textsf{ZFC})$ by absoluteness, a contradiction.
1366
1367
\end{proof}
1367
1368
1368
1369
\subsection{The limitations of the method of inner models}
@@ -2089,7 +2090,7 @@ \subsection{Proving the Forcing Theorem}
Copy file name to clipboardExpand all lines: iii/mich/model_theory.tex
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -736,7 +736,7 @@ \section{Compactness}
736
736
\item\hypertarget{def:maximal}$T$ is \named{maximal} if for all $L$-sentences $\sigma$, either $\sigma\in T$ or $\lnot\sigma\in T$.
737
737
\item\hypertarget{def:wp}$T$ has the \named{witness property} if for all $\phi(x)$ ($L$-\hyperlink{def:form}{formula} with one \hyperlink{def:free}{free} variable) there is a constant $c \in\mathscr{C}$ such that
0 commit comments