-
Notifications
You must be signed in to change notification settings - Fork 12
Description
Hi! Thanks for the nice work! While training on an imbalanced dataset, I noticed a significant improvement in the accuracy of the class with the fewest samples (the last class) around the 14th epoch. However, after that, its accuracy started to decline again. This behavior is quite interesting!
I was wondering if you could advise me on how to address data imbalance in KPConvX. Thanks in advance for your guidance!
Validation ious are as follows:
0.921 0.805 0.577 0.035 0.914 0.000
0.931 0.785 0.651 0.046 0.913 0.000
0.903 0.770 0.580 0.102 0.909 0.000
0.896 0.768 0.583 0.099 0.908 0.000
0.906 0.776 0.606 0.078 0.911 0.000
0.935 0.831 0.682 0.106 0.912 0.000
0.908 0.767 0.610 0.107 0.914 0.000
0.763 0.247 0.494 0.096 0.870 0.062
0.754 0.195 0.503 0.245 0.865 0.112
0.897 0.757 0.626 0.100 0.910 0.029
0.769 0.249 0.495 0.200 0.874 0.004
0.862 0.532 0.585 0.104 0.881 0.072
0.849 0.739 0.608 0.134 0.908 0.037
0.906 0.805 0.620 0.132 0.902 0.673
0.855 0.712 0.639 0.106 0.903 0.076
0.760 0.223 0.507 0.148 0.870 0.021
0.760 0.206 0.481 0.179 0.868 0.092
0.923 0.807 0.712 0.108 0.908 0.000
0.903 0.768 0.637 0.131 0.906 0.024
0.800 0.338 0.521 0.182 0.870 0.029
0.762 0.144 0.479 0.216 0.856 0.000
0.908 0.806 0.721 0.108 0.912 0.000
0.905 0.778 0.633 0.104 0.909 0.000
0.754 0.224 0.502 0.201 0.874 0.009
0.878 0.749 0.616 0.124 0.907 0.000
0.901 0.612 0.618 0.172 0.865 0.000
0.738 0.177 0.501 0.145 0.873 0.022
0.912 0.810 0.736 0.085 0.915 0.000
0.895 0.690 0.698 0.083 0.889 0.000
0.847 0.727 0.653 0.114 0.904 0.048
0.914 0.832 0.635 0.060 0.916 0.000
0.891 0.774 0.621 0.112 0.908 0.018
0.922 0.820 0.676 0.114 0.901 0.000
0.892 0.751 0.638 0.149 0.900 0.000
0.873 0.746 0.633 0.134 0.904 0.051
0.880 0.747 0.654 0.098 0.909 0.000
0.751 0.221 0.500 0.216 0.873 0.044
0.892 0.766 0.644 0.150 0.897 0.000
0.908 0.483 0.648 0.094 0.856 0.000
0.884 0.747 0.655 0.109 0.909 0.000
0.890 0.763 0.641 0.138 0.906 0.000
0.886 0.775 0.727 0.100 0.906 0.000
0.891 0.768 0.732 0.093 0.907 0.000
0.878 0.750 0.659 0.130 0.907 0.000