Skip to content

Commit edc37d4

Browse files
committed
update readme
1 parent d4508c9 commit edc37d4

File tree

2 files changed

+89
-13
lines changed

2 files changed

+89
-13
lines changed

README.md

Lines changed: 12 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -6,27 +6,29 @@ Single-cell technologies have revolutionized our understanding of cellular dynam
66

77
## Installation
88

9+
The iDAS package is still under development to meet Bioconductor standards. If you have any questions, please don't hesitate to open an issue.
910

1011
```{r}
12+
## install from github
1113
devtools::install_github("SydneyBioX/iDAS")
1214
```
1315

14-
1516
## Example command
1617

1718
```{r}
1819
# Example using two factors
1920
result_twoway <- iDAS(Z = my_feature_matrix, factor1 = group1, factor2 = group2)
2021
2122
# Example using three factors
22-
result_threeway <- iDAS(Z = my_feature_matrix, factor1 = group1, factor2 = group2, factor3 = timepoint)
23+
result_threeway <- iDAS(Z = my_feature_matrix, factor1 = group1,
24+
factor2 = group2, factor3 = timepoint)
2325
```
2426

2527
### Simulation example
2628

29+
Here, we provide some simple simulation example to show how to use iDAS function.
30+
2731
```{r}
28-
## Not run:
29-
# Generate sample data
3032
set.seed(123)
3133
Z <- matrix(rnorm(1000), ncol = 10)
3234
colnames(Z)=paste0("gene",1:10)
@@ -52,12 +54,15 @@ result <- threefactors(
5254
p_adjust_method = "BH"
5355
)
5456
57+
```
58+
59+
Results include three table, the p-value (or adjusted p-value) table, F-statistics table, and the gene associated groups.
60+
61+
```{r}
5562
# Inspect results
5663
head(result$pval_matrix)
5764
head(result$stat_matrix)
5865
head(result$class_df)
59-
60-
## End(Not run)
6166
```
6267

63-
The iDAS package is still under development to meet Bioconductor standards. If you have any questions, please don't hesitate to open an issue.
68+

vignettes/iDAS.Rmd

Lines changed: 77 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,52 @@
11
---
2-
title: "iDAS"
3-
output: rmarkdown::html_vignette
4-
vignette: >
5-
%\VignetteIndexEntry{iDAS}
6-
%\VignetteEngine{knitr::rmarkdown}
7-
%\VignetteEncoding{UTF-8}
2+
title: "iDAS: Interpretable Differential Abundance Signature"
3+
date: "`r Sys.Date()`"
4+
author:
5+
- name: Lijia Yu
6+
affiliation:
7+
- School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia;
8+
- Sydney Precision Data Science Centre, University of Sydney, NSW 2006, Australia
9+
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
10+
- Computational Systems Biology Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, NSW 2145, Australia
11+
- name: Yingxin Lin
12+
affiliation:
13+
- Department of Biostatistics, Yale University, New Haven, CT 208034, USA
14+
- name: Xiangnan Xu
15+
affiliation:
16+
- School of Business and Economics, Humboldt-Universität zu Berlin, Berlin 10099, Germany
17+
- name: Pengyi Yang
18+
affiliation:
19+
- Computational Systems Biology Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, NSW 2145, Australia;
20+
- School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia;
21+
- Sydney Precision Data Science Centre, University of Sydney, NSW 2006, Australia;
22+
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia;
23+
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China.
24+
- name: Jean Yang
25+
affiliation:
26+
- School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia;
27+
- Sydney Precision Data Science Centre, University of Sydney, NSW 2006, Australia;
28+
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia;
29+
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China.
30+
output:
31+
BiocStyle::html_document:
32+
toc_float: true
33+
toc_depth: 3
34+
theme: united
35+
highlight: tango
36+
code-fold: false
37+
code-tools: true
38+
embed-resources: true
39+
number_sections: false
40+
BiocStyle::pdf_document:
41+
number_sections: false
42+
package: iDAS
43+
vignette: |
44+
%\VignetteIndexEntry{iDAS tutorial: simulation}
45+
%\VignetteEncoding{UTF-8}
46+
%\VignetteEngine{knitr::rmarkdown}
47+
editor_options:
48+
markdown:
49+
wrap: 80
850
---
951

1052
```{r, include = FALSE}
@@ -18,8 +60,37 @@ knitr::opts_chunk$set(
1860
library(iDAS)
1961
```
2062

63+
just a test, haven't finished.
2164

2265
```{r}
66+
set.seed(123)
67+
Z <- matrix(rnorm(1000), ncol = 10)
68+
colnames(Z)=paste0("gene",1:10)
69+
factor1 <- as.factor(rep(1:2, each = 5))
70+
factor2 <- as.factor(rep(1:2, times = 5))
71+
factor3 <- as.factor(rep(1:2, length.out = 10))
2372
73+
# Run the differential analysis using iDAS
74+
result <- threefactors(
75+
Z, factor1, factor2, factor3,
76+
model_fit_function = "lm",
77+
test_function = "anova_test",
78+
pval_quantile_cutoff = 0.02,
79+
pval_cutoff_full = 0.05,
80+
pval_cutoff_interaction = 0.01,
81+
pval_cutoff_factor1 = 0.01,
82+
pval_cutoff_factor2 = 0.01,
83+
pval_cutoff_factor3 = 0.01,
84+
pval_cutoff_int12 = 0.01,
85+
pval_cutoff_int13 = 0.01,
86+
pval_cutoff_int23 = 0.01,
87+
pval_cutoff_int123 = 0.01,
88+
p_adjust_method = "BH"
89+
)
90+
91+
# Inspect results
92+
head(result$pval_matrix)
93+
head(result$stat_matrix)
94+
head(result$class_df)
2495
2596
```

0 commit comments

Comments
 (0)