|
| 1 | +from leapctype import * |
| 2 | +import numpy as np |
| 3 | +import time |
| 4 | +from leaptorch import Projector |
| 5 | +import copy |
| 6 | +from tqdm import tqdm |
| 7 | +import math |
| 8 | +import torch |
| 9 | + |
| 10 | +class leap_ct(): |
| 11 | + def __init__(self, cam_infos, recon_args, use_device='cuda:0'): |
| 12 | + |
| 13 | + self.use_device = use_device |
| 14 | + self.device = torch.device(use_device) |
| 15 | + self.projector = Projector(forward_project=True, use_static=True, use_gpu=True, gpu_device=self.device) |
| 16 | + # self.projector.leapct.set_projector('VD') |
| 17 | + |
| 18 | + # set up the projection geometry |
| 19 | + numAngles = len(cam_infos) |
| 20 | + numRows = cam_infos[0].height |
| 21 | + numCols = cam_infos[0].width |
| 22 | + pixelHeight = cam_infos[0].sy |
| 23 | + pixelWidth = cam_infos[0].sx |
| 24 | + sod = cam_infos[0].sad |
| 25 | + sdd = cam_infos[0].sid |
| 26 | + centerRow = 0.5*(numRows-1) |
| 27 | + centerCol = 0.5*(numCols-1) |
| 28 | + |
| 29 | + projs = [] |
| 30 | + PrimaryAngles = [] |
| 31 | + for cam in cam_infos: |
| 32 | + projs.append(cam.image.squeeze()) |
| 33 | + PrimaryAngles.append(cam.PrimaryAngle) |
| 34 | + projs = np.stack(projs, axis=0) |
| 35 | + PrimaryAngles = np.stack(PrimaryAngles, axis=0) |
| 36 | + self.projs = np.ascontiguousarray(projs, dtype=np.float32) |
| 37 | + PrimaryAngles = np.rad2deg(PrimaryAngles) |
| 38 | + PrimaryAngles += 90.0 # align DSA imaging system with LEAP-toolbox convention |
| 39 | + self.PrimaryAngles = np.ascontiguousarray(PrimaryAngles, dtype=np.float32) |
| 40 | + |
| 41 | + self.projector.leapct.set_conebeam(numAngles, numRows, numCols, pixelHeight, pixelWidth, |
| 42 | + centerRow, centerCol, self.PrimaryAngles, sod, sdd) |
| 43 | + |
| 44 | + numX, numY, numZ = recon_args["volume_resolution"] |
| 45 | + voxelWidth, voxelHeight = recon_args["volume_spacing"][0], recon_args["volume_spacing"][-1] |
| 46 | + |
| 47 | + self.projector.leapct.set_volume(numX, numY, numZ, voxelWidth, voxelHeight) |
| 48 | + |
| 49 | + self.projector.allocate_batch_data() # necessary for torch version |
| 50 | + |
| 51 | + def fdk(self, projs_, PrimaryAngles_, VERSE=False): |
| 52 | + if VERSE: |
| 53 | + print('Reconstruction with LEAP-toolbox fdk...') |
| 54 | + |
| 55 | + startTime = time.time() |
| 56 | + |
| 57 | + projs = copy.deepcopy(projs_) # do not let inner operation influence input |
| 58 | + projs = np.flip(projs, axis=1) |
| 59 | + g = np.ascontiguousarray(projs, dtype=np.float32) # shape is numAngles, numRows, numCols |
| 60 | + |
| 61 | + PrimaryAngles = copy.deepcopy(PrimaryAngles_) |
| 62 | + self.projector.leapct.set_phis(PrimaryAngles) |
| 63 | + self.projector.allocate_batch_data() |
| 64 | + |
| 65 | + f = self.projector.leapct.allocate_volume() # shape is numZ, numY, numX |
| 66 | + f[:] = 0.0 # initialize the volume to zero |
| 67 | + self.projector.leapct.FBP(g, f) |
| 68 | + |
| 69 | + if VERSE: |
| 70 | + print('fdk Reconstruction Elapsed Time: ' + str(time.time()-startTime)) |
| 71 | + |
| 72 | + return f |
| 73 | + |
| 74 | + |
| 75 | + |
0 commit comments