Skip to content

YOLOv7-Tiny: Is this program recognize nn.upsample?? #105

@Jochiwon

Description

@Jochiwon

Hi, I'm trying to test this code to my yolov7-tiny model.

I found some errors at first time, but after fixing some code, it worked!

<MyCode.py>

from rfa_toolbox import create_graph_from_pytorch_model, visualize_architecture
import torch
import argparse
import torchvision


def do(model_path):

    model = torch.load(model_path, map_location=torch.device('cuda:0'))

    graph = create_graph_from_pytorch_model(model['model'])

    #model = torchvision.models.alexnet()
    #graph = create_graph_from_pytorch_model(model)

    visualize_architecture(
        graph, f"Yolov7-Tiny-pixel", input_res=416
    ).view()


if __name__ == "__main__":
    ap = argparse.ArgumentParser()
    ap.add_argument('--model', required=True, help='path to weight file')
    args = vars(ap.parse_args())

    do(args['model'])

    print('Program is terminated.\n')

<rfa_toolbox/encodings/pytorch/ingest_architecture.py>

def _obtain_variable_names(graph: torch._C.Graph) -> Dict[str, str]:
    result = {}
    for node in graph.nodes():
        try:
            x, y = str(node).split(" : ")
            key, value = x, y
            result[key] = value
            print(result[key])
        # This Part Added ======================
        except:
            temp = []
            temp = str(node).split(", %")
            for i in range(len(temp)):
                if i == 0:
                    x, y = str(temp[i]).split(" : ")
                else:
                    temp[i] = '%' + temp[i]
                    x, y = str(temp[i]).split(" : ")

                result[x] = y
                print(result[x])
            return result
        # =================================
    return result
def create_graph_from_model(
    model: torch.nn.Module,
    filter_rf: Optional[
        Union[
            Callable[[Tuple[ReceptiveFieldInfo, ...]], Tuple[ReceptiveFieldInfo, ...]],
            str,
        ]
    ] = None,
    input_res: Tuple[int, int, int, int] = (1, 3, 399, 399),
    custom_layers: Optional[List[str]] = None,
    display_se_modules: bool = False,
) -> EnrichedNetworkNode:
    """Create a graph of enriched network nodes from a PyTorch-Model.
    Args:
        model:          a PyTorch-Model.
        filter_rf:      a function that filters receptive field sizes.
                        Disabled by default.
        input_res:      input-tuple shape that can be processed by the model.
                        Needs to be a 4-Tuple of shape (batch_size,
                        color_channels, height, width) for CNNs.
                        Needs to be a 2-Tuple of shape (batch_size,
                        num_features) for fully connected networks.
        custom_layers:  Class-names of custom layers, like DropPath
                        or Involutions, which are not part of
                        torch.nn. Keep in mind that unknown layers
                        will defaulted to have no effect on the
                        receptive field size. You may need to
                        implement some additional layer handlers.
        display_se_modules: False by default. If True, displays the structure
                        inside Squeeze-and-Excitation modules and considers their
                        maximum receptive field size infinite, which is technically
                        closer to the truth but irrelevant in practice.
    Returns:
        The EnrichedNetworkNodeGraph
    """
    custom_layers = (
        ["ConvNormActivation"]
        if custom_layers is None
        else custom_layers + ["ConvNormActivation"]
    )
    if not display_se_modules:
        custom_layers.append("SqueezeExcitation")
    filter_func = (
        filter_rf
        if (not isinstance(filter_rf, str) and filter_rf is not None)
        else KNOWN_FILTER_MAPPING[filter_rf]
    )
    # This Part Added ======================
    inputTensor = torch.as_tensor(torch.randn(*input_res), dtype=torch.half).to('cuda:0')
    tm = torch.jit.trace(model, inputTensor)
    # =================================

    return make_graph(
        tm, filter_rf=filter_func, ref_mod=model, classes_to_not_visit=custom_layers
    ).to_graph()

After it worked, I looked result pdf file and recognized strange part.

visualized_2

After Upsample Layer, "Feature Map Res" is not changed..

Isn't it should be changed like below picture?
It is tensor size of each layer.

tensor_shape

Sorry for unclean text, I'm not used to github.

Do you have any idea to solve this issue?

My env:

Detail

name: base
channels:

  • conda-forge
  • defaults
    dependencies:
  • _ipyw_jlab_nb_ext_conf=0.1.0=py39h06a4308_1
  • _libgcc_mutex=0.1=main
  • _openmp_mutex=5.1=1_gnu
  • alabaster=0.7.12=pyhd3eb1b0_0
  • anaconda=2022.10=py39_0
  • anaconda-client=1.11.0=py39h06a4308_0
  • anaconda-navigator=2.4.0=py39h06a4308_0
  • anaconda-project=0.11.1=py39h06a4308_0
  • anyio=3.5.0=py39h06a4308_0
  • appdirs=1.4.4=pyhd3eb1b0_0
  • argon2-cffi=21.3.0=pyhd3eb1b0_0
  • argon2-cffi-bindings=21.2.0=py39h7f8727e_0
  • arrow=1.2.2=pyhd3eb1b0_0
  • astroid=2.11.7=py39h06a4308_0
  • astropy=5.1=py39h7deecbd_0
  • atk-1.0=2.36.0=ha1a6a79_0
  • atomicwrites=1.4.0=py_0
  • attrs=21.4.0=pyhd3eb1b0_0
  • automat=20.2.0=py_0
  • autopep8=1.6.0=pyhd3eb1b0_1
  • babel=2.9.1=pyhd3eb1b0_0
  • backcall=0.2.0=pyhd3eb1b0_0
  • backports=1.1=pyhd3eb1b0_0
  • backports.functools_lru_cache=1.6.4=pyhd3eb1b0_0
  • backports.tempfile=1.0=pyhd3eb1b0_1
  • backports.weakref=1.0.post1=py_1
  • bcrypt=3.2.0=py39h5eee18b_1
  • beautifulsoup4=4.11.1=py39h06a4308_0
  • binaryornot=0.4.4=pyhd3eb1b0_1
  • bitarray=2.5.1=py39h5eee18b_0
  • bkcharts=0.2=py39h06a4308_1
  • black=22.6.0=py39h06a4308_0
  • blas=1.0=mkl
  • bleach=4.1.0=pyhd3eb1b0_0
  • blosc=1.21.0=h4ff587b_1
  • bokeh=2.4.3=py39h06a4308_0
  • boto3=1.24.28=py39h06a4308_0
  • botocore=1.27.28=py39h06a4308_0
  • bottleneck=1.3.5=py39h7deecbd_0
  • brotli=1.0.9=h5eee18b_7
  • brotli-bin=1.0.9=h5eee18b_7
  • brotlipy=0.7.0=py39h27cfd23_1003
  • brunsli=0.1=h2531618_0
  • bzip2=1.0.8=h7b6447c_0
  • c-ares=1.18.1=h7f8727e_0
  • ca-certificates=2022.07.19=h06a4308_0
  • cairo=1.16.0=h19f5f5c_2
  • certifi=2022.9.14=py39h06a4308_0
  • cffi=1.15.1=py39h74dc2b5_0
  • cfitsio=3.470=h5893167_7
  • chardet=4.0.0=py39h06a4308_1003
  • charls=2.2.0=h2531618_0
  • charset-normalizer=2.0.4=pyhd3eb1b0_0
  • click=8.0.4=py39h06a4308_0
  • cloudpickle=2.0.0=pyhd3eb1b0_0
  • clyent=1.2.2=py39h06a4308_1
  • colorama=0.4.5=py39h06a4308_0
  • colorcet=3.0.0=py39h06a4308_0
  • conda=23.1.0=py39h06a4308_0
  • conda-build=3.22.0=py39h06a4308_0
  • conda-content-trust=0.1.3=py39h06a4308_0
  • conda-env=2.6.0=1
  • conda-pack=0.6.0=pyhd3eb1b0_0
  • conda-package-handling=1.9.0=py39h5eee18b_0
  • conda-repo-cli=1.0.20=py39h06a4308_0
  • conda-token=0.4.0=pyhd3eb1b0_0
  • conda-verify=3.4.2=py_1
  • constantly=15.1.0=pyh2b92418_0
  • cookiecutter=1.7.3=pyhd3eb1b0_0
  • cryptography=37.0.1=py39h9ce1e76_0
  • cssselect=1.1.0=pyhd3eb1b0_0
  • curl=7.84.0=h5eee18b_0
  • cycler=0.11.0=pyhd3eb1b0_0
  • cython=0.29.32=py39h6a678d5_0
  • cytoolz=0.11.0=py39h27cfd23_0
  • daal4py=2021.6.0=py39h79cecc1_1
  • dal=2021.6.0=hdb19cb5_916
  • dask=2022.7.0=py39h06a4308_0
  • dask-core=2022.7.0=py39h06a4308_0
  • dataclasses=0.8=pyh6d0b6a4_7
  • datashader=0.14.1=py39h06a4308_0
  • datashape=0.5.4=py39h06a4308_1
  • dbus=1.13.18=hb2f20db_0
  • debugpy=1.5.1=py39h295c915_0
  • decorator=5.1.1=pyhd3eb1b0_0
  • defusedxml=0.7.1=pyhd3eb1b0_0
  • diff-match-patch=20200713=pyhd3eb1b0_0
  • dill=0.3.4=pyhd3eb1b0_0
  • distributed=2022.7.0=py39h06a4308_0
  • docutils=0.18.1=py39h06a4308_3
  • entrypoints=0.4=py39h06a4308_0
  • et_xmlfile=1.1.0=py39h06a4308_0
  • expat=2.4.9=h6a678d5_0
  • fftw=3.3.9=h27cfd23_1
  • filelock=3.6.0=pyhd3eb1b0_0
  • flake8=4.0.1=pyhd3eb1b0_1
  • flask=1.1.2=pyhd3eb1b0_0
  • font-ttf-dejavu-sans-mono=2.37=hd3eb1b0_0
  • font-ttf-inconsolata=2.001=hcb22688_0
  • font-ttf-source-code-pro=2.030=hd3eb1b0_0
  • font-ttf-ubuntu=0.83=h8b1ccd4_0
  • fontconfig=2.13.1=h6c09931_0
  • fonts-anaconda=1=h8fa9717_0
  • fonts-conda-ecosystem=1=hd3eb1b0_0
  • fonttools=4.25.0=pyhd3eb1b0_0
  • freetype=2.11.0=h70c0345_0
  • fribidi=1.0.10=h7b6447c_0
  • fsspec=2022.7.1=py39h06a4308_0
  • future=0.18.2=py39h06a4308_1
  • gdk-pixbuf=2.42.8=h433bba3_1
  • gensim=4.1.2=py39h295c915_0
  • giflib=5.2.1=h7b6447c_0
  • glib=2.69.1=h4ff587b_1
  • glob2=0.7=pyhd3eb1b0_0
  • gmp=6.2.1=h295c915_3
  • gmpy2=2.1.2=py39heeb90bb_0
  • gobject-introspection=1.72.0=py39hbb6d50b_0
  • graphite2=1.3.14=h295c915_1
  • graphviz=2.50.0=h3cd0ef9_0
  • greenlet=1.1.1=py39h295c915_0
  • gst-plugins-base=1.14.0=h8213a91_2
  • gstreamer=1.14.0=h28cd5cc_2
  • gtk2=2.24.33=h73c1081_2
  • gts=0.7.6=hb67d8dd_3
  • h5py=3.7.0=py39h737f45e_0
  • harfbuzz=4.3.0=hf52aaf7_1
  • hdf5=1.10.6=h3ffc7dd_1
  • heapdict=1.0.1=pyhd3eb1b0_0
  • holoviews=1.15.0=py39h06a4308_0
  • hvplot=0.8.0=py39h06a4308_0
  • hyperlink=21.0.0=pyhd3eb1b0_0
  • icu=58.2=he6710b0_3
  • idna=3.3=pyhd3eb1b0_0
  • imagecodecs=2021.8.26=py39hf0132c2_1
  • imageio=2.19.3=py39h06a4308_0
  • imagesize=1.4.1=py39h06a4308_0
  • importlib-metadata=4.11.3=py39h06a4308_0
  • importlib_metadata=4.11.3=hd3eb1b0_0
  • incremental=21.3.0=pyhd3eb1b0_0
  • inflection=0.5.1=py39h06a4308_0
  • iniconfig=1.1.1=pyhd3eb1b0_0
  • intake=0.6.5=pyhd3eb1b0_0
  • intel-openmp=2021.4.0=h06a4308_3561
  • intervaltree=3.1.0=pyhd3eb1b0_0
  • ipykernel=6.15.2=py39h06a4308_0
  • ipython=7.31.1=py39h06a4308_1
  • ipython_genutils=0.2.0=pyhd3eb1b0_1
  • ipywidgets=7.6.5=pyhd3eb1b0_1
  • isort=5.9.3=pyhd3eb1b0_0
  • itemadapter=0.3.0=pyhd3eb1b0_0
  • itemloaders=1.0.4=pyhd3eb1b0_1
  • itsdangerous=2.0.1=pyhd3eb1b0_0
  • jdcal=1.4.1=pyhd3eb1b0_0
  • jedi=0.18.1=py39h06a4308_1
  • jeepney=0.7.1=pyhd3eb1b0_0
  • jellyfish=0.9.0=py39h7f8727e_0
  • jinja2=2.11.3=pyhd3eb1b0_0
  • jinja2-time=0.2.0=pyhd3eb1b0_3
  • jmespath=0.10.0=pyhd3eb1b0_0
  • joblib=1.1.0=pyhd3eb1b0_0
  • jpeg=9e=h7f8727e_0
  • jq=1.6=h27cfd23_1000
  • json5=0.9.6=pyhd3eb1b0_0
  • jsonschema=4.16.0=py39h06a4308_0
  • jupyter=1.0.0=py39h06a4308_8
  • jupyter_client=7.3.4=py39h06a4308_0
  • jupyter_console=6.4.3=pyhd3eb1b0_0
  • jupyter_core=4.11.1=py39h06a4308_0
  • jupyter_server=1.18.1=py39h06a4308_0
  • jupyterlab=3.4.4=py39h06a4308_0
  • jupyterlab_pygments=0.1.2=py_0
  • jupyterlab_server=2.10.3=pyhd3eb1b0_1
  • jupyterlab_widgets=1.0.0=pyhd3eb1b0_1
  • jxrlib=1.1=h7b6447c_2
  • keyring=23.4.0=py39h06a4308_0
  • kiwisolver=1.4.2=py39h295c915_0
  • krb5=1.19.2=hac12032_0
  • lazy-object-proxy=1.6.0=py39h27cfd23_0
  • lcms2=2.12=h3be6417_0
  • ld_impl_linux-64=2.38=h1181459_1
  • lerc=3.0=h295c915_0
  • libaec=1.0.4=he6710b0_1
  • libarchive=3.6.1=hab531cd_0
  • libbrotlicommon=1.0.9=h5eee18b_7
  • libbrotlidec=1.0.9=h5eee18b_7
  • libbrotlienc=1.0.9=h5eee18b_7
  • libcurl=7.84.0=h91b91d3_0
  • libdeflate=1.8=h7f8727e_5
  • libedit=3.1.20210910=h7f8727e_0
  • libev=4.33=h7f8727e_1
  • libevent=2.1.12=h8f2d780_0
  • libffi=3.3=he6710b0_2
  • libgcc-ng=11.2.0=h1234567_1
  • libgd=2.3.3=h695aa2c_1
  • libgfortran-ng=11.2.0=h00389a5_1
  • libgfortran5=11.2.0=h1234567_1
  • libgomp=11.2.0=h1234567_1
  • libidn2=2.3.2=h7f8727e_0
  • liblief=0.11.5=h295c915_1
  • libllvm10=10.0.1=hbcb73fb_5
  • libllvm11=11.1.0=h9e868ea_5
  • libnghttp2=1.46.0=hce63b2e_0
  • libpng=1.6.37=hbc83047_0
  • libpq=12.9=h16c4e8d_3
  • librsvg=2.54.4=h19fe530_0
  • libsodium=1.0.18=h7b6447c_0
  • libspatialindex=1.9.3=h2531618_0
  • libssh2=1.10.0=h8f2d780_0
  • libstdcxx-ng=11.2.0=h1234567_1
  • libtiff=4.4.0=hecacb30_0
  • libtool=2.4.6=h6a678d5_1009
  • libunistring=0.9.10=h27cfd23_0
  • libuuid=1.0.3=h7f8727e_2
  • libwebp=1.2.2=h55f646e_0
  • libwebp-base=1.2.2=h7f8727e_0
  • libxcb=1.15=h7f8727e_0
  • libxkbcommon=1.0.1=hfa300c1_0
  • libxml2=2.9.14=h74e7548_0
  • libxslt=1.1.35=h4e12654_0
  • libzopfli=1.0.3=he6710b0_0
  • llvmlite=0.38.0=py39h4ff587b_0
  • locket=1.0.0=py39h06a4308_0
  • lxml=4.9.1=py39h1edc446_0
  • lz4=3.1.3=py39h27cfd23_0
  • lz4-c=1.9.3=h295c915_1
  • lzo=2.10=h7b6447c_2
  • markdown=3.3.4=py39h06a4308_0
  • markupsafe=2.0.1=py39h27cfd23_0
  • matplotlib=3.5.2=py39h06a4308_0
  • matplotlib-base=3.5.2=py39hf590b9c_0
  • matplotlib-inline=0.1.6=py39h06a4308_0
  • mccabe=0.7.0=pyhd3eb1b0_0
  • mistune=0.8.4=py39h27cfd23_1000
  • mkl=2021.4.0=h06a4308_640
  • mkl-service=2.4.0=py39h7f8727e_0
  • mkl_fft=1.3.1=py39hd3c417c_0
  • mkl_random=1.2.2=py39h51133e4_0
  • mock=4.0.3=pyhd3eb1b0_0
  • mpc=1.1.0=h10f8cd9_1
  • mpfr=4.0.2=hb69a4c5_1
  • mpi=1.0=mpich
  • mpich=3.3.2=external_0
  • mpmath=1.2.1=py39h06a4308_0
  • msgpack-python=1.0.3=py39hd09550d_0
  • multipledispatch=0.6.0=py39h06a4308_0
  • munkres=1.1.4=py_0
  • mypy_extensions=0.4.3=py39h06a4308_1
  • navigator-updater=0.3.0=py39h06a4308_0
  • nbclassic=0.3.5=pyhd3eb1b0_0
  • nbclient=0.5.13=py39h06a4308_0
  • nbconvert=6.4.4=py39h06a4308_0
  • nbformat=5.5.0=py39h06a4308_0
  • ncurses=6.3=h5eee18b_3
  • nest-asyncio=1.5.5=py39h06a4308_0
  • networkx=2.8.4=py39h06a4308_0
  • ninja=1.10.2=h06a4308_5
  • ninja-base=1.10.2=hd09550d_5
  • nltk=3.7=pyhd3eb1b0_0
  • nose=1.3.7=pyhd3eb1b0_1008
  • notebook=6.4.12=py39h06a4308_0
  • nspr=4.33=h295c915_0
  • nss=3.74=h0370c37_0
  • numba=0.55.1=py39h51133e4_0
  • numexpr=2.8.3=py39h807cd23_0
  • numpy=1.21.5=py39h6c91a56_3
  • numpy-base=1.21.5=py39ha15fc14_3
  • numpydoc=1.4.0=py39h06a4308_0
  • olefile=0.46=pyhd3eb1b0_0
  • oniguruma=6.9.7.1=h27cfd23_0
  • openjpeg=2.4.0=h3ad879b_0
  • openpyxl=3.0.10=py39h5eee18b_0
  • openssl=1.1.1q=h7f8727e_0
  • packaging=21.3=pyhd3eb1b0_0
  • pandas=1.4.4=py39h6a678d5_0
  • pandocfilters=1.5.0=pyhd3eb1b0_0
  • panel=0.13.1=py39h06a4308_0
  • pango=1.50.7=h05da053_0
  • param=1.12.0=pyhd3eb1b0_0
  • parsel=1.6.0=py39h06a4308_0
  • parso=0.8.3=pyhd3eb1b0_0
  • partd=1.2.0=pyhd3eb1b0_1
  • patch=2.7.6=h7b6447c_1001
  • patchelf=0.13=h295c915_0
  • pathlib=1.0.1=pyhd3eb1b0_1
  • pathspec=0.9.0=py39h06a4308_0
  • patsy=0.5.2=py39h06a4308_1
  • pcre=8.45=h295c915_0
  • pep8=1.7.1=py39h06a4308_1
  • pexpect=4.8.0=pyhd3eb1b0_3
  • pickleshare=0.7.5=pyhd3eb1b0_1003
  • pillow=9.2.0=py39hace64e9_1
  • pip=22.2.2=py39h06a4308_0
  • pixman=0.40.0=h7f8727e_1
  • pkginfo=1.8.2=pyhd3eb1b0_0
  • platformdirs=2.5.2=py39h06a4308_0
  • plotly=5.9.0=py39h06a4308_0
  • pluggy=1.0.0=py39h06a4308_1
  • ply=3.11=py39h06a4308_0
  • poyo=0.5.0=pyhd3eb1b0_0
  • prometheus_client=0.14.1=py39h06a4308_0
  • prompt-toolkit=3.0.20=pyhd3eb1b0_0
  • prompt_toolkit=3.0.20=hd3eb1b0_0
  • protego=0.1.16=py_0
  • psutil=5.9.0=py39h5eee18b_0
  • ptyprocess=0.7.0=pyhd3eb1b0_2
  • py=1.11.0=pyhd3eb1b0_0
  • py-lief=0.11.5=py39h295c915_1
  • pyasn1=0.4.8=pyhd3eb1b0_0
  • pyasn1-modules=0.2.8=py_0
  • pycodestyle=2.8.0=pyhd3eb1b0_0
  • pycosat=0.6.3=py39h27cfd23_0
  • pycparser=2.21=pyhd3eb1b0_0
  • pyct=0.4.8=py39h06a4308_1
  • pycurl=7.45.1=py39h8f2d780_0
  • pydispatcher=2.0.5=py39h06a4308_2
  • pydocstyle=6.1.1=pyhd3eb1b0_0
  • pyerfa=2.0.0=py39h27cfd23_0
  • pyflakes=2.4.0=pyhd3eb1b0_0
  • pygments=2.11.2=pyhd3eb1b0_0
  • pyhamcrest=2.0.2=pyhd3eb1b0_2
  • pyjwt=2.4.0=py39h06a4308_0
  • pylint=2.14.5=py39h06a4308_0
  • pyls-spyder=0.4.0=pyhd3eb1b0_0
  • pyodbc=4.0.34=py39h6a678d5_0
  • pyopenssl=22.0.0=pyhd3eb1b0_0
  • pyparsing=3.0.9=py39h06a4308_0
  • pyqt=5.15.7=py39h6a678d5_1
  • pyqt5-sip=12.11.0=py39h6a678d5_1
  • pyqtwebengine=5.15.7=py39h6a678d5_1
  • pyrsistent=0.18.0=py39heee7806_0
  • pysocks=1.7.1=py39h06a4308_0
  • pytables=3.6.1=py39h77479fe_1
  • pytest=7.1.2=py39h06a4308_0
  • python=3.9.13=haa1d7c7_1
  • python-dateutil=2.8.2=pyhd3eb1b0_0
  • python-fastjsonschema=2.16.2=py39h06a4308_0
  • python-graphviz=0.20.1=py39h06a4308_0
  • python-libarchive-c=2.9=pyhd3eb1b0_1
  • python-lsp-black=1.2.1=py39h06a4308_0
  • python-lsp-jsonrpc=1.0.0=pyhd3eb1b0_0
  • python-lsp-server=1.5.0=py39h06a4308_0
  • python-slugify=5.0.2=pyhd3eb1b0_0
  • python-snappy=0.6.0=py39h2531618_3
  • python_abi=3.9=2_cp39
  • pytz=2022.1=py39h06a4308_0
  • pyviz_comms=2.0.2=pyhd3eb1b0_0
  • pywavelets=1.3.0=py39h7f8727e_0
  • pyxdg=0.27=pyhd3eb1b0_0
  • pyyaml=6.0=py39h7f8727e_1
  • pyzmq=23.2.0=py39h6a678d5_0
  • qdarkstyle=3.0.2=pyhd3eb1b0_0
  • qstylizer=0.1.10=pyhd3eb1b0_0
  • qt=5.15.9=h06a4308_0
  • qt-main=5.15.2=h327a75a_7
  • qt-webengine=5.15.9=hd2b0992_4
  • qtawesome=1.0.3=pyhd3eb1b0_0
  • qtconsole=5.3.2=py39h06a4308_0
  • qtpy=2.2.0=py39h06a4308_0
  • qtwebkit=5.212=h4eab89a_4
  • queuelib=1.5.0=py39h06a4308_0
  • readline=8.1.2=h7f8727e_1
  • regex=2022.7.9=py39h5eee18b_0
  • requests=2.28.1=py39h06a4308_0
  • requests-file=1.5.1=pyhd3eb1b0_0
  • ripgrep=13.0.0=hbdeaff8_0
  • rope=0.22.0=pyhd3eb1b0_0
  • rtree=0.9.7=py39h06a4308_1
  • ruamel.yaml=0.17.21=py39hb9d737c_1
  • ruamel.yaml.clib=0.2.6=py39h5eee18b_1
  • ruamel_yaml=0.15.100=py39h27cfd23_0
  • s3transfer=0.6.0=py39h06a4308_0
  • scikit-image=0.19.2=py39h51133e4_0
  • scikit-learn=1.0.2=py39h51133e4_1
  • scikit-learn-intelex=2021.6.0=py39h06a4308_0
  • scipy=1.9.1=py39h14f4228_0
  • scrapy=2.6.2=py39h06a4308_0
  • seaborn=0.11.2=pyhd3eb1b0_0
  • secretstorage=3.3.1=py39h06a4308_0
  • send2trash=1.8.0=pyhd3eb1b0_1
  • service_identity=18.1.0=pyhd3eb1b0_1
  • setuptools=63.4.1=py39h06a4308_0
  • sip=6.6.2=py39h6a678d5_0
  • six=1.16.0=pyhd3eb1b0_1
  • smart_open=5.2.1=py39h06a4308_0
  • snappy=1.1.9=h295c915_0
  • sniffio=1.2.0=py39h06a4308_1
  • snowballstemmer=2.2.0=pyhd3eb1b0_0
  • sortedcollections=2.1.0=pyhd3eb1b0_0
  • sortedcontainers=2.4.0=pyhd3eb1b0_0
  • soupsieve=2.3.1=pyhd3eb1b0_0
  • sphinx=5.0.2=py39h06a4308_0
  • sphinxcontrib-applehelp=1.0.2=pyhd3eb1b0_0
  • sphinxcontrib-devhelp=1.0.2=pyhd3eb1b0_0
  • sphinxcontrib-htmlhelp=2.0.0=pyhd3eb1b0_0
  • sphinxcontrib-jsmath=1.0.1=pyhd3eb1b0_0
  • sphinxcontrib-qthelp=1.0.3=pyhd3eb1b0_0
  • sphinxcontrib-serializinghtml=1.1.5=pyhd3eb1b0_0
  • spyder=5.3.3=py39h06a4308_0
  • spyder-kernels=2.3.3=py39h06a4308_0
  • sqlalchemy=1.4.39=py39h5eee18b_0
  • sqlite=3.39.3=h5082296_0
  • statsmodels=0.13.2=py39h7f8727e_0
  • sympy=1.10.1=py39h06a4308_0
  • tabulate=0.8.10=py39h06a4308_0
  • tbb=2021.6.0=hdb19cb5_0
  • tbb4py=2021.6.0=py39hdb19cb5_0
  • tblib=1.7.0=pyhd3eb1b0_0
  • tenacity=8.0.1=py39h06a4308_1
  • terminado=0.13.1=py39h06a4308_0
  • testpath=0.6.0=py39h06a4308_0
  • text-unidecode=1.3=pyhd3eb1b0_0
  • textdistance=4.2.1=pyhd3eb1b0_0
  • threadpoolctl=2.2.0=pyh0d69192_0
  • three-merge=0.1.1=pyhd3eb1b0_0
  • tifffile=2021.7.2=pyhd3eb1b0_2
  • tinycss=0.4=pyhd3eb1b0_1002
  • tk=8.6.12=h1ccaba5_0
  • tldextract=3.2.0=pyhd3eb1b0_0
  • toml=0.10.2=pyhd3eb1b0_0
  • tomli=2.0.1=py39h06a4308_0
  • tomlkit=0.11.1=py39h06a4308_0
  • toolz=0.11.2=pyhd3eb1b0_0
  • tornado=6.1=py39h27cfd23_0
  • tqdm=4.64.1=py39h06a4308_0
  • traitlets=5.1.1=pyhd3eb1b0_0
  • twisted=22.2.0=py39h5eee18b_1
  • typing-extensions=4.3.0=py39h06a4308_0
  • typing_extensions=4.3.0=py39h06a4308_0
  • tzdata=2022c=h04d1e81_0
  • ujson=5.4.0=py39h6a678d5_0
  • unidecode=1.2.0=pyhd3eb1b0_0
  • unixodbc=2.3.11=h5eee18b_0
  • urllib3=1.26.11=py39h06a4308_0
  • w3lib=1.21.0=pyhd3eb1b0_0
  • watchdog=2.1.6=py39h06a4308_0
  • wcwidth=0.2.5=pyhd3eb1b0_0
  • webencodings=0.5.1=py39h06a4308_1
  • websocket-client=0.58.0=py39h06a4308_4
  • werkzeug=2.0.3=pyhd3eb1b0_0
  • wget=1.21.3=h0b77cf5_0
  • whatthepatch=1.0.2=py39h06a4308_0
  • wheel=0.37.1=pyhd3eb1b0_0
  • widgetsnbextension=3.5.2=py39h06a4308_0
  • wrapt=1.14.1=py39h5eee18b_0
  • wurlitzer=3.0.2=py39h06a4308_0
  • xarray=0.20.1=pyhd3eb1b0_1
  • xlrd=2.0.1=pyhd3eb1b0_0
  • xlsxwriter=3.0.3=pyhd3eb1b0_0
  • xz=5.2.6=h5eee18b_0
  • yaml=0.2.5=h7b6447c_0
  • yapf=0.31.0=pyhd3eb1b0_0
  • zeromq=4.3.4=h2531618_0
  • zfp=0.5.5=h295c915_6
  • zict=2.1.0=py39h06a4308_0
  • zipp=3.8.0=py39h06a4308_0
  • zlib=1.2.12=h5eee18b_3
  • zope=1.0=py39h06a4308_1
  • zope.interface=5.4.0=py39h7f8727e_0
  • zstd=1.5.2=ha4553b6_0
  • pip:
    • absl-py==1.4.0
    • addict==2.4.0
    • astunparse==1.6.3
    • cachetools==5.2.1
    • cupy-cuda11x==11.4.0
    • docker-pycreds==0.4.0
    • fastrlock==0.8.1
    • flatbuffers==23.1.4
    • gast==0.4.0
    • gitdb==4.0.10
    • gitpython==3.1.30
    • google-auth==2.16.0
    • google-auth-oauthlib==0.4.6
    • google-pasta==0.2.0
    • grpcio==1.51.1
    • keras==2.11.0
    • libclang==15.0.6.1
    • mmcv==1.7.1
    • nvidia-cublas-cu11==11.10.3.66
    • nvidia-cuda-nvrtc-cu11==11.7.99
    • nvidia-cuda-runtime-cu11==11.7.99
    • nvidia-cudnn-cu11==8.5.0.96
    • oauthlib==3.2.2
    • opencv-python==4.7.0.68
    • opt-einsum==3.3.0
    • pathtools==0.1.2
    • protobuf==3.19.6
    • pytorch-model-summary==0.1.2
    • requests-oauthlib==1.3.1
    • rfa-toolbox==1.7.0
    • rsa==4.9
    • sentry-sdk==1.13.0
    • setproctitle==1.3.2
    • smmap==5.0.0
    • template==0.7.6
    • tensorboard==2.11.2
    • tensorboard-data-server==0.6.1
    • tensorboard-plugin-wit==1.8.1
    • tensorflow==2.11.0
    • tensorflow-estimator==2.11.0
    • tensorflow-io-gcs-filesystem==0.29.0
    • tensorrt==8.5.2.2
    • termcolor==2.2.0
    • thop==0.1.1-2209072238
    • torch==1.13.1
    • torchsummary==1.5.1
    • torchvision==0.14.1
    • typing==3.7.4.3
    • wandb==0.13.9
      prefix: /home/dobby/anaconda3

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions