Skip to content

Commit 5dd743b

Browse files
committed
Add example code
1 parent aea21e6 commit 5dd743b

File tree

3 files changed

+63
-0
lines changed

3 files changed

+63
-0
lines changed

examples/download_model.py

Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
import os
2+
3+
import anago
4+
from anago.utils import download
5+
from anago.reader import load_data_and_labels
6+
7+
dir_path = 'test_dir'
8+
url = 'https://storage.googleapis.com/chakki/datasets/public/models.zip'
9+
DATA_ROOT = os.path.join(os.path.dirname(__file__), '../data/conll2003/en/ner')
10+
11+
test_path = os.path.join(DATA_ROOT, 'test.txt')
12+
x_test, y_test = load_data_and_labels(test_path)
13+
14+
download(url, dir_path)
15+
16+
model = anago.Sequence.load(dir_path)
17+
model.eval(x_test, y_test)

examples/ner_glove.py

Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,22 @@
1+
import os
2+
3+
import anago
4+
from anago.reader import load_data_and_labels, load_glove
5+
6+
DATA_ROOT = os.path.join(os.path.dirname(__file__), '../data/conll2003/en/ner')
7+
EMBEDDING_PATH = 'glove.6B.100d.txt'
8+
9+
train_path = os.path.join(DATA_ROOT, 'train.txt')
10+
valid_path = os.path.join(DATA_ROOT, 'valid.txt')
11+
12+
print('Loading data...')
13+
x_train, y_train = load_data_and_labels(train_path)
14+
x_valid, y_valid = load_data_and_labels(valid_path)
15+
print(len(x_train), 'train sequences')
16+
print(len(x_valid), 'valid sequences')
17+
18+
embeddings = load_glove(EMBEDDING_PATH)
19+
20+
# Use pre-trained word embeddings
21+
model = anago.Sequence(max_epoch=1, embeddings=embeddings)
22+
model.train(x_train, y_train, x_valid, y_valid)

examples/ner_word2vec.py

Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
import os
2+
3+
from gensim.models.keyedvectors import KeyedVectors
4+
5+
import anago
6+
from anago.reader import load_data_and_labels
7+
8+
DATA_ROOT = os.path.join(os.path.dirname(__file__), '../data/conll2003/en/ner')
9+
EMBEDDING_PATH = 'model.txt'
10+
11+
train_path = os.path.join(DATA_ROOT, 'train.txt')
12+
valid_path = os.path.join(DATA_ROOT, 'valid.txt')
13+
14+
print('Loading data...')
15+
x_train, y_train = load_data_and_labels(train_path)
16+
x_valid, y_valid = load_data_and_labels(valid_path)
17+
print(len(x_train), 'train sequences')
18+
print(len(x_valid), 'valid sequences')
19+
20+
embeddings = KeyedVectors.load_word2vec_format(EMBEDDING_PATH).wv
21+
22+
# Use pre-trained word embeddings
23+
model = anago.Sequence(max_epoch=1, embeddings=embeddings)
24+
model.train(x_train, y_train, x_valid, y_valid)

0 commit comments

Comments
 (0)