-
Notifications
You must be signed in to change notification settings - Fork 199
Description
I have some air quality data, which have latitude and longitude and a quality value.
Records are at the same time but some records lack the quality value. So I want to use kriging to predict.
Here is my code:
OK = OrdinaryKriging(have_value_lon_list,
have_value_lat_list,
have_value_value_list,
variogram_model='linear',
verbose=False,
enable_plotting=False,
coordinates_type='geographic')
predict_value_list, ss = OK.execute('points',no_value_lon_list,no_value_lat_list)
print(predict_value_list)
And my problem is that, for different points, why the predict values are very close or even the same?
Just like:
[16.97586206896553 16.97586206896553 16.97586206896553 16.97586206896553
16.97586206896553 16.97586206896553 16.97586206896553 16.97586206896553
16.975862068965533 16.975862068965533]
I have tried different variogram_function and it seems the 'spherical' is the best but just like:
[14.86176987024119 12.349359239110434 14.86176987024119 10.695659607721035
13.847852015338699 14.588090815442332 14.349646719219496
30.20493268831776 12.513013744442874 13.676770856568298]
Any help will be appreciated :)