Skip to content

Why OrdinaryKriging predict the same value for different points? #114

@lzeee

Description

@lzeee

I have some air quality data, which have latitude and longitude and a quality value.
Records are at the same time but some records lack the quality value. So I want to use kriging to predict.
Here is my code:

                OK = OrdinaryKriging(have_value_lon_list,
                                     have_value_lat_list,
                                     have_value_value_list,
                                     variogram_model='linear', 
                                     verbose=False,
                                     enable_plotting=False,
                                     coordinates_type='geographic')
                predict_value_list, ss = OK.execute('points',no_value_lon_list,no_value_lat_list)
                print(predict_value_list)

And my problem is that, for different points, why the predict values are very close or even the same?
Just like:
[16.97586206896553 16.97586206896553 16.97586206896553 16.97586206896553
16.97586206896553 16.97586206896553 16.97586206896553 16.97586206896553
16.975862068965533 16.975862068965533]

I have tried different variogram_function and it seems the 'spherical' is the best but just like:
[14.86176987024119 12.349359239110434 14.86176987024119 10.695659607721035
13.847852015338699 14.588090815442332 14.349646719219496
30.20493268831776 12.513013744442874 13.676770856568298]

Any help will be appreciated :)

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions