Skip to content

Commit 405b4c9

Browse files
committed
Added version number - [0.1.00]
Started with version 0.1.00, because, why not.
1 parent 3d07e70 commit 405b4c9

File tree

2 files changed

+79
-68
lines changed

2 files changed

+79
-68
lines changed

BigNumber/src/BigNumber.cpp

Lines changed: 46 additions & 46 deletions
Original file line numberDiff line numberDiff line change
@@ -585,8 +585,8 @@ namespace MyOddWeb
585585
NUMBERS c;
586586

587587
// remove unneeded decimal places.
588-
BigNumber tlhs = BigNumber(lhs).Round(DEFAULT_PRECISION_PADDED(precision));
589-
BigNumber trhs = BigNumber(rhs).Round(DEFAULT_PRECISION_PADDED(precision));
588+
BigNumber tlhs = BigNumber(lhs).Round(BIGNUMBER_PRECISION_PADDED(precision));
589+
BigNumber trhs = BigNumber(rhs).Round(BIGNUMBER_PRECISION_PADDED(precision));
590590

591591
// the number we are working with.
592592
BigNumber number(tlhs);
@@ -659,9 +659,9 @@ namespace MyOddWeb
659659
// if we have decimals, we need to do it the hard/long way...
660660
if (copyExp._decimals > 0)
661661
{
662-
copyBase.Ln(DEFAULT_PRECISION_PADDED(precision)); // we need the correction, do we don't loose it too quick.
663-
copyBase.Mul( copyExp, DEFAULT_PRECISION_PADDED(precision));
664-
result = copyBase.Exp(DEFAULT_PRECISION_PADDED(precision));
662+
copyBase.Ln(BIGNUMBER_PRECISION_PADDED(precision)); // we need the correction, do we don't loose it too quick.
663+
copyBase.Mul( copyExp, BIGNUMBER_PRECISION_PADDED(precision));
664+
result = copyBase.Exp(BIGNUMBER_PRECISION_PADDED(precision));
665665
}
666666
else
667667
{
@@ -671,7 +671,7 @@ namespace MyOddWeb
671671
// if it is odd...
672672
if (copyExp.IsOdd())
673673
{
674-
result = BigNumber::AbsMul(result, copyBase, DEFAULT_PRECISION_PADDED(precision));
674+
result = BigNumber::AbsMul(result, copyBase, BIGNUMBER_PRECISION_PADDED(precision));
675675
}
676676

677677
// devide by 2 with no decimal places.
@@ -682,7 +682,7 @@ namespace MyOddWeb
682682
}
683683

684684
// multiply the base by itself.
685-
copyBase = BigNumber::AbsMul(copyBase, copyBase, DEFAULT_PRECISION_PADDED(precision));
685+
copyBase = BigNumber::AbsMul(copyBase, copyBase, BIGNUMBER_PRECISION_PADDED(precision));
686686
}
687687
}
688688

@@ -725,8 +725,8 @@ namespace MyOddWeb
725725
if (maxDecimals > 0 )
726726
{
727727
// remove unneeded decimal places.
728-
BigNumber tlhs = BigNumber(lhs).Round(DEFAULT_PRECISION_PADDED(precision) );
729-
BigNumber trhs = BigNumber(rhs).Round(DEFAULT_PRECISION_PADDED(precision));
728+
BigNumber tlhs = BigNumber(lhs).Round(BIGNUMBER_PRECISION_PADDED(precision) );
729+
BigNumber trhs = BigNumber(rhs).Round(BIGNUMBER_PRECISION_PADDED(precision));
730730

731731
// the final number of decimals is the total number of decimals we used.
732732
// 10.12 * 10.12345=102.4493140
@@ -1453,7 +1453,7 @@ namespace MyOddWeb
14531453
}
14541454

14551455
// the padded precision so we do not, slowly, loose our final precision.
1456-
const size_t padded_precision = DEFAULT_PRECISION_PADDED(precision);
1456+
const size_t padded_precision = BIGNUMBER_PRECISION_PADDED(precision);
14571457

14581458
// copy this number variable so it is easier to read.
14591459
BigNumber x = *this;
@@ -1463,7 +1463,7 @@ namespace MyOddWeb
14631463
const BigNumber one_over_r = BigNumber(_number_one).Div(nthroot, padded_precision);
14641464

14651465
// calculate this over and over again.
1466-
for (size_t i = 0; i < MAX_ROOT_ITERATIONS; ++i)
1466+
for (size_t i = 0; i < BIGNUMBER_MAX_ROOT_ITERATIONS; ++i)
14671467
{
14681468
// y = n / pow( x, r_less_one)
14691469
BigNumber y1 = BigNumber(x).Pow(r_less_one, padded_precision);
@@ -1545,12 +1545,12 @@ namespace MyOddWeb
15451545

15461546
// try and use the power of...
15471547
// nthroot = x^( 1/nthroot)
1548-
const BigNumber number_one_over = BigNumber(_number_one).Div( nthroot, DEFAULT_PRECISION_PADDED(precision));
1548+
const BigNumber number_one_over = BigNumber(_number_one).Div( nthroot, BIGNUMBER_PRECISION_PADDED(precision));
15491549

15501550
// calculate it, use the correction to make sure we are well past
15511551
// the actual value we want to set is as.
15521552
// the rounding will then take care of the rest.
1553-
*this = Pow(number_one_over, DEFAULT_PRECISION_PADDED(precision)).Round(precision);
1553+
*this = Pow(number_one_over, BIGNUMBER_PRECISION_PADDED(precision)).Round(precision);
15541554
}
15551555

15561556
// return this/cleaned up.
@@ -2095,10 +2095,10 @@ namespace MyOddWeb
20952095

20962096
// truncate the presision so we do not do too many multiplications.
20972097
// add a bit of room for more accurate precision.
2098-
e.Trunc(DEFAULT_PRECISION_PADDED(precision));
2098+
e.Trunc(BIGNUMBER_PRECISION_PADDED(precision));
20992099

21002100
// then raise it.
2101-
*this = e.Pow(integer, DEFAULT_PRECISION_PADDED(precision));
2101+
*this = e.Pow(integer, BIGNUMBER_PRECISION_PADDED(precision));
21022102
}
21032103

21042104
if (!fraction.IsZero())
@@ -2111,10 +2111,10 @@ namespace MyOddWeb
21112111
BigNumber power(base);
21122112

21132113
BigNumber result = _number_one;
2114-
for (size_t i = 1; i < MAX_EXP_ITERATIONS; ++i)
2114+
for (size_t i = 1; i < BIGNUMBER_MAX_EXP_ITERATIONS; ++i)
21152115
{
21162116
// calculate the number up to the precision we are after.
2117-
BigNumber calulatedNumber = BigNumber( power ).Div( fact, DEFAULT_PRECISION_PADDED(precision));
2117+
BigNumber calulatedNumber = BigNumber( power ).Div( fact, BIGNUMBER_PRECISION_PADDED(precision));
21182118
if (calulatedNumber.IsZero())
21192119
{
21202120
break;
@@ -2124,17 +2124,17 @@ namespace MyOddWeb
21242124
result.Add( calulatedNumber );
21252125

21262126
// x * x * x ...
2127-
power = power.Mul( base, DEFAULT_PRECISION_PADDED(precision));
2127+
power = power.Mul( base, BIGNUMBER_PRECISION_PADDED(precision));
21282128

21292129
// 1 * 2 * 3 ...
2130-
fact = fact.Mul( (int)(i+1), DEFAULT_PRECISION_PADDED(precision));
2130+
fact = fact.Mul( (int)(i+1), BIGNUMBER_PRECISION_PADDED(precision));
21312131
}
21322132

21332133
// the decimal part of the number.
21342134
fraction = result;
21352135

21362136
// multiply the decimal number with the fraction.
2137-
Mul(fraction, DEFAULT_PRECISION_PADDED(precision));
2137+
Mul(fraction, BIGNUMBER_PRECISION_PADDED(precision));
21382138
}
21392139

21402140
// clean up and return.
@@ -2175,17 +2175,17 @@ namespace MyOddWeb
21752175

21762176
while (Compare(0.8) < 0)
21772177
{
2178-
Mul(1.8, DEFAULT_PRECISION_PADDED(precision));
2178+
Mul(1.8, BIGNUMBER_PRECISION_PADDED(precision));
21792179
++counter8;
21802180
}
21812181
while (Compare(_number_two ) > 0)
21822182
{
2183-
Div(_number_two, DEFAULT_PRECISION_PADDED(precision));
2183+
Div(_number_two, BIGNUMBER_PRECISION_PADDED(precision));
21842184
++counter2;
21852185
}
21862186
while (Compare(1.1) > 0)
21872187
{
2188-
Div(1.1, DEFAULT_PRECISION_PADDED(precision));
2188+
Div(1.1, BIGNUMBER_PRECISION_PADDED(precision));
21892189
++counter1;
21902190
}
21912191

@@ -2199,7 +2199,7 @@ namespace MyOddWeb
21992199
// 2 3 4
22002200
BigNumber result = base; // Kick it off
22012201
BigNumber baseRaised = base;
2202-
for ( size_t i = 0; i < MAX_LN_ITERATIONS; ++i )
2202+
for ( size_t i = 0; i < BIGNUMBER_MAX_LN_ITERATIONS; ++i )
22032203
{
22042204
// next donominator
22052205
den.Add(_number_one );
@@ -2208,10 +2208,10 @@ namespace MyOddWeb
22082208
neg = !neg;
22092209

22102210
// the denominator+power is the same thing
2211-
baseRaised.Mul(base, DEFAULT_PRECISION_PADDED(precision));
2211+
baseRaised.Mul(base, BIGNUMBER_PRECISION_PADDED(precision));
22122212

22132213
// now devide it
2214-
BigNumber currentBase = BigNumber( baseRaised ).Div( den, DEFAULT_PRECISION_PADDED(precision));
2214+
BigNumber currentBase = BigNumber( baseRaised ).Div( den, BIGNUMBER_PRECISION_PADDED(precision));
22152215

22162216
// there is no need to go further, with this presision
22172217
// and with this number of iterations we will keep adding/subtrating zeros.
@@ -2237,7 +2237,7 @@ namespace MyOddWeb
22372237
// "0.0953101798043248600439521232807650922206053653086441991852398081630010142358842328390575029130364930727479418458517498888460436935129806386890150217023263755687346983551204157456607731117050481406611584967219092627683199972666804124629171163211396201386277872575289851216418802049468841988934550053918259553296705084248072320206243393647990631942365020716424972582488628309770740635849277971589257686851592941134955982468458204470563781108676951416362518738052421687452698243540081779470585025890580291528650263570516836272082869034439007178525831485094480503205465208833580782304569935437696233763597527612962802333"
22382238
static const BigNumber ln11({ 3,3,3,2,0,8,2,6,9,2,1,6,7,2,5,7,9,5,3,6,7,3,3,2,6,9,6,7,3,4,5,3,9,9,6,5,4,0,3,2,8,7,0,8,5,3,3,8,8,0,2,5,6,4,5,0,2,3,0,5,0,8,4,4,9,0,5,8,4,1,3,8,5,2,5,8,7,1,7,0,0,9,3,4,4,3,0,9,6,8,2,8,0,2,7,2,6,3,8,6,1,5,0,7,5,3,6,2,0,5,6,8,2,5,1,9,2,0,8,5,0,9,8,5,2,0,5,8,5,0,7,4,9,7,7,1,8,0,0,4,5,3,4,2,8,9,6,2,5,4,7,8,6,1,2,4,2,5,0,8,3,7,8,1,5,2,6,3,6,1,4,1,5,9,6,7,6,8,0,1,1,8,7,3,6,5,0,7,4,4,0,2,8,5,4,8,6,4,2,8,9,5,5,9,4,3,1,1,4,9,2,9,5,1,5,8,6,8,6,7,5,2,9,8,5,1,7,9,7,7,2,9,4,8,5,3,6,0,4,7,0,7,7,9,0,3,8,2,6,8,8,4,2,8,5,2,7,9,4,2,4,6,1,7,0,2,0,5,6,3,2,4,9,1,3,6,0,9,9,7,4,6,3,9,3,3,4,2,6,0,2,0,2,3,2,7,0,8,4,2,4,8,0,5,0,7,6,9,2,3,5,5,9,5,2,8,1,9,3,5,0,0,5,5,4,3,9,8,8,9,1,4,8,8,6,4,9,4,0,2,0,8,8,1,4,6,1,2,1,5,8,9,8,2,5,7,5,2,7,8,7,7,2,6,8,3,1,0,2,6,9,3,1,1,2,3,6,1,1,7,1,9,2,6,4,2,1,4,0,8,6,6,6,2,7,9,9,9,1,3,8,6,7,2,6,2,9,0,9,1,2,7,6,9,4,8,5,1,1,6,6,0,4,1,8,4,0,5,0,7,1,1,1,3,7,7,0,6,6,5,4,7,5,1,4,0,2,1,5,5,3,8,9,6,4,3,7,8,6,5,5,7,3,6,2,3,2,0,7,1,2,0,5,1,0,9,8,6,8,3,6,0,8,9,2,1,5,3,9,6,3,4,0,6,4,8,8,8,8,9,4,7,1,5,8,5,4,8,1,4,9,7,4,7,2,7,0,3,9,4,6,3,0,3,1,9,2,0,5,7,5,0,9,3,8,2,3,2,4,8,8,5,3,2,4,1,0,1,0,0,3,6,1,8,0,8,9,3,2,5,8,1,9,9,1,4,4,6,8,0,3,5,6,3,5,0,6,0,2,2,2,9,0,5,6,7,0,8,2,3,2,1,2,5,9,3,4,0,0,6,8,4,2,3,4,0,8,9,7,1,0,1,3,5,9,0,0 }, 616, false);
22392239
BigNumber ln11_tmp = ln11;
2240-
ln11_tmp.Mul(counter1, DEFAULT_PRECISION_PADDED(precision));
2240+
ln11_tmp.Mul(counter1, BIGNUMBER_PRECISION_PADDED(precision));
22412241
result.Add(ln11_tmp);
22422242
}
22432243

@@ -2247,7 +2247,7 @@ namespace MyOddWeb
22472247
// "0.693147180559945309417232121458176568075500134360255254120680009493393621969694715605863326996418687542001481020570685733685520235758130557032670751635075961930727570828371435190307038623891673471123350115364497955239120475172681574932065155524734139525882950453007095326366642654104239157814952043740430385500801944170641671518644712839968171784546957026271631064546150257207402481637773389638550695260668341137273873722928956493547025762652098859693201965058554764703306793654432547632744951250406069438147104689946506220167720424524529612687946546193165174681392672504103802546259656869144192871608293803172714368"
22482248
static const BigNumber ln2({ 8,6,3,4,1,7,2,7,1,3,0,8,3,9,2,8,0,6,1,7,8,2,9,1,4,4,1,9,6,8,6,5,6,9,5,2,6,4,5,2,0,8,3,0,1,4,0,5,2,7,6,2,9,3,1,8,6,4,7,1,5,6,1,3,9,1,6,4,5,6,4,9,7,8,6,2,1,6,9,2,5,4,2,5,4,2,4,0,2,7,7,6,1,0,2,2,6,0,5,6,4,9,9,8,6,4,0,1,7,4,1,8,3,4,9,6,0,6,0,4,0,5,2,1,5,9,4,4,7,2,3,6,7,4,5,2,3,4,4,5,6,3,9,7,6,0,3,3,0,7,4,6,7,4,5,5,8,5,0,5,6,9,1,0,2,3,9,6,9,5,8,8,9,0,2,5,6,2,6,7,5,2,0,7,4,5,3,9,4,6,5,9,8,2,9,2,2,7,3,7,8,3,7,2,7,3,1,1,4,3,8,6,6,0,6,2,5,9,6,0,5,5,8,3,6,9,8,3,3,7,7,7,3,6,1,8,4,2,0,4,7,0,2,7,5,2,0,5,1,6,4,5,4,6,0,1,3,6,1,7,2,6,2,0,7,5,9,6,4,5,4,8,7,1,7,1,8,6,9,9,3,8,2,1,7,4,4,6,8,1,5,1,7,6,1,4,6,0,7,1,4,4,9,1,0,8,0,0,5,5,8,3,0,3,4,0,4,7,3,4,0,2,5,9,4,1,8,7,5,1,9,3,2,4,0,1,4,5,6,2,4,6,6,6,3,6,2,3,5,9,0,7,0,0,3,5,4,0,5,9,2,8,8,5,2,5,9,3,1,4,3,7,4,2,5,5,5,1,5,6,0,2,3,9,4,7,5,1,8,6,2,7,1,5,7,4,0,2,1,9,3,2,5,5,9,7,9,4,4,6,3,5,1,1,0,5,3,3,2,1,1,7,4,3,7,6,1,9,8,3,2,6,8,3,0,7,0,3,0,9,1,5,3,4,1,7,3,8,2,8,0,7,5,7,2,7,0,3,9,1,6,9,5,7,0,5,3,6,1,5,7,0,7,6,2,3,0,7,5,5,0,3,1,8,5,7,5,3,2,0,2,5,5,8,6,3,3,7,5,8,6,0,7,5,0,2,0,1,8,4,1,0,0,2,4,5,7,8,6,8,1,4,6,9,9,6,2,3,3,6,8,5,0,6,5,1,7,4,9,6,9,6,9,1,2,6,3,9,3,3,9,4,9,0,0,0,8,6,0,2,1,4,5,2,5,5,2,0,6,3,4,3,1,0,0,5,5,7,0,8,6,5,6,7,1,8,5,4,1,2,1,2,3,2,7,1,4,9,0,3,5,4,9,9,5,5,0,8,1,7,4,1,3,9,6,0 }, 615, false);
22492249
BigNumber ln2_tmp = ln2;
2250-
ln2_tmp.Mul(counter2, DEFAULT_PRECISION_PADDED(precision));
2250+
ln2_tmp.Mul(counter2, BIGNUMBER_PRECISION_PADDED(precision));
22512251
result.Add(ln2_tmp);
22522252
}
22532253

@@ -2257,7 +2257,7 @@ namespace MyOddWeb
22572257
// "0.587786664902119008189731140618863769769379761376981181556740775800809598729560169117097631534284566775973755110200168585012003222536363442471987124070849093654145900869579488705254541486380394750214985439990943264901458147307801981343725602329350916457819213072437061657645370725998495814483186568232484236059984884946504043108616216273293809193522251042201711480828917893925532893803444719889512011504399314051421418444171441064659998892289089035003091141787128108024952008593307276614322356640449112819566260840792601819695518817384830430694637551056654910817069372465364862878039189497360001395678426943344493527"
22582258
static const BigNumber ln18({7,2,5,3,9,4,4,4,3,3,4,9,6,2,4,8,7,6,5,9,3,1,0,0,0,6,3,7,9,4,9,8,1,9,3,0,8,7,8,2,6,8,4,6,3,5,6,4,2,7,3,9,6,0,7,1,8,0,1,9,4,5,6,6,5,0,1,5,5,7,3,6,4,9,6,0,3,4,0,3,8,4,8,3,7,1,8,8,1,5,5,9,6,9,1,8,1,0,6,2,9,7,0,4,8,0,6,2,6,6,5,9,1,8,2,1,1,9,4,4,0,4,6,6,5,3,2,2,3,4,1,6,6,7,2,7,0,3,3,9,5,8,0,0,2,5,9,4,2,0,8,0,1,8,2,1,7,8,7,1,4,1,1,9,0,3,0,0,5,3,0,9,8,0,9,8,2,2,9,8,8,9,9,9,5,6,4,6,0,1,4,4,1,7,1,4,4,4,8,1,4,1,2,4,1,5,0,4,1,3,9,9,3,4,0,5,1,1,0,2,1,5,9,8,8,9,1,7,4,4,4,3,0,8,3,9,8,2,3,5,5,2,9,3,9,8,7,1,9,8,2,8,0,8,4,1,1,7,1,0,2,2,4,0,1,5,2,2,2,5,3,9,1,9,0,8,3,9,2,3,7,2,6,1,2,6,1,6,8,0,1,3,4,0,4,0,5,6,4,9,4,8,8,4,8,9,9,5,0,6,3,2,4,8,4,2,3,2,8,6,5,6,8,1,3,8,4,4,1,8,5,9,4,8,9,9,5,2,7,0,7,3,5,4,6,7,5,6,1,6,0,7,3,4,2,7,0,3,1,2,9,1,8,7,5,4,6,1,9,0,5,3,9,2,3,2,0,6,5,2,7,3,4,3,1,8,9,1,0,8,7,0,3,7,4,1,8,5,4,1,0,9,4,6,2,3,4,9,0,9,9,9,3,4,5,8,9,4,1,2,0,5,7,4,9,3,0,8,3,6,8,4,1,4,5,4,5,2,5,0,7,8,8,4,9,7,5,9,6,8,0,0,9,5,4,1,4,5,6,3,9,0,9,4,8,0,7,0,4,2,1,7,8,9,1,7,4,2,4,4,3,6,3,6,3,5,2,2,2,3,0,0,2,1,0,5,8,5,8,6,1,0,0,2,0,1,1,5,5,7,3,7,9,5,7,7,6,6,5,4,8,2,4,3,5,1,3,6,7,9,0,7,1,1,9,6,1,0,6,5,9,2,7,8,9,5,9,0,8,0,0,8,5,7,7,0,4,7,6,5,5,1,8,1,1,8,9,6,7,3,1,6,7,9,7,3,9,6,7,9,6,7,3,6,8,8,1,6,0,4,1,1,3,7,9,8,1,8,0,0,9,1,1,2,0,9,4,6,6,6,8,7,7,8,5,0 }, 615, false);
22592259
BigNumber ln18_tmp = ln18;
2260-
ln18_tmp.Mul(counter8, DEFAULT_PRECISION_PADDED(precision));
2260+
ln18_tmp.Mul(counter8, BIGNUMBER_PRECISION_PADDED(precision));
22612261
result.Sub(ln18_tmp);
22622262
}
22632263

@@ -2284,11 +2284,11 @@ namespace MyOddWeb
22842284
BigNumber lnbase = base;
22852285

22862286
// calculate them both.
2287-
ln.Ln(DEFAULT_PRECISION_PADDED(precision));
2288-
lnbase.Ln(DEFAULT_PRECISION_PADDED(precision));
2287+
ln.Ln(BIGNUMBER_PRECISION_PADDED(precision));
2288+
lnbase.Ln(BIGNUMBER_PRECISION_PADDED(precision));
22892289

22902290
// one over the other
2291-
*this = ln.Div(lnbase, DEFAULT_PRECISION_PADDED(precision));
2291+
*this = ln.Div(lnbase, BIGNUMBER_PRECISION_PADDED(precision));
22922292

22932293
// clean up and done.
22942294
return Round(precision).PerformPostOperations(precision);
@@ -2331,20 +2331,20 @@ namespace MyOddWeb
23312331
// sin(x) = (x) - ------- + ------- - ------- ...
23322332
// 3! 5! 7!
23332333
BigNumber result = BigNumber::_NormalizeAngle( *this );
2334-
const BigNumber multiplier = BigNumber(result).Pow(2, DEFAULT_PRECISION_PADDED(precision ));
2334+
const BigNumber multiplier = BigNumber(result).Pow(2, BIGNUMBER_PRECISION_PADDED(precision ));
23352335
BigNumber startingMultiplier = result;
23362336
BigNumber startingFractional = _number_one;
23372337
BigNumber fractionalCounter = _number_one;
23382338

23392339
bool neg = true;
2340-
for (size_t i = 0; i < MAX_TRIG_ITERATIONS; ++i)
2340+
for (size_t i = 0; i < BIGNUMBER_MAX_TRIG_ITERATIONS; ++i)
23412341
{
23422342
startingMultiplier.Mul(multiplier);
23432343

23442344
startingFractional.Mul(fractionalCounter.Add(_number_one));
23452345
startingFractional.Mul(fractionalCounter.Add(_number_one));
23462346

2347-
BigNumber currentBase = BigNumber(startingMultiplier).Div(startingFractional, DEFAULT_PRECISION_PADDED(precision));
2347+
BigNumber currentBase = BigNumber(startingMultiplier).Div(startingFractional, BIGNUMBER_PRECISION_PADDED(precision));
23482348

23492349
// there is no need to go further, with this presision
23502350
// and with this number of iterations we will keep adding/subtrating zeros.
@@ -2385,20 +2385,20 @@ namespace MyOddWeb
23852385
// sin(x) = (1) - ------- + ------- - ------- ...
23862386
// 2! 4! 6!
23872387
BigNumber result = _number_one;
2388-
const BigNumber multiplier = BigNumber::_NormalizeAngle( *this ).Pow(2, DEFAULT_PRECISION_PADDED(precision));
2388+
const BigNumber multiplier = BigNumber::_NormalizeAngle( *this ).Pow(2, BIGNUMBER_PRECISION_PADDED(precision));
23892389
BigNumber startingMultiplier = _number_one;
23902390
BigNumber startingFractional = _number_one;
23912391
BigNumber fractionalCounter = _number_zero;
23922392

23932393
bool neg = true;
2394-
for (size_t i = 0; i < MAX_TRIG_ITERATIONS; ++i)
2394+
for (size_t i = 0; i < BIGNUMBER_MAX_TRIG_ITERATIONS; ++i)
23952395
{
23962396
startingMultiplier.Mul(multiplier);
23972397

23982398
startingFractional.Mul(fractionalCounter.Add(_number_one));
23992399
startingFractional.Mul(fractionalCounter.Add(_number_one));
24002400

2401-
BigNumber currentBase = BigNumber(startingMultiplier).Div(startingFractional, DEFAULT_PRECISION_PADDED(precision));
2401+
BigNumber currentBase = BigNumber(startingMultiplier).Div(startingFractional, BIGNUMBER_PRECISION_PADDED(precision));
24022402

24032403
// there is no need to go further, with this presision
24042404
// and with this number of iterations we will keep adding/subtrating zeros.
@@ -2439,10 +2439,10 @@ namespace MyOddWeb
24392439
// tan(x) = ---------------------
24402440
// sqrt( 1 - [sin(x)]^2)
24412441

2442-
const BigNumber sinOfNumber = BigNumber(*this).Sin(DEFAULT_PRECISION_PADDED(precision));
2443-
const BigNumber pwrSinOfNumber = BigNumber(sinOfNumber).Pow(2, DEFAULT_PRECISION_PADDED(precision));
2444-
const BigNumber sqrRoot = BigNumber(_number_one).Sub(pwrSinOfNumber).Sqrt(DEFAULT_PRECISION_PADDED(precision));
2445-
const BigNumber result = BigNumber(sinOfNumber).Div(sqrRoot, DEFAULT_PRECISION_PADDED(precision));
2442+
const BigNumber sinOfNumber = BigNumber(*this).Sin(BIGNUMBER_PRECISION_PADDED(precision));
2443+
const BigNumber pwrSinOfNumber = BigNumber(sinOfNumber).Pow(2, BIGNUMBER_PRECISION_PADDED(precision));
2444+
const BigNumber sqrRoot = BigNumber(_number_one).Sub(pwrSinOfNumber).Sqrt(BIGNUMBER_PRECISION_PADDED(precision));
2445+
const BigNumber result = BigNumber(sinOfNumber).Div(sqrRoot, BIGNUMBER_PRECISION_PADDED(precision));
24462446

24472447
// all done.
24482448
*this = result;
@@ -2466,10 +2466,10 @@ namespace MyOddWeb
24662466
}
24672467

24682468
// get 180 / pi
2469-
BigNumber oneEightyOverpi = BigNumber::AbsDiv(180, BigNumber::pi(), DEFAULT_PRECISION_PADDED(precision));
2469+
BigNumber oneEightyOverpi = BigNumber::AbsDiv(180, BigNumber::pi(), BIGNUMBER_PRECISION_PADDED(precision));
24702470

24712471
// the number is x * (180/pi)
2472-
Mul(oneEightyOverpi, DEFAULT_PRECISION_PADDED(precision));
2472+
Mul(oneEightyOverpi, BIGNUMBER_PRECISION_PADDED(precision));
24732473

24742474
// clean up and done.
24752475
return Round(precision).PerformPostOperations(precision);
@@ -2490,10 +2490,10 @@ namespace MyOddWeb
24902490
}
24912491

24922492
// get pi / 180
2493-
BigNumber piOver180 = BigNumber::AbsDiv(BigNumber::pi(), 180, DEFAULT_PRECISION_PADDED(precision));
2493+
BigNumber piOver180 = BigNumber::AbsDiv(BigNumber::pi(), 180, BIGNUMBER_PRECISION_PADDED(precision));
24942494

24952495
// the number is x * (pi/180)
2496-
Mul(piOver180, DEFAULT_PRECISION_PADDED(precision) );
2496+
Mul(piOver180, BIGNUMBER_PRECISION_PADDED(precision) );
24972497

24982498
// clean up and done.
24992499
return Round(precision).PerformPostOperations(precision);

0 commit comments

Comments
 (0)