@@ -585,8 +585,8 @@ namespace MyOddWeb
585585 NUMBERS c;
586586
587587 // remove unneeded decimal places.
588- BigNumber tlhs = BigNumber (lhs).Round (DEFAULT_PRECISION_PADDED (precision));
589- BigNumber trhs = BigNumber (rhs).Round (DEFAULT_PRECISION_PADDED (precision));
588+ BigNumber tlhs = BigNumber (lhs).Round (BIGNUMBER_PRECISION_PADDED (precision));
589+ BigNumber trhs = BigNumber (rhs).Round (BIGNUMBER_PRECISION_PADDED (precision));
590590
591591 // the number we are working with.
592592 BigNumber number (tlhs);
@@ -659,9 +659,9 @@ namespace MyOddWeb
659659 // if we have decimals, we need to do it the hard/long way...
660660 if (copyExp._decimals > 0 )
661661 {
662- copyBase.Ln (DEFAULT_PRECISION_PADDED (precision)); // we need the correction, do we don't loose it too quick.
663- copyBase.Mul ( copyExp, DEFAULT_PRECISION_PADDED (precision));
664- result = copyBase.Exp (DEFAULT_PRECISION_PADDED (precision));
662+ copyBase.Ln (BIGNUMBER_PRECISION_PADDED (precision)); // we need the correction, do we don't loose it too quick.
663+ copyBase.Mul ( copyExp, BIGNUMBER_PRECISION_PADDED (precision));
664+ result = copyBase.Exp (BIGNUMBER_PRECISION_PADDED (precision));
665665 }
666666 else
667667 {
@@ -671,7 +671,7 @@ namespace MyOddWeb
671671 // if it is odd...
672672 if (copyExp.IsOdd ())
673673 {
674- result = BigNumber::AbsMul (result, copyBase, DEFAULT_PRECISION_PADDED (precision));
674+ result = BigNumber::AbsMul (result, copyBase, BIGNUMBER_PRECISION_PADDED (precision));
675675 }
676676
677677 // devide by 2 with no decimal places.
@@ -682,7 +682,7 @@ namespace MyOddWeb
682682 }
683683
684684 // multiply the base by itself.
685- copyBase = BigNumber::AbsMul (copyBase, copyBase, DEFAULT_PRECISION_PADDED (precision));
685+ copyBase = BigNumber::AbsMul (copyBase, copyBase, BIGNUMBER_PRECISION_PADDED (precision));
686686 }
687687 }
688688
@@ -725,8 +725,8 @@ namespace MyOddWeb
725725 if (maxDecimals > 0 )
726726 {
727727 // remove unneeded decimal places.
728- BigNumber tlhs = BigNumber (lhs).Round (DEFAULT_PRECISION_PADDED (precision) );
729- BigNumber trhs = BigNumber (rhs).Round (DEFAULT_PRECISION_PADDED (precision));
728+ BigNumber tlhs = BigNumber (lhs).Round (BIGNUMBER_PRECISION_PADDED (precision) );
729+ BigNumber trhs = BigNumber (rhs).Round (BIGNUMBER_PRECISION_PADDED (precision));
730730
731731 // the final number of decimals is the total number of decimals we used.
732732 // 10.12 * 10.12345=102.4493140
@@ -1453,7 +1453,7 @@ namespace MyOddWeb
14531453 }
14541454
14551455 // the padded precision so we do not, slowly, loose our final precision.
1456- const size_t padded_precision = DEFAULT_PRECISION_PADDED (precision);
1456+ const size_t padded_precision = BIGNUMBER_PRECISION_PADDED (precision);
14571457
14581458 // copy this number variable so it is easier to read.
14591459 BigNumber x = *this ;
@@ -1463,7 +1463,7 @@ namespace MyOddWeb
14631463 const BigNumber one_over_r = BigNumber (_number_one).Div (nthroot, padded_precision);
14641464
14651465 // calculate this over and over again.
1466- for (size_t i = 0 ; i < MAX_ROOT_ITERATIONS ; ++i)
1466+ for (size_t i = 0 ; i < BIGNUMBER_MAX_ROOT_ITERATIONS ; ++i)
14671467 {
14681468 // y = n / pow( x, r_less_one)
14691469 BigNumber y1 = BigNumber (x).Pow (r_less_one, padded_precision);
@@ -1545,12 +1545,12 @@ namespace MyOddWeb
15451545
15461546 // try and use the power of...
15471547 // nthroot = x^( 1/nthroot)
1548- const BigNumber number_one_over = BigNumber (_number_one).Div ( nthroot, DEFAULT_PRECISION_PADDED (precision));
1548+ const BigNumber number_one_over = BigNumber (_number_one).Div ( nthroot, BIGNUMBER_PRECISION_PADDED (precision));
15491549
15501550 // calculate it, use the correction to make sure we are well past
15511551 // the actual value we want to set is as.
15521552 // the rounding will then take care of the rest.
1553- *this = Pow (number_one_over, DEFAULT_PRECISION_PADDED (precision)).Round (precision);
1553+ *this = Pow (number_one_over, BIGNUMBER_PRECISION_PADDED (precision)).Round (precision);
15541554 }
15551555
15561556 // return this/cleaned up.
@@ -2095,10 +2095,10 @@ namespace MyOddWeb
20952095
20962096 // truncate the presision so we do not do too many multiplications.
20972097 // add a bit of room for more accurate precision.
2098- e.Trunc (DEFAULT_PRECISION_PADDED (precision));
2098+ e.Trunc (BIGNUMBER_PRECISION_PADDED (precision));
20992099
21002100 // then raise it.
2101- *this = e.Pow (integer, DEFAULT_PRECISION_PADDED (precision));
2101+ *this = e.Pow (integer, BIGNUMBER_PRECISION_PADDED (precision));
21022102 }
21032103
21042104 if (!fraction.IsZero ())
@@ -2111,10 +2111,10 @@ namespace MyOddWeb
21112111 BigNumber power (base);
21122112
21132113 BigNumber result = _number_one;
2114- for (size_t i = 1 ; i < MAX_EXP_ITERATIONS ; ++i)
2114+ for (size_t i = 1 ; i < BIGNUMBER_MAX_EXP_ITERATIONS ; ++i)
21152115 {
21162116 // calculate the number up to the precision we are after.
2117- BigNumber calulatedNumber = BigNumber ( power ).Div ( fact, DEFAULT_PRECISION_PADDED (precision));
2117+ BigNumber calulatedNumber = BigNumber ( power ).Div ( fact, BIGNUMBER_PRECISION_PADDED (precision));
21182118 if (calulatedNumber.IsZero ())
21192119 {
21202120 break ;
@@ -2124,17 +2124,17 @@ namespace MyOddWeb
21242124 result.Add ( calulatedNumber );
21252125
21262126 // x * x * x ...
2127- power = power.Mul ( base, DEFAULT_PRECISION_PADDED (precision));
2127+ power = power.Mul ( base, BIGNUMBER_PRECISION_PADDED (precision));
21282128
21292129 // 1 * 2 * 3 ...
2130- fact = fact.Mul ( (int )(i+1 ), DEFAULT_PRECISION_PADDED (precision));
2130+ fact = fact.Mul ( (int )(i+1 ), BIGNUMBER_PRECISION_PADDED (precision));
21312131 }
21322132
21332133 // the decimal part of the number.
21342134 fraction = result;
21352135
21362136 // multiply the decimal number with the fraction.
2137- Mul (fraction, DEFAULT_PRECISION_PADDED (precision));
2137+ Mul (fraction, BIGNUMBER_PRECISION_PADDED (precision));
21382138 }
21392139
21402140 // clean up and return.
@@ -2175,17 +2175,17 @@ namespace MyOddWeb
21752175
21762176 while (Compare (0.8 ) < 0 )
21772177 {
2178- Mul (1.8 , DEFAULT_PRECISION_PADDED (precision));
2178+ Mul (1.8 , BIGNUMBER_PRECISION_PADDED (precision));
21792179 ++counter8;
21802180 }
21812181 while (Compare (_number_two ) > 0 )
21822182 {
2183- Div (_number_two, DEFAULT_PRECISION_PADDED (precision));
2183+ Div (_number_two, BIGNUMBER_PRECISION_PADDED (precision));
21842184 ++counter2;
21852185 }
21862186 while (Compare (1.1 ) > 0 )
21872187 {
2188- Div (1.1 , DEFAULT_PRECISION_PADDED (precision));
2188+ Div (1.1 , BIGNUMBER_PRECISION_PADDED (precision));
21892189 ++counter1;
21902190 }
21912191
@@ -2199,7 +2199,7 @@ namespace MyOddWeb
21992199 // 2 3 4
22002200 BigNumber result = base; // Kick it off
22012201 BigNumber baseRaised = base;
2202- for ( size_t i = 0 ; i < MAX_LN_ITERATIONS ; ++i )
2202+ for ( size_t i = 0 ; i < BIGNUMBER_MAX_LN_ITERATIONS ; ++i )
22032203 {
22042204 // next donominator
22052205 den.Add (_number_one );
@@ -2208,10 +2208,10 @@ namespace MyOddWeb
22082208 neg = !neg;
22092209
22102210 // the denominator+power is the same thing
2211- baseRaised.Mul (base, DEFAULT_PRECISION_PADDED (precision));
2211+ baseRaised.Mul (base, BIGNUMBER_PRECISION_PADDED (precision));
22122212
22132213 // now devide it
2214- BigNumber currentBase = BigNumber ( baseRaised ).Div ( den, DEFAULT_PRECISION_PADDED (precision));
2214+ BigNumber currentBase = BigNumber ( baseRaised ).Div ( den, BIGNUMBER_PRECISION_PADDED (precision));
22152215
22162216 // there is no need to go further, with this presision
22172217 // and with this number of iterations we will keep adding/subtrating zeros.
@@ -2237,7 +2237,7 @@ namespace MyOddWeb
22372237 // "0.0953101798043248600439521232807650922206053653086441991852398081630010142358842328390575029130364930727479418458517498888460436935129806386890150217023263755687346983551204157456607731117050481406611584967219092627683199972666804124629171163211396201386277872575289851216418802049468841988934550053918259553296705084248072320206243393647990631942365020716424972582488628309770740635849277971589257686851592941134955982468458204470563781108676951416362518738052421687452698243540081779470585025890580291528650263570516836272082869034439007178525831485094480503205465208833580782304569935437696233763597527612962802333"
22382238 static const BigNumber ln11({ 3,3,3,2,0,8,2,6,9,2,1,6,7,2,5,7,9,5,3,6,7,3,3,2,6,9,6,7,3,4,5,3,9,9,6,5,4,0,3,2,8,7,0,8,5,3,3,8,8,0,2,5,6,4,5,0,2,3,0,5,0,8,4,4,9,0,5,8,4,1,3,8,5,2,5,8,7,1,7,0,0,9,3,4,4,3,0,9,6,8,2,8,0,2,7,2,6,3,8,6,1,5,0,7,5,3,6,2,0,5,6,8,2,5,1,9,2,0,8,5,0,9,8,5,2,0,5,8,5,0,7,4,9,7,7,1,8,0,0,4,5,3,4,2,8,9,6,2,5,4,7,8,6,1,2,4,2,5,0,8,3,7,8,1,5,2,6,3,6,1,4,1,5,9,6,7,6,8,0,1,1,8,7,3,6,5,0,7,4,4,0,2,8,5,4,8,6,4,2,8,9,5,5,9,4,3,1,1,4,9,2,9,5,1,5,8,6,8,6,7,5,2,9,8,5,1,7,9,7,7,2,9,4,8,5,3,6,0,4,7,0,7,7,9,0,3,8,2,6,8,8,4,2,8,5,2,7,9,4,2,4,6,1,7,0,2,0,5,6,3,2,4,9,1,3,6,0,9,9,7,4,6,3,9,3,3,4,2,6,0,2,0,2,3,2,7,0,8,4,2,4,8,0,5,0,7,6,9,2,3,5,5,9,5,2,8,1,9,3,5,0,0,5,5,4,3,9,8,8,9,1,4,8,8,6,4,9,4,0,2,0,8,8,1,4,6,1,2,1,5,8,9,8,2,5,7,5,2,7,8,7,7,2,6,8,3,1,0,2,6,9,3,1,1,2,3,6,1,1,7,1,9,2,6,4,2,1,4,0,8,6,6,6,2,7,9,9,9,1,3,8,6,7,2,6,2,9,0,9,1,2,7,6,9,4,8,5,1,1,6,6,0,4,1,8,4,0,5,0,7,1,1,1,3,7,7,0,6,6,5,4,7,5,1,4,0,2,1,5,5,3,8,9,6,4,3,7,8,6,5,5,7,3,6,2,3,2,0,7,1,2,0,5,1,0,9,8,6,8,3,6,0,8,9,2,1,5,3,9,6,3,4,0,6,4,8,8,8,8,9,4,7,1,5,8,5,4,8,1,4,9,7,4,7,2,7,0,3,9,4,6,3,0,3,1,9,2,0,5,7,5,0,9,3,8,2,3,2,4,8,8,5,3,2,4,1,0,1,0,0,3,6,1,8,0,8,9,3,2,5,8,1,9,9,1,4,4,6,8,0,3,5,6,3,5,0,6,0,2,2,2,9,0,5,6,7,0,8,2,3,2,1,2,5,9,3,4,0,0,6,8,4,2,3,4,0,8,9,7,1,0,1,3,5,9,0,0 }, 616, false);
22392239 BigNumber ln11_tmp = ln11;
2240- ln11_tmp.Mul (counter1, DEFAULT_PRECISION_PADDED (precision));
2240+ ln11_tmp.Mul (counter1, BIGNUMBER_PRECISION_PADDED (precision));
22412241 result.Add (ln11_tmp);
22422242 }
22432243
@@ -2247,7 +2247,7 @@ namespace MyOddWeb
22472247 // "0.693147180559945309417232121458176568075500134360255254120680009493393621969694715605863326996418687542001481020570685733685520235758130557032670751635075961930727570828371435190307038623891673471123350115364497955239120475172681574932065155524734139525882950453007095326366642654104239157814952043740430385500801944170641671518644712839968171784546957026271631064546150257207402481637773389638550695260668341137273873722928956493547025762652098859693201965058554764703306793654432547632744951250406069438147104689946506220167720424524529612687946546193165174681392672504103802546259656869144192871608293803172714368"
22482248 static const BigNumber ln2({ 8,6,3,4,1,7,2,7,1,3,0,8,3,9,2,8,0,6,1,7,8,2,9,1,4,4,1,9,6,8,6,5,6,9,5,2,6,4,5,2,0,8,3,0,1,4,0,5,2,7,6,2,9,3,1,8,6,4,7,1,5,6,1,3,9,1,6,4,5,6,4,9,7,8,6,2,1,6,9,2,5,4,2,5,4,2,4,0,2,7,7,6,1,0,2,2,6,0,5,6,4,9,9,8,6,4,0,1,7,4,1,8,3,4,9,6,0,6,0,4,0,5,2,1,5,9,4,4,7,2,3,6,7,4,5,2,3,4,4,5,6,3,9,7,6,0,3,3,0,7,4,6,7,4,5,5,8,5,0,5,6,9,1,0,2,3,9,6,9,5,8,8,9,0,2,5,6,2,6,7,5,2,0,7,4,5,3,9,4,6,5,9,8,2,9,2,2,7,3,7,8,3,7,2,7,3,1,1,4,3,8,6,6,0,6,2,5,9,6,0,5,5,8,3,6,9,8,3,3,7,7,7,3,6,1,8,4,2,0,4,7,0,2,7,5,2,0,5,1,6,4,5,4,6,0,1,3,6,1,7,2,6,2,0,7,5,9,6,4,5,4,8,7,1,7,1,8,6,9,9,3,8,2,1,7,4,4,6,8,1,5,1,7,6,1,4,6,0,7,1,4,4,9,1,0,8,0,0,5,5,8,3,0,3,4,0,4,7,3,4,0,2,5,9,4,1,8,7,5,1,9,3,2,4,0,1,4,5,6,2,4,6,6,6,3,6,2,3,5,9,0,7,0,0,3,5,4,0,5,9,2,8,8,5,2,5,9,3,1,4,3,7,4,2,5,5,5,1,5,6,0,2,3,9,4,7,5,1,8,6,2,7,1,5,7,4,0,2,1,9,3,2,5,5,9,7,9,4,4,6,3,5,1,1,0,5,3,3,2,1,1,7,4,3,7,6,1,9,8,3,2,6,8,3,0,7,0,3,0,9,1,5,3,4,1,7,3,8,2,8,0,7,5,7,2,7,0,3,9,1,6,9,5,7,0,5,3,6,1,5,7,0,7,6,2,3,0,7,5,5,0,3,1,8,5,7,5,3,2,0,2,5,5,8,6,3,3,7,5,8,6,0,7,5,0,2,0,1,8,4,1,0,0,2,4,5,7,8,6,8,1,4,6,9,9,6,2,3,3,6,8,5,0,6,5,1,7,4,9,6,9,6,9,1,2,6,3,9,3,3,9,4,9,0,0,0,8,6,0,2,1,4,5,2,5,5,2,0,6,3,4,3,1,0,0,5,5,7,0,8,6,5,6,7,1,8,5,4,1,2,1,2,3,2,7,1,4,9,0,3,5,4,9,9,5,5,0,8,1,7,4,1,3,9,6,0 }, 615, false);
22492249 BigNumber ln2_tmp = ln2;
2250- ln2_tmp.Mul (counter2, DEFAULT_PRECISION_PADDED (precision));
2250+ ln2_tmp.Mul (counter2, BIGNUMBER_PRECISION_PADDED (precision));
22512251 result.Add (ln2_tmp);
22522252 }
22532253
@@ -2257,7 +2257,7 @@ namespace MyOddWeb
22572257 // "0.587786664902119008189731140618863769769379761376981181556740775800809598729560169117097631534284566775973755110200168585012003222536363442471987124070849093654145900869579488705254541486380394750214985439990943264901458147307801981343725602329350916457819213072437061657645370725998495814483186568232484236059984884946504043108616216273293809193522251042201711480828917893925532893803444719889512011504399314051421418444171441064659998892289089035003091141787128108024952008593307276614322356640449112819566260840792601819695518817384830430694637551056654910817069372465364862878039189497360001395678426943344493527"
22582258 static const BigNumber ln18({7,2,5,3,9,4,4,4,3,3,4,9,6,2,4,8,7,6,5,9,3,1,0,0,0,6,3,7,9,4,9,8,1,9,3,0,8,7,8,2,6,8,4,6,3,5,6,4,2,7,3,9,6,0,7,1,8,0,1,9,4,5,6,6,5,0,1,5,5,7,3,6,4,9,6,0,3,4,0,3,8,4,8,3,7,1,8,8,1,5,5,9,6,9,1,8,1,0,6,2,9,7,0,4,8,0,6,2,6,6,5,9,1,8,2,1,1,9,4,4,0,4,6,6,5,3,2,2,3,4,1,6,6,7,2,7,0,3,3,9,5,8,0,0,2,5,9,4,2,0,8,0,1,8,2,1,7,8,7,1,4,1,1,9,0,3,0,0,5,3,0,9,8,0,9,8,2,2,9,8,8,9,9,9,5,6,4,6,0,1,4,4,1,7,1,4,4,4,8,1,4,1,2,4,1,5,0,4,1,3,9,9,3,4,0,5,1,1,0,2,1,5,9,8,8,9,1,7,4,4,4,3,0,8,3,9,8,2,3,5,5,2,9,3,9,8,7,1,9,8,2,8,0,8,4,1,1,7,1,0,2,2,4,0,1,5,2,2,2,5,3,9,1,9,0,8,3,9,2,3,7,2,6,1,2,6,1,6,8,0,1,3,4,0,4,0,5,6,4,9,4,8,8,4,8,9,9,5,0,6,3,2,4,8,4,2,3,2,8,6,5,6,8,1,3,8,4,4,1,8,5,9,4,8,9,9,5,2,7,0,7,3,5,4,6,7,5,6,1,6,0,7,3,4,2,7,0,3,1,2,9,1,8,7,5,4,6,1,9,0,5,3,9,2,3,2,0,6,5,2,7,3,4,3,1,8,9,1,0,8,7,0,3,7,4,1,8,5,4,1,0,9,4,6,2,3,4,9,0,9,9,9,3,4,5,8,9,4,1,2,0,5,7,4,9,3,0,8,3,6,8,4,1,4,5,4,5,2,5,0,7,8,8,4,9,7,5,9,6,8,0,0,9,5,4,1,4,5,6,3,9,0,9,4,8,0,7,0,4,2,1,7,8,9,1,7,4,2,4,4,3,6,3,6,3,5,2,2,2,3,0,0,2,1,0,5,8,5,8,6,1,0,0,2,0,1,1,5,5,7,3,7,9,5,7,7,6,6,5,4,8,2,4,3,5,1,3,6,7,9,0,7,1,1,9,6,1,0,6,5,9,2,7,8,9,5,9,0,8,0,0,8,5,7,7,0,4,7,6,5,5,1,8,1,1,8,9,6,7,3,1,6,7,9,7,3,9,6,7,9,6,7,3,6,8,8,1,6,0,4,1,1,3,7,9,8,1,8,0,0,9,1,1,2,0,9,4,6,6,6,8,7,7,8,5,0 }, 615, false);
22592259 BigNumber ln18_tmp = ln18;
2260- ln18_tmp.Mul (counter8, DEFAULT_PRECISION_PADDED (precision));
2260+ ln18_tmp.Mul (counter8, BIGNUMBER_PRECISION_PADDED (precision));
22612261 result.Sub (ln18_tmp);
22622262 }
22632263
@@ -2284,11 +2284,11 @@ namespace MyOddWeb
22842284 BigNumber lnbase = base;
22852285
22862286 // calculate them both.
2287- ln.Ln (DEFAULT_PRECISION_PADDED (precision));
2288- lnbase.Ln (DEFAULT_PRECISION_PADDED (precision));
2287+ ln.Ln (BIGNUMBER_PRECISION_PADDED (precision));
2288+ lnbase.Ln (BIGNUMBER_PRECISION_PADDED (precision));
22892289
22902290 // one over the other
2291- *this = ln.Div (lnbase, DEFAULT_PRECISION_PADDED (precision));
2291+ *this = ln.Div (lnbase, BIGNUMBER_PRECISION_PADDED (precision));
22922292
22932293 // clean up and done.
22942294 return Round (precision).PerformPostOperations (precision);
@@ -2331,20 +2331,20 @@ namespace MyOddWeb
23312331 // sin(x) = (x) - ------- + ------- - ------- ...
23322332 // 3! 5! 7!
23332333 BigNumber result = BigNumber::_NormalizeAngle ( *this );
2334- const BigNumber multiplier = BigNumber (result).Pow (2 , DEFAULT_PRECISION_PADDED (precision ));
2334+ const BigNumber multiplier = BigNumber (result).Pow (2 , BIGNUMBER_PRECISION_PADDED (precision ));
23352335 BigNumber startingMultiplier = result;
23362336 BigNumber startingFractional = _number_one;
23372337 BigNumber fractionalCounter = _number_one;
23382338
23392339 bool neg = true ;
2340- for (size_t i = 0 ; i < MAX_TRIG_ITERATIONS ; ++i)
2340+ for (size_t i = 0 ; i < BIGNUMBER_MAX_TRIG_ITERATIONS ; ++i)
23412341 {
23422342 startingMultiplier.Mul (multiplier);
23432343
23442344 startingFractional.Mul (fractionalCounter.Add (_number_one));
23452345 startingFractional.Mul (fractionalCounter.Add (_number_one));
23462346
2347- BigNumber currentBase = BigNumber (startingMultiplier).Div (startingFractional, DEFAULT_PRECISION_PADDED (precision));
2347+ BigNumber currentBase = BigNumber (startingMultiplier).Div (startingFractional, BIGNUMBER_PRECISION_PADDED (precision));
23482348
23492349 // there is no need to go further, with this presision
23502350 // and with this number of iterations we will keep adding/subtrating zeros.
@@ -2385,20 +2385,20 @@ namespace MyOddWeb
23852385 // sin(x) = (1) - ------- + ------- - ------- ...
23862386 // 2! 4! 6!
23872387 BigNumber result = _number_one;
2388- const BigNumber multiplier = BigNumber::_NormalizeAngle ( *this ).Pow (2 , DEFAULT_PRECISION_PADDED (precision));
2388+ const BigNumber multiplier = BigNumber::_NormalizeAngle ( *this ).Pow (2 , BIGNUMBER_PRECISION_PADDED (precision));
23892389 BigNumber startingMultiplier = _number_one;
23902390 BigNumber startingFractional = _number_one;
23912391 BigNumber fractionalCounter = _number_zero;
23922392
23932393 bool neg = true ;
2394- for (size_t i = 0 ; i < MAX_TRIG_ITERATIONS ; ++i)
2394+ for (size_t i = 0 ; i < BIGNUMBER_MAX_TRIG_ITERATIONS ; ++i)
23952395 {
23962396 startingMultiplier.Mul (multiplier);
23972397
23982398 startingFractional.Mul (fractionalCounter.Add (_number_one));
23992399 startingFractional.Mul (fractionalCounter.Add (_number_one));
24002400
2401- BigNumber currentBase = BigNumber (startingMultiplier).Div (startingFractional, DEFAULT_PRECISION_PADDED (precision));
2401+ BigNumber currentBase = BigNumber (startingMultiplier).Div (startingFractional, BIGNUMBER_PRECISION_PADDED (precision));
24022402
24032403 // there is no need to go further, with this presision
24042404 // and with this number of iterations we will keep adding/subtrating zeros.
@@ -2439,10 +2439,10 @@ namespace MyOddWeb
24392439 // tan(x) = ---------------------
24402440 // sqrt( 1 - [sin(x)]^2)
24412441
2442- const BigNumber sinOfNumber = BigNumber (*this ).Sin (DEFAULT_PRECISION_PADDED (precision));
2443- const BigNumber pwrSinOfNumber = BigNumber (sinOfNumber).Pow (2 , DEFAULT_PRECISION_PADDED (precision));
2444- const BigNumber sqrRoot = BigNumber (_number_one).Sub (pwrSinOfNumber).Sqrt (DEFAULT_PRECISION_PADDED (precision));
2445- const BigNumber result = BigNumber (sinOfNumber).Div (sqrRoot, DEFAULT_PRECISION_PADDED (precision));
2442+ const BigNumber sinOfNumber = BigNumber (*this ).Sin (BIGNUMBER_PRECISION_PADDED (precision));
2443+ const BigNumber pwrSinOfNumber = BigNumber (sinOfNumber).Pow (2 , BIGNUMBER_PRECISION_PADDED (precision));
2444+ const BigNumber sqrRoot = BigNumber (_number_one).Sub (pwrSinOfNumber).Sqrt (BIGNUMBER_PRECISION_PADDED (precision));
2445+ const BigNumber result = BigNumber (sinOfNumber).Div (sqrRoot, BIGNUMBER_PRECISION_PADDED (precision));
24462446
24472447 // all done.
24482448 *this = result;
@@ -2466,10 +2466,10 @@ namespace MyOddWeb
24662466 }
24672467
24682468 // get 180 / pi
2469- BigNumber oneEightyOverpi = BigNumber::AbsDiv (180 , BigNumber::pi (), DEFAULT_PRECISION_PADDED (precision));
2469+ BigNumber oneEightyOverpi = BigNumber::AbsDiv (180 , BigNumber::pi (), BIGNUMBER_PRECISION_PADDED (precision));
24702470
24712471 // the number is x * (180/pi)
2472- Mul (oneEightyOverpi, DEFAULT_PRECISION_PADDED (precision));
2472+ Mul (oneEightyOverpi, BIGNUMBER_PRECISION_PADDED (precision));
24732473
24742474 // clean up and done.
24752475 return Round (precision).PerformPostOperations (precision);
@@ -2490,10 +2490,10 @@ namespace MyOddWeb
24902490 }
24912491
24922492 // get pi / 180
2493- BigNumber piOver180 = BigNumber::AbsDiv (BigNumber::pi (), 180 , DEFAULT_PRECISION_PADDED (precision));
2493+ BigNumber piOver180 = BigNumber::AbsDiv (BigNumber::pi (), 180 , BIGNUMBER_PRECISION_PADDED (precision));
24942494
24952495 // the number is x * (pi/180)
2496- Mul (piOver180, DEFAULT_PRECISION_PADDED (precision) );
2496+ Mul (piOver180, BIGNUMBER_PRECISION_PADDED (precision) );
24972497
24982498 // clean up and done.
24992499 return Round (precision).PerformPostOperations (precision);
0 commit comments