Skip to content

Commit 04bfcdf

Browse files
committed
Documentation for atlasses
1 parent 1c3d6f5 commit 04bfcdf

19 files changed

+211
-24
lines changed

docs/source/atlases.rst

Lines changed: 190 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,24 +1,204 @@
11
Cerebellar Atlases
22
==================
33

4-
The atlas module of the SUIT toolbox contains functions that download cerebellar atlases and contrast maps from the cerebellar atlas directory. Data can be downloaded in both volume and surface format.
4+
The functional atlases that came with the SUIT toolbox are now maintained seperately in the `cerebellar atlas repository`_.
55

6-
.. image:: functional_atlas.png
6+
.. _a link: https://github.com/DiedrichsenLab/cerebellar_atlases/
77

8-
.. toctree::
9-
:maxdepth: 2
8+
You can download the repository into a folder of your choice, or use the SUITPy function :func:`suit.fetch_atlas` to download individual atlases on demand. For example, to download the Diedrichsen_2009 probabilistic atlas, you can run:
109

11-
notebooks/datasets_example
10+
.. code::
1211
13-
For details on cerebellar atlases currently included, see:
12+
suit.fetch_atlas('Diedrichsen_2009')
1413
14+
For this command you can specify a atlas directory, specify the specific maps you want, and define the atlas space that you would like to use. For example, to download the symmetric, 32 parcel, Nettekoven_2024 atlas in SUIT space, you can run:
1515

16+
.. code::
1617
18+
suit.fetch_atlas('Nettekoven_2024', maps='NettekovenSym32',space='SUIT')
1719
18-
* King, M., Hernandez-Castillo, C.R., Poldrack, R.R., Ivry, R., and Diedrichsen, J. (2019). Functional Boundaries in the Human Cerebellum revealed by a Multi-Domain Task Battery. Nat. Neurosci.
19-
* Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106, 2322–2345
20-
* Ji, J. L., Spronk, M., Kulkarni, K., Repovš, G., Anticevic, A., & Cole, M. W. (2019). Mapping the human brain's cortical-subcortical functional network organization. Neuroimage, 185, 35-57
21-
* Xue, A., Kong, R., Yang, Q., Eldaief, M. C., Angeli, P. A., Dinicola, L. M., … Yeo, B. T. T. (2021). The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. https://doi.org/10.1152/jn.00561.2020
20+
Template spaces
21+
---------------
22+
23+
We are providing the atlas and data maps in three template spaces. All three templates are provided in the `tpl-` directory in a cerebellar-only version.
24+
25+
* MNI152NLin6AsymC: The non-linear asymmetric MNI template used for example in FSL (short MNI)
26+
* MNI152NLin2009cSymC: The 2000c symmetric MNI template (short MNISym)
27+
* SUIT: The original cerebellar-only template (Diedrichsen, 2005)
28+
29+
For every template space, we provide the following files:
30+
31+
* .._T1w: T1-weighted template image
32+
* .._desc-pcereb.nii: Probabilistic mask
33+
* .._desc-cereb_mask.nii: hard mask
34+
* .._xfm.nii: Transform files between different atlas spaces
35+
* ..label-GMc_probseg.nii: Gray matter probability
36+
* ..label-WMc_probseg.nii: White matter probability
37+
38+
Atlases
39+
-------
40+
For every maps, we provide some the following files:
41+
42+
* ..._space-MNI.nii: volume file aligned to MNI152NLin6AsymC
43+
* ..._space-MNISym.nii: volume file aligned to MNI152NLin2009cSymC
44+
* ..._space-SUIT.nii: volume file aligned to SUIT space
45+
* ...tsv: Color and label lookup table for parcellation
46+
* ...lut: Color and label lookup table for FSLeyes
47+
* ....gii: Data projected to surface-based representation of the cerebellum (Diedrichsen & Zotow, 2015).
48+
49+
The atlases are organized by the first author / year of the main paper
50+
51+
The maps can also be viewed online using our [cerebellar atlas viewer](https://www.diedrichsenlab.org/imaging/AtlasViewer).
52+
53+
Diedrichsen_2009: Probabilistic atlas for cerebellar lobules and nuclei
54+
-----------------------------------------------------------------------
55+
56+
.. image:: images/Diedrichsen_2009.png
57+
:width: 300px
58+
:align: left
59+
60+
The anatomical definitions are based on the fMRI atlas of an individual cerebellum by Schmahmann et al. (2000). We manually identified the main lobules on MRI scans of 20 healthy young participants (ROIs 1-28). Using a different set of 23 participants, we also identified the deep cerebellar nuclei (ROIs 29-34).
61+
62+
* atl-Anatom: Number of most probable compartment, Lobules and Nuclei
63+
64+
References and Links:
2265
* Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A probabilistic atlas of the human cerebellum. Neuroimage.
2366
* Diedrichsen, J., Maderwald, S., Kuper, M., Thurling, M., Rabe, K., Gizewski, E. R., et al. (2011). Imaging the deep cerebellar nuclei: A probabilistic atlas and normalization procedure. Neuroimage.
67+
* http://www.diedrichsenlab.org/imaging/propatlas.htm
68+
69+
70+
Buckner_2011: Resting state network parcellation
71+
---------------------------------------------------------
72+
73+
.. image:: images/Buckner_2011.png
74+
:width: 300px
75+
:align: left
76+
77+
78+
Buckner et al. (2011) presented the first comprehensive functional atlas of the human cerebellum, based on the correlation of each cerebellar voxel and with the 7 or 17 cortical resting state networks, described in Yeo et al. Parcellation is based on the data from 1000 subjects.
79+
80+
* atl-Buckner7: Assignment of cerebellar voxels to the 7 network parcellation
81+
* atl-Buckner17: Assignment of cerebellar voxels to the 17 network parcellation
82+
83+
References and Links:
84+
* Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106, 2322–2345.
85+
86+
87+
Xue_2021: Individual resting state parcellation
88+
--------------------------------------------------------
89+
90+
.. image:: images/Xue_2021.png
91+
:width: 300px
92+
:align: left
93+
94+
Xue et al. (2021) provided two individual parcellations based on resting state data from 31 sessions for each. 10 Cortical networks were estimated using a hierarchical Bayesian model (Kong et al. 2019) and the cerebellum labeled based on the highest correlation with these networks.
95+
96+
* atl-Xue10Sub1: Individual parcellation for subject 1
97+
* atl-Xue10Sub2: Individual parcellation for subject 2
98+
99+
References and Links:
100+
* Xue, A., Kong, R., Yang, Q., Eldaief, M. C., Angeli, P. A., Dinicola, L. M., … Yeo, B. T. T. (2021). The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. https://doi.org/10.1152/jn.00561.2020
101+
102+
103+
Ji_2019: Subcortical resting state parcellation
104+
-----------------------------------------------
105+
106+
.. image:: images/Ji_2019.png
107+
:width: 300px
108+
:align: left
109+
110+
Ji et al. (2019) presented a parcellation of subcortical structures based on correlation with 10 cortical networks, based on the HCP resting state data.
111+
112+
* atl-Ji10: Subcortical resting state parcellation in 10 networks
113+
114+
References and Links:
115+
116+
* Ji, J. L., Spronk, M., Kulkarni, K., Repovš, G., Anticevic, A., & Cole, M. W. (2019). Mapping the human brain's cortical-subcortical functional network organization. Neuroimage, 185, 35-57.
117+
118+
119+
King_2019:Multi-domain task battery (MDTB) parcellation and contrast maps
120+
---------------------------------------------------------------------------------------------
121+
122+
.. image:: images/King_2019.png
123+
:width: 300px
124+
:align: left
125+
126+
King et al. (2019) provided an extensive characterization of the functional organization of the cerebellum of 24 healthy, young participants. The contrast are for for 47 task conditions, accounted for the activity caused by left hand, right hand, and eye movements. All contrast maps are relative to the mean activity across all tasks. The parcellation into 10 regions is defined from the task-evoked activity across all tasks.
127+
128+
* atl-MDTB10: MDTB parcellation into 10 regions
129+
* con-MDTB01LeftHandMovement: Activity across tasks accounted for by left hand movements
130+
* con-MDTB02RightHandMovement: Activity across tasks accounted for by right hand movements
131+
* con-MDTB03Saccades: Activity across tasks accounted for by saccadic eye movements
132+
* con-MDTB04NoGo: Go-Nogo task with words: No-go
133+
* con-MDTB05Go: Go-Nogo task with words: go
134+
* con-MDTB06TheoryOfMind: 2 AFC task to indicate if a short story contains true or false belief
135+
* con-MDTB07ActionObservation: Passive viewing of knots being tied
136+
* con-MDTB08VideoKnots: Passive viewing of static knots
137+
* con-MDTB09UnpleasantScenes: IAPS affective pictures: Unpleasant scenes
138+
* con-MDTB10PleasantScenes: IAPS affective pictures: Pleasant scenes
139+
* con-MDTB11Math: Simple multiplication equations: Judge true or false
140+
* con-MDTB12DigitJudgement: Control task for Math: detect 1 within 4 digits
141+
* con-MDTB13ObjectViewing: Passive viewing of objects or checkerboard patterns
142+
* con-MDTB14SadFaces: IAPS affective pictures: Sad facial expressions
143+
* con-MDTB15HappyFaces: IAPS affective pictures: Happy facial expressions
144+
* con-MDTB16IntervalTiming: Auditory temporal judgement task between short (100ms) and long (175ms)
145+
* con-MDTB17MotorImagery: Imagine playing a game of tennis
146+
* con-MDTB18FingerSimple: Series of six simple key presses of same finger
147+
* con-MDTB19FingerSequence: Bimanual sequence of six key press
148+
* con-MDTB20Verbal2Back-: Working memory 2-back task with words: no target
149+
* con-MDTB21Verbal2Back+: Working memory 2-back task with words: target
150+
* con-MDTB22Object2Back-: Working memory 2-back task with pictures: no target
151+
* con-MDTB23Object2Back+: Working memory 2-back task with pictures: target
152+
* con-MDTB24SpatialImagery: Imagine to walk from kitchen to bathroom in your childhood home
153+
* con-MDTB25StroopIncongruent: Stroop task: Incongruent trials
154+
* con-MDTB26StroopCongruent: Stroop task: Congruent trials
155+
* con-MDTB27VerbGeneration: Generate a verb for a displayed noun (dog->bark)
156+
* con-MDTB28WordReading: Read the displayed noun: control for verb generation
157+
* con-MDTB29VisualSearchSmall: Find a target ('T') among distractors ('L'): 4 items
158+
* con-MDTB30VisualSearchMedium: Find a target ('T') among distractors ('L'): 8 items
159+
* con-MDTB31VisualSearchLarge: Find a target ('T') among distractors ('L'): 12 items
160+
* con-MDTB32Rest: Passive viewing of fixation cross
161+
* con-MDTB33CPRO: Concrete Permuted Rules Operations: Apply set of rules to 2 stimuli
162+
* con-MDTB34PredictionTrue: Predicting the end of a sequentially presented sentence: fulfilled prediction
163+
* con-MDTB35PredictionViolated: Predicting the end of a sequentially presented sentence: violated prediction
164+
* con-MDTB36PredictionScrambles: Predicting the end of a sequentially presented sentence: scrambled sentence
165+
* con-MDTB37SpatialMapEasy: Memorize a spatial map of numbers for subsequent recall: 1 item
166+
* con-MDTB38SpatialMapMedium: Memorize a spatial map of numbers for subsequent recall: 4 items
167+
* con-MDTB39SpatialMapHard: Memorize a spatial map of numbers for subsequent recall: 7 items
168+
* con-MDTB40NatureMovie: Passive viewing of "Planet Earth II: Islands" movie: Animal movements
169+
* con-MDTB41AnimatedMovie: Passive viewing of "Up" pixar movie: Social interactions
170+
* con-MDTB42LandscapeMovie: Passive viewing of movie: Landscape scenes
171+
* con-MDTB43MentalRotationEasy: Mental rotation task between two objects: 0 degrees
172+
* con-MDTB44MentalRotationMedium: Mental rotation task between two objects: 50 degrees
173+
* con-MDTB45MentalRotationHard: Mental rotation task between two objects: 150 degrees
174+
* con-MDTB46BiologicalMotion: Point light walker: Judge whether gait is happy or sad
175+
* con-MDTB47ScrambledMotion: Point light walker: Judge whether scrambled control stimulus moves fast or slow
176+
* con-MDTB48ResponseAlternativesEasy: Execute fast keypress to imparative signal: 1 cued position
177+
* con-MDTB49ResponseAlternativesMedium: Execute fast keypress to imparative signal: 2 cued positions
178+
* con-MDTB50ResponseAlternativesHard: Execute fast keypress to imparative signal: 4 cued position
179+
180+
References and Links:
181+
* King, M., Hernandez-Castillo, C.R., Poldrack, R.R., Ivry, R., and Diedrichsen, J. (2019). Functional Boundaries in the Human Cerebellum revealed by a Multi-Domain Task Battery. Nat. Neurosci.
182+
183+
184+
Nettekoven_2024: Hierarchical functional cerebellar atlas data fusion
185+
---------------------------------------------------------------------
186+
187+
.. image:: images/Nettekoven_2024.png
188+
:width: 300px
189+
:align: left
190+
191+
Functional parcellation into 4 domains, 32 regions or 68 subregions (symmetric or asymmetric). The three levels make up a nested hierarchical organization. An additional version with 128 regions that subdivides the 32 regions spatially into 4 regions (s: superior, i: inferior, t: tertiary, v: vermal) is available. The maps are based on the probabilistic integration of 7 task-based datasets. The color scheme reflects the functional similarity of different regions.
192+
193+
* atl-NettekovenSym32: Symmetric 32-region parcellation
194+
* atl-NettekovenAsym32: Asymmetric 32-region parcellation
195+
* atl-NettekovenSym68: Symmetric 68-region parcellation (functional subregions)
196+
* atl-NettekovenAsym68: Asymmetric 68-region parcellation (functional subregions)
197+
* atl-NettekovenSym128: Symmetric 128-region parcellation (spatial subregions)
198+
* atl-NettekovenAsym128: Asymmetric 128-region parcellation (spatial subregions)
199+
200+
References and Links:
201+
202+
* Nettekoven, C. et al. A hierarchical atlas of the human cerebellum for functional precision mapping. Nature Communications (2024).
203+
24204

docs/source/flatmap.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -3,13 +3,13 @@ Flatmap Module
33

44
The flatmap module of the SUIT toolbox contains a flat representation of the human cerebellum that can be used to visualise imaging data after volume-based normalisation and averaging across subjects. The method uses an approximate outer (grey-matter) and inner (white-matter) surface defined on the SUIT template (see figure below). Functional data between these two surfaces is projected to the surface along the lines connecting corresponding vertices. By applying cuts (thick black lines) the surface could be flattened out. We aimed to retain a roughly proportional relationship between the surface area of the 2D-representation and the volume of the underlying cerebellar grey matter. The map allows users to visualise the activation state of the complete cerebellar grey matter in one concise view, equally revealing both the anterior-posterior (lobular) and medial-lateral organisation.
55

6-
.. image:: suit_flat_1.jpg
6+
.. image:: images/suit_flat_1.jpg
77

88
The surface representation of the cerebellum is a group surface, designed to display functional data that has been averaged across participants in volumetric group space. The first step is a normalization of the data into a group space, either the SUIT space (using the Matlab version of the SUIT toolbox) or MNI space (we recommend FSL's FNIRT function).
99

10-
.. image:: suit_flat_2.jpg
10+
.. image:: images/suit_flat_2.jpg
1111

12-
Using the flatmap involves two step: Mapping the data from volume space to the flatmap, followed by plotting the data.
12+
Using the flatmap involves two step: Mapping the data from volume space to the flatmap, followed by plotting the data.
1313

1414

1515
.. toctree::
333 KB
Loading
219 KB
Loading

docs/source/images/Ji_2019.png

579 KB
Loading

docs/source/images/King_2019.png

455 KB
Loading
416 KB
Loading

0 commit comments

Comments
 (0)