Skip to content

Regarding attribute errors during the federated learning both in equal and unequal cases #33

@parjanay

Description

@parjanay

While running the code, the following attribute errors were coming. Can anyone tell the reasons for such errors??
For equal case:

Traceback (most recent call last):
  File "src/federated_main.py", line 36, in <module>
    train_dataset, test_dataset, user_groups = get_dataset(args)
  File "C:\Users\sharm\Downloads\Federated-Learning-PyTorch-master\src\utils.py", line 41, in get_dataset
    user_groups = cifar_noniid(train_dataset, args.num_users)
  File "C:\Users\sharm\Downloads\Federated-Learning-PyTorch-master\src\sampling.py", line 173, in cifar_noniid
    labels = np.array(dataset.train_labels)
  File "C:\Users\sharm\.conda\envs\newEnv\lib\site-packages\torch\utils\data\dataset.py", line 83, in __getattr__
    raise AttributeError
AttributeError

For Unequal case:

Traceback (most recent call last):
  File "src/federated_main.py", line 36, in <module>
    train_dataset, test_dataset, user_groups = get_dataset(args)
  File "C:\Users\sharm\Downloads\Federated-Learning-PyTorch-master\src\utils.py", line 38, in get_dataset
    raise NotImplementedError()
NotImplementedError

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions