+uid: output_0
+status: fail
+type: table
+properties: {'method': 'crosstab'}
+sdc: {'summary': {'suppressed': True, 'negative': 0, 'missing': 0, 'threshold': 4, 'p-ratio': 0, 'nk-rule': 0, 'all-values-are-same': 0}, 'cells': {'negative': [], 'missing': [], 'threshold': [[2, 0], [2, 1], [2, 2], [4, 0]], 'p-ratio': [], 'nk-rule': [], 'all-values-are-same': []}}
+command: safe_table = acro.crosstab(
+summary: fail; threshold: 4 cells suppressed;
+outcome: parents great_pret pretentious usual
+recommend
+not_recom ok ok ok
+priority ok ok ok
+recommend threshold; threshold; threshold;
+spec_prior ok ok ok
+very_recom threshold; ok ok
+output: [parents great_pret pretentious usual
+recommend
+not_recom 1440.0 1440.0 1440.0
+priority 858.0 1484.0 1924.0
+recommend NaN NaN NaN
+spec_prior 2022.0 1264.0 758.0
+very_recom NaN 132.0 196.0]
+timestamp: 2025-03-06T19:39:46.897407
+comments: []
+exception:
+
+uid: output_1
+status: fail
+type: table
+properties: {'method': 'crosstab'}
+sdc: {'summary': {'suppressed': True, 'negative': 0, 'missing': 0, 'threshold': 5, 'p-ratio': 0, 'nk-rule': 0, 'all-values-are-same': 0}, 'cells': {'negative': [], 'missing': [], 'threshold': [[2, 0], [2, 1], [2, 2], [2, 3], [4, 0]], 'p-ratio': [], 'nk-rule': [], 'all-values-are-same': []}}
+command: safe_table = acro.crosstab(df.recommend, df.parents, margins=True)
+summary: fail; threshold: 5 cells suppressed;
+outcome: parents great_pret pretentious usual All
+recommend
+not_recom ok ok ok ok
+priority ok ok ok ok
+recommend threshold; threshold; threshold; threshold;
+spec_prior ok ok ok ok
+very_recom threshold; ok ok ok
+All ok ok ok ok
+output: [parents great_pret pretentious usual All
+recommend
+not_recom 1440.0 1440 1440 4320
+priority 858.0 1484 1924 4266
+spec_prior 2022.0 1264 758 4044
+very_recom NaN 132 196 328
+All 4320.0 4320 4318 12958]
+timestamp: 2025-03-06T19:39:46.961631
+comments: []
+exception:
+
+uid: output_2
+status: fail
+type: table
+properties: {'method': 'crosstab'}
+sdc: {'summary': {'suppressed': False, 'negative': 0, 'missing': 0, 'threshold': 4, 'p-ratio': 0, 'nk-rule': 0, 'all-values-are-same': 0}, 'cells': {'negative': [], 'missing': [], 'threshold': [[2, 0], [2, 1], [2, 2], [4, 0]], 'p-ratio': [], 'nk-rule': [], 'all-values-are-same': []}}
+command: safe_table = acro.crosstab(df.recommend, df.parents)
+summary: fail; threshold: 4 cells may need suppressing;
+outcome: parents great_pret pretentious usual
+recommend
+not_recom ok ok ok
+priority ok ok ok
+recommend threshold; threshold; threshold;
+spec_prior ok ok ok
+very_recom threshold; ok ok
+output: [parents great_pret pretentious usual
+recommend
+not_recom 1440 1440 1440
+priority 858 1484 1924
+recommend 0 0 2
+spec_prior 2022 1264 758
+very_recom 0 132 196]
+timestamp: 2025-03-06T19:39:46.980090
+comments: []
+exception:
+
+uid: output_3
+status: fail
+type: table
+properties: {'method': 'crosstab'}
+sdc: {'summary': {'suppressed': True, 'negative': 0, 'missing': 0, 'threshold': 1, 'p-ratio': 4, 'nk-rule': 4, 'all-values-are-same': 0}, 'cells': {'negative': [], 'missing': [], 'threshold': [[2, 2]], 'p-ratio': [[2, 0], [2, 1], [2, 2], [4, 0]], 'nk-rule': [[2, 0], [2, 1], [2, 2], [4, 0]], 'all-values-are-same': []}}
+command: safe_table = acro.crosstab(
+summary: fail; threshold: 1 cells suppressed; p-ratio: 4 cells suppressed; nk-rule: 4 cells suppressed;
+outcome: parents great_pret pretentious \
+recommend
+not_recom ok ok
+priority ok ok
+recommend p-ratio; nk-rule; p-ratio; nk-rule;
+spec_prior ok ok
+very_recom p-ratio; nk-rule; ok
+
+parents usual
+recommend
+not_recom ok
+priority ok
+recommend threshold; p-ratio; nk-rule;
+spec_prior ok
+very_recom ok
+output: [parents great_pret pretentious usual
+recommend
+not_recom 1440.0 1440.0 1440.0
+priority 858.0 1484.0 1924.0
+recommend NaN NaN NaN
+spec_prior 2022.0 1264.0 758.0
+very_recom NaN 132.0 196.0]
+timestamp: 2025-03-06T19:39:47.019919
+comments: []
+exception:
+
+uid: output_4
+status: fail
+type: table
+properties: {'method': 'crosstab'}
+sdc: {'summary': {'suppressed': True, 'negative': 0, 'missing': 0, 'threshold': 2, 'p-ratio': 8, 'nk-rule': 8, 'all-values-are-same': 0}, 'cells': {'negative': [], 'missing': [], 'threshold': [[2, 2], [2, 5]], 'p-ratio': [[2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [4, 0], [4, 3]], 'nk-rule': [[2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [4, 0], [4, 3]], 'all-values-are-same': []}}
+command: safe_table = acro.crosstab(
+summary: fail; threshold: 2 cells suppressed; p-ratio: 8 cells suppressed; nk-rule: 8 cells suppressed;
+outcome: mode_aggfunc \
+parents great_pret pretentious
+recommend
+not_recom ok ok
+priority ok ok
+recommend p-ratio; nk-rule; p-ratio; nk-rule;
+spec_prior ok ok
+very_recom p-ratio; nk-rule; ok
+
+ mean \
+parents usual great_pret
+recommend
+not_recom ok ok
+priority ok ok
+recommend threshold; p-ratio; nk-rule; p-ratio; nk-rule;
+spec_prior ok ok
+very_recom ok p-ratio; nk-rule;
+
+
+parents pretentious usual
+recommend
+not_recom ok ok
+priority ok ok
+recommend p-ratio; nk-rule; threshold; p-ratio; nk-rule;
+spec_prior ok ok
+very_recom ok ok
+output: [ mode_aggfunc mean
+parents great_pret pretentious usual great_pret pretentious usual
+recommend
+not_recom 2.0 1.0 1.0 3.125694 3.105556 3.074306
+priority 1.0 1.0 1.0 2.665501 3.030323 3.116944
+recommend NaN NaN NaN NaN NaN NaN
+spec_prior 3.0 3.0 3.0 3.353610 3.370253 3.393140
+very_recom NaN 1.0 1.0 NaN 2.204545 2.244898]
+timestamp: 2025-03-06T19:39:47.068066
+comments: []
+exception:
+
+uid: output_5
+status: pass
+type: table
+properties: {'method': 'pivot_table'}
+sdc: {'summary': {'suppressed': True, 'negative': 0, 'missing': 0, 'threshold': 0, 'p-ratio': 0, 'nk-rule': 0, 'all-values-are-same': 0}, 'cells': {'negative': [], 'missing': [], 'threshold': [], 'p-ratio': [], 'nk-rule': [], 'all-values-are-same': []}}
+command: table = acro.pivot_table(
+summary: pass
+outcome: mean std
+ children children
+parents
+great_pret ok ok
+pretentious ok ok
+usual ok ok
+output: [ mean std
+ children children
+parents
+great_pret 3.140972 2.270396
+pretentious 3.129630 2.250436
+usual 3.110648 2.213072]
+timestamp: 2025-03-06T19:39:47.105651
+comments: []
+exception:
+
+uid: output_6
+status: fail
+type: table
+properties: {'method': 'pivot_table'}
+sdc: {'summary': {'suppressed': True, 'negative': 0, 'missing': 0, 'threshold': 5, 'p-ratio': 5, 'nk-rule': 5, 'all-values-are-same': 0}, 'cells': {'negative': [], 'missing': [], 'threshold': [[0, 2], [0, 4], [1, 2], [2, 2], [3, 2]], 'p-ratio': [[0, 2], [0, 4], [1, 2], [2, 2], [3, 2]], 'nk-rule': [[0, 2], [0, 4], [1, 2], [2, 2], [3, 2]], 'all-values-are-same': []}}
+command: safe_table = acro.pivot_table(
+summary: fail; threshold: 5 cells suppressed; p-ratio: 5 cells suppressed; nk-rule: 5 cells suppressed;
+outcome: children \
+recommend not_recom priority recommend spec_prior
+parents
+great_pret ok ok threshold; p-ratio; nk-rule; ok
+pretentious ok ok threshold; p-ratio; nk-rule; ok
+usual ok ok threshold; p-ratio; nk-rule; ok
+All ok ok threshold; p-ratio; nk-rule; ok
+
+
+recommend very_recom All
+parents
+great_pret threshold; p-ratio; nk-rule; ok
+pretentious ok ok
+usual ok ok
+All ok ok
+output: [ children
+recommend not_recom priority spec_prior very_recom All
+parents
+great_pret 3.125694 2.665501 3.353610 NaN 3.140972
+pretentious 3.105556 3.030323 3.370253 2.204545 3.129630
+usual 3.074306 3.116944 3.393140 2.244898 3.111626
+All 3.101852 2.996015 3.366222 2.228659 3.127412]
+timestamp: 2025-03-06T19:39:47.231513
+comments: []
+exception:
+
+uid: output_7
+status: pass
+type: regression
+properties: {'method': 'ols', 'dof': 12958.0}
+sdc: {}
+command: results = acro.ols(y, x)
+summary: pass; dof=12958.0 >= 10
+outcome: Empty DataFrame
+Columns: []
+Index: []
+output: [ recommend R-squared: 0.001
+Dep. Variable:
+Model: OLS Adj. R-squared: 0.001000
+Method: Least Squares F-statistic: 13.830000
+Date: Thu, 06 Mar 2025 Prob (F-statistic): 0.000201
+Time: 19:39:47 Log-Likelihood: -25121.000000
+No. Observations: 12960 AIC: 50250.000000
+Df Residuals: 12958 BIC: 50260.000000
+Df Model: 1 NaN NaN
+Covariance Type: nonrobust NaN NaN, coef std err t P>|t| [0.025 0.975]
+const 2.2099 0.025 87.263 0.0 2.160 2.260
+children 0.0245 0.007 3.718 0.0 0.012 0.037, 77090.215 Durbin-Watson: 2.883
+Omnibus:
+Prob(Omnibus): 0.000 Jarque-Bera (JB): 1741.57
+Skew: -0.486 Prob(JB): 0.00
+Kurtosis: 1.489 Cond. No. 6.90]
+timestamp: 2025-03-06T19:39:47.388052
+comments: []
+exception:
+
+uid: output_8
+status: pass
+type: regression
+properties: {'method': 'olsr', 'dof': 12958.0}
+sdc: {}
+command: results = acro.olsr(formula="recommend ~ children", data=new_df)
+summary: pass; dof=12958.0 >= 10
+outcome: Empty DataFrame
+Columns: []
+Index: []
+output: [ recommend R-squared: 0.001
+Dep. Variable:
+Model: OLS Adj. R-squared: 0.001000
+Method: Least Squares F-statistic: 13.830000
+Date: Thu, 06 Mar 2025 Prob (F-statistic): 0.000201
+Time: 19:39:47 Log-Likelihood: -25121.000000
+No. Observations: 12960 AIC: 50250.000000
+Df Residuals: 12958 BIC: 50260.000000
+Df Model: 1 NaN NaN
+Covariance Type: nonrobust NaN NaN, coef std err t P>|t| [0.025 0.975]
+Intercept 2.2099 0.025 87.263 0.0 2.160 2.260
+children 0.0245 0.007 3.718 0.0 0.012 0.037, 77090.215 Durbin-Watson: 2.883
+Omnibus:
+Prob(Omnibus): 0.000 Jarque-Bera (JB): 1741.57
+Skew: -0.486 Prob(JB): 0.00
+Kurtosis: 1.489 Cond. No. 6.90]
+timestamp: 2025-03-06T19:39:47.414293
+comments: []
+exception:
+
+uid: output_9
+status: pass
+type: regression
+properties: {'method': 'probit', 'dof': 12958.0}
+sdc: {}
+command: results = acro.probit(y, x)
+summary: pass; dof=12958.0 >= 10
+outcome: Empty DataFrame
+Columns: []
+Index: []
+output: [ finance No. Observations: 12960
+Dep. Variable:
+Model: Probit Df Residuals: 12958.000000
+Method: MLE Df Model: 1.000000
+Date: Thu, 06 Mar 2025 Pseudo R-squ.: 0.000004
+Time: 19:39:47 Log-Likelihood: -8983.200000
+converged: True LL-Null: -8983.200000
+Covariance Type: nonrobust LLR p-value: 0.799200, coef std err z P>|z| [0.025 0.975]
+const -0.0039 0.019 -0.207 0.836 -0.041 0.033
+children 0.0012 0.005 0.254 0.799 -0.008 0.011]
+timestamp: 2025-03-06T19:39:47.439598
+comments: []
+exception:
+
+uid: output_10
+status: pass
+type: regression
+properties: {'method': 'logit', 'dof': 12958.0}
+sdc: {}
+command: results = acro.logit(y, x)
+summary: pass; dof=12958.0 >= 10
+outcome: Empty DataFrame
+Columns: []
+Index: []
+output: [ finance No. Observations: 12960
+Dep. Variable:
+Model: Logit Df Residuals: 12958.000000
+Method: MLE Df Model: 1.000000
+Date: Thu, 06 Mar 2025 Pseudo R-squ.: 0.000004
+Time: 19:39:47 Log-Likelihood: -8983.200000
+converged: True LL-Null: -8983.200000
+Covariance Type: nonrobust LLR p-value: 0.799200, coef std err z P>|z| [0.025 0.975]
+const -0.0062 0.030 -0.207 0.836 -0.065 0.053
+children 0.0020 0.008 0.254 0.799 -0.013 0.017]
+timestamp: 2025-03-06T19:39:47.457696
+comments: []
+exception:
+
+uid: output_11
+status: fail
+type: table
+properties: {'method': 'surv_func'}
+sdc: {'summary': {'suppressed': True, 'negative': 0, 'missing': 0, 'threshold': 76, 'p-ratio': 0, 'nk-rule': 0, 'all-values-are-same': 0}, 'cells': {'negative': [], 'missing': [], 'threshold': [[1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3], [4, 0], [4, 1], [4, 2], [4, 3], [5, 0], [5, 1], [5, 2], [5, 3], [6, 0], [6, 1], [6, 2], [6, 3], [7, 0], [7, 1], [7, 2], [7, 3], [8, 0], [8, 1], [8, 2], [8, 3], [9, 0], [9, 1], [9, 2], [9, 3], [10, 0], [10, 1], [10, 2], [10, 3], [11, 0], [11, 1], [11, 2], [11, 3], [12, 0], [12, 1], [12, 2], [12, 3], [13, 0], [13, 1], [13, 2], [13, 3], [14, 0], [14, 1], [14, 2], [14, 3], [15, 0], [15, 1], [15, 2], [15, 3], [16, 0], [16, 1], [16, 2], [16, 3], [17, 0], [17, 1], [17, 2], [17, 3], [18, 0], [18, 1], [18, 2], [18, 3], [19, 0], [19, 1], [19, 2], [19, 3]], 'p-ratio': [], 'nk-rule': [], 'all-values-are-same': []}}
+command: safe_table = acro.surv_func(data.futime, data.death, output="table")
+summary: fail; threshold: 76 cells suppressed;
+outcome: Surv_prob Surv_prob_SE num_at_risk num_events
+Time
+51 ok ok ok ok
+69 threshold; threshold; threshold; threshold;
+85 threshold; threshold; threshold; threshold;
+91 threshold; threshold; threshold; threshold;
+115 threshold; threshold; threshold; threshold;
+372 threshold; threshold; threshold; threshold;
+667 threshold; threshold; threshold; threshold;
+874 threshold; threshold; threshold; threshold;
+1039 threshold; threshold; threshold; threshold;
+1046 threshold; threshold; threshold; threshold;
+1281 threshold; threshold; threshold; threshold;
+1286 threshold; threshold; threshold; threshold;
+1326 threshold; threshold; threshold; threshold;
+1355 threshold; threshold; threshold; threshold;
+1626 threshold; threshold; threshold; threshold;
+1903 threshold; threshold; threshold; threshold;
+1914 threshold; threshold; threshold; threshold;
+2776 threshold; threshold; threshold; threshold;
+2851 threshold; threshold; threshold; threshold;
+3309 threshold; threshold; threshold; threshold;
+output: [ Surv prob Surv prob SE num at risk num events
+Time
+51 0.95 0.048734 20.0 1.0
+69 NaN NaN NaN NaN
+85 NaN NaN NaN NaN
+91 NaN NaN NaN NaN
+115 NaN NaN NaN NaN
+372 NaN NaN NaN NaN
+667 NaN NaN NaN NaN
+874 NaN NaN NaN NaN
+1039 NaN NaN NaN NaN
+1046 NaN NaN NaN NaN
+1281 NaN NaN NaN NaN
+1286 NaN NaN NaN NaN
+1326 NaN NaN NaN NaN
+1355 NaN NaN NaN NaN
+1626 NaN NaN NaN NaN
+1903 NaN NaN NaN NaN
+1914 NaN NaN NaN NaN
+2776 NaN NaN NaN NaN
+2851 NaN NaN NaN NaN
+3309 NaN NaN NaN NaN]
+timestamp: 2025-03-06T19:39:48.298262
+comments: []
+exception:
+
+uid: output_12
+status: fail
+type: survival plot
+properties: {'method': 'surv_func'}
+sdc: {'summary': {'suppressed': True, 'negative': 0, 'missing': 0, 'threshold': 76, 'p-ratio': 0, 'nk-rule': 0, 'all-values-are-same': 0}, 'cells': {'negative': [], 'missing': [], 'threshold': [[1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3], [4, 0], [4, 1], [4, 2], [4, 3], [5, 0], [5, 1], [5, 2], [5, 3], [6, 0], [6, 1], [6, 2], [6, 3], [7, 0], [7, 1], [7, 2], [7, 3], [8, 0], [8, 1], [8, 2], [8, 3], [9, 0], [9, 1], [9, 2], [9, 3], [10, 0], [10, 1], [10, 2], [10, 3], [11, 0], [11, 1], [11, 2], [11, 3], [12, 0], [12, 1], [12, 2], [12, 3], [13, 0], [13, 1], [13, 2], [13, 3], [14, 0], [14, 1], [14, 2], [14, 3], [15, 0], [15, 1], [15, 2], [15, 3], [16, 0], [16, 1], [16, 2], [16, 3], [17, 0], [17, 1], [17, 2], [17, 3], [18, 0], [18, 1], [18, 2], [18, 3], [19, 0], [19, 1], [19, 2], [19, 3]], 'p-ratio': [], 'nk-rule': [], 'all-values-are-same': []}}
+command: safe_plot = acro.surv_func(
+summary: fail; threshold: 76 cells suppressed;
+outcome: Empty DataFrame
+Columns: []
+Index: []
+output: ['acro_artifacts/kaplan-mier_0.png']
+timestamp: 2025-03-06T19:39:48.450221
+comments: []
+exception:
+
+
+