-
-
Notifications
You must be signed in to change notification settings - Fork 101
Open
Description
Hi, I encounter the following error when using a tflite model that has been converted and quantized by toco.
Process: com.ml.quaterion.facenetdetection, PID: 4034
java.lang.IllegalArgumentException: Cannot copy to a TensorFlowLite tensor (input) with 76800 bytes from a Java Buffer with 307200 bytes.
at org.tensorflow.lite.TensorImpl.throwIfSrcShapeIsIncompatible(TensorImpl.java:416)
at org.tensorflow.lite.TensorImpl.setTo(TensorImpl.java:140)
at org.tensorflow.lite.NativeInterpreterWrapper.run(NativeInterpreterWrapper.java:243)
at org.tensorflow.lite.InterpreterImpl.runForMultipleInputsOutputs(InterpreterImpl.java:107)
at org.tensorflow.lite.Interpreter.runForMultipleInputsOutputs(Interpreter.java:80)
at org.tensorflow.lite.InterpreterImpl.run(InterpreterImpl.java:100)
at org.tensorflow.lite.Interpreter.run(Interpreter.java:80)
at com.ml.quaterion.facenetdetection.model.FaceNetModel.runFaceNet(FaceNetModel.kt:104)
at com.ml.quaterion.facenetdetection.model.FaceNetModel.getFaceEmbedding(FaceNetModel.kt:83)
at com.ml.quaterion.facenetdetection.FileReader$getEmbedding$2.invokeSuspend(FileReader.kt:108)
at kotlin.coroutines.jvm.internal.BaseContinuationImpl.resumeWith(ContinuationImpl.kt:33)
at kotlinx.coroutines.DispatchedTask.run(DispatchedTask.kt:106)
at kotlinx.coroutines.scheduling.CoroutineScheduler.runSafely(CoroutineScheduler.kt:570)
at kotlinx.coroutines.scheduling.CoroutineScheduler$Worker.executeTask(CoroutineScheduler.kt:750)
at kotlinx.coroutines.scheduling.CoroutineScheduler$Worker.runWorker(CoroutineScheduler.kt:677)
at kotlinx.coroutines.scheduling.CoroutineScheduler$Worker.run(CoroutineScheduler.kt:664)
The model is converted from facenet pretrained model to tflite by QUANTIZED_UINT8 format, the model size is reduced from 93MB to about 23MB, the problem should be caused by the mismatch between UINT8 and FLOAT, I would like to ask how to convert the tflite model in the assets directory of the project and reduce the model size while maintaining the FLOAT format.
Metadata
Metadata
Assignees
Labels
No labels