Skip to content

Commit 653e1af

Browse files
authored
Merge pull request #54 from AlexandrovLab/u15
U15
2 parents a066212 + 508161d commit 653e1af

File tree

5 files changed

+115
-23
lines changed

5 files changed

+115
-23
lines changed

README.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -127,14 +127,15 @@ Analyze.cosmic_fit( samples,
127127
| **samples** | String | Path to input file for `input_type`:<ul><li>"matrix"</li><li>"seg:TYPE"</li></ul> Path to input folder for `input_type`:<ul><li>"vcf"</li></ul>|
128128
| **output** | String | Path to the output folder. |
129129
| **input_type** | String | The type of input:<br><ul><li>"matrix": used for table format inputs using a tab-separated file where the rows are mutation types and the columns are sample IDs.</li><li>"vcf": used for mutation calling file inputs (VCFs, MAFs or simple text files).</li><li>"seg:TYPE": used for a multi-sample segmentation file for copy number analysis. The accepted callers for TYPE are the following {"ASCAT", "ASCAT_NGS", "SEQUENZA", "ABSOLUTE", "BATTENBERG", "FACETS", "PURPLE", "TCGA"}. For example, when using segmentation file from BATTENBERG then set input_type to "seg:BATTENBERG".</li></ul> The default value is "matrix".|
130-
| **context_type**| String| Required context type if `input_type` is "vcf". `context_type` takes which context type of the input data is considered for assignment. Valid options include "96", "288", "1536", "DINUC", and "INDEL". The default value is "96".|
130+
| **context_type**| String| Required context type if `input_type` is "vcf". `context_type` takes which context type of the input data is considered for assignment. Valid options include "96", "288", "1536", "DINUC", and "ID". The default value is "96".|
131131
| **signatures** | String | Path to a tab delimited file that contains the signature table where the rows are mutation types and colunms are signature IDs. |
132132
| **genome_build** | String | The reference genome build. List of supported genomes: "GRCh37", "GRCh38", "mm9", "mm10" and "rn6". The default value is "GRCh37". If the selected genome is not in the supported list, the default genome will be used. |
133133
| **cosmic_version** | Float | Takes a positive float among 1, 2, 3, 3.1, 3.2 and 3.3. Defines the version of the COSMIC reference signatures. The default value is 3.3. |
134134
| **new_signature_thresh_hold**| Float | Parameter in cosine similarity to declare a new signature. Applicable for decompose_fit only. The default value is 0.8. |
135135
| **exclude_signature_subgroups** | List | Removes the signatures corresponding to specific subtypes for better fitting. The usage is given above. The default value is None. |
136136
| **exome** | Boolean | Defines if the exome renormalized signatures will be used. The default value is False. |
137-
| **export_probabilities** | Boolean | Defines if the probability matrix is created. The default value is True. |
137+
| **export_probabilities** | Boolean | Defines if the probability matrix per mutational context for all samples is created. The default value is True. |
138+
| **export_probabilities_per_mutation** | Boolean | Defines if the probability matrices per mutation for all samples are created. Only available when `input_type` is "vcf". The default value is False. |
138139
| **make_plots** | Boolean | Toggle on and off for making and saving all plots. The default value is True. |
139140
| **verbose** | Boolean | Prints statements. The default value is False. |
140141

SigProfilerAssignment/Analyzer.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
11
from SigProfilerAssignment import decomposition as decomp
22

3-
def decompose_fit(samples, output, signatures=None, signature_database=None,nnls_add_penalty=0.05, nnls_remove_penalty=0.01, initial_remove_penalty=0.05,genome_build="GRCh37", cosmic_version=3.3, make_plots=True, collapse_to_SBS96=True,connected_sigs=True, verbose=False,devopts=None,new_signature_thresh_hold=0.8,exclude_signature_subgroups=None,exome=False,input_type='matrix',context_type="96",export_probabilities=True):
3+
def decompose_fit(samples, output, signatures=None, signature_database=None,nnls_add_penalty=0.05, nnls_remove_penalty=0.01, initial_remove_penalty=0.05,genome_build="GRCh37", cosmic_version=3.3, make_plots=True, collapse_to_SBS96=True,connected_sigs=True, verbose=False,devopts=None,new_signature_thresh_hold=0.8,exclude_signature_subgroups=None,exome=False,input_type='matrix',context_type="96",export_probabilities=True, export_probabilities_per_mutation=False):
44

5-
decomp.spa_analyze(samples=samples, output=output, signatures=signatures, signature_database=signature_database,nnls_add_penalty=nnls_add_penalty, nnls_remove_penalty=nnls_remove_penalty, initial_remove_penalty=initial_remove_penalty,genome_build=genome_build, cosmic_version=cosmic_version, make_plots=make_plots, collapse_to_SBS96=collapse_to_SBS96,connected_sigs=connected_sigs, verbose=verbose,decompose_fit_option= True,denovo_refit_option=False,cosmic_fit_option=False,devopts=devopts,new_signature_thresh_hold=new_signature_thresh_hold,exclude_signature_subgroups=exclude_signature_subgroups,exome=exome,input_type=input_type,context_type=context_type,export_probabilities=export_probabilities)
5+
decomp.spa_analyze(samples=samples, output=output, signatures=signatures, signature_database=signature_database,nnls_add_penalty=nnls_add_penalty, nnls_remove_penalty=nnls_remove_penalty, initial_remove_penalty=initial_remove_penalty,genome_build=genome_build, cosmic_version=cosmic_version, make_plots=make_plots, collapse_to_SBS96=collapse_to_SBS96,connected_sigs=connected_sigs, verbose=verbose,decompose_fit_option= True,denovo_refit_option=False,cosmic_fit_option=False,devopts=devopts,new_signature_thresh_hold=new_signature_thresh_hold,exclude_signature_subgroups=exclude_signature_subgroups,exome=exome,input_type=input_type,context_type=context_type,export_probabilities=export_probabilities, export_probabilities_per_mutation=export_probabilities_per_mutation)
66

7-
def denovo_fit(samples, output, signatures=None, signature_database=None,nnls_add_penalty=0.05,nnls_remove_penalty=0.01, initial_remove_penalty=0.05, genome_build="GRCh37", cosmic_version=3.3, make_plots=True, collapse_to_SBS96=True,connected_sigs=True, verbose=False,devopts=None,new_signature_thresh_hold=0.8,exome=False,input_type='matrix',context_type="96",export_probabilities=True):
8-
decomp.spa_analyze(samples=samples, output=output, signatures=signatures, signature_database=signature_database,nnls_add_penalty=nnls_add_penalty, nnls_remove_penalty=nnls_remove_penalty, initial_remove_penalty=initial_remove_penalty,genome_build=genome_build, cosmic_version=cosmic_version, new_signature_thresh_hold=new_signature_thresh_hold, make_plots=make_plots, collapse_to_SBS96=collapse_to_SBS96,connected_sigs=connected_sigs, verbose=verbose,decompose_fit_option= False,denovo_refit_option=True,cosmic_fit_option=False,devopts=devopts,exome=exome,input_type=input_type,context_type=context_type,export_probabilities=export_probabilities)
7+
def denovo_fit(samples, output, signatures=None, signature_database=None,nnls_add_penalty=0.05,nnls_remove_penalty=0.01, initial_remove_penalty=0.05, genome_build="GRCh37", cosmic_version=3.3, make_plots=True, collapse_to_SBS96=True,connected_sigs=True, verbose=False,devopts=None,new_signature_thresh_hold=0.8,exome=False,input_type='matrix',context_type="96",export_probabilities=True, export_probabilities_per_mutation=False):
8+
decomp.spa_analyze(samples=samples, output=output, signatures=signatures, signature_database=signature_database,nnls_add_penalty=nnls_add_penalty, nnls_remove_penalty=nnls_remove_penalty, initial_remove_penalty=initial_remove_penalty,genome_build=genome_build, cosmic_version=cosmic_version, new_signature_thresh_hold=new_signature_thresh_hold, make_plots=make_plots, collapse_to_SBS96=collapse_to_SBS96,connected_sigs=connected_sigs, verbose=verbose,decompose_fit_option= False,denovo_refit_option=True,cosmic_fit_option=False,devopts=devopts,exome=exome,input_type=input_type,context_type=context_type,export_probabilities=export_probabilities, export_probabilities_per_mutation=export_probabilities_per_mutation)
99

10-
def cosmic_fit(samples, output, signatures=None, signature_database=None,nnls_add_penalty=0.05, nnls_remove_penalty=0.01, initial_remove_penalty=0.05,genome_build="GRCh37", cosmic_version=3.3, make_plots=True, collapse_to_SBS96=True,connected_sigs=True, verbose=False,devopts=None,exclude_signature_subgroups=None,exome=False,input_type='matrix',context_type="96",export_probabilities=True):
11-
decomp.spa_analyze(samples=samples, output=output, signatures=signatures, signature_database=signature_database,nnls_add_penalty=nnls_add_penalty, nnls_remove_penalty=nnls_remove_penalty, initial_remove_penalty=initial_remove_penalty,genome_build=genome_build, cosmic_version=cosmic_version, make_plots=make_plots, collapse_to_SBS96=collapse_to_SBS96,connected_sigs=connected_sigs, verbose=verbose,decompose_fit_option= False,denovo_refit_option=False,cosmic_fit_option=True,devopts=devopts,exclude_signature_subgroups=exclude_signature_subgroups,exome=exome,input_type=input_type,context_type=context_type,export_probabilities=export_probabilities)
10+
def cosmic_fit(samples, output, signatures=None, signature_database=None,nnls_add_penalty=0.05, nnls_remove_penalty=0.01, initial_remove_penalty=0.05,genome_build="GRCh37", cosmic_version=3.3, make_plots=True, collapse_to_SBS96=True,connected_sigs=True, verbose=False,devopts=None,exclude_signature_subgroups=None,exome=False,input_type='matrix',context_type="96",export_probabilities=True, export_probabilities_per_mutation=False):
11+
decomp.spa_analyze(samples=samples, output=output, signatures=signatures, signature_database=signature_database,nnls_add_penalty=nnls_add_penalty, nnls_remove_penalty=nnls_remove_penalty, initial_remove_penalty=initial_remove_penalty,genome_build=genome_build, cosmic_version=cosmic_version, make_plots=make_plots, collapse_to_SBS96=collapse_to_SBS96,connected_sigs=connected_sigs, verbose=verbose,decompose_fit_option= False,denovo_refit_option=False,cosmic_fit_option=True,devopts=devopts,exclude_signature_subgroups=exclude_signature_subgroups,exome=exome,input_type=input_type,context_type=context_type,export_probabilities=export_probabilities, export_probabilities_per_mutation=export_probabilities_per_mutation)

SigProfilerAssignment/decompose_subroutines.py

Lines changed: 91 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -471,8 +471,8 @@ def signature_decomposition(signatures, mtype, directory, genome_build="GRCh37",
471471
#############################################################################################################
472472
def make_final_solution(processAvg, allgenomes, allsigids, layer_directory, m, index, allcolnames, process_std_error = "none", signature_stabilities = " ", \
473473
signature_total_mutations= " ", signature_stats = "none", cosmic_sigs=False, attribution= 0, denovo_exposureAvg = "none", add_penalty=0.05, \
474-
remove_penalty=0.01, initial_remove_penalty=0.05, de_novo_fit_penalty=0.02, background_sigs=0, genome_build="GRCh37", sequence="genome", export_probabilities=True, \
475-
refit_denovo_signatures=True, collapse_to_SBS96=True, connected_sigs=True, pcawg_rule=False, verbose=False,make_plots = True):
474+
remove_penalty=0.01, initial_remove_penalty=0.05, de_novo_fit_penalty=0.02, background_sigs=0, genome_build="GRCh37", sequence="genome", export_probabilities=True, export_probabilities_per_mutation=False, \
475+
refit_denovo_signatures=True, collapse_to_SBS96=True, connected_sigs=True, pcawg_rule=False, verbose=False,make_plots = True, samples='./', input_type='matrix', denovo_refit_option=True):
476476

477477
if processAvg.shape[0]==allgenomes.shape[0] and processAvg.shape[0] != 96:
478478
collapse_to_SBS96=False
@@ -774,15 +774,45 @@ def make_final_solution(processAvg, allgenomes, allsigids, layer_directory, m, i
774774
probability = probabilities(processAvg, exposureAvg, index, allsigids, allcolnames)
775775
probability=probability.set_index("Sample Names" )
776776

777-
if cosmic_sigs==False:
778-
777+
if denovo_refit_option==True:
779778
if refit_denovo_signatures==True:
780-
probability.to_csv(layer_directory+"/Activities"+"/"+"De_Novo_Mutation_Probabilities_refit.txt", "\t")
779+
probability.to_csv(layer_directory+"/Activities"+"/"+"De_Novo_MutationType_Probabilities_refit.txt", "\t")
780+
else:
781+
probability.to_csv(layer_directory+"/Activities"+"/"+"De_Novo_MutationType_Probabilities.txt", "\t")
782+
if denovo_refit_option==False:
783+
probability.to_csv(layer_directory+"/Activities"+"/"+"Decomposed_MutationType_Probabilities.txt", "\t")
784+
785+
if export_probabilities_per_mutation==True:
786+
if export_probabilities==True:
787+
if input_type=='vcf':
788+
if m=='96' or m=='78' or m=='83':
789+
probability_per_mutation, samples_prob_per_mut = probabilities_per_mutation(probability, samples, m)
790+
791+
if denovo_refit_option==True:
792+
if refit_denovo_signatures==True:
793+
ppm_file_name = "De_Novo_Mutation_Probabilities_refit"
794+
output_path_prob_per_mut = layer_directory+"/Activities"+"/"+ppm_file_name
795+
else:
796+
ppm_file_name = "De_Novo_Mutation_Probabilities"
797+
output_path_prob_per_mut = layer_directory+"/Activities"+"/"+ppm_file_name
798+
else:
799+
ppm_file_name = "Decomposed_Mutation_Probabilities"
800+
output_path_prob_per_mut = layer_directory+"/Activities"+"/"+ppm_file_name
801+
802+
if not os.path.exists(output_path_prob_per_mut):
803+
os.makedirs(output_path_prob_per_mut)
804+
for matrix,sample in zip(probability_per_mutation, samples_prob_per_mut):
805+
matrix=matrix.set_index('Sample Names')
806+
matrix=matrix.sort_values(by=['Chr','Pos'])
807+
matrix.to_csv(layer_directory+"/Activities"+"/"+ ppm_file_name + "/" + ppm_file_name + "_" + sample + ".txt", "\t")
808+
else:
809+
print('Probabilities per mutation are only calculated for SBS96, DBS78 and ID83 mutational contexts.')
781810
else:
782-
probability.to_csv(layer_directory+"/Activities"+"/"+"De_Novo_Mutation_Probabilities.txt", "\t")
783-
if cosmic_sigs==True:
784-
probability.to_csv(layer_directory+"/Activities"+"/"+"Decomposed_Mutation_Probabilities.txt", "\t")
811+
print('Probabilities per mutation are only calculated if input_type is "vcf".')
812+
else:
813+
print('Probabilities per mutation require to calculate probabilities per context type. Please re-run your analysis setting export_probabilites=True.')
785814

815+
# import pdb; pdb.set_trace()
786816

787817
return exposures
788818
################################################################### FUNCTION ONE ###################################################################
@@ -901,6 +931,59 @@ def probabilities(W, H, index, allsigids, allcolnames):
901931

902932
return result
903933

934+
935+
################################################### Generation of probabilities for each processes given to A mutation ############################################
936+
def probabilities_per_mutation(probability_matrix, samples_path, m):
937+
#
938+
probability_matrix=probability_matrix.reset_index()
939+
#
940+
if m=='96':
941+
seqinfo_path = samples_path + '/output/vcf_files/SNV/'
942+
interval_low = 3
943+
interval_high = -1
944+
if m=='78':
945+
seqinfo_path = samples_path + '/output/vcf_files/DBS/'
946+
interval_low = 4
947+
interval_high = -2
948+
if m=='83':
949+
seqinfo_path = samples_path + '/output/vcf_files/ID/'
950+
interval_low = 2
951+
interval_high = 100
952+
#
953+
seqinfo_files = os.listdir(seqinfo_path)
954+
seqinfo_files.sort()
955+
#
956+
all_mutations = pd.DataFrame()
957+
for file in seqinfo_files:
958+
try:
959+
new = pd.read_csv(seqinfo_path + file, sep='\t',header=None)
960+
all_mutations = pd.concat([all_mutations, new])
961+
except (pd.errors.EmptyDataError):
962+
pass
963+
all_mutations[3] = all_mutations[3].str[interval_low:interval_high]
964+
if m=='96' or m=='78':
965+
del all_mutations[4]
966+
else:
967+
del all_mutations[6]
968+
del all_mutations[5]
969+
del all_mutations[4]
970+
971+
all_mutations.columns = ['Sample Names', 'Chr', 'Pos', 'MutationType']
972+
#
973+
all_samples_mutations = [y for x, y in all_mutations.groupby('Sample Names')]
974+
#
975+
prob_per_mut = []
976+
sample_names = []
977+
for sample_mutations in all_samples_mutations:
978+
new = sample_mutations.merge(probability_matrix)
979+
prob_per_mut.append(new)
980+
sample_names.append(new['Sample Names'][0])
981+
#
982+
result = [prob_per_mut, sample_names]
983+
#
984+
return result
985+
986+
904987
def custom_signatures_plot(signatures, output):
905988
with PdfPages(output+'/Custom_Signature_Plots.pdf') as pdf:
906989
plt.figure(figsize=(10, 3))

0 commit comments

Comments
 (0)